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Quantized orthonormal systems:
A non-commutative Kwapień theorem

by

J. Garćıa-Cuerva and J. Parcet (Madrid)

Abstract. The concepts of Riesz type and cotype of a given Banach space are ex-
tended to a non-commutative setting. First, the Banach space is replaced by an operator
space. The notion of quantized orthonormal system, which plays the role of an orthonor-
mal system in the classical setting, is then defined. The Fourier type and cotype of an
operator space with respect to a non-commutative compact group fit in this context. Also,
the quantized analogs of Rademacher and Gaussian systems are treated. All this is used
to obtain an operator space version of the classical theorem of Kwapień characterizing
Hilbert spaces by means of vector-valued orthogonal series. Several approaches to this
result with different consequences are given.

1. Introduction. The notion of type or cotype of a Banach space B
with respect to some classical system, such as the Rademacher or trigono-
metric system, is a common way to express the validity of certain inequal-
ities for B-valued functions. The systematic investigation of these topics
has given rise to a very well developed theory of the interaction between
orthonormal systems and the geometry of Banach spaces. In this paper we
look at this interaction from a non-commutative point of view. By that
we mean to investigate what happens when we replace Banach spaces by
operator spaces.

The first example in this setting was given in [5], where we define and
study the Fourier type and cotype of an operator space with respect to a non-
commutative compact group. Let 1 ≤ p ≤ 2 and let p′ denote its conjugate
exponent. Let G be a compact group with dual object Γ . An operator space
E has Fourier type p with respect to G if the E-valued Fourier transform
on G extends to a completely bounded operator from LpE(G) into Lp′E (Γ ).
Similarly, by considering the inverse of the Fourier transform, the notion
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of Fourier cotype comes out in this context. A relevant difference, between
this notion of Fourier type and its classical counterpart for compact abelian
groups, lies in the fact that the system of characters has to be replaced by
the set of equivalence classes of unitary irreducible representations of G.
That is, Γ is now the system and E is the space.

Going back to the general case, the question is to find which proper-
ties should be required of the system to get appropriate information about
the operator space. As we shall see below, these systems will be collections
of matrix-valued functions satisfying some extra conditions, which is per-
fectly natural in view of the basic example mentioned above. This is why
we have called them “quantized systems”, completing in such a way the
scheme where Banach spaces become operator spaces and boundedness of
operators is replaced by complete boundedness. Finally we point out that
since vector-valued Schatten classes appear in vector-valued orthogonal se-
ries with respect to a quantized orthonormal system, our work does not
make sense in Banach space theory. The reader is referred to [13] for more
on this topic.

The definition of a quantized orthonormal system was motivated by the
theory initiated in [5] and [4]. In fact, basic to its development is an op-
erator space version of the isomorphic characterization of Hilbert spaces
given by Kwapień in [6]. We provide three different approaches to this re-
sult. The first one is valid for any uniformly bounded quantized orthonormal
system. The second one extends this result to non-uniformly bounded but
complete quantized orthonormal systems. The third approach involves the
quantization of the classical Gauss system, which fails to be complete or
even uniformly bounded. This system also characterizes Pisier’s OH Hilber-
tian operator spaces up to complete isomorphism and the proof of this fact
follows the argument given in the first approach. However, we also show
that Kwapień’s original argument in [6] to link Rademacher and Gauss sys-
tems via the central limit theorem works in this context. Moreover, as we
shall see, the use of this probabilistic approach has a remarkable advantage.
Namely, it provides the result of Corollary 5.7. Roughly speaking, the latter
says that when the quantized system we deal with takes values in arbitrar-
ily large matrices, then the operator space version of Kwapień’s theorem for
the system also holds if we require only the boundedness of the operators
involved, not the complete boundedness. Finally, an example is included and
some open questions are posed.

Throughout this paper some basic notions of operator space theory and
vector-valued Schatten classes will be assumed. The definitions and results
about operator spaces that we will be using can be found in the book of
Effros and Ruan [2], while for the Schatten classes the reader is referred to
[13], where Pisier analyzes them in detail.
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2. Uniformly bounded quantized orthonormal systems. The clas-
sical Hausdorff–Young inequality on the torus was generalized by F. Riesz
in 1923 to any uniformly bounded orthonormal system. If one looks for
extensions of this result to vector-valued functions, the notions of Riesz
type, cotype and strong cotype of a Banach space come out naturally.
These were defined in [3] with the aim to provide a general notion of type
which would cover the classical (uniformly bounded) systems: Rademacher,
Fourier, Walsh, etc. Here we introduce a “quantized version” of these no-
tions. From now on, Mn will stand for the vector space of n × n complex
matrices and Spn will denote the Schatten p-class over Mn.

Definition 2.1. Let (Ω,M, µ) be a probability measure space with no
atoms and let dΣ = {dσ : σ ∈ Σ} be a family of positive integers, with
Σ an index set. A collection Φ = {ϕσ : Ω → Mdσ}σ∈Σ of matrix-valued
functions with measurable entries is said to be a uniformly bounded quantized
orthonormal system (u.b.q.o.s. for short) if the following conditions hold:

�

Ω

ϕσij(ω)ϕσ′i′j′(ω) dµ(ω) =
1
dσ

δσσ′δii′δjj′ ,(a)

sup
σ∈Σ

ess sup
ω∈Ω

‖ϕσ(ω)‖S∞dσ = MΦ <∞.(b)

The pair (Σ,dΣ) will be called the set of parameters of Φ. We say that Φ is
complete when any function f ∈ L2(Ω) can be written as

f =
∑

σ∈Σ
dσ tr(Aσϕσ) for some A ∈

∏

σ∈Σ
Mdσ .

Remark 2.2. Recall that if we take Σ = N and dσ = 1 for all σ ∈ Σ, we
recover the classical definition of uniformly bounded orthonormal systems
or complete orthonormal systems on Ω. Also, if Ω is a compact topological
group G with normalized Haar measure µ, then the dual object Γ of G is a
u.b.q.o.s. The functions ϕσ are irreducible unitary representations of G, dσ
is the degree of ϕσ and MΓ = 1.

Let 1 ≤ p <∞, let E be an operator space and let Σ be an index set as
in Definition 2.1. Following the notation of [5] we define the spaces

LpE(Σ) =
{
A ∈

∏

σ∈Σ
Mdσ ⊗ E : ‖A‖LpE(Σ) =

(∑

σ∈Σ
dσ‖Aσ‖pSpdσ (E)

)1/p
<∞

}
,

L∞E (Σ) =
{
A ∈

∏

σ∈Σ
Mdσ ⊗ E : ‖A‖L∞E (Σ) = sup

σ∈Σ
‖Aσ‖S∞dσ (E) <∞

}
,
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where we write Spn(E) for the E-valued Schatten p-class over Mn. We use
Lp(Σ) in the scalar-valued case. LpE(Σ) is endowed with its natural operator
space structure (see [5] and Chapter 2 of [13] for the details). Now, if Φ is
a u.b.q.o.s. and ? stands for the adjoint operator, then the Φ-transform and
its inverse can be defined naturally as follows:

FΦ(f)σ =
�

Ω

f(ω)ϕσ(ω)? dµ(ω), F−1
Φ (A)(ω) =

∑

σ∈Σ
dσtr(Aσϕσ(ω))

for f : Ω → E and A ∈∏σ∈ΣMdσ ⊗E. Note that when the system Φ is not
complete, the inverse is not unique. Thus our notation is slightly abusive,
but we shall keep it for concreteness.

