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Inductive extreme non-Arens regularity
of the Fourier algebra A(G)

by

Zhiguo Hu (Windsor, ON)

Abstract. Let G be a non-discrete locally compact group, A(G) the Fourier alge-
bra of G, VN(G) the von Neumann algebra generated by the left regular representa-
tion of G which is identified with A(G)∗, and WAP(Ĝ) the space of all weakly almost
periodic functionals on A(G). We show that there exists a directed family H of open
subgroups of G such that: (1) for each H ∈ H, A(H) is extremely non-Arens reg-
ular; (2) VN(G) =

⋃
H∈H VN(H) and VN(G)/WAP(Ĝ) =

⋃
H∈H[VN(H)/WAP(Ĥ)];

(3) A(G) =
⋃
H∈HA(H) and it is a WAP-strong inductive union in the sense that the

unions in (2) are strongly compatible with it. Furthermore, we prove that the family
{A(H) : H ∈ H} of Fourier algebras has a kind of inductively compatible extreme non-
Arens regularity.

1. Introduction. For a Banach algebra A, there exist two Banach al-
gebra multiplications on A∗∗ (known as Arens products) which extend the
multiplication of A (see Arens [1]). When these two multiplications coincide
on A∗∗, the algebra A is said to be Arens regular . Every C∗-algebra is Arens
regular. If A is a commutative Banach algebra, then A is Arens regular if
and only if A∗∗ is commutative with respect to either (and hence both) of
the Arens products. Let WAP(A) be the space of all weakly almost periodic
functionals on A, i.e., WAP(A) = {T ∈ A∗ : {u · T : u ∈ A and ‖u‖ ≤ 1} is
relatively weakly compact in A∗}, where 〈u · T, v〉 = 〈T, uv〉 for v ∈ A. It is
known that A is Arens regular if and only if WAP(A) = A∗ (see Pym [15],
and also Duncan and Hosseinium [3]). Hence, the quotient Banach space
A∗/WAP(A) measures the non-Arens regularity of A in some sense. In par-
ticular, Granirer introduced the concept of “extreme non-Arens regularity”.
A is called extremely non-Arens regular if A∗/WAP(A) contains a closed
linear subspace which has A∗ as a continuous linear image (see [7]).
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Let G be a locally compact group and A(G) the Fourier algebra of G.
Lau proved that if G is amenable then A(G) is Arens regular if and only
if G is finite (see [13, Proposition 3.3]). Generally, Forrest showed that if
A(G) is Arens regular then G must be discrete (he even showed this for
the Figà-Talamanca Herz algebra Ap(G); see [6]). It is still open whether
Lau’s result is true for non-amenable groups G or for algebras Ap(G) with
p 6= 2. Recently, Granirer investigated the non-Arens regularity of quotients
of A(G). A special case of his Corollary 7 in [7] implies that A(G) is ex-
tremely non-Arens regular if G is non-discrete and second countable. Let
b(G) be the smallest cardinality of an open basis at the unit e of G, and
d(G) the smallest cardinality of a covering of G by compact sets. It is proved
that Granirer’s result holds for all non-discrete locally compact groups G
satisfying b(G) ≥ d(G) (see Hu [10, Corollary 4.2 and Remark 4.7]). In par-
ticular,A(G) is extremely non-Arens regular ifG is a σ-compact non-discrete
locally compact group.

In this paper we will investigate the non-Arens regularity of A(G) when
b(G) < d(G). Let VN(G) be the von Neumann algebra generated by the left
regular representation of G. It is well known that A(G) can be identified
with the predual of VN(G), i.e., VN(G) = A(G)∗. Let WAP(Ĝ) denote the
space of all weakly almost periodic functionals on A(G) (i.e., WAP(Ĝ) =
WAP(A(G))). We show (Theorem 5.3) that, for any non-discrete locally
compact group G satisfying b(G) < d(G), there exists a directed family H
of open subgroups of G such that:

(1) For each H ∈ H, A(H) is extremely non-Arens regular, i.e., for each
H ∈ H, there exists a closed linear subspace ZH of VN(H)/WAP(Ĥ) and a
continuous linear map ΠH : ZH → VN(H) such that ΠH(ZH) = VN(H).

(2) VN(G) =
⋃
H∈HVN(H) is an inductive union of von Neumann al-

gebras and VN(G)/WAP(Ĝ) =
⋃
H∈H[VN(H)/WAP(Ĥ)] is an inductive

union of Banach spaces (see Definition 3.1).
(3) A(G) =

⋃
H∈HA(H) is an inductive union of Banach algebras and

it is a WAP-strong inductive union (see Definition 3.3) in the sense that
the two inductive unions in (2) are strongly compatible with the inductive
union A(G) =

⋃
H∈HA(H).

In particular, if G is metrizable, then H is a σ-compact open subgroup
of G for all H ∈ H, and A(G) is a WAP-strong inductive union of the sep-
arable Fourier algebras {A(H)}H∈H. Furthermore, we obtain the inductive
extreme non-Arens regularity of A(G) by showing that {‖ΠH‖ : H ∈ H}
is bounded and the pairs {ZH ,ΠH} (H ∈ H) are inductively compatible
(Theorem 5.10).

The analysis of the relation between open subgroups of G and the sup-
port of operators in VN(G) plays a key role in our discussion of the inductive
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extreme non-Arens regularity of A(G). We show that if H is an open sub-
group of a non-discrete locally compact group G, then, for any operator T
in VN(G), the support of T can be covered by no more than b(G) cosets of
H in G (Proposition 4.1).

