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A nonsmooth exponential

by

Esteban Andruchow (Los Polvorines)

Abstract. LetM be a type II1 von Neumann algebra, τ a trace inM, and L2(M, τ)
the GNS Hilbert space of τ . If L2(M, τ)+ is the completion of the setMsa of selfadjoint
elements, then each element ξ ∈ L2(M, τ)+ gives rise to a selfadjoint unbounded operator
Lξ on L2(M, τ). In this note we show that the exponential exp : L2(M, τ)+ → L2(M, τ),
exp(ξ) = eiLξ , is continuous but not differentiable. The same holds for the Cayley trans-
form C(ξ) = (Lξ − i)(Lξ + i)−1. We also show that the unitary group UM ⊂ L2(M, τ)
with the strong operator topology is not an embedded submanifold of L2(M, τ), in any
way which makes the product (u,w) 7→ uw (u,w ∈ UM) a differentiable map.

1. Introduction. Let M be a type II1 von Neumann algebra with
a faithful and normal tracial state τ . Let L2(M, τ) be the Hilbert space
obtained by completion of M with respect to the norm ‖x‖2 = τ(x∗x)1/2.
By Segal’s theory of abstract integration [3], any element ξ ∈ L2(M, τ) can
be regarded as a (possibly unbounded) operator Lξ on L2(M, τ), affiliated
to M, as follows (see [1]). Let J be the antiunitary involution of L2(M, τ),
which on the dense subspace M ⊂ L2(M, τ) is just the involution ∗ of M,
and for m ∈ M consider the linear map m 7→ Jm∗Jξ. This map is a closable
operator, and Lξ is its closure.

The elements m ∈ M will be considered as operators acting by left
multiplication on L2(M, τ); when regarded as elements of L2(M, τ), they
will be denoted by ~m.

An interesting fact [3] is that if ξ satisfies Jξ = ξ, then the associated
operator Lξ is selfadjoint. Define L2(M, τ)+ = {ξ ∈ L2(M, τ) : Jξ = ξ}.
Clearly L2(M, τ)+ is a real Hilbert space, and the inner product of L2(M, τ)
is real and symmetric when restricted to L2(M, τ)+. Indeed, L2(M, τ)+ is
the completion of the setMsa of selfadjoint elements ofM, and if ~m1, ~m2 ∈
Msa, then 〈~m1, ~m2〉 = τ(m2m1) = τ(m1m2) = 〈~m2, ~m1〉.

In this note we consider the map

exp : L2(M, τ)+ → UM~1 ⊂ L2(M, τ), exp(ξ) = eiLξ~1,
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where UM is the unitary group ofM, and UM~1 is just the same set regarded
as a subset of L2(M, τ), which induces on UM a metric topology equivalent
to the strong operator topology. In what follows we identify UM and UM~1.

We prove that the map exp is continuous but not smooth, in fact, not
differentiable. We consider the Cayley transform

C : L2(M, τ)+ → UM ⊂ L2(M, τ), C(ξ) = (Lξ − i)(Lξ + i)−1~1,

which is also continuous and nondifferentiable.
The unitary group UM in the strong operator topology can be embedded

in L2(M, τ) as a complete topological group. The group operations are
clearly continuous in the L2-metric, and UM ⊂ L2(M, τ) is closed. We
finish this note by proving that it cannot be embedded as a differentiable
Banach–Lie group.

2. Nonregularity of exp and C. Let us see first that these maps are
continuous. The following lemma will be useful. It relates the L2 topology
to the generalization of the strong topology to unbounded operators. Our
reference on this subject is [2].

Lemma 2.1. If a sequence ξn converges in L2(M, τ)+ to ξ, then the op-
erators Lξn converge to Lξ in the strong resolvent sense.

Proof. Suppose that ξn ∈ L2(M, τ)+ converges to ξ. Then for m ∈ M,
Lξnm~1 converges to Lξm~1. Indeed, Lξnm~1 = Jm∗Jξn → Jm∗Jξ because
Jm∗J is bounded, and this last vector equals Lξm~1. We claim thatM~1 is a
common core for all (selfadjoint) operators of the form Lη, η ∈ L2(M, τ)+. In
that case, from [2, VIII.25] it follows that Lξn converges to Lξ in the strong
resolvent sense. Our claim follows by using another result in [2, VIII.11].
If A is a selfadjoint operator and D ⊂ D(A) is a dense subspace which is
invariant under the one-parameter group eitA, i.e. eitA(D) ⊂ D for all t ∈ R,
then D is a core for A. Now clearly eitLηm~1 ∈ M~1, because eitLη ∈ M for
all t if η ∈ L2(M, τ)+. It follows that M~1 is a core for Lη.