We start with a version of the classical Riesz theorem for uniformly
bounded quantized orthonormal systems.

Lemma 2.3. Let 1 ≤ p ≤ 2 and let p′ denote its conjugate exponent. Let
Φ be a u.b.q.o.s. Then

‖FΦ‖cb(Lp(Ω),Lp′ (Σ)), ‖F−1
Φ ‖cb(Lp(Σ),Lp′ (Ω)) ≤ M2/p−1

Φ .

Proof. By the complex interpolation method for operator spaces, we just
need to check the cases p = 1, 2. It follows from Lemma 1.7 of [13] that

‖FΦ‖cb(L2(Ω),L2(Σ)) = sup
n≥1
‖FΦ ⊗ IMn‖B(L2

S2
n

(Ω),L2
S2
n

(Σ))

with the obvious modifications for the inverse operator. Then the case p = 2
is a consequence of the orthonormality of Φ. That is, it follows from condition
(a) in Definition 2.1. If p = 1, then FΦ is defined on L1(Ω), which is equipped
with the max quantization. Moreover, F−1

Φ takes values in L∞(Ω), which
is equipped with the min quantization. Therefore, by the quantizations we
are working with, boundedness is equivalent to complete boundedness (see
Section 3.3 of [2] for the details). But it is obvious that the stated inequalities
hold for p = 1 when the cb norm is replaced by the operator norm.

If Σ0 is a finite subset of Σ, let ΦpE(Σ0) = span{ϕσij : σ ∈ Σ0} ⊗ E

regarded as a subspace of LpE(Ω) with its natural operator space structure.
Also, let Φ0 = {ϕσ : Ω →Mdσ}σ∈Σ0 be the restriction of Φ to Σ0. Then Φ0
is also a u.b.q.o.s. and Lemma 2.3 holds for Φ0.

Definition 2.4. Let 1 ≤ p ≤ 2, let p′ denote its conjugate exponent,
and let E be an operator space.

• E is said to have Riesz type p with respect to Φ, or simply Φ-type p, if

K1p(E,Φ) = sup ‖F−1
Φ0
⊗ IE‖cb(LpE(Σ0),Φp

′
E (Σ0))

<∞

where the supremum is taken over the family of finite subsets Σ0 of Σ.
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• E is said to have Riesz cotype p′ with respect to Φ, or simply Φ-cotype
p′, if

K2p′(E,Φ) = sup ‖FΦ0 ⊗ IE‖cb(ΦpE(Σ0),Lp′E (Σ0))
<∞.

The supremum is taken again over the family of finite subsets Σ0 of Σ.
• E is said to have strong Riesz cotype p′ with respect to Φ, or simply

strong Φ-cotype p′, if

K3p′(E,Φ) = ‖FΦ,E‖cb(LpE(Ω),Lp′E (Σ))
<∞

where FΦ,E denotes the extension of FΦ ⊗ IE to LpE(Ω).

Remark 2.5. Note that if E has Φ-type p, then in particular there exists
a positive constant c such that

∥∥∥
∑

σ∈Σ0

dσtr(Aσϕσ)
∥∥∥
Lp
′
E (Ω)

≤ c
( ∑

σ∈Σ0

dσ‖Aσ‖pSpdσ (E)

)1/p

for any finite subset Σ0 of Σ and any A ∈ LpE(Σ0). This condition is much
closer to the classical notion of Riesz type. In fact, for dσ = 1 and Σ0 =
{1, . . . , n}, we recover the classical definition. Analogous remarks hold for
the Riesz cotype and strong Riesz cotype.

Remark 2.6. We point out here that, as in the classical theory, a notion
of strong Riesz type would be superfluous since it would coincide with that
of Riesz type. The proof of this fact is an easy consequence of the density of
the subspace of LpE(Σ) formed by the elements A with finite support, that
is, with Aσ 6= 0 only for finitely many σ ∈ Σ. In fact,

K1p(E,Φ) = ‖F−1
Φ,E‖cb(LpE(Σ),Lp

′
E (Ω))

.

Again as in the classical case, this equivalence is not necessarily valid for the
cotype. Moreover, we have the obvious estimate K2p′(E,Φ) ≤ K3p′(E,Φ) for
any u.b.q.o.s. Φ, any operator space E and any 1 ≤ p ≤ 2. However, the
Φ-cotype is equivalent to the strong Φ-cotype when Φ is complete. In this
paper we shall be mainly concerned with the Riesz type and cotype. We
have defined the strong Riesz cotype because, as we shall see below, it is the
right notion for duality.

Remark 2.7. Occasionally, we shall also use the notion of Ψ -type 2
and Ψ -cotype 2 for some quantized orthonormal systems Ψ which fail to be
uniformly bounded.

These definitions are illustrated in [5] and [4] where the Fourier type and
cotype of an operator space with respect to a compact group are investi-
gated. Namely, if G is a compact group with dual object Γ , then Fourier type
p with respect to G is nothing but Γ -cotype p′ (or strong Γ -cotype p′ since Γ
is complete in L2(G) by the Peter–Weyl theorem). Moreover, Fourier cotype
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p′ with respect to G coincides with Γ -type p. This conflict in terminology
goes back to the commutative theory, where Fourier type p with respect to
the torus T means Z-cotype p′ (or equivalently strong Z-cotype p′); see [3].

In what follows we assume the reader is familiar with the properties of
Fourier type and cotype stated in [5] and [4]. In fact, we omit the proof of
the following results, since the arguments can be found there.

(a) Trivial exponents. Every operator space has Riesz type 1 and strong
Riesz cotype ∞ with respect to any u.b.q.o.s. Φ. Moreover, we have the
estimates K11(E,Φ),K2∞(E,Φ),K3∞(E,Φ) ≤ MΦ.

(b) Subspaces. The Riesz type is preserved when passing to subspaces.
Moreover, K1p(F,Φ) ≤ K1p(E,Φ) for any closed subspace F of E. The same
holds for the Riesz cotype and strong Riesz cotype.

(c) Complex interpolation. Let 0 < θ < 1 and let E0 and E1 be operator
spaces having Φ-type p0 and p1 respectively. If (E0, E1) is compatible for
complex interpolation, then the interpolated operator space (E0, E1)θ has
Φ-type pθ = p0p1((1−θ)p1 +θp0)−1. In particular, the Riesz type p becomes
a stronger condition on a given operator space as p approaches 2. Similar
assertions hold for the Riesz cotype and strong Riesz cotype.

(d) Duality. K1p(E,Φ) = K3p′(E?, Φ) and K1p(E?, Φ) = K3p′(E,Φ).
That is, Riesz type and strong Riesz cotype are dual notions.

