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Fréchet quotients of spaces of real-analytic functions
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Abstract. We characterize all Fréchet quotients of the space A (Ω) of (complex-
valued) real-analytic functions on an arbitrary open set Ω ⊆ Rd. We also characterize
those Fréchet spaces E such that every short exact sequence of the form 0→ E → X →
A (Ω)→ 0 splits.

Let A (Ω) denote the space of complex-valued real-analytic functions on
the open set Ω ⊂ Rd, equipped with its natural locally convex topology
(see [15] or [1]). The Fréchet structure of the spaces A (Ω) was closely in-
vestigated in recent years and this was a basis of various interesting results.
The Fréchet subspaces are characterized in Domański–Langenbruch [5] as
being isomorphic to subspaces of H(Dd) if Ω has finitely many connected
components, and of H(Dd)N if Ω has infinitely many connected components.
In Domański–Vogt [7] it was shown that for Ω connected the space A (Ω)
admits only finite-dimensional complemented subspaces, and that led to the
proof in [7] (cf. [8]) that no space A (Ω) admits a (Schauder) basis.

About the quotients of A (Ω) it was only known that they have the
very restrictive property (Ω). This was a basic ingredient in the proof that
all complemented Fréchet subspaces are finite-dimensional. However, it was
not known whether A (Ω) admits any infinite-dimensional Fréchet quotient
besides the space ω of all sequences. Only recently was it shown in [9] that
A (Ω) admits nontrivial Fréchet quotients, but that is far from being an
exact picture.

In the present paper we show that a Fréchet space E is isomorphic to a
quotient of A (Ω) for some, equivalently any, open set Ω ⊆ Rd if and only if
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E has property (Ω) and is n1/d-nuclear (see below for the definition in terms
of Kolmogorov diameters), or equivalently (see [25]), if and only if E has
property (Ω) and is isomorphic to a quotient of H(Dd). An essential step
is to show that a Fréchet space has (Ω) if and only if Ext1(A (Ω), E) = 0,
which means that every topologically exact sequence

0→ E → X → A (Ω)→ 0

splits. This result is of independent interest.

1. Preliminaries. We use common notation for locally convex spaces,
in particular Fréchet spaces. For the notation and general results we refer
to [18] or [13]. For homological notions in locally convex spaces see [26].

For any open Ω ⊂ Rd the space A (Ω) is equipped with its natural
topology given by

A (Ω) = lim proj
n

H(Kn)

where K1 ⊂ K̊2 ⊂ K2 ⊂ . . . is a compact exhaustion of Ω and H(Kn)
denotes the (LB)-space of germs of holomorphic functions on Kn. By Mar-
tineau [15, Th. 1.9] this topology coincides with the one given by

A (Ω) = lim ind
ω

H(ω).

Here ω runs through all complex neighborhoods of Ω, and H(ω) denotes
the Fréchet space of holomorphic functions on ω with the compact-open
topology.

A Fréchet space with a fundamental system of seminorms ‖ ‖1 ≤ ‖ ‖2
≤ . . . is said to have property (Ω) if

∀k ∃l ∀n, 0 < ϑ < 1 ∃C : ‖ ‖∗l ≤ C‖ ‖∗kϑ‖ ‖∗n1−ϑ

or equivalently

∀k ∃l ∀n, ε > 0 ∃C ∀r > 0 : Ul ⊂ C(rεUn + r−1Uk).

Here we set ‖y‖∗k = sup{|y(x)| | x ∈ Uk} and Uk = {x | ‖x‖k ≤ 1}. For the

role of property (Ω) see [1], [2], [7], [22], [24]; for the equivalence of both
conditions see [18, Lemma 29.13]. For examples of spaces with (Ω) see [16,
Ex. 4.12(5)].

Clearly (Ω) is a topological linear invariant which is inherited by quotient
spaces. We will need another topological invariant.

Let X be a linear space and V ⊂ U absolutely convex subsets. We define
the nth Kolmogorov diameter of V with respect to U to be

δn(V,U) = inf{δ > 0 | V ⊂ δU + F, dimF ≤ n}.
Here F denotes a linear subspace of E.
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Let α = (α0, α1, . . .) be a nonnegative increasing sequence so that
limn (logn)/αn = 0 and supn α2n/αn < ∞. We call this a stable exponent
sequence. Using V and U for absolutely convex neighborhoods of zero, we
define a locally convex space X to be:

(1) weakly α-nuclear if ∀U ∃V, t > 0 : limn e
tαnδn(V,U) = 0,

(2) α-nuclear if ∀U, t > 0 ∃V : limn e
tαnδn(V,U) = 0,

(3) strongly α-nuclear if ∀U ∃V ∀t > 0 : limn e
tαnδn(V,U) = 0.

