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The existence of solutions for
elliptic systems with nonuniform growth

by

YoNGQIANG Fu (Harbin)

Abstract. We study the Dirichlet problems for elliptic partial differential systems
with nonuniform growth. By means of the Musielak—Orlicz space theory, we obtain the
existence of weak solutions, which generalizes the result of Acerbi and Fusco [1].

1. Introduction. Let {2 C R" be a bounded Lipschitz domain. It is our
purpose to study the following systems:

(1.1) 04, (z,u(z), Du(x)) = B*(z,u(z), Du(z)), x€£,i=1,...,N,

ox®
(1.2) w'(x)=0, x€0f,i=1,...,N,

where u : 2 — R¥ is a vector-valued function. We use the summation
convention throughout with 4, j running from 1 to N and «, 8 running from
1 to n.

Because problems with nonuniform growth have important applications
in mechanics, in recent years numerous papers have been devoted to the
study of elliptic equations with nonuniform growth (see [2], [3], [7]-[10], [13],
[14], [16] and the references therein). The results of these papers show that
problems with nonuniform growth conditions are much more complicated
than those with standard growth conditions. These works motivate our study
of the Dirichlet problem (1.1)—(1.2) in the setting of Musielak—Orlicz spaces.

In this paper, we suppose that the coefficients of (1.1) satisfy:

(H1) A} : 2 xRN x MN>*7» — R B : 2 x RN x MN*" — R are
Carathéodory functions, ¢ =1,...,N,a=1,...,n.
(H2)  |A(x,5,£)| < C1[E[P@) =1 4 Cy|s|P®) =1 4 G(z), where G € LP'()(02),
Cl, CQ Z 0 and CQ small.
(H3)  [B(x,s,€)| < CLIEP@ 1+ Cyls|P®)1 + G(x), where G € L' 0)(22),
1,C% > 0 and small.
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(H4)  Al(z,5,6)&, > Ml¢P™) — Cls|P™) + h(x), where Ag > 0, C > 0
small and h € L'($2).
(H5)  For almost every ¢ € £2, so € RY, the mapping & — A(xo, so, &)

satisfies
S Al (w0, S0,& + Dz(x))zly () dz > v X |D2(z)|P™) da
G G

for each &y € MNX”, G CR" z¢€ CH(G,RYN) where v > 0 and
(Du(x))!, = 0u*(x)/0x* = ula(m)
Here p : 2 — [1, 00| is a measurable function and p’ is its conjugate function
(see Section 2).
For a simple case of (1.1), the Euler-Lagrange systems:

Z —Fl cu(z), Du(z))—Fi(z,u(z), Du(z)) =0, z € 2,i=1,...,N,

Wthh can be reduced to finding the stationary points of the functional

S F'(z,u(x), Du(x))dz, i=1,...,N,

0
it is immediate to obtain the existence of weak solutions in Sobolev spaces
by applying Acerbi and Fusco [1]. From this point of view, the existence
of weak solutions for (1.1) in a Musielak—Orlicz space (Theorem 3.1) is a
generalization of their result.

2. Preliminaries

DEFINITION 2.1. Let MV X" be the set of real N xn matrices. A function
f:R" xRN x MN*X" 5 R is called a Carathéodory function if it satisfies:
for all (s,&) € RN x MN*" x s f(x,s,&) is measurable; for almost every
x € R", (s,&) — f(x,s,&) is continuous.

LEMMA 2.1 (see [6]). f : R® x RNV x MN*" — R is a Carathéodory
function if and only if for each compact set K C R™ and every € > 0, there
exists a compact set K. C K satisfying meas(K \ K.) < ¢ such that f is
continuous on K. x RN x MN*xn",

LEMMA 2.2 (see [5]). Let G C R™ be measurable and meas(G) < oo.
Suppose that { My} is a sequence of subsets of G such that for some € > 0,

meas(My) > ¢ for each k € N.
Then there exists a subsequence { My, } such that (,cy M, # 0.

LEMMA 2.3 (see [1]). Let {fix} be a sequence of bounded functions in
LY(R™). For each ¢ > 0 there exists (Ac,d,S) (where A, is measurable and
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meas(A;) < e, d >0, S is an infinite subset of N) such that for each k € S,
| 1 fr(2)| do < €

B
where B and A are disjoint and meas(B) < 4.