Motivated by the inductive limits of C∗-algebras, in Section 3 we intro-
duce the concept of “inductive union”, which provides a natural mechanism
to relate the Fourier algebra of a locally compact group to the Fourier alge-
bras of its open subgroups.

2. Preliminaries and notations. Let G be a locally compact group
with unit e and a fixed left Haar measure. The Fourier–Stieltjes algebra
B(G) is the linear span of positive-definite continuous functions on G and is
identified with the Banach dual of the group C∗-algebra C∗(G) of G. With
the dual norm and the pointwise multiplication, B(G) is a commutative
Banach algebra. Let C00(G) be the space of all continuous functions on G
with compact support. Then the Fourier algebra A(G) is the closed ideal
in B(G) generated by elements in B(G) ∩ C00(G). Let VN(G) be the von
Neumann algebra generated by the left regular representation of G. Then
A(G) can be identified with the predual of VN(G) (i.e., VN(G) = A(G)∗)
and VN(G) becomes a B(G)-module under the action 〈u ·T, v〉 = 〈T, uv〉 for
u ∈ B(G), v ∈ A(G), and T ∈ VN(G). Also, VN(G) coincides with the space
of all bounded linear operators on L2(G) which satisfy T (f ∗ g) = T (f) ∗ g
for all f ∈ L2(G) and g ∈ C00(G). See Eymard [5] for more information on
A(G), B(G), and VN(G).

The space {T ∈ VN(G) : u 7→ u · T is a weakly compact operator from
A(G) into VN(G)} is called the space of weakly almost periodic functionals
on A(G) and is denoted by WAP(Ĝ). It turns out that WAP(Ĝ) is a self-
adjoint closed B(G)-submodule of VN(G). When G is a locally compact
abelian group, WAP(Ĝ) is identified with the space of weakly almost periodic
functions on the dual group of G. See Dunkl and Ramirez [4] for more details
on WAP(Ĝ).

The support of a functionf inL2(G) is defined by saying that x 6∈supp f if
and only if there exists a neighbourhood V of x such that

�
G
f(x)v(x) dx=0

for all v ∈ C00(G) with supp v ⊆ V . The support of an operator T in VN(G)
is defined by saying that x 6∈ suppT if and only if there exists a neighbour-
hood U of e such that x 6∈ supp(Tu) for all u ∈ C00(G) with suppu ⊆ U . An
equivalent description for suppT is that x ∈ suppT if and only if u · T = 0
implies u(x) = 0 for all u ∈ A(G) (see Eymard [5] and Herz [8]).

Let b(G) be the smallest cardinality of an open basis at e and d(G)
denote the smallest cardinality of a covering of G by compact sets. It is
known that b(G) = d(Ĝ) when G is abelian with dual group Ĝ (see Hewitt
and Ross [12, (24.48)]). Clearly, G is metrizable if and only if b(G) ≤ ℵ0.
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3. Inductive unions. Inspired by the inductive limits of C∗-algebras,
we introduce the concept of “inductive union”, which is of importance for
our investigation on the non-Arens regularity of the Fourier algebra A(G).

Definition 3.1. Let A be a Banach space (Banach algebra, C∗-algebra,
respectively) and let {Ai}i∈I be a family of Banach spaces (Banach algebras,
C∗-algebras, respectively) indexed by a directed set I. We say that A is an
inductive union of {Ai}i∈I (denoted by A =

⊔
i∈I Ai) if there exists a linear

isometry (isometric isomorphism, ∗-isomorphism, respectively) Λi : Ai → A
for each i ∈ I such that Λi(Ai) ⊆ Λj(Aj) for all i, j ∈ I with i � j and
A =

⋃
i∈I Λi(Ai).

Immediately, we can show the existence of maps Λij (i � j) compatible
with {Λi}i∈I .

Corollary 3.2. Let A =
⊔
i∈I Ai be an inductive union of the fam-

ily {Ai}i∈I of Banach spaces (Banach algebras, C∗-algebras, respectively)
via the linear isometries (isometric isomorphisms, ∗-isomorphisms, respec-
tively) {Λi}i∈I . Then, for all i, j ∈ I with i � j, there exists a unique lin-
ear isometry (isometric isomorphism, ∗-isomorphism, respectively) Λij : Ai
→ Aj such that :

(a) ΛjΛij = Λi for all i, j ∈ I with i � j.
(b) ΛjkΛij = Λik if i, j, k ∈ I and i � j � k.

Proof. Let i, j ∈ I and i � j. Note that Λi(Ai) ⊆ Λj(Aj) and hence
Λi(Ai) is a closed linear subspace (subalgebra, C∗-subalgebra, respectively)
of Λj(Aj). Define Λij = (Λj)−1|Λi(Ai) Λi. Then Λij : Ai → Aj is a linear
isometry (isometric isomorphism, ∗-isomorphism, respectively). By the def-
inition of Λij , it can be seen that (a) holds and the map Λij satisfying (a)
is unique.

Suppose that i, j, k ∈ I and i � j � k. By (a), we have Λk(ΛjkΛij) =
ΛjΛij = Λi = ΛkΛik, i.e., ΛjkΛij = Λik since Λk is one-to-one. Therefore,
(b) is true.

When A is an inductive union of {Ai}i∈I , it is interesting to know if
A∗ is an inductive union of {A ∗i }i∈I and if a quotient space of A∗ is an
inductive union of the corresponding quotient spaces of A ∗i (i ∈ I), etc. For
our purpose, we only consider the following “WAP” strongly compatible
inductive unions of Banach algebras. Recall that, for a Banach algebra A,
WAP(A) denotes the space of all weakly almost periodic functionals on A.