(e) Local theory. If dcb stands for the cb-distance between two operator
spaces, then K1p(E2, Φ) ≤ dcb(E1, E2)K1p(E1, Φ). The same holds for the
Riesz cotype and strong Riesz cotype.

(f) Degenerate case. Assume that the index set Σ associated to the
u.b.q.o.s. Φ is finite. Then

K1p(E,Φ),K2p′(E,Φ),K3p′(E,Φ) ≤ MΦ

(∑

σ∈Σ
d2
σ

)1/p′

.

(g) Lebesgue spaces. Let 1 ≤ q ≤ ∞. Let (X,N , ν) be a σ-finite measure
space. Then Lq(X) has Φ-type min(q, q′) and strong Φ-cotype max(q, q′).
Similar results hold for Schatten classes. Moreover, LqE(X) and Sq(E) have
Φ-type min(q, q′) and strong Φ-cotype max(q, q′) whenever E does.

Remark 2.8. In what follows we shall assume that Σ is not finite.

3. The Kwapień theorem for operator spaces. We begin by defin-
ing the quantized version of the classical Rademacher system. This notion
is extracted from [10], where it is used to study random Fourier series on
non-commutative compact groups. From now on we fix a probability mea-
sure space (Ω,M, µ) with no atoms, an index set Σ and a family dΣ of
positive integers.
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Definition 3.1. The quantized Rademacher system associated to (Σ,dΣ)
is defined by a collection R = {%σ : Ω → O(dσ)}σ∈Σ of independent random
orthogonal matrices, uniformly distributed on the orthogonal group O(dσ)
equipped with its normalized Haar measure νσ.

Remark 3.2. Similarly, the quantized Steinhaus system associated to
(Σ,dΣ) is a collection S = {ξσ : Ω → U(dσ)}σ∈Σ of independent ran-
dom unitary matrices, uniformly distributed on the unitary group U(dσ)
equipped with its normalized Haar measure λσ. It is easy to check that
both Rademacher and Steinhaus systems are u.b.q.o.s.’s with uniform bound
MR = MS = 1. Moreover, the notions of R-type p and S-type p are equiva-
lent for 1 ≤ p ≤ 2. Namely, the inequalities

1
2
‖F−1
R (A)‖LqB(Ω) ≤ ‖F−1

S (A)‖LqB(Ω) ≤ 2‖F−1
R (A)‖LqB(Ω)

were proved in [10] for any Banach space B, any A supported in any finite
subset Σ0 of Σ and any 1 ≤ q < ∞. Hence, given an operator space E,
we just need to take B = Sp

′
n (E) for any n ≥ 1 and q = p′ to see this

equivalence. Similar arguments are valid to show that the same equivalence
holds between R-cotype and S-cotype. Moreover, the equivalence between
both systems with respect to the strong Riesz cotype follows by duality.
Therefore, although the results obtained will be valid for both systems, we
shall work only with the quantized Rademacher system.

Remark 3.3. Let Rp(E) be the closure in LpE [0, 1] of the subspace of
linear combinations of the classical Rademacher functions r1, r2, . . . with E-
valued coefficients. In particular, we shall write Rp for the closure in Lp[0, 1]
of the subspace spanned by r1, r2, . . . The classical Khinchin–Kahane in-
equalities can be rephrased by saying that the norm of Rp(E), regarded as
a Banach space, is equivalent to that of Rq(E) whenever 1 ≤ p 6= q <∞. In
particular we can put any exponent 1 ≤ q <∞ in the defining inequality of
Rademacher type p (resp. cotype p′) for (the underlying Banach space of) E,

c1

( n∑

k=1

‖ek‖p
′
E

)1/p′

≤
∥∥∥

n∑

k=1

ekrk

∥∥∥
LqE [0,1]

≤ c2

( n∑

k=1

‖ek‖pE
)1/p

.(1)

On the other hand, Rp(E) has a natural operator space structure inher-
ited from LpE[0, 1]. It is a remarkable fact that the norm of Rp(E) is not
completely equivalent to that of Rq(E). That is, the operator spaces Rp(E)
and Rq(E) are isomorphic but not completely isomorphic. The proof of this
fact is due to Pisier and it can be found in Chapter 8 of [13]. If we replace
r1, r2, . . . by the entries of a quantized Rademacher systemR, then we obtain
an operator space Rp(E) which is Banach isomorphic but not completely
isomorphic to Rq(E) whenever 1 ≤ p 6= q < ∞. This equivalence of norms,
which fails to be complete, follows from a version of the Khinchin–Kahane
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inequalities for R stated in [10]. Therefore, in contrast with (1), each choice
of the exponent 1 ≤ q < ∞ in Definition 2.4 gives a different notion of
Rademacher type and cotype. For instance, one could be tempted to take q
to be 2 whatever the value of p. In fact, this alternative definition becomes
very useful in some other contexts which do not appear in this paper, such
as the study of the notion of non-trivial Rademacher type. In any case, we
have no risk in this paper to choose the wrong definition since we shall be
mainly concerned with the quadratic case p = 2.

Now we prove the extremality of the quantized Rademacher system with
respect to Riesz type and cotype in the family of uniformly bounded quan-
tized orthonormal systems. We shall need the following version, given in [10],
of the classical contraction principle.

Lemma 3.4. Let B be a Banach space, Σ0 ⊂ Σ finite, Aσ ∈ Mdσ ⊗ B
and Dσ ∈Mdσ for σ ∈ Σ0. Then, for any 1 ≤ q <∞,
∥∥∥
∑

σ∈Σ0

dσ tr(Aσ%σDσ)
∥∥∥
LqB(Ω)

≤ sup
σ∈Σ0

‖Dσ‖S∞dσ
∥∥∥
∑

σ∈Σ0

dσ tr(Aσ%σ)
∥∥∥
LqB(Ω)

.

Proposition 3.5. Let 1≤p≤2 and let p′ denote its conjugate exponent.
Then the following holds for any operator space E and any u.b.q.o.s. Φ:

(i) If E has Φ-type p, then E has R-type p.
(ii) If E has Φ-cotype p′, then E has R-cotype p′.

Proof. The case p = 1 is trivial, hence we assume that E has Φ-type p
for some 1 < p ≤ 2. First we recall the completely isometric isomorphism

Sp
′
n (Lp

′
E(Ω)) = Lp

′

Sp
′
n (E)

(Ω).(2)

On the other hand, by the orthonormality of Φ we have
�

Ω

|ϕσ|2 dµ = IMdσ
(3)

for all σ ∈ Σ. Hence, given n ≥ 1 and Aij ∈ LpE(Σ0) for 1 ≤ i, j ≤ n, we
apply (2), (3), Jensen’s inequality and the contraction principle stated in
Lemma 3.4 to get∥∥∥
( ∑

σ∈Σ0

dσ tr(Aσij%
σ)
)∥∥∥

Sp
′
n (Lp

′
E (Ω))

=
[ �

Ω

∥∥∥
�

Ω

( ∑

σ∈Σ0

dσ tr[%σ(ω1)|ϕσ(ω2)|2Aσij ]
)
dµ(ω2)

∥∥∥
p′

Sp
′
n (E)

dµ(ω1)
]1/p′

≤
[ �

Ω

�

Ω

∥∥∥
( ∑

σ∈Σ0

dσ tr[%σ(ω1)ϕσ(ω2)?ϕσ(ω2)Aσij ]
)∥∥∥

p′

Sp
′
n (E)

dµ(ω1) dµ(ω2)
]1/p′
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≤ MΦ

[ �

Ω

�

Ω

∥∥∥
( ∑

σ∈Σ0

dσ tr[%σ(ω1)ϕσ(ω2)Aσij ]
)∥∥∥

p′

Sp
′
n (E)

dµ(ω2) dµ(ω1)
]1/p′

≤ MΦK1p(E,Φ)
[ �

Ω

‖(Aσij%σ(ω1))σ∈Σ0‖p
′

Sp
′
n (LpE(Σ0))

dµ(ω1)
]1/p′

.

