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A characterization of regular averaging operators
and its consequences

by

SPIROS A. ARGYROS and ALEXANDER D. ARVANITAKIS (Athens)

Abstract. We present a characterization of continuous surjections, between compact
metric spaces, admitting a regular averaging operator. Among its consequences, concrete
continuous surjections from the Cantor set C to [0, 1] admitting regular averaging operators
are exhibited. Moreover we show that the set of this type of continuous surjections from C
to [0,1] is dense in the supremum norm in the set of all continuous surjections. The non-
metrizable case is also investigated. As a consequence, we obtain a new characterization
of Eberlein compact sets.

1. Introduction. One of the most important results in the isomorphic
theory of Banach spaces, due to A. Milyutin, asserts that if K1, Ks are un-
countable compact metric spaces then the spaces C'(K1), C(K2) are isomor-
phic. This result became widely known through A. Pelczynski’s monograph
[16] and the proof presented by Pelczyniski requires the following steps:

Denoting by C the Cantor set {0,1}" it is enough to show that every
C(K) with K an uncountable compact metric space is isomorphic to C(C).
Pelczynski’s decomposition method (see for example [12, Theorem 2.a.3])
reduces this problem to the complemented embedding of C(K) in C(C)
and vice versa. To handle these complementation problems, Petczynski in-
troduced the concepts of reqular averaging and regular extension operators

([16, Definitions 1.1, 2.1]) defined as follows:

DEFINITION 1. (1) Let K, L be compact spaces and ¢ : L — K a contin-
uous onto map. We say that ¢ admits a regular averaging operator if there
exists a positive linear operator u : C(L) — C(K) with u(1ly) = 1x and
u¢® = idg k), where ¢° : C(K) — C(L) is the operator induced by ¢.

(2) If ¢ : L — K is one-to-one and continuous, we say that ¢ admits

a reqular extension operator if there exists a positive linear operator u :
C(L) — C(K) with u(1r) = 1x and ¢°u = idg(z).
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Milyutin’s Lemma is the assertion that there exists a continuous sur-
jection ¢ : C — [0, 1] that admits a regular averaging operator. From this,
it was deduced that for every compact metric K, there exists ¢ : C — K
continuous onto which also admits a regular averaging operator. Hence it
was concluded that for every compact metric K, C(K) can be embedded in
C(C) as a complemented subspace.

The second complementation follows from Michael’s Selection Theorem
(see [14]) that asserts that every embedding ¢ : L — K with L compact
metric and K compact admits a regular extension operator.

For general, not necessarily metrizable compact spaces, we recall the
following results:

The first, due to A. Pelczynski [16], asserts that if ¢, : L, — K,y € I,
admits a regular averaging (extension) operator, then the same remains valid
for the function @ = [[ ¢, : [[ Ly — [[ K5.

S. Ditor [4] has shown that for every compact K there exists a totally
disconnected compact L with topological weight equal to that of K and a
continuous surjection ¢ : L — K which admits a regular averaging operator.
(Here, by the term topological weight, we mean the least cardinal such that
there exists a base of K of that cardinality.)

As we show in this paper, Ditor’s Theorem is a direct consequence of
the theorem of Pelczynski mentioned above. In spite of this, Ditor’s proof
contains ideas important to us for proving our results.

In what follows, a totally disconnected space L will be called a Ditor
space for a compact space K if the topological weight of L equals that
of K, and moreover there exists a continuous surjection ¢ : L — K that
admits a regular averaging operator. Ditor’s Theorem implies that for any
compact K, there exists at least one Ditor space for K.

The third result, due to R. Haydon [9], concerns regular extension oper-
ators, and characterizes those compact spaces L such that every embedding
of L in another compact space K admits a regular extension operator.

It is worthwhile to mention here that the question whether or not for
an arbitrary compact K, there exists a totally disconnected compact L such
that C(K) = C(L), remains open. A discussion concerning this problem is
included in the last part of the present paper.

Additional information for the compact case is contained in [5], [9], [10]
and [6].

Related results for non-compact topological spaces can be found in [7],
[18] and [20]. The interested reader can also consult the survey paper [17].

Returning to the metrizable case, we point out that the complemented
embedding of C(K) into C(C) through a regular averaging operator is in
part topological, in the sense that the embedding ¢° : C(K) — C(C) results
from the continuous surjection ¢ : C — K, and in part functional-analytic.
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We mention that Y. Benyamini [3] has a proof of this result using exclusively
techniques from Banach space theory.

The third section of the present paper is mainly devoted to a systematic
study of continuous surjections between compact metric spaces which admit
regular averaging operators.

The first result we should mention is a topological characterization of
continuous surjections between compact metric spaces, admitting regular
averaging operators. This characterization is as follows:

THEOREM 2. Let L be a compact metric space and ¢ : L — K continuous
onto. Then the following are equivalent:

(1) The map ¢ admits a regular averaging operator.
(2) There exists a basis U of L, containing L and consisting of open
sets, and a family {Gy : U € U} of open subsets of K, such that:

(a) GL = K.

(b) For each U e U, Gy C ¢(U).

(c) Whenever U,Uy, ..., U, are members of U and U C |J;_, U; then
also Gy c Ui, Gu,.

(3) For every basis U of L containing L and consisting of open sets,
there is a family {Gy : U € U} of open subsets of K satisfying (a)—(c)
above.

Condition (2) in the above characterization is useful to establish that
some ¢ does admit a regular averaging operator, while condition (3) is used
to show that ¢ does not admit such an operator.