It will be useful to have an alternative formula for C. Note that (Lξ − i)−1

and (Lξ + i)−1 commute, and (Lξ − i)−1(ξ − i~1) = ~1. Therefore (Lξ + i)−1~1
= (Lξ − i)−1(Lξ + i)−1(ξ − i~1), and then

C(ξ) = (Lξ + i)−1(ξ − i~1), ξ ∈ L2(M, τ)+.

Proposition 2.2. The maps exp and C are continuous.

Proof. If ξn → ξ in L2(M, τ)+, then the resolvents (Lξn + i)−1 converge
strongly to the resolvent (Lξ + i)−1. Note also that these operators are
contractions. On the other hand ξn − i~1 → ξ − i~1 in L2(M, τ)+. It follows
that C(ξn) = (Lξn − i)−1(ξn − i~1) converges to C(ξ). The same type of
argument shows that the function exp is continuous. Indeed, if Lξn converges
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to Lξ in the strong resolvent sense, and f is a bounded continuous function
on R, then f(Lξn)→ f(Lξ) strongly ([2, VII.20]). Therefore exp(ξ) = eiLξ~1
is continuous.

Although these maps are not differentiable, they do have directional
derivatives at the origin.

Lemma 2.3. For all η, v ∈ L2(M, τ)+, the curve t 7→ C(η + tv) is dif-
ferentiable at t = 0, and

d

dt
C(η + tv)|t=0 =

dC

dv
(η) = −2i(Lη + i)−1J(Lη − i)−1Jv.

Proof. Note that

C(η + tv)− C(η) = (Lη+tv + i)−1(η + tv − i~1)− (Lη + i)−1(η − i~1).

The above sum can be decomposed into the following terms:

(Lη+tv + i)−1(η + tv − i~1)− (Lη+tv + i)−1(η − i~1)

and
(Lη+tv + i)−1(η − i~1)− (Lη + i)−1(η − i~1).

We deal first with the first term, which equals

(Lη+tv + i)−1(tv) = t(Lη+tv + i)−1(v).

The second term equals

((Lη+tv + i)−1 − (Lη + i)−1)(η − i~1)

= (Lη+tv + i)−1[Lη + i− (Lη+tv + i)](Lη + i)−1(η − i~1).

Note that this expression is well defined, since the vector (Lη+i)−1(η−i~1) =
C(η) ∈ M~1 lies in the domain of any combination of the operators Lν ,
ν ∈ L2(M, τ)+. Moreover, it apparently equals

−t(Lη+tv+ i)−1Lv(Lη+ i)−1(Lη− i)~1 = t(Lη+tv+ i)−1J(Lη+ i)(Lη− i)−1Jv.

Putting both terms together yields

C(η + tv)− C(η)
t

= (Lη+tv + i)−1(v − J(Lη + i)(Lη − i)−1Jv).

If we let t tend to 0, then η + tv → η in L2(M, τ)+ and (Lη+tv + i)−1 →
(Lη + i)−1 strongly. Therefore the derivative of C(η+ tv) at t = 0 exists and
equals

(Lη+v + i)−1(v − J(Lη + i)(Lη − i)−1Jv).

Finally, the vector v − J(Lη + i)(Lη − i)−1Jv can be written as

v−J(Lη+i)(Lη−i)−1Jv = J(1−(Lη+i)(Lη−i)−1)Jv = −2iJ(Lη−i)−1Jv.

If one replaces this last expression in the result obtained for the derivative,
one obtains the desired formula.
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Lemma 2.4. For any v ∈ L2(M, τ)+, the curve t 7→ exp(tv) is differen-
tiable at t = 0 and

d

dt
exp(tv)

∣∣∣∣
t=0

=
d

dv
exp(0) = iv.

Proof. The one-parameter unitary group t 7→ eitLv is strongly differ-
entiable at t = 0 on the domain of Lv (see [2]), i.e. if ξ ∈ D(Lv), then
d
dte

itLvξ|t=0 exists and equals iLvξ. Taking ξ = ~1 ∈ D(Lv) proves the re-
sult.

Theorem 2.5. The maps exp : L2(M, τ)+ → UM ⊂ L2(M, τ) and C :
L2(M, τ)+ → UM ⊂ L2(M, τ) are not differentiable on any neighbourhood
of 0 ∈ L2(M, τ)+.