Finally, by Lemma 1.7 of [13], it remains to see that
[ �

Ω

‖(Aσij%σ(ω1))σ∈Σ0‖p
′

Sp
′
n (LpE(Σ0))

dµ(ω1)
]1/p′

= ‖(Aij)‖Sp′n (LpE(Σ0))
.

To this end it is enough to check that the mapping A 7→ (Aσ%σ(ω))σ∈Σ0 is
a complete isometry from LpE(Σ0) into itself. But this follows from the fact
that %σ(ω) ∈ O(dσ) for all σ ∈ Σ and all ω ∈ Ω (see Lemma 1.6 of [13]).
This gives the estimate K1p(E,R) ≤ MΦK1p(E,Φ). Similar arguments give
the relation K2p′(E,R) ≤ MΦK2p′(E,Φ).

Remark 3.6. By duality, a similar result holds for the strong cotype.

The following is a classical result which characterizes, in terms of the
convergence of some series of vector-valued random variables, Rademacher
type (resp. cotype) 2 Banach spaces. The proof can be found in [1, Theorem
7.2 of Chapter 3].

Lemma 3.7. (i) The Banach space B has Rademacher type 2 if and only
if there exists a sequence ζ1, ζ2, . . . of mean zero independent random vari-
ables in L2(Ω) with 0 < c1 ≤ ‖ζn‖L2(Ω) ≤ c2 < ∞ such that if x1, x2, . . . is
any sequence in B, then

∞∑

k=1

‖xk‖2B <∞ ⇒
n∑

k=1

xkζk converges a.s.

(ii) The Banach space B has Rademacher cotype 2 if and only if there
exists a sequence ζ1, ζ2, . . . of mean zero independent random variables in
L2(Ω) with 0 < c1 ≤ ‖ζn‖L2(Ω) ≤ c2 < ∞ such that if x1, x2, . . . is any
sequence in B, then

n∑

k=1

xkζk converges in L2(Ω) ⇒
∞∑

k=1

‖xk‖2B <∞.

Lemma 3.8. (i) Let E be an operator space having R-type 2. Then the
underlying Banach space has Rademacher type 2.

(ii) Let E be an operator space having R-cotype 2. Then the underlying
Banach space has Rademacher cotype 2.

Proof. Take a countable subset {σk : k ≥ 1} of Σ and define the random
variables ζk =

√
dσk %

σk
11 for k ≥ 1. The sequence ζ1, ζ2, . . . is orthonor-

mal in L2(Ω) and is made up of mean zero independent random variables.
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Moreover, if we take any square-summable sequence x1, x2, . . . in E and
Ak ∈Mdσk

⊗E is defined by Akij = δi1δj1d
−1/2
σk xk, then

∥∥∥
m2∑

k=m1+1

xkζk

∥∥∥
L2
E(Ω)

=
∥∥∥

m2∑

k=m1+1

dσk tr(Ak%σk)
∥∥∥
L2
E(Ω)

≤ K12(E,R)
( m2∑

k=m1+1

dσk‖Ak‖2S2
dσk

(E)

)1/2

= K12(E,R)
( m2∑

k=m1+1

‖xk‖2E
)1/2

.

Similarly, we get
( m2∑

k=m1+1

‖xk‖2E
)1/2

≤ K22(E,R)
∥∥∥

m2∑

k=m1+1

xkζk

∥∥∥
L2
E(Ω)

.

That is, we have proved that
∞∑

k=1

‖xk‖2E <∞ ⇔
n∑

k=1

xkζk converges in L2
E(Ω).

But convergence in L2
E(Ω) implies a.s. convergence for this kind of series

(see Theorem 2.10 in Chapter 3 of [1]). The proof is concluded by applying
Lemma 3.7.

Remark 3.9. By duality, a similar result holds for the strong cotype.

In this section we explore Kwapień’s theorem in the present context, that
is, completely isomorphic characterizations of Pisier’s OH Hilbertian opera-
tor spaces by means of quantized orthonormal systems. Roughly speaking,
an OH operator space is the only possible quantization on a Hilbert space
such that the canonical identification between the resulting operator space
and its antidual is a complete isometry; see [12] for a complete study of these
spaces. In other words, the OH operator spaces are the natural substitutes
for classical Hilbert spaces in the category of operator spaces.

Theorem 3.10. Let Φ be any u.b.q.o.s. associated to the parameters
(Σ,dΣ). Let E be an operator space. Then the following are equivalent :

(i) E is completely isomorphic to some OH Hilbertian operator space.
(ii) E has Φ-type and Φ-cotype 2.

Proof. We begin by showing (i)⇒(ii). Assume that E is completely
isomorphic to OH(I) for some index set I. We invoke the general results
stated in Section 2 to write K12(E,Φ) ≤ dcb(E,OH(I))K12(OH(I), Φ). But
OH(I) is completely isometric to l2(I) and it is not difficult to check that
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K12(l2(I), Φ) = 1. This implies that E has Φ-type 2. Similar arguments show
that E also has Φ-cotype 2.

Now we prove (ii)⇒(i). Suppose that E has Φ-type and Φ-cotype 2.
By Proposition 3.5 we can replace Φ by the quantized Rademacher sys-
tem R with parameters (Σ,dΣ). We know that S2(E) also has R-type and
R-cotype 2 (see again the general results of Section 2). Now, Lemma 3.8
shows that (the underlying Banach space of) S2(E) has Rademacher type
and cotype 2. In particular, S2(E) is isomorphic to some Hilbert space. By
Kwapień’s original theorem, this geometric condition on S2(E) is equivalent
to the existence of a constant c such that ‖T ⊗ IS2(E)‖B(l2n(S2(E)),l2n(S2(E))) ≤
c‖T‖B(l2n,l2n) for any linear mapping T : l2n → l2n and any n ≥ 1 (see [6]). On
the other hand, the Fubini complete isometry l2n(S2(E)) ' S2(l2n(E)) given
in [13] allows us to write the last inequality as ‖T ⊗ IE‖cb(l2n(E), l2n(E)) ≤
c‖T‖B(l2n, l2n). Finally, Pisier proved that this condition is equivalent to (i)
(see Theorem 6.11 of [13]).