DEFINITION 2.2. For u € C}(R"™), define

(M*w)(z) = (Mu)(2) + 3 (MD,u) ()

where )
(Mu)(z) =sup————— | f(a)da,

r>0 meas(B,(z)) 5le)
B.(z)={y € R": |y — x| < r} and Dyu = du/0z®.
LEMMA 2.4 (see [12]). If u € C§°(R™), then M*u € C°(R™) and for all
r € R™,

\+Z!Du )| < (M*u)(z).

Furthermore, if p > 1, then
1M ul| Loy < C(n,yp)[ullye ooy
and if p=1, then

meas({z € B : (")) < 1) € S s

for all A > 0.
LEMMA 2.5 (see [12]). Let u € C§°(R™). Define
[uly) = u(@) = 3 aey Daul(@)(y™ — )|

ly — |

Ulz,y) =
For all x € R™, r > 0, we have
S U(z,y)dy < 2meas(B,(z))(M* u)(z).
B, (z)
LEMMA 2.6 (see [1]). Let u € Cg°(R™) and A > 0. Set
H* = {2 € R" : (M*u)(z) < \}.
Then for all z,y € H*, we have
u(y) — u(@)] < C(n)Aly — =,
LEMMA 2.7 (see [15]). Let X be a metric space, E a subspace of X, and

k a positive number. Then any k-Lipschitz mapping from E into R can be
extended to a k-Lipschitz mapping from X into R.
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Let P(£2) be the family of all Lebesgue measurable functions p(-) :
2 — [1,00]. For p(-) € P(§2), we put Qf(') ={zx € 2 :p(x) =1}, ) =
{v€2:p) = oo}, A = 2\ (A VD), p. = essinf,_ 0 pl(2)
and p* = esSSup () p(z) if meaS(Qg(')) >0,p. =p* =1if meas(Qg(')) =0.
We use the convention 1/0c0 = 0.

Let p(-) € P(§2). On the set of all functions on {2, we define g,y and
[l 2o (o) by

oo )=\ [f@)PF do+esssup|f(x),
o\Q8) zeqs’
HfHLp(')(Q) = 1nf{)\ >0: Qp()(f/A) < 1}
The space LP()(2) is the class of all functions f such that o,(.(Af) < oo

for some A = \(f) > 0. Thus LP()(£2) is a Musielak-Orlicz space.
Given p(-) € P(£2), we define the conjugate function p’(-) € P(£2) by

00 ifze(}f('),
: p(-)
p/(SC): 1 p(x> 1f$€QO<E),
= ifxe V.
pla) =1 °

LEMMA 2.8. Let p(-) € P(£2). Then

§ 1/ @)g(@)| de < CEO)I N oo (@) l9l] Lo )
2

for every f € LPO)(Q) and g € LP' ) (12).

We shall say that {f,} € LP()(£2) converges modularly to a function
f € LPO(R) if limy oo 0p() (f — fn) = 0.

LEMMA 2.9. (1) The topology of LPY)(2) given by the norm coincides
with the topology of modular convergence if and only if p* < occ.

(2) LPC) () is complete.
(3) The dual space to LPC)(£2) is LP' ) (02) if and only if p(-) € L°°(2).
(4) The space LPC)(02) is reflexive if and only if 1 < p, < p* < co.

LEMMA 2.10. Let p(-) € P(§2) N L>(£2).

(1) C§°(92) is dense in LPC)(§2),
(2) LPO)(92) is separable.
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Given a multiindex o = (g, ...,an) € NV we set |a] = a1 +... +an
and D* = D{"'...DY", where D; = 0/0x; is the generalized derivative
operator.

The space WFP()(§2) is the class of all functions f on 2 such that
Def € LPO(92) for every multiindex a with |a| < k, endowed with the
norm

1 llweser @) = Y I Fllwreer (o).
o<k

We denote by I/VéC P (')(Q) the subspace of W*P()(2) which is the closure of
C°(£2) with respect to the norm of W*P0) ().

LeEMMA 2.11. W*P0)(2) and Wg’p(')(ﬂ) are Banach spaces, which are
separable if p(-) € L*>°(£2) and reflexive if p(-) satisfies

1 <pe <p" < o0
We shall say that a function p(-) € P({2) is *-continuous on {2 if

lim p(y) =p(xz) forevery z € 2
y—w, yen

(i.e. even if p(x) = 00).