The proof of the above theorem is based on a selection theorem for mul-
tivalued maps (Theorem 10) proved in this paper. This selection theorem,
probably of independent interest, follows from Lemma 8, the proof of which
is inspired by Ditor’s ideas in proving his theorem mentioned above.

With Theorem 2 we give an answer to a problem posed by Pelczynski
[16]. A different characterization was also obtained by Ditor [5].

Theorem 2 implies that for every 1/2 < r < 1 the surjection ¢, : C —
[0, 1] defined as

¢T((5n)n) = (1 — r) Z Enrn—l
n=1

admits a regular averaging operator and also that for » = 1/2 this is no
longer valid.

These functions will be used in the next section to give a precise descrip-
tion of Ditor spaces for certain compact spaces.

A second result included in this section concerns a question posed to us
by A. Pelczynski and states the following:
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THEOREM 3. The set RA of continuous surjections ¢ : C — [0,1] that
admit regular averaging operators is dense in the supremum norm in the set
of all continuous surjections.

As the referee pointed out to us, the above set is residual. This is a
consequence of certain general results in Dimension Theory and a more
detailed discussion is presented in Remark 16.

In the last part of this paper, we start with a short description of the
proof of Pelczynski’s Theorem mentioned above and then we show how Di-
tor’s Theorem is obtained as a direct consequence of Pelczyniski’s Theorem.

Next we prove that under some conditions concerning the compact space
K, there exists a Ditor space for K, homeomorphic to a closed subspace of
K" (Proposition 22). From this we conclude that if K belongs to one of the
classes of Eberlein, Gul’ko, Talagrand or Corson compacta, then there exists
a Ditor space for K also belonging to the same class. Using this we obtain a
new characterization of Eberlein compact sets (recall that a compact space
K is called scattered if every closed subset of K has an isolated point):

THEOREM 4. Let K be a compact space. Then K is Eberlein compact if
and only if there exists a scattered Eberlein compact S such that K can be
embedded in P(S).

Finally, for the unit ball B, of £,(I") (1 < p < oo) endowed with the
pointwise topology, we give a concrete description of a Ditor space which in
the case p = 1 takes the form

L={aet(I'xN): |lz]l <1 and ¥(y,n) € I x N, 2(3,n) € {~ra, 0,7} },
where (ry,), are fixed positive numbers summing up to 1. Clearly L is em-
beddable in Bj.

2. Notation and definitions. Let L, K be Hausdorff compact spaces
and ¢ : L — K a continuous map. We denote by ¢° : C(K) — C(L) the
map ¢°(f) = f¢. It is well known that ¢° is a bounded linear operator and
moreover if ¢ is onto then ¢° is an isometric embedding; if ¢ is one-to-one
then ¢° is onto.

A bounded operator v : C(L) — C(K) is called regular provided u(f) >0
whenever f > 0 and u(1l;) = 1k, where 11, : L 5 [ +— 1 € R is the con-
stantly 1 function on L.

We say that ¢ admits a reqular averaging operator if there exists a regular
operator u : C(L) — C(K) such that u¢® = ido(k) (Where idx denotes the
identity map on X). Also ¢ admits a regular extension operator if there
exists a regular operator u : C(L) — C(K) such that ¢°u = id¢(yr) -

We say that ¢ admits a choice function if ¢ is onto and there exists
a continuous map s : K — L such that s(k) € ¢~!(k) or equivalently

(;58:idK.
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We denote by M(K) the regular measures on K. It is well known by
Riesz’s Representation Theorem that M(K') can be identified with C'(K)*,
the dual of C(K). Also, P(K) denotes the regular probability measures on
K. Unless otherwise stated P(K) will be endowed with the weak-* topology.

We denote by d; the Dirac measure at kK € K, and ¢* stands for the
restriction (¢°)*|P(L) : P(L) — P(K) of the dual map of ¢° to P(L).

3. The metrizable case. Let us begin with some observations regard-
ing the function ¢* introduced in the previous section. Recall that for a con-
tinuous map ¢ : L — K we have denoted by ¢* : P(L) — P(K) the induced
affine map. Actually ¢* could also be defined as ¢*(p)(A) = p(¢~1(A)), for
every p € P(L) and A C K a Borel measurable set. Hence we easily see that
if p € P(L), then supp ¢*(p) C ¢(suppp). These observations lead to the
proof of the next lemma which will be repeatedly used.

LEMMA 5. Let ¢ : L — K be a continuous map with L and K Hausdorff
compact spaces. Assume that M is a closed subset of K. Then (¢*)~Y(P(M))
=P(¢~(M)).

In the next proposition we give some useful equivalent statements for
regular averaging and regular extension operators which are well known
(see [9]). For completeness we indicate briefly how we can obtain them.

ProOPOSITION 6. Let L, K be Hausdorff compact spaces and ¢ : L — K
a continuous map.

(1) Assume that ¢ is onto. Then the following are equivalent:

(a) ¢ admits a regular averaging operator.

(b) ¢* admits a choice function, i.e. there exists a one-to-one con-
tinuous map s : P(K) — P(L) such that ¢*s = idp (k) -

(¢) There exists a continuous map v : K — P(L) such that p*v(k) =
O for all k € K.

(d) There exists a continuous map u : K — P(L) such that u(k) is
supported by ¢~ (k).

(2) Assume that ¢ is one-to-one. Then the following are equivalent:

(a) ¢ admits a regular extension operator.

(b) ¢* is a choice function for some continuous s : P(K) — P(L),
i.€e. Sd)* = ld'p(L) .