Proof. Suppose that exp is differentiable on a neighbourhood 0 ∈ V ⊂
L2(M, τ)+. For any ξ ∈ L2(M, τ) let ξ = ξ+ + ξ− be the decomposition
of ξ in L2(M, τ) = L2(M, τ)+ ⊕ L2(M, τ)−. We shall construct a local
diffeomorphism on L2(M, τ) which restricted to L2(M, τ)+ will provide a
local homeomorphism onto a neighbourhood of ~1 in UM. Afterwards we shall
prove that this fact leads to contradiction. Consider the map

θ : L2(M, τ)→ L2(M, τ), θ(ξ) = exp(ξ+) + iξ−.

The projections ξ 7→ ξ+ and ξ 7→ ξ− are (real) linear and bounded, therefore
they are C∞. It follows that θ is differentiable in V. Note that θ(0) = ~1 and
d
dξ exp(0) = iξ. Therefore

dθ0(ξ) = iξ+ + iξ− = iξ.

By the inverse function theorem it follows that there exists a ball 0 ∈ Bε(0) ⊂
V in the ‖ ‖2-metric and an open set ~1 ∈ W of L2(M, τ) such that θ :
Bε(0)→W is a diffeomorphism. Note that θ maps Bε(0) ∩ L2(M, τ)+ onto
W ∩ UM, i.e. θ|L2(M,τ)+ is a local homeomorphism between Bε(0) and a
neighbourhood of ~1 in UM in the L2-topology.

Fix δ1/2 < ε, and for each integer n ≥ 1 choose a projection pn ∈ M
such that τ(pn) = δ/n2. Put an = npn. Note that ‖an‖2 = δ1/2. Indeed,
τ(a∗nan) = n2τ(pn) = δ. Therefore an ∈ Bε(0) and an does not tend to 0.
On the other hand

‖exp(an)− 1‖22 = 2− τ(eian)− τ(e−ian).

Clearly

τ(eian) = 1 +
∑

k≥1

τ

(
(in)k

k!
pn

)
= 1 +

δ

n2 (ein − 1).

Analogously τ(e−ian) = 1 + (δ/n2)(e−in − 1). It follows that exp(an) → ~1
but θ−1(exp(an)) does not tend to 0, a contradiction.
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To prove the same result for C, one proceeds analogously. Using the
fact that if C were differentiable, then by 2.3, dC0(ξ) = −2iξ, also in this
case one can construct a local homeomorphism between a ball centred at
0 ∈ L2(M, τ)+ and an L2-neighbourhood of −~1 in UM (note that C(0) =
−~1). Let pn 6= 0 be projections in M such that τ(pn)→ 0. Then, as above,
we have ‖1 − exp(pn)‖2 → 0. Note also that 1 − exp(pn) has nontrivial
kernel, indeed, 1 − exp(pn) = (ei − 1)pn. On the other hand, if C were a
local homeomorphism, then there would be a neighbourhood −1 ∈ U ⊂ UM
where all v ∈ U would be such that v−1 has trivial kernel, because unitaries
in the range of the Cayley transform have this property.

For the Cayley transform one has the following weaker regularity condi-
tions.

Proposition 2.6. The Cayley transform C is weakly C1, i.e. for any
fixed ν ∈ L2(M, τ), the complex-valued map ξ 7→ 〈C(ξ), ν〉 is C1. If we
regard C as a map from L2(M, τ)+ to L1(M, τ), it is differentiable.

Proof. For any η, v ∈ L2(M, τ)+, using 2.3 one has

d

dv
〈C, ν〉(η) =

〈
dC

dv
(η), ν

〉
= −2i〈(Lη + i)−1J(Lη − i)−1Jv, ν〉.

Recall that if ηn → η in L2(M, τ)+, then the resolvents (Lηn − i)−1 and
(Lηn + i)−1 are contractions which converge strongly to (Lη − i)−1 and
(Lη + i)−1. It follows that d

dv 〈C, ν〉(η) is continuous in both parameters
ν, v ∈ L2(M, τ)+, and C is weakly C1. Let us prove that

C : L2(M, τ)+ → L1(M, τ)

is differentiable. Using the computations done in 2.3, one sees that

C(η + v)− C(η) = −2i(Lη+v + i)−1J(Lη − i)−1Jv

and
dC

dv
(η) = −2i(Lη + i)−1J(Lη − i)−1Jv,

therefore C(η + v)− C(η)− dC
dv (η) equals

−2i[(Lη+v + i)−1 − (Lη + i)−1]J(Lη − i)−1Jv.