Throughout this paper, we suppose that p(-) is *-continuous on {2 and
p(-) € L*=(£2).

LEMMA 2.12. (1) Let p(-),q(-) € P(£2). If q(x) < p(z) for a.e. x € 12,
then the embedding WFP0)(2) C Wk4C) () is continuous.

(2) Let p(-) € P(£2). If p(-) is *-continuous on §2, then the embedding
W:’p(')(ﬂ) C LPO)(R2) is compact.

LEMMA 2.13. Let p(-) € P(£2) N L*>°(§2). Then for every G in the dual
space (Wf’p(')(ﬂ))*, there exists a unique system {go € LP' O)(£2) : |a| < k}
of functions such that

(G.f) =Y | Df(@)ga(a)do, e Wy (02).

lal<k £

In view of Lemma 2.13, we denote (Wok’p(')(ﬂ))* by W=5?'()(£2) and
endow it with the norm

[0l —rwr ) (2) = sup |{u, v)].
ueWrrO ()

We refer to O. Kovécik and J. Rékosnik [11] for the notions and lemmas
mentioned above.
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LEMMA 2.14. If p(-) € L®(2) and u € Wy (02), then

S lulP@ dz < C S | Du|P® da
Q 19
where C is a constant depending on (2.
Proof. Set R = diam (2. By translation, we may assume that 0 < z" < R
in 2. Then we can extend u to be zero outside 2, so

"

u(z) = S Dyu(2’, t)dt  ae x=(2',2") € 2.
0
Integrating with respect to ™, we have

i (\u(x'wr)p(”) o
R

0

R ,x" T
<\ ( j Do t)dt>p( L
0 0
Ra® /on p(z)
< S ( ’Dnu ! t)) dt|xn’p(x)—l dz"
0
" R
<C S |Dpu(a’, )P da™ dt
t

S |Dpu(a’, t) [P dt dz™ = C
0

C\(R—=t)|Dyu(z’, t)|P® dt < C \ |Dpu(a’, t)|P® dt

Ot iy Oty

c\ D, ‘p(m) dz™.

5
!
o
o

Finally we integrate with respect to 2’ over R®"~! and the conclusion fol-
lows. =

LEMMA 2.15. If p(:) € L*°(£2), then

li 4 =0
meaSI(ILI‘?'l)HO HUXE”LP( '(2)

for all u € LPO)(02).
Proof. By Lemma 2.10, for each ¢ > 0 and each v € LP()(£2) there
exists w € C§°(£2) such that ||u — wl|s() (o) < €. Suppose that |w(z)| < C

for all x € (2. Let meas(F) < 1. Then HXEHLP<')(Q) < (meas(E))l/p* =0
as meas(E) — 0. So there exists § > 0 such that if meas(E) < ¢, then
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IXEl Lro)(2) < €/(2C). Now we get

HUXEHLPU(Q) < [J(u— w)XE”LPU(Q) + HwXEHLP(')(_Q)
< lu = wllzror ) + CliXEl Lro () <,
that is to say, limyeas(z)—o0 [[UXEl| L) () = 0. =
LEMMA 2.16. Suppose that p(-) € L*>(§2). Let {ur}32, be bounded in
LPO(). If up, — u a.e. on £2, then uy, — u weakly in LPC)(£2).

Proof. Suppose that [u|lpec) (o) < C for each integer k. By Fatou’s
Lemma,

u p() wp p(z) up p()
u _ . Uk < L Uk <
S(C) dx (Szklggo<0> dm_hkrgltgf}z<c> dr <1,

0

hence ||ull ey (o) < C. Let € > 0 and g € LP()(£2). By Lemma 2.15,
limyyeas(£)—0 HgXEHLp/<.)(Q) = 0 and so there exists § > 0 such that for all
E satisfying meas(E) < §, we have
€
19X Ell v o) (0) < 100
By Egorov’s Theorem, there exists a set B such that u; — u uniformly on
B and meas({2 \ B) < ¢. Finally choose K such that k£ > K implies
€
r;eaglu — U - HgHLzJ’(-)(Q)HXQHLI’(')(Q) < )
for all z € B. Thus taking F = {2\ B, we have