The assumptions on (αn) imply that every weakly α-nuclear space is nuclear
(see [20, p. 296]). These are topological linear invariants, inherited by sub-
spaces, quotients, countable products and direct sums, hence by countable
projective and inductive limits (see [25, Lemma 1.3, 1.4]).

It is well known that for any open U ⊂ Cd the spaceH(U) of holomorphic
functions on U with the compact-open topology is weakly n1/d-nuclear. Since
for open Ω ⊂ Rd we can write

A (Ω) = lim proj
n

lim ind
k

H(Kn + k−1Dd)

we see that A (Ω) is weakly n1/d-nuclear. Here Dd={z ∈ Cd | supν |zν |< 1}.
A locally convex space is called a (PLB)-space ((PLS)-space, resp.) if

it is a countable projective limit of (LB)-spaces ((LS)-spaces, resp.). Main
examples of (PLB)-spaces are A (Ω), the space D ′(Ω) of distributions, and
all Fréchet and (LB)-spaces; the first two examples are also (PLS)-spaces.

In this paper Ext1 will always be taken in the category of locally convex
spaces, i.e. Ext1(E,F ) = 0 will mean that every topologically exact sequence

0→ F
j→ X

q→ E → 0

of locally convex spaces splits, i.e., q has a continuous linear right inverse.
Recall that the sequence above is topologically exact whenever j is a topo-
logical isomorphism onto the kernel of q and q is surjective, continuous and
open onto its image.

We denote by L(X,Y ) the space of all continuous linear maps from a
locally convex space X into another such space Y .

Consider an arbitrary projective spectrum of linear spaces:

. . .→ Xn+1
in+1
n−→ Xn → . . .→ X1

i10→ X0.

Then Proj1n∈NXn :=
∏
n∈NXn/imσ, where

σ :
∏

n∈N
Xn →

∏

n∈N
Xn, σ((xn)n∈N) := (in+1

n xn+1 − xn)n∈N.

Clearly, kerσ = lim projn∈NXn.
Let E be a Fréchet space, (En)n∈N its sequence of local Banach spaces,

and imn : Em → En the linking maps. There exists the following short
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(topologically) exact sequence:

0→ E →
∏

n∈N
En

σ→
∏

n∈N
En → 0,

where σ((xn)n∈N) := (in+1
n xn+1 − xn)n∈N, which we call the canonical res-

olution ([18, definition after 26.14]). Consider the spectrum (L(X,En))n∈N,
where the linking maps are defined as follows:

In+1
n : L(X,En+1)→ L(X,En), In+1

n (T ) = in+1
n ◦ T.

Then Proj1n∈NL(X,En) = 0 means exactly that every T ∈ L(X,
∏
n∈NEn)

lifts with respect to σ, i.e., there is a map S ∈ L(X,
∏
n∈NEn) such that

σ ◦ S = T .
We will need some general homological facts.

Lemma 1.1. Let E be a Fréchet space with local Banach spaces (En)n∈N.
Let F be a locally convex space. If either E or F is nuclear then Ext1(F,E) ∼=
Proj1n∈NL(F,En).

Proof. Observe that L(E,F ) can be identified with lim projn∈N L(F,En).
We apply the functor L(F, ·) to the canonical resolution of E. By the stan-
dard homological argument we obtain the following long exact sequence (see,
for instance, [19, Th. 3.4(b)]):

0→ L(F,E)→ L
(
F,
∏

n∈N
En

)
→ L

(
F,
∏

n∈N
En

)

→ Ext1(F,E)→ Ext1
(
F,
∏

n∈N
En

)
→ . . .

For nuclear F and any Banach space X we have Ext1(F,X) = 0 ([23]) and
for nuclear E we may assume En to be injective for every n. In both cases we
get Ext1(F,

∏
n∈NEn) = 0. We obtain the following commutative diagram

with exact rows:
∏
n∈N L(F,En) σ //

∏
n∈N L(F,En) // Proj1n∈NL(F,En) // 0

L(F,
∏
n∈NEn)

T

OO

// L(F,
∏
n∈NEn)

T

OO

// Ext1(F,E) //

OO

0

where the upper row is obtained from the sequence defining Proj1 for the
spectrum (L(F,En))n∈N and we have omitted the beginning of both rows.
Here T denotes the canonical identification. It is clear that the last vertical
arrow is an isomorphism we are looking for.