Definition 3.3. Let A be a Banach algebra and let A =
⊔
i∈I Ai be an

inductive union of the Banach algebras {Ai}i∈I via the isometric isomor-
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phisms {Λi}i∈I . We say that A is a WAP-strong inductive union of {Ai}i∈I
if the following hold.

(1) A∗ =
⊔
i∈I A

∗
i is an inductive union of the Banach spaces {A∗i }i∈I

via some linear isometries {Φi}i∈I such that, for all i ∈ I, Λ∗iΦi = Id and
Φi(u · T ) = Λi(u) · Φi(T ) for u ∈ Ai and T ∈ A∗i .

(2) For all i ∈ I, Φi(WAP(Ai)) = WAP(A)∩Φi(A∗i ) and Φi lifts a linear
isometry Γi : A∗i /WAP(Ai)→ A∗/WAP(A).

It is easy to see that (1) and (2) in Definition 3.3 are equivalent to the
following two conditions.

Corollary 3.4. Let A =
⊔
i∈I Ai be an inductive union of the Banach

algebras {Ai}i∈I via {Λi}i∈I . Then A is a WAP-strong inductive union of
{Ai}i∈I if and only if the following conditions are satisfied :

(1)′ A∗ =
⊔
i∈I A

∗
i is an inductive union of {A∗i }i∈I via {Φi}i∈I such

that , for all i ∈ I, ΦiΛ∗i : A∗ → A∗ is a Λi(Ai)-invariant projection (i.e.,
(ΦiΛ∗i )

2 = ΦiΛ
∗
i and ΦiΛ

∗
i (v · T ) = v · [ΦiΛ ∗i (T )] for all v ∈ Λi(Ai) and

T ∈ A∗).
(2)′ WAP(A) =

⊔
i∈I WAP(Ai) is an inductive union of the Banach

spaces {WAP(Ai)}i∈I via the restrictions {Φi|WAP(Ai)}i∈I and A∗/WAP(A)
=
⊔
i∈I [A

∗
i /WAP(Ai)] is an inductive union of the quotient Banach spaces

{A∗i /WAP(Ai)}i∈I via {Γi}i∈I such that Γi %i = %Φi for all i ∈ I, where
%i : A∗i → A∗i /WAP(Ai) and % : A∗ → A∗/WAP(A) are the canonical
quotient maps.

Analogously to Corollary 3.2, we are able to get maps Φij and Γij (i � j)
which are compatible with {Φi}i∈I and {Γi}i∈I , respectively.

Corollary 3.5. Let A =
⊔
i∈I Ai be a WAP-strong inductive union of

the Banach algebras {Ai}i∈I via the maps {Λi}i∈I with A∗ =
⊔
i∈I A

∗
i via

{Φi}i∈I and A∗/WAP(A) =
⊔
i∈I [A

∗
i /WAP(Ai)] via {Γi}i∈I . Then, for all

i, j ∈ I with i � j, there exist unique linear isometries Φij : A∗i → A∗j and
Γij : A∗i /WAP(Ai)→ A∗j/WAP(Aj) such that the following hold :

(a) ΦjΦij = Φi and ΓjΓij = Γi for all i, j ∈ I with i � j.
(b) ΦjkΦij = Φik and ΓjkΓij = Γik if i, j, k ∈ I and i � j � k.
(c) Λ∗ijΦij = Id and Φij(u · T ) = Λij(u) · Φij(T ) for all i, j ∈ I with

i � j, u ∈ Ai and T ∈ A∗i , where Λij : Ai → Aj is the same map as in
Corollary 3.2.

(d) Φij(WAP(Ai)) = WAP(Aj) ∩ Φij(A∗i ) and Γij%i = %jΦij if i, j ∈ I
and i � j (i.e., Γij is the map lifted by Φij).

Proof. It can be seen that (a) and (b) hold by the same argument as in
the proof of Corollary 3.2. Clearly, the maps Φij and Γij satisfying (a) are
unique.
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Let i, j ∈ I and i � j. Note that Λ∗iΦi = Id, Λ∗i = Λ∗ijΛ
∗
j (by

Corollary 3.2), and Φi = ΦjΦij . Therefore, Λ∗ijΦij = Λ∗ij(Λ
∗
jΦj)Φij =

(Λ∗ijΛ
∗
j )(ΦjΦij) = Λ∗iΦi = Id, i.e., Λ∗ijΦij = Id. Suppose that u ∈ Ai and

T ∈ A∗i . Then

Φj [Φij(u · T )] = Φi(u · T ) = Λi(u) · Φi(T )

= Λj [Λij(u)] · Φj [Φij(T )] = Φj [Λij(u) · Φij(T )].

We conclude that Φij(u ·T ) = Λij(u) ·Φij(T ) since the map Φj is one-to-one.
Therefore, (c) is true.

Note that Φi(WAP(Ai)) ⊆ Φj(WAP(Aj)) ⊆ WAP(A) and hence we
have Φi(WAP(Ai)) = Φj(WAP(Aj))∩Φi(A∗i ), that is, Φj [Φij(WAP(Ai))] =
Φj [WAP(Aj) ∩ Φij(A∗i )]. Therefore, Φij(WAP(Ai)) = WAP(Aj) ∩ Φij(A∗i ).
Finally, by using the facts that ΓjΓij = Γi, Γi %i = %Φi, and Φi = ΦjΦij ,
we have Γj(Γij %i) = Γi %i = %Φi = %ΦjΦij = Γj(%j Φij). It follows that
Γij %i = %j Φij since Γj is one-to-one. Therefore, (d) holds.