(¢) There exists a continuous map v : K — P(L) such that ve(l) = ¢
foralll € L.

Proof. (1) Lemma 5 shows that condition (1)(c) is equivalent to (1)(d).
(1)(a)=-(1)(b). Let u be a regular averaging operator for ¢. Then u¢°® =
ido(k) and consequently (¢°)*u* = id k). Therefore it suffices to show
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that for all p € P(K), u*(p) € P(L), since then the map s = v*|P(K) would
be the choice function for ¢*. Observe that for f € C(L), f > 0, we have
u*(p)(f) = p(u(f)) > 0 and hence u*(p) is a positive measure. Moreover
u*(p)(1) = p(u(lr)) = p(1x) = 1 and therefore u*(p) is a probability
measure.

(1)(b)=(1)(c). Let s be a choice function for ¢*. For j : K 3 k +— §;, €
P(K), it is easy to see that v = sj is the required map.

(1)(c)=(1)(a). Define u : C(L) — C(K) by u(f)(k) = v(k)(f). It is
easy to see that u(f) is indeed a continuous function on K and that u is a
bounded linear operator such that u(f) > 0 whenever f > 0and u(1) = 1.
Moreover for f € C(K), ug®(f)(k) = v(k)(¢°(f)) = 6" 0(k)(f) = 64(f) =
f(k) for all k € K, so that u¢®(f) = f and hence u¢® = id¢ (k) -

(2) (2)(a)=(2)(b). Let u be a regular extension operator for ¢. Then
¢°u = idg(ry and consequently u*(¢°)* = id ) - As before, if p € P(K),
then u*(p) € P(L) and hence s = u*|P(K) is the required map.

(2)(b)=(2)(c). Let s : P(K) — P(L) be such that s¢* = idp(r). For
j: K> kw— § € P(K) simply set v = sj.

(2)(c)=(2)(a). Define u: C(L) — C(K) by u(f)(k
is a regular operator and for f € C(L) and [ € L, ¢°u(
v6()(f) = () = F(1), hence ¢°u = idcys,)

Next we recall the definition of a tree and some relevant notation. A tree
of height w is a set partially ordered by a relation < such that for every
t € T, the set {s € T : s <t} is linearly ordered and finite.

If t € T, then the set of immediate successors of ¢ will be denoted by S;.
We say that T is finitely branching if S; is finite for every ¢t € T. We denote by
B(T) the set of branches of T', namely of all maximal linearly ordered subsets
of T; B(T) is naturally topologized by the sets V; = {b € B(T) : t € b}.

It can be easily shown that T is finitely branching if and only if B(T) is
compact. In what follows we assume that every T considered has a unique
minimal element, denoted by (7).

Finally for t € T, we denote by |t| the cardinality of the set {s € T :
s < tand s # t} and for b € B(T) (respectively t € T') we denote by b|n
(resp. t|n) the unique s € b (resp. s < t) such that |s| = n.

The following lemma is well known:

) E)(f). Then u
f)

1) = u(f)(o() =

LEMMA 7. Assume that T is a finitely branching tree of height w and to
every t € T there corresponds a non-negative number Ay such that:

(1) Ay = 1,
(2) Y {Xs: s € St} =N\ for everyt € T.

Then there exists a unique reqular Borel probability measure p on B(T') such
that for every t € T, p(Vi) = A\t (where as above Vi = {b e B(T) : t € b}).
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For a subset F' of a topological space X, we denote by int(F") the interior
of F. If F, C F} C X then intp, (F3) denotes the relative interior of F5 in F}.

Also, for a map f defined on a topological space K, we denote by supp( f)
the closure in K of the set {k € K : f(k) # 0}.

LEMMA 8. Let T be as in Lemma 7 and K a normal topological space.
Assume that to each t € T an open subset Uy of K has been assigned, such
that

(1) Upry = K.
(2) For everyt € T, U, = |J{Us : s € Si}.
For a fized k € K, set T(k) = {t € T : k € U}. Then there exists a

continuous function p : K — (P(B(T)),w*) such that for every k € K, p(k)
is supported by B(T(k)).

Proof. We define, inductively on |¢|, a closed subset F; of U; such that
for any t € T,

Fy = J{intp (F) s € 8.}

We set Iy = Uy(r) = K. Assuming that F; has been defined for any ¢ in
the nth level of T, observe that {UsNF; : s € S} is a relatively open covering
of F;. Since F; is itself a normal space, we can find a closed Fy C Uy N F}
such that {intg, (Fs) : s € S;} is also an open covering of Fj.

Since S; is a finite set and F; is normal, there exists a partition of unity
{fs : s € S¢} defined on F; and subordinate to the covering {intg, (F5s) :
s € Si}. Every fs is a continuous function on F; and we extend it to K (not
necessarily continuously) by setting it constantly zero outside F;. We shall
denote this extension also by f,. Also, for k € K and t € T we set

Aie(k) = Hfs(k)

So, for a fixed t € T' a real-valued map K 3 k +— A\(k) is defined. We assert
that for ¢t € T, the function )\; is continuous on K. To see this, we prove
inductively on |t| that supp(A\:) C intx(F;). This immediately implies the
continuity of A, since K = (K \ supp(\:)) Uintx (F;) and \; is by definition
continuous on both open sets.