Corollary 1.2. Let E be a Fréchet space, F a locally convex space and
F0 ⊂ F a subspace. If either E or F is nuclear and Ext1(F,E) = 0 then
Ext1(F0, E) = 0.
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Proof. Let (En)n∈N be local Banach spaces for E. By our previous com-
ments, we only have to show that Proj1n∈NL(F0, En) = 0. But this follows
easily. Indeed, arguing as in the proof of Lemma 1.1, we show that every
tn ∈ L(F0, En) can be extended to Tn ∈ L(F,En). We construct the follow-
ing commutative diagram with exact rows:
∏
n∈N L(F,En) σ //

S1

��

∏
n∈N L(F,En) //

S2

��

Proj1n∈NL(F,En) //

��

0

∏
n∈N L(F0, En) σ //

∏
n∈N L(F0, En) // Proj1n∈NL(F0, En) // 0

where S1, S2 are surjective restriction maps. Thus also the last vertical arrow
is surjective and this completes the proof.

We are now in a position to formulate our main theorems.

2. Main results

Theorem 2.1. A Fréchet space E is isomorphic to a quotient of A (Ω)
if and only if it is n1/d-nuclear and has property (Ω).

By [25, Th. 4.1], this has an immediate consequence:

Corollary 2.2. A Fréchet space E is isomorphic to a quotient of A (Ω)
if and only if it has property (Ω) and it is isomorphic to a quotient of H(Dd).

Theorem 2.3. If E is a Fréchet space then the following assertions are
equivalent :

(a) Ext1(A (Ω), E) = 0;
(b) Proj1n∈NL(A (Ω), En) = 0;

(c) E has property (Ω).

Remark. In fact, analyzing the proof of the above result, it follows
that if (c) is satisfied then (a) and (b) also hold for any closed subspace Y
of A (Ω) in place of A (Ω) or, more generally, for every complete nuclear
space Y which has (DNϕ) for any ϕ with limr→∞ r−εϕ(r) = 0 for all ε > 0
(see Definition 4.3 below).

The proof will consist of a series of lemmas and will take the rest of this
paper.

3. Necessity of the conditions. We first quote the following result
(Theorem 3.4 of [7]):

Lemma 3.1. If E is a Fréchet space isomorphic to a quotient of A (Ω)
then it has property (Ω).
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Due to the preliminary remarks we know that every quotient of A (Ω)
is weakly n1/d-nuclear. This condition is self-improving by the following.

Lemma 3.2. If W ⊂ V ⊂ U are absolutely convex sets, ε > 0 and

V ⊂ C(r−1U + rεW ) for all r > 0,

then there is D so that

δn(V,U)ε ≤ Dδn(W,V ) for all n.

Proof. Let F ⊂ E be a subspace. We set for the moment δ(V,U ;F ) =
inf{δ > 0 | V ⊂ δU +F} and assume δ > δ(W,U ;F ). Then, by assumption,

V ⊂ C(r−1 + rεδ)U + F for all r > 0,

hence

δ(V,U ;F ) ≤ C inf
r>0

(r−1 + rεδ) = C(1 + ε)ε−ε/(1+ε)δ1/(1+ε)

and therefore δ(V,U ;F )1+ε ≤ Dδ(W,U ;F ). Since δ(W,U ;F ) ≤ δ(W,V ;F )
×δ(V,U ;F ) we obtain δ(V,U ;F )ε ≤ Dδ(W,V ;F ). Taking the infimum over
all F with dimF ≤ n we obtain δn(V,U)ε ≤ Dδn(W,V ).

Lemma 3.3. If the Fréchet space E has property (Ω) and is weakly α-
nuclear then it is strongly α-nuclear. In particular it is α-nuclear.

Proof. For k we choose l > k according to (Ω), i.e. for every n and ε > 0
there is C > 0 so that

Ul ⊂ C(r−1Uk + rεUn) for all r > 0.

Since E is weakly α-nuclear we can find t > 0 so that

etαnδn(Un, Ul)→ 0 as n→∞.
Using Lemma 3.2 we obtain

etαnδn(Ul, Uk)→ 0 as n→∞
for every t > 0.

This completes the proof of the necessity of the conditions in Theorem
2.1. We state it as a separate lemma.

Lemma 3.4. If E is a Fréchet space isomorphic to a quotient of A (Ω)
then E is n1/d-nuclear.

For the proof of the sufficiency we need a further improvement.

Lemma 3.5. If the Fréchet space E is strongly α-nuclear then there is
a stable exponent sequence β with limn αn/βn = 0 so that E is (strongly)
β-nuclear.
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Proof. By a recursive choice of the fundamental system (Uk)k of neigh-
borhoods of zero we may assume that

emαnδn(Uk+1, Uk)→ 0 as n→∞
for all m and k.

We set n0 = 1 and determine inductively nm+1 > nm so that

e(m+1)2αnδn(Uk+1, Uk) <
1

m+ 1
for n ≥ nm+1 and k = 1, . . . ,m. Setting βn = mαn for nm ≤ n < nm+1 we
obtain the result.