We must show that the L1 norm of this expression divided by ‖v‖2 tends to
zero if v tends to zero in L2(M, τ). Define ∆ = (Lη+v+i)−1−(Lη+i)−1 and
ψ = J(Lη− i)−1Jv. Note that ∆ ∈ M and ψ ∈ L2(M, τ) with ‖ψ‖2 ≤ ‖v‖2.
Also

‖∆ψ‖1 ≤ ‖∆‖2‖ψ‖2.
Indeed, let ~xn be a sequence in M~1 converging to ψ in L2(M, τ). Then
‖∆~xn‖1 = τ(|∆xn|) = τ(u∗∆xn) where u is the partial isometry in the polar
decomposition of ∆xn ∈ M, which can be chosen unitary sinceM is finite.
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By the Cauchy–Schwarz inequality τ(u∆xn) ≤ τ(∆∗∆)1/2τ(x∗nxn)1/2. Since
xn → ψ, ∆xn → ∆ψ in L2(M, τ), and the inequality follows. Therefore

‖C(η + v)− C(η)− dC
dv (η)‖1

‖v‖2
= 2
‖∆ψ‖1
‖v‖2

≤ 2‖∆‖2.

The proof ends by showing that ‖∆‖2 → 0 as v tends to zero. Clearly ∆
tends to zero in the strong operator topology, because Lη+v → Lη in the
strong resolvent sense. Then

τ(∆∗∆) = 〈∆~1,∆~1〉 → 0.

We now state the result on the nonembeddability of UM in L2(M, τ) as
a Lie group.

Theorem 2.7. The unitary group UM of M with the L2 metric is not
an embedded submanifold of L2(M, τ) with differentiable multiplication map
(u,w) 7→ uw (u,w ∈ UM).

Proof. The proof consists in showing that if UM ⊂ L2(M, τ) were an
embedded submanifold, then it would be a Lie group, with Lie algebra iden-
tified with L2(M, τ)− := {ξ ∈ L2(M, τ) : Jξ = −ξ}. Moreover, the Lie
bracket would extend the commutator of (antiselfadjoint) elements of M,
[x, y] = xy − yx. This is clearly not possible: the commutators of elements
of L2(M, τ) lie in L1(M, τ), possibly outside of L2(M, τ) (see [3]).

Suppose that UM ⊂ L2(M, τ) is a submanifold. If u(t) is a smooth
curve of unitaries with u(0) = 1 and u′(0) = ξ, differentiating u∗(t)u(t) = 1
at t = 0 yields Jξ + ξ = 0, i.e. ξ ∈ L2(M, τ)−. Also any element ξ ∈
L2(M, τ)− can be obtained as the velocity vector of a curve in UM. It was
shown above that the curve u(t) = exp(tv) is differentiable at t = 0 for any
v ∈ L2(M, τ)+; if we put v = −iξ, then u′(0) = ξ. The tangent space of UM
at a point u ∈ UM clearly identifies with uL2(M, τ)−.

The multiplication is differentiable by hypothesis. The inversion u 7→
u−1 = u∗ is continuous (M is finite). It can be regarded as the restriction
of a real linear map of L2(M, τ), namely J , and therefore is differentiable.

Therefore UM is a Lie group, and its Lie algebra identifies with
L2(M, τ)−. Let us compute the bracket under this identification. The left
action of the group UM on itself, `u : UM → UM, `u(w) = uw, extends
to a bounded linear operator on L2(M, τ). Then if ξ ∈ L2(M, τ)−, the left
invariant vector field induced by ξ is Xξ(u) = uξ (u ∈ UM). If f is a smooth
function on a neighbourhood of ~1 ∈ UM, then the derivative Xξf can be
computed as follows:

Xξf(u) =
d

dt
f(uetLξ)

∣∣∣∣
t=0

= dfu(uξ),

where dfu is the tangent map of f at u ∈ UM. Note that in the above
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computation again one only uses the fact that t 7→ etLξ~1 is differentiable at
t = 0 (ξ ∈ L2(M, τ)−). Let ~x, ~y ∈ iMsa ⊂ L2(M, τ)− be two antiselfadjoint
elements on M (note that iMsa is dense in L2(M, τ)−). Let us compute
X~xX~yf :

X~xX~yf(u) =
d

dt
dfuetx(uetx~y)

∣∣∣∣
t=0

= d2fu(u~x, u~y) + dfu(u−→xy).

Since d2fu is a symmetric bilinear form, it follows that the bracket [X~x,X~y]
is given by

[X~x,X~y]f(u) = dfu(u−→xy − u−→yx) = dfu(u(−−−−−→xy − yx)),

which coincides with the left invariant derivation X−−−→
xy−yx

f(u). This says that

the bracket of x, y regarded as an element of the Lie algebra of UM is the
usual commutator xy − yx.

It would be interesting to know if the result holds without the assumption
on the differentiability of the multiplication, that is, if UM ⊂ L2(M, τ) is
never an embedded submanifold.
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