4. Complete quantized orthonormal systems. In this section we
extend the operator space version of Kwapień’s theorem to complete quan-
tized orthonormal systems, uniformly bounded or not. We begin by recalling
that since (Ω,M, µ) has no atoms, we can define a family of dyadic sets Dk

j

on Ω, where 1 ≤ j ≤ 2k and k ≥ 1, satisfying the following conditions:

• Dk
j = Dk+1

2j−1 ∪Dk+1
2j for all k ≥ 1 and all 1 ≤ j ≤ 2k.

• Ω is the disjoint union of Dk
j for any fixed k ≥ 1 and all 1 ≤ j ≤ 2k.

• The sets Dk
j are µ-measurable and µ(Dk

j ) = 2−k.

Then, if 1Λ stands for the characteristic function of a measurable set Λ ⊂ Ω,
we define the system ∆ on L2(Ω) to consist of the functions

δk =
2k∑

j=1

(−1)j+11Dkj
.

Lemma 4.1. Let Ψ = {ψσ : Ω → Mdσ}σ∈Σ be a complete quantized
orthonormal system. Let {εn : n ≥ 1} be any sequence of positive numbers.
Then there exists a sequence f1, f2, . . . of Ψ -polynomials and an increasing
subsequence k1, k2 . . . of positive integers satisfying :

(i) FΨ (f1),FΨ (f2), . . . have pairwise disjoint supports on Σ.
(ii) ‖fn − δkn‖L2(Ω) < εn.

Proof. Let σ ∈ Σ and fix 1 ≤ i, j ≤ dσ. Since ∆ is orthonormal in L2(Ω),
the Bessel inequality provides the estimate

∞∑

k=1

|FΨ (δk)σij|2 =
∞∑

k=1

∣∣∣
�

Ω

δk(ω)ψσji(ω) dµ(ω)
∣∣∣
2
≤ ‖ψσji‖2L2(Ω) =

1
dσ

<∞.
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In particular, for all ε > 0 and for all finite subsets Σ0 ⊂ Σ there exists a
positive integer m(Σ0, ε) such that for all k ≥ m(Σ0, ε) we have

∑

σ∈Σ0

dσ

dσ∑

i,j=1

|FΨ (δk)σij |2 < ε.

On the other hand, let Ψ0 be the space of Ψ -polynomials. That is, Ψ0 is the
span of the entries ψσij where 1 ≤ i, j ≤ dσ and σ ∈ Σ. Then we construct the
functions f1, f2, . . . as follows. Let f1 ∈ Ψ0 be such that ‖f1− δ1‖L2(Ω) < ε1.
For n > 1, let εn = εn/3 and let

Σn =
n−1⋃

k=1

supp(FΨ (fk)) ⊂ Σ.

If kn = m(Σn, εn) we take gn to be any function in Ψ0 satisfying
‖gn − δkn‖L2(Ω) < εn. Then we define

fn = gn −
∑

σ∈Σn
dσ tr(FΨ (gn)σψσ).

The verification that the sequence f1, f2, . . . has the required properties is
left to the reader.

Theorem 4.2. Let Ψ be any complete quantized orthonormal system
with parameters (Σ,dΣ). Let E be an operator space. The following are
equivalent :

(i) E is completely isomorphic to some OH Hilbertian operator space.
(ii) E has Ψ -type and Ψ -cotype 2.

Proof. The arguments used in Theorem 3.10 to prove (i)⇒(ii) are also
valid here. Let us prove that (ii)⇒(i). First we recall that, by Lemma 4.1,
there exists a sequence f1, f2, . . . of Ψ -polynomials

fn =
∑

σ∈Σn

∑

1≤i,j≤dσ
ασijψ

σ
ij

where ασij ∈ C, Σn is some finite subset of Σ and

Σn1 ∩Σn2 = ∅ whenever n1 6= n2, ‖fn − δkn‖L2(Ω) < 2−n.

Now, if E has Ψ -type and Ψ -cotype 2 then the same holds for F = S2(E).
In particular, for any family {x1, . . . , xn} in F , we have

∥∥∥
m∑

n=1

xnδkn

∥∥∥
L2
F (Ω)

≤
∥∥∥

m∑

n=1

xn(δkn − fn)
∥∥∥
L2
F (Ω)

+
∥∥∥

m∑

n=1

xnfn

∥∥∥
L2
F (Ω)

= A + B.
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By Hölder’s inequality we get

A ≤
( m∑

n=1

‖fn − δkn‖2L2(Ω)

)1/2( m∑

n=1

‖xn‖2F
)1/2

≤ 1√
3

( m∑

n=1

‖xn‖2F
)1/2

.

To estimate B, we write

B =
∥∥∥

m∑

n=1

xn
∑

σ∈Σn

∑

1≤i,j≤dσ
ασijψ

σ
ij

∥∥∥
L2
F (Ω)

=
∥∥∥

m∑

n=1

∑

σ∈Σn
dσ tr[(FΨ (fn)σ ⊗ xn)ψσ]

∥∥∥
L2
F (Ω)

≤ K12(E,Ψ)
( m∑

n=1

‖xn‖2F
∑

σ∈Σn
dσ‖FΨ (fn)σ‖2S2

dσ

)1/2

= K12(E,Ψ)
( m∑

n=1

‖xn‖2F ‖fn‖2L2(Ω)

)1/2

≤ 2K12(E,Ψ)
( m∑

n=1

‖xn‖2F
)1/2

.

That is, if ∆′ stands for the system in L2(Ω) defined by the functions
δk1 , δk2 , . . . , then we have shown that F has ∆′-type 2 in the sense of [3].
But this is equivalent to saying that E has ∆′-type 2 in the sense of Defi-
nition 2.4. Similar arguments show that E also has ∆′-cotype 2. Then the
proof is concluded by applying Theorem 3.10.

Remark 4.3. The analog of Kwapień’s argument given in [6] does not
work for this result. Namely, if R denotes the quantized Rademacher sys-
tem with parameters (Σ,dΣ), the idea is to use the completeness of Ψ
to construct a sequence fσ1 , fσ2 , . . . of matrix-valued Ψ -polynomials with
non-overlapping ranges of frequencies and such that

�

Ω

‖%σn − fσn‖2S2
dσn

dµ < εn with ε1, ε2, . . . small enough.

Such a sequence exists and its construction is similar to the one provided
in Lemma 4.1. If R′ denotes the subsystem of R defined by the functions
%σ1 , %σ2 , . . . , the next step is to show that Ψ -type 2 implies R′-type 2 and
the same for the cotype. Here the proof fails. However, it can be checked
that it works in the following cases:

• Ψ -type 2 ⇒ R′-type 2 if dΣ is bounded.
• Ψ -cotype 2 ⇒ R′-cotype 2 if dσ = 1 for all σ ∈ Σ.

5. The probabilistic approach. In this section we introduce the quan-
tization of the classical Gauss system and analyze its important role in the
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operator space version of Kwapień’s theorem. First we outline a simple proof
of Kwapień’s theorem for this system and then we give an alternative proof
following Kwapień’s approach in [6] conveniently adapted to our setting.
The reason for this approach will be clear in Corollary 5.7.