4. Open subgroups, support of T in VN(G), and isometric em-
beddings. In this section, G is a locally compact group and H is an open
subgroup of G. Let VNH(G) denote the von Neumann subalgebra of VN(G)
generated by {λG(x) : x ∈ H}, where λG is the left regular representa-
tion of G. Then VNH(G) = {T ∈ VN(G) : suppT ⊆ H} (see Chou [2,
Lemma 4.2]). Let 1H ∈ B(G) be the characteristic function of H. Then
1H · T ∈ VNH(G) for all T ∈ VN(G) and T = 1H · T if T ∈ VNH(G).
Therefore, VNH(G) = 1H ·VN(G).

It is known that if an element T of VN(G) is the left convolution oper-
ator by a bounded complex-valued regular Borel measure µ on G, then the
support of T is just the support of the measure µ and hence it is a countable
union of compact sets in G by the regularity of µ.

Generally, for an arbitrary operator T in VN(G), we are concerned with
the question of how many cosets gH we will need at least to cover the
support of T . If G is discrete, then every element T of VN(G) is identified
with a left convolution operator by a function in l2(G) and so the support
of T is a countable subset of G. In the following, we will consider the case
when G is non-discrete.

Proposition 4.1. Let G be a non-discrete locally compact group and let
H be an open subgroup of G. Then, for any T ∈ VN(G), there are at most
b(G) cosets gH (g ∈ G) such that suppT ∩ gH 6= ∅.

Proof. ReplacingH by a σ-compact open subgroup ofH, we may assume
that H is a σ-compact open subgroup of G.

Let U be a compact neighbourhood system at e such that card(U) =
b(G). Then U is a directed set under the relation U � V if and only if
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V ⊆ U . For each U ∈ U , let hU = (1/|U |)1U and TU = T (hU ) ∈ L2(G),
where |U | is the left Haar measure of U and 1U denotes the characteristic
function of U . By [12, (20.15)], for all f ∈ L2(G), limU ‖hU ∗ f − f‖2 = 0.
If f ∈ C00(G), then T (hU ∗ f) = T (hU ) ∗ f = TU ∗ f and hence T (f) =
limU (TU ∗ f) in the ‖ · ‖2-norm. Therefore, T is completely determined by
the net (TU )U∈U in L2(G) since C00(G) is ‖ · ‖2-norm dense in L2(G). For
each U ∈ U , since TU ∈ L2(G), there exists a sequence {gnU}n in G such
that suppTU ⊆

⋃∞
n=1 g

n
UH.

Fix a compact neighbourhood V of e. Since H is σ-compact, HV and
hence

⋃∞
n=1 g

n
UHV is a countable union of compact sets. Therefore,⋃∞

n=1g
n
UHV can be covered by countably many cosets gH. Note that card(U)

= b(G) ≥ ℵ0. It follows that there exists a subset B of G such that
card(B) ≤ b(G) = card(U) and

⋃
U∈U

⋃∞
n=1 g

n
UHV ⊆

⋃
g∈B gH.

To complete the proof, we only need to show that suppT ⊆ ⋃g∈B gH.
Suppose x ∈ G \ ⋃g∈B gH. In the following, we will prove that x 6∈

suppT (f) for all f ∈ C00(G) with supp f ⊆ V and it follows that x 6∈ suppT .
Let f ∈ C00(G) and supp f ⊆ V . Then T (f) = limU∈U (TU ∗ f) in the

‖ · ‖2-norm. Recall that, for each U ∈ U , suppTU ⊆
⋃∞
n=1 g

n
UH and hence

supp(TU ∗ f) ⊆ ⋃∞n=1 g
n
UHV ⊆

⋃
g∈B gH. Also note that

⋃
g∈B gH is closed

in G. Therefore, suppT (f) ⊆ ⋃g∈B gH and we have x 6∈ suppT (f).

Corollary 4.2. Let G be a metrizable locally compact group and let
H be an open subgroup of G. Then, for any T ∈ VN(G), there exists a
sequence {gn}n in G such that suppT ⊆ ⋃∞n=1 gnH.

Remark 4.3. Let G be a locally compact group and let H be an open
subgroup of G. If T ∈ span [λG(G)VNH(G)] (the norm closed linear span
generated by the translates of elements in VNH(G)), then the support of
T can be covered by countably many cosets gH. However, it is possible
that the support of any operator in VN(G) can be covered by countably
many cosets gH (e.g., when G is metrizable or σ-compact) but VN(G) 6=
span [λG(G)VNH(G)]. For example, let G be a non-compact metrizable lo-
cally compact group containing a compact open subgroupH. Then VN(H)=
UC(Ĥ) (the C∗-algebra of uniformly continuous functionals on A(H) intro-
duced by Granirer) and thus span [λG(G)VNH(G)] = UC(Ĝ) (see Hu [11,
Proposition 3.5]). Now span [λG(G)VNH(G)] = UC(Ĝ) $ VN(G) because
G is non-compact.

Corollary 4.4. Let G be a metrizable locally compact group. Then, for
any T ∈ VN(G), there exists a σ-compact open subgroup H of G such that
suppT ⊆ H.

Proof. Let G0 be a σ-compact open subgroup of G. Let T ∈ VN(G).
By Corollary 4.2, there exists a sequence {gn}n in G such that suppT ⊆
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⋃∞
n=1 gnG0. Let H be the open subgroup of G generated by G0∪

⋃∞
n=1 gnG0.

Then H is a σ-compact open subgroup of G and suppT ⊆ H.