‘ | ug dz — Sukgdm‘ <V luk —ul-[gldz+ | |ux—ul-|g|de
Q Q B 2\B

< HQHLP'<')(Q)HXQHLP(')(Q) gleag’Uk—UHHUk—UHLM(Q)HQXQ\BHLP’<->(9) <€

for all k > K, that is to say, ux — u weakly in LP()(£2). =

3. Main theorem

THEOREM 3.1. Under the conditions (H1)-(H5), the Dirichlet problem
(1.1)—(1.2) has at least one weak solution in Wol’p(')(Q,RN), that is to say,
there exists at least one u € Wol’p(')(Q,RN) satisfying

(3.1) V(AL (2, u, Du)z’, (z) + B (2, u, Du)z*(z)] do = 0
kP

for all z € Wol’p(')(Q,RN).
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Proof. Set V = W&’p(')(Q,RN). For u € V, define T : V. — V* in the
following way: for each w € V,

(3.2) (Tu,w) = S [AL (z,u, Du)wfa(:c) + B'(z,u, Du)w'(x)] dz = 0.

Q
Now we only need to show that there exists uw € V' such that (Tu,w) = 0
for all w € V. We will prove this in several steps.

1) T is strong-weakly continuous. Suppose that ux — wu strongly in
Wol’p(')(Q,RN). Then |Jul|ly < C for some constant C' independent of k.
By (H2)—(H3), A% (z,uy, Dug) and B(z, uy, Duy,) are bounded in LP' () (£2).
Then by (H1) and Lemma 2.16, we know
(3.3) klim (Tug, w) = (T(klim ug), w) = (Tu,w).

That is to say, T is strong-weakly continuous.

2) T is coercive, i.e.

T
lim (T, u) = +00.
Jully—oco  ||lullv

By (H1)-(H2) and Lemma 2.14,

(3.4)

0

— CylulP™) — G(@)ul) da

> Mo DufP™) — CluP™) + h(x) — Cf|DulP™) — CffufP™
2
— CylulP™ — plulP® — C(p)(G ()P ™) da

> {[(ho = Cf = C*(C + C + Ch + )| DufP™)

9}
+ (@) = C(u)(Glx))” ] da

where C* is the constant in Lemma 2.14.
When C, C}, C4, i are small, we can get

No—C1—C*(C+C+Cy+p)>0.
By Lemma 2.12, we have
(3:5) (L +CDIDul lpeer o) 2 llull ey vy + [Dul lLee) () = [lullv

where C7 is the imbedding constant. In view of (3.5), it is easy to see that
[ |1Dul [ Lpc) () — 00 as [|ully — oo. Taking e sufficiently small, for example

1 —2_In|||Dul |

2
£ = 5(” |DU| ||L1’(')(Q) — ePxt1 LP(»)(Q))’
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we have
b | Dul"™) do | Dul p@ 4
= a2 11Dl ) <) Ly
2 (2)
> S ( | Dl )p(m) o (HDul [| ey () — €)P
— o Dyl e o) — € Tuly
(H ‘D’U,‘ HLP()(Q) —6)(p*+1)/2

> 2 Dl 10y — &) (P+=D/2
T+ Col Do HPullrow =)

1
1+Cf

as [Jully — oco. As {,[h(z) — C(p)(G(x))?" )] da is bounded, we conclude
that (3.4) holds.

3) Now we construct an approximating sequence. By Lemma 2.10, we
can choose a basis {wy} of V' such that the union of subspaces finitely
generated from {wy} is dense in V. Let By be the subspace of V' generated
by w1, ..., ws. By the coerciveness of T and Morrey [15], there exists us € B,
such that

2 (IHDul [l o2y — &)~ D72 — o0

(Tus,w) =0

for all w € Bs. By the coerciveness of T again, we know that |luslly < C
where C' is independent of s. As V' is reflexive, we can extract a subsequence
{ur} such that

up — up weakly in V,  Tuyp — & weakly in V*,  (§,w) =0

where w is in a dense subset of V. For fixed &, by the continuity of (¢, ), we
get (§,w) =0 for all w € V. Considering (T'uy, ur, — up), we have

(Tug, ur —ug) = (Tug, ug) — (Tug, up) = —(Tug, ug) — 0
as k — 00. Set zp = up, — ug. Then
zr — 0 weakly in V as k — oc.
Consider (Tug,u, — up) once more:
(Tug, up — uo)
= S [AL (z,uo + 2k, Dug + Dzk)z,i’a + B'(z,uo + 21, Dug + Dz,)zL] dz — 0
Q
as k — oo. By applying Lemma 2.12, we get
(3.6) zr — 0 strongly in LPO) (2, RY).
In view of (H3) and (3.6), it is immediate that

X Bi(x,ug + 21, Dug + Dzp)zL dz — 0
(%
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as k — oo, that is to say,

(3.7) S Al (2, u0 + 21, Dug + Dzk)z,iva dx — 0
12

as k — oo.