To prove the necessity of the conditions in Theorem 2.3 we recall that
in Domański–Langenbruch [5] it is shown that the space Λ0(n1/d) ' H(Dd)
can be imbedded into A (Ω).

Lemma 3.6. If E is a Fréchet space and Ext1(A (Ω), E) = 0 then E

has property (Ω).

Proof. We choose βn = n1/d and imbed Λ0(β) into A (Ω). Then by
Corollary 1.2, Ext1(Λ0(β), E) = 0 and the result follows from [24, Theorem
4.2].

4. Sufficiency of conditions in Theorem 2.3. First notice that, by
Lemma 1.1, conditions (a) and (b) in Theorem 2.3 are equivalent. We write
property (Ω) in a different form. To do this, throughout this section we let
ϕ and ψ denote increasing unbounded functions (0,∞)→ (0,∞).

Definition 4.1. E has property (Ωψ) if

∀k ∃l ∀n ∃C ∀r > 0 : Ul ⊂ Cψ(r)Un + r−1Uk.

Remark. Equivalently we may write (cf. [18, Lemma 29.13])

∀k ∃l ∀n ∃C ∀r > 0 ∀y ∈ E′ : ‖y‖∗l ≤ Cψ(r)‖y‖∗n + r−1‖y‖∗k.(1)

We obtain:

Lemma 4.2. E has property (Ω) if and only if there is a function ψ with
limr→∞ r−εψ(r) = 0 for all ε > 0 so that E has property (Ωψ).

Proof. If E has property (Ωψ) with ψ as described, then clearly E has

property (Ω).
To prove the converse we find for given k an l = l(k) according to

property (Ω). For r > 0 and n ∈ N we set

ψk,n(r) = sup
x∈Ul

inf
y∈r−1Uk

‖x− y‖n + 1.

Then, clearly,
Ul ⊂ ψk,n(r)Un + r−1Uk



236 P. Domański et al.

for every r > 0 and, due to property (Ω), for every ε > 0 we obtain a constant
C > 0 so that ψk,n(r) ≤ Crε + 1. This implies that limr→∞ r−εψk,n(r)
= 0 for all k, n and ε > 0. It is easily seen that we can find ψ so that
limr→∞ r−εψ(r) = 0 for all ε > 0 and that for all k, n there are C > 0 and
r0 with ψk,n(r) ≤ Cψ(r) for all r > r0.

Let now X be a locally convex space, let p0, p, q denote continuous
seminorms on X, and let ϕ be a nondecreasing positive unbounded function.

Definition 4.3. X has property (DNϕ) if

∃p0 ∀p ∃q, C > 0 ∀r > 0 : p ≤ C
(
rp0 +

1
ϕ(r)

q

)
.

In this case, p0 is a norm and it is called a ϕ-dominating norm.

In the next lemma we assume that X is an (LB)-space, i.e. there is a
sequence X1 ⊂ X2 ⊂ . . . of Banach spaces so that X =

⋃∞
n=1Xn and X

carries the strongest topology so that all the imbeddings are continuous. We
denote the norm in Xn by ‖ ‖n; we may assume that ‖ ‖n ≥ ‖ ‖n+1 for all n.

Lemma 4.4. If there exists a continuous norm ‖ · ‖ on X so that for
every n there is 0 < τn < 1 with

‖x‖n+1 ≤ ‖x‖τnn ‖x‖1−τn

for all x ∈ Xn, then X has property (DNϕ) for every ϕ with limr→∞ r−εϕ(r)
= 0 for all ε > 0. Moreover ‖ ‖ is a ϕ-dominating norm.

Proof. We set A = {x ∈ X | ‖x‖ ≤ 1}. We choose a neighborhood B of
zero in X, which may be assumed to be of the form

B :=
∞∑

ν=1

βνBν :=
⋃

n∈N

n∑

ν=1

βνBν ,

where (βν)ν∈N ∈ (0, 1)N is a decreasing null sequence, and Bν is the closed
unit ball of Xν . It is enough to show the existence of C, r0 ≥ 1, (γν)ν∈N ∈
(0, 1)N and l : N→ N with limn→∞ l(n) =∞ such that

ϕ(r)D ∩ 1
2r
A ⊂ 2CB for all r ≥ r0,

where

D :=
∞∑

ν=1

γνBl(ν).

To start we choose an increasing function θ : [1,∞) → (0, 1) with
limr→∞ θ(r) = 1 and

lim
r→∞

ϕ(r)(1/r)1−θ(r) = 0.
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Then we define an increasing function n : [1,∞) → N with n(r) ≤ r,
limr→∞ n(r) =∞, and C ≥ 1 such that

ϕ(r)(1/r)1−θ(r) ≤ Cβn(r)+1 for all r ≥ 1.