Let r : A(G)→ A(H) be the restriction map. According to Eymard [5],
r is a linear contractive surjection and its adjoint r∗ is a ∗-isomorphism of the
von Neumann algebra VN(H) onto the von Neumann subalgebra VNH(G)
of VN(G) (see [5, (3.21)], where r∗(T ) is denoted as T ◦ for T ∈ VN(H)). It is
known that r∗(WAP(Ĥ)) = WAP(Ĝ)∩VNH(G) (see Chou [2, Lemma 4.2]).
Therefore, the ∗-isomorphism r∗ lifts a linear map from the quotient Banach
space VN(H)/WAP(Ĥ) into the quotient Banach space VN(G)/WAP(Ĝ).
Let VNH(G)/WAP(Ĝ) denote the linear subspace {T + WAP(Ĝ) : T ∈
VNH(G)} of VN(G)/WAP(Ĝ). In the following we will show that in fact r∗

lifts a linear isometry between VN(H)/WAP(Ĥ) and VNH(G)/WAP(Ĝ).

Proposition 4.5. For T ∈ VN(H), define r̃∗(T + WAP(Ĥ)) = r∗(T ) +
WAP(Ĝ). Then r̃∗ : VN(H)/WAP(Ĥ)→ VN(G)/WAP(Ĝ) is a linear isom-
etry with range VNH(G)/WAP(Ĝ) and the following diagram commutes:

VN(H) VN(G)

VN(H)/WAP(Ĥ) VN(G)/WAP(Ĝ)

%H

��

r∗ //

%

��
r̃∗ //

where %H and % are the canonical quotient maps.

Proof. Since r∗(VN(H)) = VNH(G) and r∗(WAP(Ĥ)) = WAP(Ĝ) ∩
VNH(G), by the definition, r̃∗ : VN(H)/WAP(Ĥ) → VN(G)/WAP(Ĝ)
is well defined, linear, and onto the linear subspace VNH(G)/WAP(Ĝ) of
VN(G)/WAP(Ĝ). According to the definition of r̃∗, it is clear that the dia-
gram is commutative. To complete the proof, we only need to show that r̃∗

is an isometry.
Let T ∈ VN(H). Obviously, ‖r̃∗(T +WAP(Ĥ))‖ ≤ ‖T +WAP(Ĥ)‖ since

‖r̃∗‖ ≤ ‖r∗‖ = 1. Conversely, let W ∈WAP(Ĝ). Then W = W1 +W2, where
W1 = 1H ·W and hence W1 ∈ WAP(Ĝ) ∩ VNH(G), and W2 = W −W1 ∈
WAP(Ĝ) with suppW2 ⊆ G\H. Thus,W1 = r∗(V1) for some V1 ∈WAP(Ĥ).
So,

‖r∗(T ) +W‖ = ‖r∗(T ) + r∗(V1) +W2‖
≥ ‖1H · (r∗(T ) + r∗(V1) +W2)‖
= ‖r∗(T ) + r∗(V1)‖ (since 1H ·W2 = 0)

= ‖T + V1‖
≥ ‖T + WAP(Ĥ)‖.
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Since W ∈WAP(Ĝ) is arbitrary, it follows that

‖r∗(T ) + WAP(Ĝ)‖ ≥ ‖T + WAP(Ĥ)‖,
i.e., ‖r̃∗(T + WAP(Ĥ))‖ ≥ ‖T + WAP(Ĥ)‖. Therefore, r̃∗ is a linear isome-
try.

Remark 4.6. Let V be any closed B(G)-submodule of VN(G) and let
VH = (r∗)−1[V ∩VNH(G)]. Then VH is a closed B(H)-submodule of VN(H)
and r∗(VH) = V ∩ VNH(G). From the proof it can be seen that Proposi-
tion 4.5 holds if WAP(Ĝ) and WAP(Ĥ) are replaced by V and VH , respec-
tively. In particular, if we take V = AP(Ĝ), UC(Ĝ), C∗r (G), and C∗δ (G)
(the space of almost periodic functionals on A(G), the space of uniformly
continuous functionals on A(G), the reduced group C∗-algebra of G, and
the C∗-algebra generated by {λG(x) : x ∈ G}, respectively), then we will
get VH = AP(Ĥ), UC(Ĥ), C∗r (H), and C∗δ (H), respectively (cf. [11]).

5. Inductive extreme non-Arens regularity of A(G). Throughout
this section, we assume that G is a non-discrete locally compact group and
G0 is a σ-compact open subgroup of G.

Let T ∈ VN(G). By Proposition 4.1, there exists a subset B of G such
that card(B) ≤ b(G) and suppT ∩ gG0 = ∅ for all g ∈ G \ B. Hence,
suppT ⊆ ⋃

g∈B gG0. Let HB be the open subgroup of G generated by
G0 ∪

⋃
g∈B gG0, i.e.,

HB =
∞⋃

n=1

{[
G0 ∪

⋃

g∈B
gG0

]
∪
[
G0 ∪

⋃

g∈B
gG0

]−1}n
.

Then we have T ∈ V NHB (G) and HB can be covered by no more than b(G)
compact sets (since G0 is σ-compact and b(G) ≥ ℵ0). Therefore, d(HB) ≤
b(HB) (= b(G)). According to the result of Hu [10, Corollary 4.2 and Remark
4.7], A(HB) is extremely non-Arens regular.

To obtain the inductive extreme non-Arens regularity of A(G), we need
to consider the following maps.