Now if we can prove that there exists a subsequence of {z;} which is
strongly convergent in V', then from the strong-weak continuity of T', we get
Tup — Tug = £ weakly in V' as k — oo and ug will be a weak solution of
(1.1)-(1.2).

4) We will find a subsequence of {zj} which is strongly convergent in V.
For each measurable set S C {2, define

F(v,8) = X Al (z,u9 + v, Dug + Dv)vfa dz
s
where v € Wol’p(')(Q,RN). Similarly to the remark in step 1, we can show
F(v,S) is strongly continuous in Wol’p(') (2,RN). Since C§°(£2,RY) is dense
in Wol’p(')(Q,RN), there exists {fr} C C§°(£2,RY) such that

e = zellv <1/k,  |F(fi, 82) = F(zx, )] < 1/k.

So we can suppose {z} is in C§°(£2,RY) and bounded in Wol’p(')(ﬂ, RM).
Next we define

zp(x) =0 when x € R"\ 2.

In this way, we extend the domain of zj to R™ and {z;} C Wol’p(m) (R™, RY)
and {zx} is bounded and supp z C (2.

Let n : RT — R™ be a continuous increasing function satisfying n(0) = 0
and for each measurable set B C {2,

sup {[(9(@))” @)+ he) + 1+ C(luol"™ + |Dug P + 247))]
k
B
< n(meas(B))
where C' = Cy + Cy and C,Cy are the two constants in (H2).

Let {¢;} be a positive decreasing sequence with e; — Oasj — oo. Forey,
applying Lemma 2.3 to each of the N sequences {(M*2)P®} 1 <i < N,
we get a subsequence {z, }, a set Ao, C (2 satisfying meas(A.,) < €1, and
a real number d; > 0 such that

S(M*z,il)p(m) dr < e;

B
for all k1, 1 <i < N and B C 2\ A., satisfying meas(B) < §;. By Lemma
2.4, we can choose A > 1 so large that for all ¢ and kq,

meas({z € R" : (M*z],)(z) > A}) < min{e1, 61}
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For all 4 and k1, define
' N
HY ={z €R": (M*2,)(z) <A}, Hp =[)H,.
i=1

By Lemma 2.6, we have
|24, () — 24, (@)
ly — |
forall z,y € H ,i‘l and 1 < ¢ < N. From Lemma 2.7, there exists a Lipschitz
function g,il which extends z,il outside H ,;\1 and the Lipschitz constant of

C(n)A

gk, is no more than C(n)A. As H} is an open set, we have g} (z) = 2}, (2)
and Dy}, (z) = Dz}, (x) for all z € Hp, , and

11Dgi., | | Lo mn) < C(n)A.
In view of Lemma 2.4, we can further suppose that
g5, | Lo Ry < HZ/ilHLoo(Hgl) <A gk lwreo (oryy < C.

By the boundedness of ||gg, (1. (2 r~), there exists a subsequence of {g,il}
(still denoted by {gj, }) such that

(3.8) gk, —v"  x-weakly in W">°(£2) as k1 — oo
for 1 <i < N.Set (g ,---,9%) = gk, and (v',...,0") =v. We have
(39) F(Zkug) = F(gk17(Q\AE1) mng\l) +F(zk17A€1 U (Q\ng\l))
:F(gklv“Q\A&)+F(gk1’(Q\AE1)\HI§\1)
+F(Zk17A€1U(Q\HIi\1))'

Since

NE

meas((£2\ A-,) N HY) <) meas((2\ A.,) N H{\kl) < N min(eq, d1)