We construct an increasing function l : N → N with l(n) ≤ n and
limn→∞ l(n) =∞ such that

d(n) := τl(n) ≤ θ(n) for all n.

This implies that there is r0 ≥ 1 such that ϕ(r0) ≥ 1 and

ϕ(r)(1/r)1−d(n(r)) ≤ Cβn(r)+1 for all r ≥ r0(2)

and, by assumption, we have

‖x‖l(n)+1 ≤ ‖x‖d(n)
l(n) ‖x‖

1−d(n) for all n.(3)

For every n we have cn ≥ 1 so that ‖ ‖ ≤ cn‖ ‖n. We set

γn :=
βn

cl(n)2n+1 inf
{

1
rϕ(r)

: n(r) ≤ n
}
, n ∈ N.

Then

ϕ(r)
∞∑

ν=n(r)+1

γνBl(ν) ⊂
( ∞∑

ν=n(r)+1

βνBν

)
∩ 1

2r
A for every r ≥ 1.

Let now

D :=
∞∑

ν=1

γνBl(ν).

If r ≥ r0 and f ∈ ϕ(r)D ∩ 1
2rA we may write f = f1 + f2, where

f1 ∈ ϕ(r)
∑n(r)

ν=1 γνBl(ν) and f2 ∈ ϕ(r)
∑∞

ν=n(r)+1 γνBl(ν). We obtain

f2 ∈
∞∑

ν=n(r)+1

βνBν , f1 ∈ ϕ(r)Bl(n(r)) ∩ r−1A.

To prove that f ∈ 2CB it is enough to show that f1 ∈ Cβn(r)+1Bn(r)+1. We
apply (2) and (3) to obtain, for r ≥ r0,

‖f1‖n(r)+1 ≤ ‖f1‖l(n(r))+1 ≤ ‖f1‖d(n(r))
l(n(r)) ‖f1‖1−d(n(r))

≤ ϕ(r)d(n(r))(1/r)1−d(n(r)) ≤ Cβn(r)+1.

This completes the proof of the lemma.

The following lemma is probably well known. We give a proof for the
sake of completeness. We set ‖f‖M = supx∈M |f(x)| for any function f on
the set M . An open bounded subset Ω ⊆ Cd is called hyperconvex whenever
it is connected and there is a continuous plurisubharmonic negative function
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% on Ω such that the sets {z ∈ Ω | %(z) < c} are relatively compact in Ω
for every negative c (see [14, p. 80]).

Lemma 4.5. Let U ⊂ Cd be open, hyperconvex and connected , and ω ⊂⊂
U ∩Rd open in Rd and nonempty. Then for every open connected set V with
ω ⊂⊂ V ⊂⊂ U there is 0 < τ < 1 so that

‖f‖V ≤ ‖f‖τU‖f‖1−τω

for all bounded holomorphic functions f on U .

Proof. We choose a small ball E ⊂ ω ⊂ Rd. We denote by vE,U the
relative extremal function, i.e.

vE,U (z) = sup{v(z) | v plurisubharmonic on U, v|E ≤ −1, v ≤ 0}.
As U is hyperconvex we have limz→w vE,U (z) = 0 for all w ∈ ∂U (see [14,
Proposition 4.5.2]). We wish to show that vE,U is continuous.

Let VE be the pluricomplex Green function of E (see [14, pp. 184 ff.]),
which is continuous on Cd ([14, Theorem 5.4.6]). Therefore 2ε := inf{VE(z) |
z ∈ ∂U} > 0. This implies that u = max(ε(vE,U +1), VE) ∈ L(Cd) (the class
of plurisubharmonic functions of minimal growth, see [14, p. 184]) and u ≤ 0
on E. Therefore u ≤ VE , which implies vE,U ≤ ε−1VE − 1 on U . Because
of the continuity of VE , the upper semicontinuous regularization satisfies
v∗E,U = −1 on E. Therefore vE,U is continuous (see [14, Proposition 4.5.3]).

We set τ = sup {vE,U (z) + 1 | z ∈ V }. Then 0 < τ < 1.
Let f be holomorphic, bounded and nonconstant on U . We put

v(z) =
log |f(z)| − log ‖f‖U
log ‖f‖U − log ‖f‖E

.

Then v ≤ vE,U on U , hence v(z) ≤ τ − 1 for z ∈ V , which means

log ‖f‖V − log ‖f‖U
log ‖f‖U − log ‖f‖E

≤ τ − 1

and therefore
‖f‖V ≤ ‖f‖τU‖f‖1−τE ≤ ‖f‖τU‖f‖1−τω .

Proposition 4.6. If Ω⊂Rd is open and connected and limr→∞ r−εϕ(r)
= 0, then A (Ω) has property (DNϕ).