Definition 5.1. Let H and J be open subgroups of G and H ⊆ J .
The maps ΛHJ : A(H) → A(J), ΦHJ : VN(H) → V N(J), and ΓHJ :
VN(H)/WAP(Ĥ) → VN(J)/WAP(Ĵ) are defined as follows: for u ∈ A(H)
and T ∈ VN(H),

ΛHJ(u) = u◦,

ΦHJ (T ) = r∗HJ (T ),

ΓHJ (T + WAP(Ĥ)) = r̃∗HJ (T )

= r∗HJ (T ) + WAP(Ĵ ) (as in Proposition 4.5),
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where u◦ denotes the trivial extension of u to J (i.e., u◦(x) = 0 if x ∈ J \H),
and r∗HJ is the adjoint of the restriction map rHJ : A(J)→ A(H). Also, we
define ΛH = ΛHG, ΦH = ΦHG, and ΓH = ΓHG.

Lemma 5.2. Let H and J be open subgroups of G such that H ⊆ J . Let
ΛHJ , ΦHJ , ΓHJ , ΛH , ΦH , and ΓH be the maps from Definition 5.1.

(a) ΛHJ is an isometric isomorphism from the Banach algebra A(H)
onto the Banach subalgebra AH(J) of A(J), where AH(J) = {f ∈ A(J) :
supp f ⊆ H}.

(b) ΦHJ is a ∗-isomorphism (and hence an isometry) from the von Neu-
mann algebra VN(H) onto the von Neumann subalgebra VNH(J) of VN(J).

(c) ΓHJ is a linear isometry with range VNH(J)/WAP(Ĵ).
(d) If K is an open subgroup of G and H ⊆ J ⊆ K, then ΛJKΛHJ =

ΛHK , ΦJKΦHJ = ΦHK , and ΓJKΓHJ = ΓHK . In particular , the maps ΛH ,
ΦH , and ΓH are compatible with ΛHJ , ΦHJ , and ΓHJ , respectively. That is,
ΛJΛHJ = ΛH , ΦJΦHJ = ΦH , and ΓJΓHJ = ΓH for all H ⊆ J .

Proof. (a) and (b) follow from [5, (3.21)]. (c) holds by Proposition 4.5.
And it is easy to check (d) by Definition 5.1.

Summarizing the above discussion, we are ready to give the following
decompositions for the Fourier algebra A(G), the von Neumann algebra
VN(G), and the quotient Banach space VN(G)/WAP(Ĝ).

Theorem 5.3. Let G be a non-discrete locally compact group with b(G)<
d(G) and let G0 be a σ-compact open subgroup of G. Let B = {B : B ⊆
G and card(B) ≤ b(G)} and let H be the family of open subgroups of G
generated by G0 ∪

⋃
g∈B gG0 (B ∈ B). Then:

(1) H is a directed set under the relation “⊆”, d(H) ≤ b(H) for all
H ∈ H, G =

⋃
H∈HH, and card(H) ≤ d(G)b(G).

(2) For all H ∈ H, A(H) is extremely non-Arens regular.
(3) A(G) =

⊔
H∈HA(H) is an inductive union of the Banach algebras

{A(H)}H∈H via the isometric isomorphisms {ΛH}H∈H.
(4) VN(G) =

⊔
H∈HVN(H) is an inductive union of the von Neumann

algebras {VN(H)}H∈H via the ∗-isomorphisms {ΦH}H∈H.
(5) VN(G)/WAP(Ĝ) =

⊔
H∈H[VN(H)/WAP(Ĥ)] is an inductive union

of the quotient Banach spaces {VN(H)/WAP(Ĥ)}H∈H via the linear isome-
tries {ΓH}H∈H.

(6) A(G) =
⊔
H∈HA(H) is a WAP-strong inductive union of the algebras

{A(H)}H∈H.
(7) ΛHJ , ΦHJ , and ΓHJ (H,J ∈ H and H ⊆ J) are the maps com-

patible with {ΛH}H∈H, {ΦH}H∈H, and {ΓH}H∈H as in Corollary 3.2 and
Corollary 3.5, respectively.
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In particular , if G is metrizable, then H is a σ-compact open subgroup
of G for all H ∈ H and A(G) is a WAP-strong inductive union of the
separable Fourier algebras {A(H)}H∈H.

Proof. Clearly,H is a directed set under “⊆”, d(H) ≤ b(H) for allH ∈ H
(see the second paragraph in this section), and G =

⋃
H∈HH. Let S be a

complete set of left coset representatives of G0 in G and let E = {B ⊆ S :
card(B) ≤ b(G)}. It can be seen that card(S) = d(G) and hence card(H) ≤
card(E) ≤ d(G)b(G). Therefore, (1) holds.

(2) and (4) are true according to the discussion in the second paragraph
of this section, Lemma 5.2(b), and Definition 3.1.

Note that A(G) ∩ C00(G) is norm dense in A(G). So, if f ∈ A(G),
then supp f can be covered by countably many cosets gG0 (g ∈ G). Hence,
suppT ⊆ H for some H ∈ H. Therefore, f ∈ AH(G) = ΛH(A(H)) for some
H ∈ H. By Lemma 5.2(a) and Definition 3.1, (3) holds.

(5) follows from (4) and Lemma 5.2(c).
Let H ∈ H and let rH : A(G) → A(H) be the restriction map. Then

rHΛH = Id and ΦH = r∗H . Thus, Λ∗HΦH = Λ∗H r
∗
H = Id. It is easy to see that

ΦH(u·T ) = ΛH(u)·ΦH(T ) for all u ∈ A(H) and T ∈ VN(H) by the fact that
rHΛH = Id and ΦH = r∗H . Clearly, ΦH(WAP(Ĥ)) = WAP(Ĝ)∩ΦH(VN(H))
and ΓH : VN(H)/WAP(Ĥ)→ VN(G)/WAP(Ĝ) is the linear isometry lifted
by ΦH : VN(H) → VN(G). Therefore, A(G) =

⊔
H∈HA(H) is a WAP-

strong inductive union of {A(H)}H∈H by (4), (5), and Definition 3.3, i.e.,
(6) is true.