The assertion is clear for [t| < 1 by the definition of f;. The inductive
step goes as follows: For ¢ € S,

{ke K: X (k)>0}={ke K:)\s(k)>0}n{keK: fi(k)>0}
and thus
supp A\¢ C supp As Nsupp f; C intx (Fs) Nintg, (Fy) C intx (F).
Observe also that for each k € K and t € T, > {\s(k) : s € St} = M\ (k). Let
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p be the map
p: K3k —pk)e (PB(T))w)
such that for every ¢, p(k)(Vz) = Ai(k). Its existence is assured by Lemma 7.
Moreover this map is continuous. This follows from the continuity of the
maps k — A\ (k), since the set {xy, : t € T'} of characteristic functions spans
a dense subset of C(B(T")) and p(k)(xv;) = p(k)(Vz) = Ae(k) by Lemma 7.
Next, fixing n € N and k € K, we set

Gn(k) = U{Vt :t € T(k) and |t| =n}.

If k£ ¢ Uy for some t, then p(k)(V;) = \(k) = 0, since supp Ay C F; C Uy.
It follows that for every n € N, p(k) is supported by G, (k). Since moreover
{G1(k),Ga(k), ...} is a decreasing sequence of open subsets of B(T") and
N,, Gn(k) = B(T(k)), we have

p(k)(B(T(k))) = lim p(k)(Gn(k)) = 1
and this concludes the proof. =
For a set-valued map @ : K — 2 and M C L, we denote by &~1(M)
the set {k € K : &(k) N M # 0}.

THEOREM 9. Let T be as in Lemma 7 and K a normal topological space.
Let moreover & : K — 2B1) be a set-valued map such that for each k € K,
&(k) is closed. Then the following are equivalent:

(1) There exists a continuous map p : K — (P(B(T)),w*) such that for
each k € K, p(k) is supported by P(k).

(2) For each t € T, there exists an open subset Gy of ®~1(V;) such that:

(a) Gpr) = K.
(b) For anyt e T, Gy =|J{Gs: s € S¢}.
(We recall that V; denotes the set {b € B(T) :t € b}.)

Proof. For the implication (2)=-(1), the previous lemma ensures the ex-
istence of a continuous p : K — (P(B(T)),w*) such that for each k € K,
p(k) is supported by B(T'(k)). In this case

Tk)y={teT:keG}Cc{teT: d(k)nV;, #0}
and since @(k) is closed, B(T'(k)) C @(k). Hence p(k) is also supported by
&(k) and this proves (1).
For the converse implication, let p be as in (1) and set
Ge=p~ ({n € P(B(T)) : u(Vi) > 0}).
Since p is continuous, G; is an open subset of K, and clearly G,(r) = K.
Since moreover V; = (J{Vs : s € S}, also Gy = [J{G; : s € S;}. Observe

also that for k € G, p(k)(Vz) > 0 and by assumption p(k) is supported by
®(k). Hence ®(k) N V; # () and therefore k € @~ 1(V}). u
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We shall make use of the previous theorem to prove the more general:

THEOREM 10. Let K be a normal topological space and L a compact
metrizable space. Let moreover & : K — 2L be a set-valued map such that
for each k € K, ®(k) is closed. Then the following are equivalent:

(1) There exists a continuous map p : K — (P(L),w*) such that for each
k e K, p(k) is supported by P(k).
(2) There exists a basis U of L, containing L and consisting of open sets,
and a family {Gy : U € U} of open subsets of K such that:
(a) GL =K.
(b) For each U €U, Gy C &~ 1(U).
(c) Whenever U,Uy,...,U, are members of U and U C \J;_, U,
then also Gy C Ui, Gu,.

(3) For every basisU of L containing L and consisting of open sets, there
exists a family {Gy : U € U} of open subsets of K such that (a)—(c) above
are fulfilled.

Proof. For the implication (1)=(3), for U € U, set

Gu=p '({peP(L): p(U) > 0}).

Since p is continuous, Gy is open and (a) and (c) follow immediately.

To prove (b), for k € Gy, p(k)(U) > 0 and p(k) is supported by (k).
Thus (k) N U # () and hence k € $~1(U).

The implication (3)=-(2) is trivial.

(2)=-(1). We inductively define a tree T' of elements of U as follows: We
set (1) = L. Assuming that the nth level T}, of T has been defined, for
U € T, we choose Uy, ...,U; in U such that

k
= 1 —
diam(T;) < o UC Uuv, vunwi#0.
i=1
Then Uy, ..., Uy are exactly the immediate successors of U.
It is a direct consequence of the definition and the compactness of L
that for any b € B(T) the set lim{U : U € b} in the Hausdorff metric is a
singleton. We define a map ¢ : B(T)) — L by

¢ :B(T) > b ¢(b) € im{U : U € b}.

It can be easily checked that ¢ is continuous and onto.

Next we define ¥ : K — 28() by w(k) = ¢~ (&(k)). Clearly, ¥ is a
set-valued map and for every k € K, ¥(k) is closed.

Also, for U € T, we set

Ry = ﬂ{GU, U = U}
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(where < is the partial order of the tree T'). Setting also Viy = {b € B(T) :
U € b}, we observe that condition (2) of the inductive definition of the tree
implies that ¢(Vy) D U. Next we check that the family {Ry : U € T}
satisfies the conditions of the previous theorem. First we have ¥—1(Vy;) =
@~ Y(U). Indeed,

V) ={ke K :0(k)NVy #0} ={ke K:¢ (k)N Vy # 0}
={keK:d(k)No(Vy) # 0 D{kc K :d(k)NTU # 0}=0"40).