Proof. We choose ω ⊂⊂ Ω open. If p is a continuous seminorm on A (Ω),
then there is a compact K ⊂ Ω so that p extends to a continuous seminorm
on H(K). We may assume that ω ⊂ K. We choose a basis U1 ⊃⊃ U2 ⊃⊃ . . .
of open connected neighborhoods of K. Then Lemma 4.5 and the fact that
every open connected subset in Rd has a basis of hyperconvex neighborhoods
in Cd (this is definitely well known, see [4, proof of Prop. 1] or [12, proof
of Props. 6 and 7]; explicitly it follows from [10, Lemma 1.1]) provide the
assumption of Lemma 4.4. So H(K) has property (DNϕ) and ‖ ‖ω is a
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ϕ-dominating norm. But then we find a continuous seminorm q on H(K)
according to (DNϕ). The restriction of q to A (Ω) gives the result.

Proposition 4.7. If E is a Fréchet space with property (Ω) then there
is a nondecreasing positive function ϕ such that limr→∞ r−εϕ(r) = 0 for all
ε > 0 and every nuclear Fréchet space F having (DNϕ) satisfies Ext1(F,E)
= 0.

Proof. We proceed in a similar way to [17, Lemma 3]. First we choose,
by use of Lemma 4.2, a function ψ so that E has property (Ωψ) and
limr→∞ r−εψ(r) = 0 for all ε > 0. We set ϕ(r) = ψ(r2). Then ϕ dominates ψ,
i.e. for every R there is DR with ψ(Rr) ≤ DR ϕ(r), and limr→∞ r−εϕ(r) = 0
for all ε > 0.

Let p0 be a ϕ-dominating norm in F . If a seminorm p ≥ p0 is given, then
we choose q ≥ p according to (DNϕ), i.e. we have

p ≤ D
(
rp0 +

1
ϕ(r)

q

)
.(4)

For x 6= 0 and R > 0 we put r = R p(x)
p0(x) in (1) to obtain, for any y ∈ E ′,

‖y‖∗l ≤ Cψ
(
R
p(x)
p0(x)

)
‖y‖∗n +

1
R

p0(x)
p(x)

‖y‖∗k,

hence

‖y‖∗l p(x) ≤ Cψ
(
R
p(x)
p0(x)

)
p(x)‖y‖∗n +

1
R
‖y‖∗kp0(x).

Now we put r = 1
2D

p(x)
p0(x) in (4) to obtain

ϕ

(
1

2D
p(x)
p0(x)

)
≤ 2D

q(x)
p(x)

and therefore

ψ

(
R
p(x)
p0(x)

)
≤ D2DRϕ

(
1

2D
p(x)
p0(x)

)
≤ 2DD2DR

q(x)
p(x)

.

We have shown that

∃p0 ∀k ∃l ∀n, p,R ∃q, S ∀x, y : ‖y‖∗l p(x) ≤ S‖y‖∗nq(x) +
1
R
‖y‖∗k p0(x).

This is condition (S∗1)0 in [24]. As F is nuclear, [24, Theorem 3.8] yields the
result (cf. also [26, Th. 5.2.6], [11, Th. 3.1]).

The proof of Theorem 2.3 is now completed by:

Proposition 4.8. If E is a Fréchet space with property (Ω) and F
is a nuclear locally convex space which has (DNϕ) for every ϕ satisfying
limr→∞ r−εϕ(r) = 0 for all ε > 0, then Ext1(F,E) = 0. In particular , this
holds for any closed subspace F of A (Ω)d.
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Proof. Consider an arbitrary short topologically exact sequence

0→ E → X → F → 0.

Weakening the topology of X and F in a suitable way, we easily obtain the
commutative diagram

0 // E // X1
q1 // F1 // 0

0 // E //

id

OO

X
q //

OO

F //

J

OO

0

where, by assumption, one can assume that F1 has (DNϕ) for ϕ chosen
according to Proposition 4.7. Thus J lifts with respect to q1 and the lower
row splits [6, Prop. 1.7(c)].

5. Sufficiency of conditions in Theorem 2.1. We will use a result
from [9]. For this we need some notation. Let ω : [0,∞[ → [0,∞[ be a
continuous increasing function. We call ω a quasi-analytic weight function
if it has the following properties:

(α) ω(2t) = O(ω(t)) as t→∞.
(β)

� ∞
0

ω(t)
1+t2 dt =∞.

(γ) log t = o(ω(t)) as t→∞.
(δ) ϕω : t 7→ ω(et) is convex.
(ε) ω(t) = o(t) as t→∞.