(7) holds by Lemma 5.2(d) and the uniqueness of the maps ΛHJ , ΦHJ ,
and ΓHJ satisfying Corollary 3.2(a) and Corollary 3.5(a), respectively.

Finally, suppose that G is metrizable. Let H ∈ H. Then d(H) ≤ b(H) =
ℵ0 by (2). Therefore, H is σ-compact and metrizable and hence A(H) is
separable.

Remark 5.4. Let V be any closed B(G)-submodule of VN(G) and
let VH = Φ−1

H [V ∩ VNH(G)]. By Remark 4.6, the spaces WAP(Ĝ) and
{WAP(Ĥ)}H∈H in Theorem 5.3(5) can be replaced by V and {VH}H∈H,
respectively. Therefore, the inductive union A(G) =

⊔
H∈HA(H) in Theo-

rem 5.3 is more than WAP-strong.

Let G be a locally compact abelian group with the dual group Γ . Then
the Fourier algebra A(G) of G is isometrically isomorphic to the group alge-
bra L1(Γ ) of Γ by the Fourier transform (see Eymard [5, (3.6)]). So, VN(G)
is identified with L∞(Γ ). Under these identifications, the module action of
L1(Γ ) on L∞(Γ ) is given by

f · φ = f̌ ∗ φ (f ∈ L1(Γ ) and φ ∈ L∞(Γ )),
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where f̌(x) = f(x−1) (x ∈ Γ ) (see Dunkl and Ramirez [4]). This coincides
with the module action of the Banach algebra L1(Γ ) (taking the convolution
as the multiplication) on L∞(G) = L1(G)∗. Also, we have b(G) = d(Γ ) (cf.
[12, (24.48)]) and hence d(G) = b(Γ ) by the Pontryagin duality theorem.
In particular, G is non-discrete if and only if Γ is non-compact. Now, for
any open subgroup H of G, let NH = {γ ∈ Γ : γ(x) = 1 for all x ∈ H}.
Then Ĥ ∼= Γ/NH and NH (∼= Ĝ/H) is a compact subgroup of Γ . Applying
Theorem 5.3, we obtain the following decomposition for the group algebra
of any non-compact locally compact abelian group.

Corollary 5.5. Let G be a non-compact locally compact abelian group
satisfying d(G) < b(G). Then there exists a family {Ni}i∈I of compact
subgroups of G indexed by a directed set I such that :

(1) Ni ⊇ Nj 6= {e} for all i, j ∈ I with i � j and
⋂
i∈I Ni = {e}.

(2) b(G/Ni) ≤ d(G/Ni) for all i ∈ I and card(I) ≤ b(G)d(G).
(3) L1(G) =

⊔
i∈I L

1(G/Ni) is a WAP-strong inductive union via the
isometric isomorphisms Λi : L1(G/Ni) → L1(G) given by Λi(f) = f ◦ ηi
(f ∈ L1(G/Ni)), where ηi is the natural homomorphism of G onto G/Ni
(i ∈ I).

Remark 5.6. Under the assumptions of Theorem 5.3, we also have the
inductive union L1(G) =

⊔
H∈H L

1(H) of Banach algebras via the isomet-
ric isomorphisms {ΩH}H∈H, where ΩH : L1(H) → L1(G) is defined by
ΩH(f) = f◦ (the trivial extension of f to G). However, usually L∞(G)
cannot be an inductive union of {L∞(H)}H∈H. For example, suppose that
d(G) = 2α for some α ≥ b(G). Note that card(H) ≤ d(G)b(G) = 2α

and D(L1(H)) ≤ b(H) = b(G) for all H ∈ H, where D(L1(H)) is the
smallest cardinality of a norm dense subset of L1(H). It follows that
card(

⋃
H∈H L

∞(H)) ≤ 2b(G) card(H) ≤ 2α = d(G) < 2d(G) ≤ card(L∞(G)),
i.e., card(

⋃
H∈H L

∞(H)) < card(L∞(G)). Therefore, the inductive union
L1(G) =

⊔
H∈H L

1(H) is not WAP-strong.

According to Theorem 5.3(2), for each H ∈ H, there exists a closed linear
subspace ZH of VN(H)/WAP(Ĥ) and a continuous linear map ΠH : ZH →
VN(H) such that ΠH(ZH) = VN(H). We will consider whether the family
{{ZH ,ΠH} : H ∈ H} is compatible with the maps ΦHJ and ΓHJ (H,J ∈ H
and H ⊆ J). For this purpose, we will need the following two lemmas.

Lemma 5.7. Let H and J be open subgroups of G with H ⊆ J and let
ΛHJ , ΦHJ , and ΓHJ be the maps defined in Definition 5.1. Let ΨHJ = Λ∗HJ .
Then:

(a) ΨHJ : VN(J) → VN(H) is a continuous linear surjection, ‖ΨHJ‖
= 1, and ΨHJΦHJ = Id.
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(b) ΨHJ (WAP(Ĵ )) = WAP(Ĥ).

Define ΘHJ :VN(J)/WAP(Ĵ )→VN(H)/WAP(Ĥ) by ΘHJ(T+WAP(Ĵ ))

= ΨHJ (T ) + WAP(Ĥ) (T ∈ V N(J)). Then:

(c) ΘHJ is a continuous linear surjection, ‖ΘHJ‖=1, and ΘHJΓHJ =Id.
(d) If K is an open subgroup of G and H ⊆ J ⊆ K, then ΨHJΨJK =

ΨHK and ΘHJΘJK = ΘHK .