=1

from (H2), (H4) and the choice of A.,, we get

< S |A;(1},U0 +gk1)DuO+ng1)glicl,a|d‘T
(2\A )\,

IN

S [Cl|Du0 + Dy, ’p(m)_1|ng1|
(VA \HR,

+ Caluo + gi, [" 7Y Dy, | + G(2)| Dy, |] dz
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IN

| [CiIDuo + Dgi IP®) + C1|Dgi, @) + Colug + g, [P
(A O\HR,

+ C|Dgi, ™) + (G ()P ™) + | Dgy., )] der

IN

S [C12P" 7Y Dug|P®) + 127"~ | Dgy, [P®)
(O\A)\HR,

+ C1|Dgy, |p(m) + 02210*4 ,uoyp(w) + 022p*71|gk1 ,p(w)
+ Co| Dgp, [P™) + (G ()" ™) + | Dgy, |P)] dos
< 27" 'p(meas((22\ A,) \ HR,))

+2 MO+ Co+1) | (g P + | Dy, [P®)) da
(2\A:,)\H},

<27 71C(n, 2,Cy + Cy) | N d; 4 27"~ (Ney)
(2\Aey \Hp,
N .

<20 QG+ Gy, | (M) de 27 n(Ney)
=1 (A )\H,,,

< 217**177(]\@;1) + 21’**1C(n, 2,C1 4+ Cy)Ney = Vi(er),
while
(311) F(Zk17A€1 U(‘Q\Hé\l))
= S AZ(I‘,’U/O+Zk17Du0+DZk1)Zli€1,ad‘T
Ay U(\HP,

— S Afl(a:, ug + 2k, , Dug + Dzkl)(ué’a + zzl7a) dz
AEIU(Q\HQ1

— S Al (z,up + 2k, , Dug + Dzk1)u6,a dz
A U\ER,)

> | [Xo|Dug + Dz, [P — Clug + 21, [P + h(z)] dz
AEIU(Q\HQ1

— | [C1|Dug + Dz, [P Dug|
Acy U(Q\HR,

+ Chlug + 2k, [P® Y Dug| + G(z)| Dug|] dz
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Ao
2(gtn)  § e
AL, U(AH,)

- C(/’La AOap(')? Cla 027 C)n(meaS(Am U (Q \ Hli\l)))
where p > 0 is arbitrary. Taking

Ao
O0<n<sm—om
we have
Ao p(z)
F(zk,, Az, U2\ HY)) > -1z | | Dz, [PV dx — Va(e1)

A, U(2\H},)

where Vi (g), Va(e )—>()as<€—>0Jr
Set Ac, U(R2\ Hp ) =UL ;.. ao = Ao/20 ~D/2 Vs(e) = Vi (e) + Vale).
From (3.9)-(3.11), we get

(312)  F(zr,,2) = Flgr,, 2\ Ae)) a0 | Dz, [P™) da — Vi(en).

1
U61 k1

Next, set
hkl =0k, — U

where v is defined by (3.8). Then
hy, =0  *-weakly in Wh*°(2,RY) as k; — oo

and
ks e (@ rvy <27, [[[Dhiy | [z (@) < 2C(n)A.

Set G = {z € 2 :v(zx) # 0}. According to Acerbi and Fusco [1], we have
meas(G) < (N + 1)y
and
(3.13)  Flgr 2\ Ac)
= F(hi,, (2\ Ac,)\ G) + Fgr,, (2\ A,) N HY, NG)
+ Fgr,, (2\ Ae,) N (G \ HR,))
= F(hiy, (2\ A )\ G) + Flz,, (2\ Ae,) N Hi, NG)
)-

+ Flgr,, (2\ Ae,) N (G \ Hy,)

Define
UZ =(2\A;,)\G,
U3

€1, kl - ('Q\Af?l)mHkA:l mG?
Ul i = (2\ Ac,) N (G\ HY).

511
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Similarly to the proof of (3.12), we get

(3.14) P2k, U2 ) > a0 | [Dzg, [P da — Vi(en).

3
U51,k1

On U2 , , we have
1,~h1

V(1917 +1Dgy, [P)) do < NC(n, Q)er.
U;llvkl
Then similarly to the proof of (3.10), we have
(3.15)  |Flgh, UL )| < C(C, Cap(-)NC(m, D)1 + (N + 1)z1)

= V3(e1).

From (3.13)—(3.15), we get

F(gry, 2\ Ac,) > F(hi, , U2) + a0 | Dz, [P7) da — Vi(er) — Vs (er).