Let ω be a weight function and Ω ⊂ Rd an open set. We define (cf. [3])

E(ω)(Ω) =
{
f ∈ C∞(Ω)

∣∣∣∣ for every K ⊂⊂ Ω and every m ∈ N we have

qK,m(f) = sup
j∈Nd

sup
x∈K
|f (j)(x)| exp

(
−m

d∑

ν=1

ϕ∗ω

(
jν
m

))
<∞

}
,

where ϕ∗ω : [0,∞[→ [0,∞[ is the Young conjugate of ϕω, i.e.,

ϕ∗ω(y) := sup{xy − ϕω(x) : x ≥ 0}.
It is easily seen that ϕ∗ω is a convex increasing function. Then E(ω)(Ω) is a
nuclear Fréchet space which contains A (Ω) continuously.

We denote by Λs(α) the finite type (for s < ∞) and infinite type (for
s = ∞) power series space generated by the exponent sequence α = (αn)
(cf. [18, §29]). If α is a stable exponent sequence (supn α2n/αn < ∞) then
Λs(α) ' Λs(α)2, in particular, we then have Λs(α,Z) ∼= Λs(α), where

Λs(α,Z) =
{
ξ ∈ CZ

∣∣∣ |x|t :=
∑

k∈Z
|ξk|etα|k| <∞ for all t < s

}
.

The following result is Lemma 3 of [9].
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Lemma 5.1. If α = (αn)n is a stable exponent sequence such that

lim
n→∞

n/αn = 0

then there is a quasi-analytic weight function ω and an exact sequence

0→ Λs(α,Z) J→ E(ω)(I) L→ E(ω)(I)→ 0,

where s = 1 for I = (−1, 1), s = ∞ for I = R and imJ ⊂ A (I). The
operator J is given by

J(ξ) =
∑

k∈Z
ξk e

sgn(k)α|k|z,

and L is an infinite order differential operator which maps A (I) into A (I).

To extend this lemma to open cubes Q = I1× . . .×Id ⊂ Rd, where the Iν
are open intervals, we need some preparation. Since the exponentials eξz =∏d
ν=1 e

ξνzν are total in E(ω)(Q) it is easily seen that E(ω)(Q) ∼= E(ω)(I1) ⊗̂
. . . ⊗̂ E(ω)(Id). We will need to decompose a power series space into a tensor
product of such spaces.

Lemma 5.2. Let α be a stable exponent sequence with limn→∞ n1/d/αn
= 0 and s ∈ {0,∞}. Then there exists a stable exponent sequence β with
limn→∞ n/βn = 0 so that Λs(α) ∼= Λs(β)⊗̂d.

Proof. We set βn = αnd . This sequence satisfies the assertions on β. To
establish the isomorphism we fix an enumeration Nd 3 j 7→ n = n(j) ∈ N of
Nd so that m = m(j) := maxν jν is increasing and set γn = βj1 + . . . + βjd
for n = n(j). Then clearly (m − 1)d < n ≤ md and βm ≤ γn ≤ dβm. So
using the stability of β we obtain, with suitable D,

1
D
αn ≤ β[n1/d] ≤ βm ≤ γn ≤ dβm ≤ dβ[n1/d]+1 ≤ dDαn.

Since

Λs(β)⊗̂d ∼=
{
ξ = (ξj)j∈Nd

∣∣∣ |x|t =
∑

j

|ξj|et(βj1+...+βjd ) <∞ for all t < s
}
,

the map ξ = (ξj)j∈Nd 7→ x = (ξj(n))n∈N establishes an isomorphism onto
Λs(α).

We will use the following lemma (we omit the proof).

Lemma 5.3. Let

0→ Xk
jk→ Yk

lk→ Zk → 0, k = 1, 2,

be exact sequences of nuclear Fréchet spaces. Then

0→ X1 ⊗̂X2
J→ Y1 ⊗̂ Y2

L→ (Z1 ⊗̂ Y2)⊕ (Y1 ⊗̂ Z2) K→ Z1 ⊗̂ Z2 → 0
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is an exact sequence, where J = j1 ⊗ j2, L = (l1 ⊗ id) ⊕ (id ⊗ l2) and
K(u1 ⊕ u2) = (id⊗ l2)u1 − (l1 ⊗ id)u2.

Now we are in a position to give a d-dimensional analogue to Lemma
5.1.

Lemma 5.4. If α is a stable exponent sequence with limn→∞ n/αn = 0,
then there is a quasi-analytic weight function ω and an exact sequence

0→ Λs(α,Z)⊗̂d J→ E(ω)(Q) L→ X → 0,

where s = 1 for Q = (−1, 1)d, s =∞ for Q = Rd, imJ ⊂ A (Q) and X is a
closed topological subspace of E(ω)(Q)d. The operator J is given by

J(ξ) =
∑

j∈Zd
ξj exp

( d∑

ν=1

sgn(jν)α|jν |zν
)

and Lf = (L1f, . . . , Ldf), Lν being the operator from Lemma 5.1 acting on
the νth variable. Moreover

L(E(ω)(Q)) = X := {(f1, . . . , fd) ∈ E(ω)(Q)d | Lνfµ = Lµfν for all ν, µ},
and

L(A (Q)) ⊆ Y := {(f1, . . . , fd) ∈ A (Q)d | Lνfµ = Lµfν for all ν, µ},
where Y is a closed topological subspace of A (Q)d.