Definition 5.1. Let {γσij : Ω → R, 1 ≤ i, j ≤ dσ}σ∈Σ be a family of
independent real gaussian random variables with mean zero and variance 1.
Then the collection G = {γσ : Ω → Mdσ}σ∈Σ , where γσ stands for the
random matrix

γσ =
1√
dσ

(γσij),

defines the quantized gaussian system associated to (Σ,dΣ).

Remark 5.2. Analogously, considering a priori complex gaussian ran-
dom variables, we get the quantized complex gaussian system associated to
(Σ,dΣ).

This quantized system satisfies orthonormality but fails to be uniformly
bounded or complete. So none of the previous results seems to be valid for
the quantized gaussian system. However, it is not difficult to check that
Lemma 3.8 remains valid when we replace the quantized Rademacher sys-
tem R by the quantized gaussian system G. In particular, the proof of The-
orem 3.10 also holds for G.

We now give an alternative approach to this result. Let Ω̃ be the proba-
bility space formed by the product of infinitely many copies of Ω:

Ω̃ =
∞∏

k=1

Ωk and µ̃ =
∞∏

k=1

µk

with Ωk = Ω and µk = µ for all k ≥ 1. The random matrix %σ,k : Ω̃ → O(dσ)
is defined as a copy of %σ, the σth Rademacher function, depending only on
the kth coordinate. Also, for each positive integer m, we define

%σ(m) : Ω̃ →Mdσ , %σ(m) =
1√
m

m∑

k=1

%σ,k.

Finally, we construct a quantized gaussian system {γ̃σ : Ω̃ →Mdσ}σ∈Σ on Ω̃
associated to the parameters (Σ,dΣ). We state a slight modification of the
central limit theorem in type 2 spaces (see [1] for the classical statement of
that result). It is nothing but an analog, for Banach-valued random variables,
of Lemma 2.1 in [6]. Fix a finite subset Σ0 = {σ1, . . . , σn} of Σ.

Proposition 5.3. Let h : S2
dσ1
×. . .×S2

dσn
→ R be a continuous function

such that
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h(Dσ1, . . . ,Dσn)e−
∑n
j=1 ‖D

σj ‖ → 0 as
n∑

j=1

‖Dσj‖S2
dσj

→∞.(4)

Then

lim
m→∞

�

Ω̃

h(%σ1(m), . . . , %σn(m)) dµ̃ =
�

Ω̃

h(γ̃σ1 , . . . , γ̃σn) dµ̃.

Sketch of the proof. By using the orthonormality relations for quantized
Rademacher and gaussian systems, one easily shows that the distribution of
γ̃σ is a centered cylindrical gaussian measure with the same covariance as
that of %σ,k for all k ≥ 1. Hence, by the central limit theorem in type 2 spaces,
the joint distribution of (%σ1(m), . . . , %σn(m)) converges weakly to the joint
distribution of (γ̃σ1 , . . . , γ̃σn). Now, if we write S2

Σ0
= S2

dσ1
× . . .× S2

dσn
, we

define the Banach space B of all continuous functions h : S2
Σ0
→ R satisfying

(4) and with the norm given by

‖h‖B = sup{|h(Dσ1, . . . ,Dσn)|e−
∑n
j=1 ‖D

σj ‖ : (Dσ1, . . . ,Dσn) ∈ S2
Σ0
}.

We also define the following functionals on B:

T (h) =
�

Ω̃

h(γ̃σ1 , . . . , γ̃σn) dµ̃, Tm(h) =
�

Ω̃

h(%σ1(m), . . . , %σn(m)) dµ̃.

Following the argument given in Lemma 2.1 of [6], it suffices to check that
T and Tm are well defined and that sup ‖Tm‖ <∞. Now, Tm is well defined
since h(%σ1(m), . . . , %σn(m)) is a bounded function. On the other hand,

|T (h)| ≤ ‖h‖B
n∏

j=1

�

S2
dσj

exp ‖Dσj‖S2
dσj

dµγ̃σj (D
σj)

≤ ‖h‖B
n∏

j=1

�

Ω̃

∏

1≤i1,i2≤dσj

exp
∣∣∣∣
γ̃
σj
i1i2

(ω̃)√
dσj

∣∣∣∣ dµ̃(ω̃)

≤ ‖h‖B
n∏

j=1

∏

1≤i1,i2≤dσj

( �

Ω̃

exp d2
σj

∣∣∣∣
γ̃
σj
i1i2

(ω̃)√
dσj

∣∣∣∣ dµ̃(ω̃)
)1/d2

σj

= ‖h‖B
n∏

j=1

∏

1≤i1,i2≤dσj

(
1√
2π

�

R
exp |d3/2

σj s| exp(−s2/2) ds
)1/d2

σj

where we have applied the obvious inequality ‖D‖S2
n
≤ ∑ij |Dij| and the

generalized Hölder inequality. Therefore T is well defined. Similar arguments
give the uniform boundedness of ‖Tm‖.

To prove the Kwapień theorem for the quantized gaussian system we
need a couple of lemmas. Let D1, D2 be orthogonal dσ × dσ matrices. Then
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D1γ
σD2 and γσ have the same distribution. The next result can be found

in [10], it follows from this “sign invariance” and the contraction principle
stated above.

Lemma 5.4. Let B be a Banach space. There exists a positive constant
c such that for any finite subset Σ0 of Σ, we have

�

Ω

∥∥∥
∑

σ∈Σ0

dσ tr(Aσ%σ)
∥∥∥

2

B
dµ ≤ c

�

Ω

∥∥∥
∑

σ∈Σ0

dσ tr(Aσγσ)
∥∥∥

2

B
dµ.

The following result is a completely isomorphic characterization of OH
operator spaces given by Pisier in [13]. It can be regarded as the version for
operator spaces of a previous isomorphic characterization of Hilbert spaces
given by Kwapień (see (iv) of Proposition 3.1 in [6]).

Lemma 5.5. Let E be an operator space. Then E is completely isomor-
phic to some OH Hilbertian operator space if and only if there exists a posi-
tive constant c such that for any n ≥ 1 and any linear mapping T : S2

n → S2
n,

we have
‖T ⊗ IE‖B(S2

n(E),S2
n(E)) ≤ c‖T‖B(S2

n,S
2
n).

In the next result we assume that the gaussian system we work with
takes values in arbitrarily large matrices. We need to require this in view
of our method of proof. Although, as we have seen, this requirement is not
necessary, it will become very natural in Corollary 5.7.

Theorem 5.6. Let G be the gaussian system with parameters (Σ,dΣ).
Assume that dΣ is unbounded. Then the following are equivalent :

(i) E is completely isomorphic to some OH Hilbertian operator space.
(ii) E has G-type and G-cotype 2.