US

€1,k
Define
U€517k1 = U§17k1 U U~€11,k1'
From (3.12),
(3.16) F(2k,,2) > F(h, , UZ) + a0 | [Da, [P da — Vi(e1)
U5
e1.k1

where Vi () = Va(e) + Vi(e) + Vs(e).
Choose an open set 2’ C 2 which contains U2 such that
|F(hiy, ) = F (i, UZ)| < €1
In view of (3.16), we get

F(2k,,2) > F(hi,, ) + a0 | Dz, [P da — Vr(e1)
Uglvkl

where Vz(e) = Vi(e) + €.
Next approximate 2’ by hypercubes with edges parallel to the coordinate
axes, i.e. construct

H; = Ui Djs,

meas(2’\ H;) - 0 as j — oo,
meas(D; ;) =1/2M, 1<s<1I;,
H; c (.
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Let 5 > 0 be so large that for all k; > 0,
(3.17) |F(hi,, ') — F(hy,, Hj)| < e1, | IDh, PPz < £y
Q'\H;
and
meas(2' \ H;) < min(eq, d1).
Then
(3.18) F(2ky,2) > F(h, Hy) + oo | [Dzg, [P da — Vi(er)

5
U€1,k1

where Vg(e) = Vz(e) +¢.
Let
M =2C(n)A = || [Dhi, | || Lo (2)

and a > 0 be so large that for E = {z € ' : a(z) < a}, we have
meas(2'\ E) < e1/M, S a(z)dr < e
Q\E
where
a(z) = 27" "M(1 + C1 + Ca) [ Dug () [P*) + Calug(a)P™) + (G())” ).
For z € £2, s € RV, £ € MN*" define

f(337 375) = A?x(l‘auo(w) + s, DUO(x) + 5)52

By Lemma 2.1, there exists a compact subset K C H; such that f(z,s,§)
is continuous on K x RN x MN*" and

€1
a+ M

Divide each Dj, into 2™ hypercubes Q}', ; with edge length 2-im 1 <
h <2%™. For all j,s,m,h, take 23, . € Q' /N KNE (if this set is empty,
take z', . € Q) ;) such that

meas(H; \ K) <

a(xys ;) meas(Qp's ;) < S a(z) dz.

Q;Ln,s,j
Then

(3.19)  F(hg,,H;)
= F(hy, H; N K NE) + F(hy,, H; \ E) + F(hy, . (H; N E)\ K)
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> F(hy,,HiFNKNE)— S a(x)dr — S a(x)dx
Hj\E (HjﬂE)\K

—zp*—1(1+cl+02)( { [1Dhi, IP@) 4 | [P®) dee
H;\E

+§ DR, 1) da)
(H;NE\K

:F(hklaHjmKﬂE)_‘/Q(El)
=al + b7+ +dp — Vo(er)
where

aho= VU he (@), Dhiy () = (2,0, Dh ()] da

H;NKNE

bl =3 § (0, Dhy, () = flaf, .0, Dhy, (2)] de
his Q. ,NKNE

i’ =37 | f@f.0. Dhy, (2)) du

h,s Qs

il == | (0 Dhi(w)) do.
his Q. \(KNE)

By the uniform continuity of f on bounded sets of K x RY x MN*" and
(3.7), we have

lim a; =0, lim F(z,,2)=0

k1—o0 k1 —o0
and the pointwise convergence of ug(z}’, ;), Duo(x}’, ;) implies
lim hy"7 =0
m—oo "1
uniformly with respect to ki, for fixed j, and
did | <) | la(z], ;) + 27" (1 + Cy + Co)M] da
hos Qs ;\(KNE)
< Cla+ M)meas((H; NE)\ K)+ C S [a(x) + M| dx
H,\E
< C(C1,C2,p("))er.

Now we suppose that m is so large that ]bZ’j| < e for each k; > 0 and there

exists k1 > 0 such that F(zy,,2) < e, lay, | < e1 for ky > k1. Therefore
from (3.7), (3.18) and (3.19), we have
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(3.20) e1 > F(zg,, 2)

> CZi’j + g S ]Dzkl ’p(w) dr — Vg(z’fl) - ‘/9(61)
U§1,k1

—2e1 — C(C1,Co,p(-))e1
= tao | Dz, [P® de — Vig(er).