Since Gy € @71 (U), by our hypothesis, it follows that also Ry C ¥~ (V).
Moreover if Uy, ..., U, are the immediate successors of U, then by the defi-
nition of the tree T, U C |J;_, U;, hence Gy C |J;; Gy, and thus

Ry = ﬂ{GU/:U'jU}:m{GU/:U’-<U}mGU

= ﬂ{GU’ : U/ < U}m U(GUOGUi)

=1
= CJ{GUI U = U} = ORUi'
=1 1=1

Note moreover that R,y = Ry = G = K by our hypothesis.

Thus the previous theorem can be applied to give a continuous map
P K — (P(B(T)),w*) such that p’(k) is supported by ¥ (k). By Lemma 5,

PW(k)) =P(¢~ (k) = (¢*) ' (P(2(k)))
and hence ¢*p’(k) is a probability measure supported by @(k) as required.
Thus p = ¢*p’ is the appropriate map. =

From the above theorem, we obtain the characterization of continuous
surjections admitting regular averaging operators, mentioned in the intro-
duction:

Proof of Theorem 2. For k € K we set ®(k) = ¢~1(k). In this case
&~ Y(U) = ¢(U). Thus the existence of a continuous map p : K — (P(L), w*)
such that p(k) is supported by @(k) = ¢~!(k) is equivalent by Proposition 6
(1)(a)<(1)(d) to the existence of a regular averaging operator for ¢. m

THEOREM 11. Let 1/2 <r <1 and r, = (1 —r)r"~!, n € N. Then the
map

¢:{0,1} >z Zx(n)?‘n € [0,1]
n=1

admits a reqular averaging operator.
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Proof. For t an element of the dyadic tree D (i.e. a finite sequence of 0’s
and 1’s), let

Ve={be {0,1}": (1) = t(1),....b(|t]) = t(|t])}

be the basic clopen subsets of the Cantor space. Then

I¢] [t] 0o I¢] I¢]
V) = [ Sorit(i), o)+ 30 wi] = [ 3o mit(i), Do) + o]
i=1 i=1 i=[t|+1 i=1 i=1

Thus denoting by t ™4 the element of D extending ¢ by ¢, we have
[¢] I¢]

$(Vimo) = [Zrit(z’), Znt(z’) + rlt\“},

It It

¢(Vi~1) = [Znt(z) + (1 =)l Zrit(i) + Z ri].
=1 =1 i=t|+1
Thus setting
It] It] 0o
Gr = into(6(A) = (D_rit@), Yort()+ D ri)
=1 =1 i=t|+1

we see that Gy = Gy—~¢ U Gy~1, since (1 — 7“)1"'” < rlt+1 Hence it follows
easily from Theorem 2 that ¢ admits a regular averaging operator. m

REMARK 12. For later use, observe that the map ¢ : {—1,0,1}" —
[—1,1] defined by
> men 1Z(n)|ry if z(min{n € N: z(n) #0}) =1,
o(x) =< =3 cxlz(n)|r,  if z(min{n € N: 2(n) # 0}) = —1,
0 else,
where r, = (1 — r)r"~!, admits a regular averaging operator. This can be
proved in a similar manner to the proof of the above theorem.

REMARK 13. On the contrary, for » = 1/2, the dyadic representation

1 [ee} 1 n—1
¢:{0,1}9x»—>§;(§>

does not admit a regular averaging operator:

Setting Vi) = {z € {0,1}" : (1) = i} for i = 0,1, it is easy to cal-
culate that ¢(V(g)) = [0,1/2] and ¢(V(y)) = [1/2,1]. Thus for any open
Gy C ¢(Vio)) and G(1y C ¢(V(1)) we see that [0,1] # Gy U G(q). Hence
by Theorem 2, condition (3), we conclude that ¢ does not admit a regular
averaging operator.
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The next theorem is well known and it follows from Michael’s Selection
Theorem (see [14]). It is used to verify that every homeomorphic embedding
of a compact metric space admits a regular extension operator. A unified
approach to regular averaging and regular extension operators for general
paracompact spaces is presented in [2].

THEOREM 14. Assume that K is a Hausdorff compact space and M C K
a closed metrizable subset. Then P(M) is a retract of P(K).

We conclude this section by proving Theorem 3.

Proof of Theorem 3. Let ¢ : C — [0,1] be continuous onto and & > 0.
Consider a finite family I3, ..., I, of closed subintervals of [0, 1] such that
for each i, diam(/;) < e and moreover

n n
U intjo(Z;) = [0,1] and for every ip, I, \ U I # 0.

i=1 i=1,i#io
The rough idea of the proof is to find a partition of C into clopen non-empty
sets V; such that ¢(V;) C I;. Since then each V; is homeomorphic to C and
each I; is homeomorphic to [0, 1], there exists a continuous onto map ; :
V; — I; which admits a regular averaging operator. We can define ¢ : C —
[0,1] by 9 (x) = (x) if 2 € V;. Using the fact that J;_, inty (L) = [0, 1]
and moreover that each v; admits a regular averaging operator, we can prove
that 1) also admits a regular averaging operator. Furthermore, applying the
fact that diam(I;) < e, we prove that

|1 — ¢| = sup{|v(z) — ¢(x)| : z € C} < e.

Here is how we accomplish these steps: For notational convenience, set
Ui = intyp, 1]( ;). We will define by induction on i clopen subsets V;, i < ig,
of C such that V; are pairwise disjoint, and moreover

UVU U o HU)=C and V;C ¢ Y (Uy), i <ip.

i=ig+1

To start with, notice that |J; ¢~ 1(U;) covers C since ¢ is onto, so that C \
U, ¢71(U;) is a closed subset of ¢~1(Uy). By standard arguments we can
find a clopen V; such that

C\U¢ i) C Vi C N (U).