Proof. To prove that (i)⇒(ii), assume that E is completely isomorphic
to some OH(I). If R denotes the quantized Rademacher system with pa-
rameters (Σ,dΣ), then we know by Theorem 3.10 that E has R-type and
R-cotype 2. But then Lemma 5.4 shows that E has G-cotype 2. Let us prove
that E also has G-type 2. Recall that any Banach space B with Rademacher
type 2 satisfies the inequality

�

Ω

∥∥∥
n∑

k=1

φk

∥∥∥
2

B
dµ ≤ c

n∑

k=1

�

Ω

‖φk‖2B dµ

for some universal constant c and any family φ1, . . . , φn of mean zero in-
dependent B-valued random variables in L2(Ω). In particular, since (by
Lemma 3.8) the underlying Banach space of S2

n(E) has Rademacher type 2
for any n ≥ 1, we have
∥∥∥
∑

σ∈Σ0

dσ tr(Aσ%σ(m))
∥∥∥∥
S2
n(L2

E(Ω̃))
=
∥∥∥

m∑

k=1

∑

σ∈Σ0

dσ tr
[
Aσ%σ,k√

m

]∥∥∥∥
L2
S2
n(E)

(Ω̃)
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≤ c
( m∑

k=1

∥∥∥∥
∑

σ∈Σ0

dσ tr
[
Aσ%σ,k√

m

]∥∥∥∥
2

L2
S2
n(E)

(Ωk)

)1/2

≤ cK12(E,R)
( ∑

σ∈Σ0

dσ‖Aσ‖2S2
dσn

(E)

)1/2
.

On the other hand, let h(Dσ1, . . . ,Dσn) = ‖∑σ∈Σ0
dσ tr(AσDσ)‖2S2

n(E). Let
us show that h satisfies hypothesis (4) of Proposition 5.3. First we recall that

‖ tr(AσDσ)‖S2
n(E) = sup

‖T‖S2
n(E?)≤1

tr(Aσ(Dσ ⊗ T ))

≤ sup
‖T‖S2

n(E?)≤1
‖Aσ‖S2

dσn
(E)‖Dσ ⊗ T‖S2

dσn
(E?)

= ‖Aσ‖S2
dσn

(E)‖Dσ‖S2
dσ
.

Hence we get

h(Dσ1, . . . ,Dσn) ≤
( ∑

σ∈Σ0

dσ‖Aσ‖S2
dσn

(E)‖Dσ‖S2
dσ

)2

≤ max
σ∈Σ0

d2
σ‖Aσ‖2S2

dσn
(E)

( ∑

σ∈Σ0

‖Dσ‖S2
dσ

)2

and so h satisfies (4). In particular, we apply Proposition 5.3 to obtain
∥∥∥
∑

σ∈Σ0

dσ tr(Aσγσ)
∥∥∥
S2
n(L2

E(Ω))
=
∥∥∥
∑

σ∈Σ0

dσ tr(Aσγ̃σ)
∥∥∥
S2
n(L2

E(Ω̃))

= lim
m→∞

∥∥∥
∑

σ∈Σ0

dσ tr(Aσ%σ(m))
∥∥∥
S2
n(L2

E(Ω̃))

≤ cK12(E,R)
( ∑

σ∈Σ0

dσ‖Aσ‖2S2
dσn

(E)

)1/2
.

Therefore, by Lemma 1.7 of [13], we conclude that E has G-type 2 and the
proof of (i)⇒(ii) is complete.

Now we show (ii)⇒(i). By the unboundedness of dΣ and Lemma 5.5 it
suffices to see that there exists a positive constant c such that, for any σ ∈ Σ
and any linear mapping T : S2

dσ
→ S2

dσ
, we have

‖T ⊗ IE‖B(S2
dσ

(E),S2
dσ

(E)) ≤ c‖T‖B(S2
dσ
,S2
dσ

).(5)

By homogeneity it is enough to prove (5) for T in the unit ball Bσ of
B(S2

dσ
, S2

dσ
). But Bσ is a compact, convex set and thus every element of

Bσ is a convex linear combination of unitary operators, the extreme points
of Bσ. Therefore, it suffices to check (5) for T unitary. Let A ∈ S2

dσ
(E) and

T : S2
dσ
→ S2

dσ
unitary. Then



290 J. Garćıa-Cuerva and J. Parcet

‖T ⊗ IE(A)‖S2
dσ

(E) ≤ d−1/2
σ K22(E,G)‖dσ tr(γσ [T ⊗ IE ](A))‖L2

E(Ω)

= d−1/2
σ K22(E,G)‖dσ tr(T ?(γσ)A)‖L2

E(Ω)

= d−1/2
σ K22(E,G)‖dσ tr(γσA)‖L2

E(Ω)

≤ K22(E,G)K12(E,G)‖A‖S2
dσ

(E),

since, by the unitarity of T , the distribution of T (γσ) is the same as that of
γσ (see Theorem 6.8 in Chapter 3 of [1]). Therefore E satisfies (5).

Let Φ be a quantized orthonormal system and let E be an operator space.
Let 1 ≤ p ≤ 2. We shall say that E has Banach Φ-type p if

K̃1p(E,Φ) = sup ‖F−1
Φ0
⊗ IE‖B(LpE(Σ0),Φp

′
E (Σ0))

<∞

where the supremum is taken over the family of finite subsets Σ0 of Σ. That
is, we do not require the complete boundedness of F−1

Φ0
⊗ IE as we did in

Definition 2.4; we just require its boundedness. In the same fashion one can
define the Banach Φ-cotype p′ of an operator space and the corresponding
constant K̃2p′(E,Φ). The following result, which is a consequence of the
probabilistic argument employed in the proof of Theorem 5.6, shows that
the notions of Banach Φ-type and Banach Φ-cotype 2 are the right ones in
the operator space version of Kwapień’s theorem whenever the quantized
system Φ takes values in arbitrarily large matrices.

Corollary 5.7. Let dΣ be an unbounded family of positive integers
indexed by Σ. Let Φ be any u.b.q.o.s. with parameters (Σ,dΣ). Let E be an
operator space. Then the following are equivalent :

(i) E is completely isomorphic to some OH Hilbertian operator space.
(ii) E has Banach Φ-type and Banach Φ-cotype 2.

(iii) E has Banach G-type and Banach G-cotype 2.

Proof. The implication (i)⇒(ii) is obvious, and (ii)⇒(iii) follows from
Proposition 3.5 and the probabilistic proof of Theorem 5.6. Recall that the
proofs of both results are still valid when complete boundedness is replaced
by boundedness. Finally, (iii)⇒(i) since the proof of Theorem 5.6 only uses
the fact that E has Banach G-type and Banach G-cotype 2.

Remark 5.8. Obviously this result fails for dΣ bounded. For instance,
take Φ to be the classical Rademacher system on L2[0, 1] or the dual group of
the torus T. In these cases we go back to Kwapień’s classical characterization
of Hilbert spaces.

We now extend Corollary 5.7 to the case of complete quantized orthonor-
mal systems with dΣ unbounded. The proof of this result was kindly com-
municated to us by Gilles Pisier.
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Theorem 5.9. Let dΣ be an unbounded family of positive integers in-
dexed by Σ. Let Ψ be any complete quantized orthonormal system with pa-
rameters (Σ,dΣ). Let E be an operator space. Then the following are equiv-
alent :

(i) E is completely isomorphic to some OH Hilbertian operator space.
(ii) E has Banach Ψ -type and Banach Ψ -cotype 2.