U§1>k1
As hy, — 0 weakly in W1>°(£2, RY) as k; — oo, we obtain

k1,
Ry 5 = Mk o= ap, ;) =0 as ki — o0

for fixed m.
Define a hypercube E,’?S’T; contained in Q" ; with edge length 1/2m —

ZR% 57? such that

dist(0Qy", ;, EPL™) = Ry

h)s7j h7s7j :
Next define
0, r € 0Q}';
K () =
fia (@) hi, (z), @€ B,

Since fy, is a Lipschitz mapping on the set where it is defined and its Lip-
schitz constant is no more than 2C(n)\, by Lemma 2.7, fi, can be extended
to the whole QZ?SJ, where it is also a Lipschitz mapping with the same
Lipschitz constant. We still denote the extension by fi, and suppose that it
is defined on the whole H;. Then by [4],

D fi, () — Dhy,(z) — 0  a.e. on Hj.
So there exists a Zl > k; such that for all k; > E, we have

| IDfi, — Dh |7 der < %1

H;
3
13" 1 @it 0.Dhi) = flate 1,0, Dfi,)] da| < 5
h,s Qmsyj
In view of (H5),
m,J m m €
gl = Z S f(xps ;,0, Dhy,) dx > Z S f(@h's 50, Dfy,) dx — ?1
h,s Q. . hys Qs 5
(@) gy E1 (@ gy W De1
>> v | [Dfi,P™) da T \ [Dhy, [P da R

h,s Qmsyj H;
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Thus in (3.20) for ky > %1, we have

1
€1 > o S \Dzkl‘p(m) dz + 5571 X |Dhy, |p(w) dz — M — Vio(e1).
U2, vy j
Set
2
K(e) = Vlo‘(é) + v+ 3)5/ .
min(o, v/2P 1)
Then
(3.21) \ DRy, [P d+ | Dz, [P da < K (21)
H; U§1vk1
for k; > k1. From (3.17) and (3.21), we deduce that
| [Dhy, [P®) do < K(e1) + €1, VD2, P do < K ().
¥ U§1>k1

According to the definition of 2/, we have
\ IDgi, [P do < K(e1) + &1
U2
e1
Since Dgy, (x) = Dz, (z) for each x € ng\l, we get
\ 1Dz, P7) de < K(e1) + 1.

Uz NHp,
By the definition of U2 and U£517 k,» 1t is immediate that
(U2, NHy,)LU? 02,

€1,k T

which implies that

S | Dz, [P®) do < 2K (e1) + 61 = W(e1)
Q
where W(e) - 0ase — 0.
For €5 > 0 and the sequence {zj, }, repeating the above arguments we
can extract a subsequence of {zy, }, denoted by {zx, }, such that

V(D2 [P) doe < W (e)
2

whenever ko > kg for some ko. If {25, } has been obtained, repeating the
above process, we can extract a subsequence of {2y, }, denoted by {z,_, },
which satisfies

S |Dzkn+1 |p(z) dr < W(5n+1)

Q
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whenever k,11 > RH for some Enﬂ. Finally, by a diagonal argument we
get a subsequence {z, }5°, of {zx} which satisfies

S |Dzy, [P dz — 0 as i — oo.
Q
By Lemma 2.9, we have

1Dk, Loy () = 0 as i — o0

and furthermore {z, }52; converges to zero strongly in VVO1 P (')(Q,RN ) as
1 — 00. This completes the proof of Theorem 3.1. =

If we choose p(z) =p, 1 < p < 00, then we get
COROLLARY 3.1. Assume the following conditions:
(G1)  The same as (H1).
(G2)  |A(x, s,€)| < Ch|E[P~1 4 Cy|s[P~L + G(z), where G € L¥' (22), Cy, Cy
>0 and Cy is small, 1/p+1/p’:1_. B
(G3)  [B(,s,8)| < CLIE[P~ 1+ Chs|P~t + G(x), where G € L¥ (2), C}, C}
>0 and are small.
(G4) Al (m,8,6)E > Nolé|P — C|s|P + h(x), where A\g > 0, C > 0 is small
and h € L*(£2).
(G5)  For almost every zg € §2, so € RN, the mapping € — A(xg, so, &)
satisfies
[ 4l (0, 50, €0 + D(2))# () dz > v | [ Da(x) P da
G G
for each & € MN>*" G C R", 2 € C(G,RY) where v > 0.
Then the system (1.1)—(1.2) has at least one weak solution which satisfies
ue WyP(2,RY)

and
S[Ag(x, u, Du)zfa(:c) + B'(z,u, Du)z'(x)]dz =0
Q

for all z € Wy (2,RN).
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