Notice that V; is non-empty since it contains at least o 1([0, 1]\ UL, Us).
For the induction step, since U’ 'V UUiZs, @ —1(U;) = ¢, it follows that
C\ (UZO 'viu Uisigi1 @~ L(U;)) is a non-empty closed subset of ¢~1(Uy,).
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Thus there exists a clopen V;, such that
i0—1
C\(UVUU¢ )CWOC¢ YU,
1=ig+1
and clearly in this case Ui:l ViU Ui:io—H ¢~ (U;) =C.

At the end of course V,, = C \ UIZ}' Vi, so that {V;}; is a partition of C
into clopen sets as required, and ¢(V;) C U; C I;.

For each 4, fix some continuous %; : V; — I; which admits a regular
averaging operator and define L to be the disjoint union of I;’s, [ JI" | I; x {i}.
The combined map ! : C — L, defined by ¥!'(x) = (¢i(x),i) if x € V;,
clearly admits a regular averaging operator. Moreover the natural projection
Y? : L — [0,1] defined by 1?((z,i)) = z also admits a regular averaging
operator. Let us see why: Fix a partition of unity {f; : ¢ =1,...,n} on [0, 1]
subordinate to the covering {U; : i = 1,...,n} and let u : [0,1] — P(L) be
defined by u(z) = Y71 fi(2)d(z 4 Where as usual §(, ;) denotes the Dirac
measure supported on {(z,%)}. Since for a fixed z € [0, 1], fi(z) > 0 implies
x € U; C I;, u is well defined, and since moreover for any i, ¥2((z,1)) = =,
u(x) is a probability measure supported by (¢?)~1(x). It is also easy to see
that u is continuous.

By Proposition 6, 1) admits a regular averaging operator, as required.
Thus also 1 = 12! : C — [0, 1] admits a regular averaging operator.

Since ¥|V; = v¢; and ¢;(V;) = I;, and since also ¢(V;) C I;, for a fixed
x € C, ¢¥(z) and ¢(x) belong to the same I; for this particular ¢ for which
x € V;. Thus |¢(x) — ¢(x)| < e since diam([;) < € and hence ||[¢ — || <e. m

The characterization of the continuous surjections that admit a regular
averaging operator yields the following

COROLLARY 15. Let f : C — [0,1] be a surjection that admits a regular
averaging operator. Then the set

{z €[0,1]: f~1(x) is finite}
is of the first Baire category in [0, 1].
Proof. We inductively prove that for every subinterval I of [0,1] and
n € N, there exists a subinterval I’ of I and pairwise disjoint clopen subsets
Viys ooy Vg, of C such that f(V4,) D I’ for all 1 < i < n. The proof of the

inductive step makes use of the characterization obtained in Theorem 2.
The above assertion implies that the set

T ={xe(0,1]: |/ (=) > n}
contains a dense open set, which immediately yields the desired result. =

REMARK 16. It was an open question for us if the set R.A in the state-
ment of Theorem 3 could contain a dense G set. As mentioned in the in-
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troduction, the referee informed us that it is not possible. Indeed, a general
result in Dimension Theory shows that the set ¥ of all continuous surjec-
tions f : C — [0, 1] with the property that there exists a y € [0,1] such that
|f~1(y)| > 2 is of the first Baire category in the set of all surjections [11,
Section 45, II].

This result in conjunction with the above corollary implies that the set
RA is residual.

We thank the referee for bringing this result to our attention.

4. Consequences for some classes of compacta. The next theorem
is due to A. Pelczynski and shows how averaging operators and extension
operators extend to Cartesian products (see [16]).

THEOREM 17. Let {L;}icr, {Ki}icr be families of Hausdorff compact
topological spaces and for each i € I, ¢; : Ly — K; be continuous maps. Let

¢: L=]]Li> Wict = (¢:(li))icr € [ [ Ki = K.
il iel
Then:
(1) If each ¢; is onto and admits a reqular averaging operator, then also
¢ is onto and admits a reqular averaging operator.
(2) If each ¢; is one-to-one and admits a reqular extension operator, then
also ¢ is one-to-one and admits a regular extension operator.

Proof. (1) Clearly ¢ is onto. Let u; be a regular averaging operator for
¢i. Define v : K — P(L) by v((ki)ier) = @;cr uj (0k;) where we denote by
;s ui (Ok;) the product measure of uj ().

To check the continuity of v, let k% = (k{)icr — k = (ki)icr be a
convergent net and let 7; be the projection of L = [[,c; Li onto the ith
coordinate. Then from the Stone—Weierstrass Theorem it suffices to show
that for f € C(L) of the form f = =7 (f1)...77 (fm), fn € C(Li,),
v(k*)(f) — v(k)(f). Observe that

vk (f) = {75, (f1) 78, (fm) dgu;"(%g)

=\ frduj, (Gg) -\ fon s, (B )
=V frdup, (0n,) -\ i, (0k,,,) = v(R)(F),

which proves the desired result.
Let k = (k;)ics be an element of K. Since u}(Jy,) € (¢7) ™1 (,), it follows
according to Lemma 5 that u}(Jx,)(¢; (ki) = 1 and thus

o(k)(6™ (k) = @ ui (o) ([T o7 (k)) = 1.