Proof. The implication (i)⇒(ii) is again obvious. To see that (ii)⇒(i), we
begin by recalling that if E has Banach Ψ -type and Banach Ψ -cotype 2, then
(the underlying Banach space of) E is isomorphic to a Hilbert space. That
is, the proof of Theorem 4.2 can easily be adapted to this setting. Moreover,
by Kwapień’s another well known characterization given in [7], there exists
a positive constant c such that for any linear mapping L : L2(Ω)→ L2(Ω),
we have ‖L⊗ IE‖B(L2

E(Ω),L2
E(Ω)) ≤ c‖L‖B(L2(Ω),L2(Ω)). In particular, if Λ2 is

any closed subspace of L2(Ω) and Λ2(E) = Λ2 ⊗ E, we get

‖L⊗ IE‖B(Λ2(E),Λ2(E)) ≤ c‖L‖B(Λ2,Λ2)(6)

for any linear mapping L : Λ2 → Λ2. Now, for any σ ∈ Σ, we consider the
space Λ2

σ = span{ψσij : 1 ≤ i, j ≤ dσ} regarded as a subspace of L2(Ω), and
the space Λ2

σ(E) = Λ2
σ⊗E. We also need to consider the linear isomorphism

T2(σ) : S2
dσ → Λ2

σ, A 7→ dσ tr(Aψσ).

The following estimates are clear:

‖T2(σ)⊗ IE‖B(S2
dσ

(E),Λ2
σ(E)) ≤ d1/2

σ K̃12(E,Ψ),

‖T2(σ)−1 ⊗ IE‖B(Λ2
σ(E),S2

dσ
(E)) ≤ d−1/2

σ K̃22(E,Ψ).

Finally, for any linear mapping T : S2
dσ
→ S2

dσ
, we have T = T2(σ)−1 ◦

L2(σ) ◦ T2(σ) where L2(σ) = T2(σ) ◦ T ◦ T2(σ)−1 satisfies inequality (6).
Therefore

‖T ⊗ IE‖B(S2
dσ

(E),S2
dσ

(E)) ≤ ‖T2(σ)−1 ⊗ IE‖ ‖L2(σ)⊗ IE‖ ‖T2(σ)⊗ IE‖
≤ cK̃12(E,Ψ)K̃22(E,Ψ)‖L2(σ)‖B(Λ2

σ,Λ
2
σ)

≤ cK̃12(E,Ψ)2K̃22(E,Ψ)2‖T‖B(S2
dσ
,S2
dσ

).

But then the hypothesis of Lemma 5.5 is satisfied since dΣ is unbounded.

Remark 5.10. In fact, it can be checked that the ideas behind the proof
of Theorem 5.9 also yield Corollary 5.7. In particular, the probabilistic ap-
proach given at the beginning of this section is not necessary to get Corol-
lary 5.7. However, we have included it since we consider it as a natural
source of ideas for these results.
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Let R and C denote the row and column operator spaces respectively.
In [12] Pisier defined natural operator space structures on R∩C and R+C
in such a way that the pair (R ∩ C,R + C) becomes compatible for com-
plex interpolation. Moreover, Pisier proved in [13] the following surprising
complete isomorphism:

(R ∩ C,R+ C)θ ' Rp,

where θ = 1/p and Rp is (as in Remark 3.3) the closure in Lp[0, 1] of the
subspace spanned by the classical Rademacher functions r1, r2, . . . endowed
with its natural operator space structure. Pisier [13] analyzed this opera-
tor space structure by means of the non-commutative Khinchin inequalities
previously developed by him and Lust-Piquard (see [8] and [9]). Now we
use the family {Rp : 1 ≤ p ≤ ∞} of operator spaces to illustrate some
situations:

(a1) Let Φ be any u.b.q.o.s. associated to the parameters (Σ,dΣ) with
dΣ unbounded. Then Rp has Banach Φ-type 2 for any 2 ≤ p <∞. Namely,
by the classical Khinchin inequalities the underlying Banach space of Rp is
isomorphic to that of R2 for 1 ≤ p < ∞. Moreover, the identity mapping
I : Rp → R2 is a complete contraction whenever p ≥ 2. Therefore, there
exists some constant c such that∥∥∥

∑

σ∈Σ0

dσ tr(Aσϕσ)
∥∥∥
L2

Rp
(Ω)
≤ c
∥∥∥
∑

σ∈Σ0

dσ tr(Aσϕσ)
∥∥∥
L2

R2
(Ω)

≤ cK̃12(R2, Φ)
( ∑

σ∈Σ0

dσ‖Aσ‖2S2
dσ

(R2)

)1/2

≤ cK̃12(R2, Φ)
( ∑

σ∈Σ0

dσ‖Aσ‖2S2
dσ

(Rp)

)1/2
.

Now Corollary 5.7 shows that Rp, although isomorphic to a Hilbert space,
cannot have Banach Φ-cotype 2 for 2 < p < ∞ since in that case Rp is
not completely isomorphic to any OH operator space. By Theorem 5.9, the
same holds when we work with any complete quantized orthonormal system
Ψ with dΣ unbounded.

(a2) Similarly Rp has Banach Φ-cotype 2 for any 1 ≤ p ≤ 2 but it does
not have Banach Φ-type 2 unless p = 2. By Theorem 5.9, the same holds for
any complete quantized orthonormal system Ψ with dΣ unbounded.

(b) In the commutative theory there exist some systems for which Kwa-
pień’s theorem holds if we require only one of the type 2 or cotype 2 con-
ditions. Kwapień showed in [6] that the system of characters of the torus
T presents this kind of autoduality. Another example is given by the sys-
tem of characters of the Cantor group D (see [3] or [11] for a proof of
this fact). It is easy to see that this autoduality remains valid in our set-
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ting. For instance, if E has Z-type 2, then so does S2(E) and hence it
is isomorphic to some Hilbert space H. But this implies that E is com-
pletely isomorphic to some OH (see the proof of Theorem 3.10). In par-
ticular Rp cannot have Fourier type 2 or Fourier cotype 2 with respect to
T or D unless p = 2. On the other hand, we know that Rp has Banach–
Fourier type and Banach–Fourier cotype 2 with respect to T and D for any
1 ≤ p <∞.

Now, it is natural to ask if there exists a non-commutative compact group
G with dual object Γ satisfying this autoduality, that is, such that any op-
erator space E having Γ -type 2 or Γ -cotype 2 is completely isomorphic to
some OH operator space. At least we know that when dΓ is unbounded, by
points (a1) and (a2), an operator space having Banach Γ -type 2 or Banach
Γ -cotype 2 does not have to be completely isomorphic to any OH operator
space.

At this point it also becomes natural to ask if Banach Γ -type 2 and
Γ -type 2 (resp. Banach Γ -cotype 2 and Γ -cotype 2) are equivalent notions
as a consequence of the unboundedness of dΓ . At the time of this writing,
we are not able to answer these questions.
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