Proof. This follows by induction on dimension by applying Lemma 5.3
to the (d− 1)-dimensional exact sequence

0→ Λs(α,Z)⊗̂(d−1) J→ E(ω)(Q) L→ imL→ 0,

and the 1-dimensional exact sequence of Lemma 5.1.

We are now ready to prove Theorem 2.1 for cubes, hence for all Cartesian
product sets in Rd. To do it for all open sets we need some geometrical
preparation.

Lemma 5.5. Every open set Ω ⊂ Rd is real-analytically diffeomorphic to
an open set Ω′ ⊂ Rd so that (−1, 1)d ⊂ Ω′ ⊂ (−∞, 1)d.

Proof. For Ω = Rd this is clear, so assume Ω 6= Rd. We choose y ∈ Ω
and then a point w ∈ ∂B ∩ ∂Ω where B is the largest open ball with center
y which is contained in Ω. By an affine transformation we may assume that
w = 0 and {x | xν > 0 for all ν, |x| < ε} ⊂ Ω for some ε > 0.

The reflection x 7→ |x|−2x maps Ω onto Ω1 with {x | xν > 0 for all ν,
|x| > r} ⊂ Ω1 for some r > 0.

Finally x 7→
(2s
π arctanx1 +1−s, . . . , 2s

π arctanxd+1−s
)

for s > 0 large
enough maps Ω1 onto a set as claimed.

The proof of 2.1 is now completed by:
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Proposition 5.6. If E is an n1/d-nuclear Fréchet space with property
(Ω) then E is isomorphic to a quotient space of A (Ω).

Proof. We may assume that Ω is of the form described in Lemma 5.5.
We set Q = (−1, 1)d. According to Lemmas 3.3 and 3.5 there is a stable
exponent sequence α with limn n

1/d/αn = 0 so that E is α-nuclear. By use
of Lemma 5.2 we find a stable exponent sequence β with limn n/βn = 0 so
that Λ0(α) ∼= Λ0(β)⊗̂d. Since E has property (Ω), hence (Ω) (see [18]), it is
isomorphic to a quotient space of Λ0(α) ∼= Λ0(β)⊗̂d ∼= Λ1(β)⊗̂d by [21]. Let
q : Λ1(β)⊗̂d → E be a quotient map.

For β we find ω according to Lemma 5.4 and obtain from that lemma
the middle row of the following diagram:

0 // E // Z1
Q // X // 0

0 // Λ1(β,Z)⊗̂d
J //

S

OO

E(ω)(Q) L //

OO

X //

id

OO

0

0 // Λ1(β)⊗̂d
J //

ι

OO

A (Ω) L //

%1

OO

Y

%2

OO

Here ι is the natural imbedding, i.e. for ξ = (ξj)j∈Nd we set (ιξ)j = ξj for
j ∈ Nd and (ιξ)j = 0 otherwise. This is an imbedding onto a complemented
subspace so the quotient map q yields the surjective map S. Moreover, X
(resp. Y ) is the set of elements in E(ω)(Q)d (resp. A (Ω)d) satisfying the
compatibility conditions. We denote by %1 the restriction map A (Ω) →
A (Q) ↪→ E(ω)(Q) and analogously %2 in the last column. The upper row is
obtained via the standard procedure as in [6, Prop. 1.7(a)]. The diagram is
commutative, the upper and middle rows are topologically exact.

We have to show that the map J in the lower row, which is the restriction
to Λ0(β)⊗̂d of the map J described in Lemma 5.4, has values in A (Ω). The
reason is that for ξ ∈ Λ1(β)⊗̂d, we have

J(ξ) =
∑

j∈Nd
ξj exp

( d∑

ν=1

jνβjνzν

)
.

This series converges uniformly on compact subset of {z ∈ Cd | Re zν < 1
for all ν}, hence defines a holomorphic function on this set. Therefore it
defines a real-analytic function on the set {x ∈ Rd | xν < 1 for all ν} which
contains Ω.

By Proposition 4.8 we have Ext1(Y,E) = 0 and therefore %2 lifts to Z1

with respect to Q. A standard proof (cf. [6, Prop. 1.7(c)]) shows that this
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implies existence of a map B : A (Ω) → E such that B ◦ J = S ◦ ι. Since
B ◦ J = S ◦ ι = q is surjective and open, so is B.
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