€l iel
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Hence v(k) is supported by the set ¢~!(k) and according to the same lemma,
¢*v(k) = 0. Now by Proposition 6, the proof is complete.

(2) Obviously ¢ is one-to-one in this case. Let u; be a regular extension
operator for ¢; and define v : K — P(L) by v((ki)icr) = Qs u; (dx,;) as
before. It suffices to check that for [ = (I;);er € L, v(¢(l)) = ;. Observe
that uj(éqsl(ll)) = ufgf):(&l) = ¢;, and hence v(o(l) = ®ie[ uj(édh(lz)) =

ic1 0, =0 m

PROPOSITION 18. Assume that L, K are Hausdorff compact spaces, and
¢ : L — K a continuous onto map which admits a regular averaging op-
erator. Moreover assume that M is a closed subset of K. Then the map
Pl 1 (M) : ¢~ (M) — M admits a regular averaging operator.

Proof. It suffices to show that (¢|¢~(M))* admits a choice function. Let
u be a choice function for ¢*. It suffices to show that u(P(M)) C P(¢~1(M)),
since then u|P(M) would be a choice function for (¢|¢~1(M))*. This follows
immediately from Lemma 5, since u(P(M)) C (¢*)"H(P(M)). =

We are now able to derive a proof of the next theorem which is due to
S. Ditor [4]. Recall that for a topological space K, the topological weight
of K is defined to be the smallest cardinal m such that K has a base of
cardinality m.

THEOREM 19. If K is an infinite Hausdorff compact space of topolog-
ical weight m, then there exists a totally disconnected compact space L of
topological weight at most m and a continuous onto map ¢ : L — K which
admits a reqular averaging operator.

Proof. By Milyutin’s Lemma [16, 15], or alternatively by Theorem 11,
there exists a continuous map ¢ : {0,1} — [0,1] that admits a regular
averaging operator. Thus by Theorem 17 there exists a continuous map
¥ 2 {0, 1™ — [0, 1]™ which admits a regular averaging operator. Since K
in this case can be considered a subspace of [0,1]™, Proposition 18 asserts
that [y 1(K) : v 1(K) — K admits a regular averaging operator and
clearly 1~ 1(K) is a totally disconnected compact space having topological
weight at most m. =

REMARK 20. If K is a metrizable compact space, then it may be viewed
as a subspace of [0, 1]. Using the same arguments as in the above theorem,
we deduce that there exists a closed subspace of {0, 1}"*N = {0, 1} that
is mapped onto K by a function that admits a regular averaging operator.
Moreover by a well known theorem this closed subspace of {0, 1} is a retract
of {0,1}N. Thus there exists a continuous onto ¢ : {0, 1} — K that admits
a regular averaging operator. As explained in the introduction, this result, in
conjuction with Theorem 14 and Pelczynski’s decomposition method, yields
a proof of Milyutin’s Theorem.
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The next proposition is an immediate consequence of Proposition 18 and
Theorems 11 and 17.

PROPOSITION 21. Let K be a closed subset of [0,1]" 7’71—(1/3)(2/3)"*1
neN and let ¢ : (0,1} — [0, 1T be defined by o{x)(7) = S22, 2(1,n)r
Set L = ¢~ (K). Then ¢|L : L — K is continuous onto and admits a
regular averaging operator.

Assume that I" is a set, A a subset of I" and = € [0,1]. By x[A we
denote the following element of [0, 1]

_ Jz(y) ifyeA,
1) “A_{o ify e\ A

If K C [0,1]", then by the adequate hull of K, we mean the set
{zlA:z € Kand AC I}

and we denote it by ad(K).

It is not difficult to see that if K is a compact subset of [0,1]" then
ad(K) is also compact.

Using this notation we prove the following:

PROPOSITION 22. Assume that K is a compact subset of [0,1]". Then
there exists a compact, totally disconnected set L C ad(K)Y and a continu-
ous onto map ¢ : L — K which admits a regular averaging operator.

Proof. Define ¢' : {0,1}>N — [0,1]" by ¢'(z)(y) = Y nen T )T,
rn = (1/3)(2/3)" ! and L = (¢/)"1(K), ¢ = ¢'|L. By Proposition 18,
¢ admits a regular averaging operator, so it suffices to prove that L’ is
embeddable in ad(K)"N. Define h : L — [0, 1] >N by

o)) i) =1,

h(l)(y,n) = {O if I(y,n) = 0.
It is easy to check that h is continuous. To see that it is one-to-one as-
sume [y,ly € L and [y # lo. Then there exists (y9,m0) € I' x N such that
for example 11(79,n0) = 1 and l2(v9,n0) = 0. Then h(l2)(y0,n0) = 0 and

h(l1) (0, m0) = &(11)(70) = ZneNll(’Voan)Tn 2 11(70,m0)7ne > 0.

Finally h(L) C ad(K)Y, since for fixed | € L and for n € N, if we
set A, = {v € I' : l(y,n) = 1}, then it is easy to check that h(l) =

(¢(Z) [An)neN u

REMARK 23. If K is compact and its topological weight is m, then it
can be embedded in [0, 1]™. If ¢ is such an embedding, it can be easily seen
that ad(i(K))N also has topological weight m.

We say that a class of compacta is stable under taking Ditor spaces if for
each member K of A there exists a Ditor space for K, also belonging in A.
An immediate consequence of the previous proposition is:
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COROLLARY 24. Assume that A is a class of compacta stable under tak-
ing countable products and closed subspaces. Assume also that each member
K of A can be embedded into [0,1]" for some set I' by a map i such that
ad(i(K)) is also in A. Then A is stable under taking Ditor spaces.

In particular the classes of Eberlein, Talagrand, Gul’ko and Corson com-
pact spaces are all stable under taking Ditor spaces.

For further information on these classes we refer to [1], [19], [13], [8].
The proof of Theorem 4 can be derived from this corollary:

Proof of Theorem 4. It is well known (see [1]) that if S is a scattered
Eberlein compact space, then the closed subspaces of P(S) are Eberlein
compact.

For the converse implication, if K is Eberlein compact, let L be a Ditor
space for K which is also Eberlein compact. Assume that ¢ : L — K
is continuous, onto and admits a regular averaging operator. Since L is
totally disconnected, we may consider L C {0,1}!, for some I" such that
I' = U, en I'n where the set {y € I}, : x(7) # 0} is finite for all n» € N and
x € L. By Proposition 6 there exists a continuous map v : P(K) — P(L),
such that ¢*u = idp(g). Thus u is an embedding. Therefore, it suffices to
embed P (L) into P(S) for some S Eberlein compact and scattered.

For A C I we denote by 74 : {0,1} — {0,1}4 the natural projection
onto the A coordinates. Let n € N and set S, = 7, (L). Since the set
{y € I, : z(y) # 0} is finite for any x € L, it easily follows that every S,, is
scattered and Eberlein compact. Identifying {0, 1} with ], {0, 1}/ ", we
may consider that L C ], .y Sn. Next, set L, = [[;_; Sy, and let S be the
one-point compactification of the disjoint union of L,, n € N. Since every
L, is a scattered Eberlein compact space, it easily follows that the same
holds true for S.

Define now h : C(S) — C(]],,en Sn) by

1
h(f)((sn)nen) Z 2—n ((s%)k=1)
n=1
It is easy to verify that h(f) is a continuous function on [, .y Sn. More-

over, h is positive, ||| < 1 and finally h(lg) = 1y _ s,. By the proof of
Proposition 6, if p € P(]], ey Sn), then h*(p) € P(S). Since h* is weak™-
to-weak™ continuous it suffices to show that it is also one-to-one. There-
fore it suffices to show that h(C(S)) is norm dense in C(]],cySn). So,
pick f € C([],eySn) and € > 0. There exists an ng € N such that if

5,5 € [],en Sn and FUZ(ian(S) = myro, r,(8), then [f(s) — f(s')| <e.

Fix now s* = (s9) € [[,enSn- Clearly the map g : Ln, — [[,en Sn

n

satisfying 7, (g((sk)p2,)) = sk if k < ng and 7w, (9((sx)p2,)) = s% if k > no,
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is an embedding of Ly, into [],cy Sn. Define f': S — R by

Fl(z) = {Q”Of(g(a:)) it v € Ly,,

0 else.

Assume that s = (sp)nen € [[,eny Sn- Then by the choice of ng and the
definition of g,

R(f)(s) = f(s)| = ‘ D27 ((sk)imn) — F((s0)72)
n=1

= 277 f"((sk)i21) = F(s6)720)]
= [f(g(si)i21) = F((s)iZh)| <,
since mr, (9(sk)peq) = sk = 7, ((s)72,) for every k <ng. =
For a fixed infinite set I" (the case we are interested in is when I is
uncountable) and p > 1, we denote by B), the unit ball of ¢,(I"), endowed
with the weak topology in the case where p > 1, and with the weak-*
topology (view ¢1(I") as the dual of ¢y(I")) in the case where p = 1. In

any case B, can be considered to be a closed subspace of [—1,1]!" with the
pointwise topology:

Bp:{x Z|a: |p<1}
yerl

It is easy to check that all these spaces are homeomorphic to By by the map

(@(Y)yer = (sgn(z(v)) - [2(V)IP)rer-

On the other hand Remark 12 asserts that the map ¢ : {—1,0,1} —
[—1, 1] defined by

Y onen [z (n)|ry if z(min{n € N: z(n) #0}) =1,
¢(x) =4 =3 cnlz()|rn  if z(min{n € N : z(n) #0}) = —

0 else,

where r, = (1 — r)r"~! for some 1/2 < r < 1, admits a regular averaging
operator. Thus by Proposition 18 the map

¢lo~ ! (B1): L=¢ '(B1) — B
also admits such an operator. Observe that
yed ' (B) & D lby)(v) <1
yerl
and in any case [6(y)(7)] = X e [9(y, 1) Thus

—{ye {-1.0.17 3 Sy m)lra < 1}

yel' neEN
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is a Ditor space for By and in this case we get a very natural embedding of
L into the unit ball of ¢;(I" x N) which is obviously homeomorphic to Bj:

L3 (y(v,n))ym = (1)) ym-

Unfortunately, we are not able to show that this embedding admits a regular
extension operator.

It is worthwhile to observe that starting with a closed ball of radius
0<é<1in (), the set

L= (Bi0) = {y e L: 3 lylr.mlra < q}

’y?n

is a Ditor space for By(d) = {z € ¢1(I") : ||z|| < 6}. This also follows from
Proposition 18. Clearly, B; and Bj(d) are homeomorphic. Hence L’ may be
considered as another Ditor space for Bj.

It is not clear to us what is the relation between C(L) and C(L'), al-
though L and L’ are Ditor spaces for the same space, both defined in a very
natural way.

It remains also unclear to us if there exists any convex, non-metrizable

compact subset K of a Banach space and a totally disconnected space L
such that C(K) is isomorphic to C(L).
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