Proof. (a) This follows from [5, (3.21)].
(b) Note that ΨHJΦHJ = Id and ΦHJ(WAP(Ĥ)) ⊆ WAP(Ĵ ) (see [2,

Lemma 4.2]). So, WAP(Ĥ) ⊆ ΨHJ(WAP(Ĵ )). On the other hand, for u ∈
A(H) and T ∈ VN(J), we have u · ΨHJ(T ) = ΨHJ (ΛHJ(u) · T ). Therefore,
ΨHJ (WAP(Ĵ )) ⊆WAP(Ĥ) and hence ΨHJ(WAP(Ĵ )) = WAP(Ĥ).

(c) By (a) and (b), ΘHJ is well-defined, linear, continuous, and onto.
And ΘHJΓHJ = Id since ΨHJΦHJ = Id. Note that ΓHJ is an isometry. So
we have ‖ΘHJ‖ ≥ 1. On the other hand, by the definition of ΘHJ and by
the fact that ‖ΨHJ‖ = 1, we get ‖ΘHJ‖ ≤ 1. Therefore, ‖ΘHJ‖ = 1.

(d) Since ΛJKΛHJ = ΛHK , by taking the adjoint, we have ΨHJΨJK =
ΨHK and hence ΘHJΘJK = ΘHK .

Remark 5.8. Comparing to the diagram in Proposition 4.5, we now
have the following commutative diagram:

VN(J) VN(H)

VN(J)/WAP(Ĵ) VN(H)/WAP(Ĥ)

%J

��

ΨHJ //

%H

��
ΘHJ //

where %H and %J are the canonical quotient maps.

Lemma 5.9. Let G,G0, and H be as in Theorem 5.3. Let µ be the initial
ordinal with |µ| = b(G0) (= b(G)) and X = {α : α < µ}. Then there exists
a continuous linear surjection ωH : VN(H)/WAP(Ĥ) → l∞(X) for each
H ∈ H such that the family {‖ωH‖ : H ∈ H} is bounded by a constant
which depends only on b(G).

Furthermore, if H,J ∈ H and H ⊆ J , then ωHΘHJ = ωJ and we have
the following commutative diagram:

VN(H)/WAP(Ĥ) VN(J)/WAP(Ĵ )

l∞(X)

ΓHJ //

ωH

�
�

�
�

�
�

�
�

�
� ''

ωJ
ww� �

�
�

�
�

�
�

�
�

Proof. Let π : VN(G0) → l∞(X) be the map constructed in Hu [9,
Theorem 5.1]. According to [9, Theorem 5.1] and its proof, π is a continuous



260 Z. Hu

linear surjection, ‖π‖ = 1, and π(WAP(Ĝ0)) ⊆ c(X), where c(X) = {f ∈
l∞(X) : limα f(α) exists}. Note that l∞(X)/c(X) contains an isomorphic
copy of l∞(X) (see [9, Lemma 3.2]) and l∞(X) is an injective Banach space
(see [14]). So, there exists a continuous linear surjection τ : l∞(X)/c(X)→
l∞(X). Define ω : VN(G0)/WAP(Ĝ0) → l∞(X) by ω(T + WAP(Ĝ0)) =
τ(π(T ) + c(X)) (T ∈ VN(G0)). Then ω is well defined, linear, continuous,
onto l∞(X), and ‖ω‖ ≤ ‖τ‖.

For H ∈ H, let ωH = ωΘG0H , where ΘG0H : VN(H)/WAP(Ĥ) →
VN(G0)/WAP(Ĝ0) is the surjection as defined in Lemma 5.7. Then ωH is
continuous, linear, onto l∞(X), and ‖ωH‖ = ‖ωΘG0H‖ ≤ ‖ω‖ ≤ ‖τ‖. It
turns out that the family {‖ωH‖ : H ∈ H} is bounded by the constant ‖τ‖
which depends only on card(X) = b(G).

Suppose H,J ∈H and H⊆J . Then ΘG0HΘHJ = ΘG0J (Lemma 5.7(d)).
Thus, ωΘG0HΘHJ = ωΘG0J , i.e., ωHΘHJ = ωJ . But ΘHJΓHJ = Id
(Lemma 5.7(c)). It follows that ωH = ωJΓHJ and hence the diagram com-
mutes.

Now we have the following inductive compatibility of the pairs {ZH ,ΠH}
(H ∈ H) with the maps ΦHJ and ΓHJ .

Theorem 5.10. The following hold under the assumptions of Theo-
rem 5.3:

(1) For each H ∈ H, there exists a closed linear subspace ZH of the
quotient VN(H)/WAP(Ĥ) and a continuous linear map ΠH : ZH → VN(H)
such that ΠH(ZH) = VN(H).

(2) There exists a constant M > 0 (which depends only on b(G)) such
that ‖ΠH‖ ≤M for all H ∈ H.

(3) Let K ∈ H and let HK = {H ⊆ H : H ⊆ K}. Then, for each
H ∈ HK , a pair {ZH ,ΠH} as in (1) can be chosen such that the family
{{ZH ,ΠH} : H ∈ HK} is compatible with the maps ΦHJ and ΓHJ (H,J ∈
HK and H ⊆ J). That is, if H,J ∈ HK and H ⊆ J , then ΓHJ(ZH) ⊆ ZJ
and the following diagram commutes when ΓHJ is restricted to ZH :

ZH VN(H)

ZJ VN(J)

ΓHJ

��

ΠH //

ΦHJ

��
ΠJ //

Proof. (1) This follows from Theorem 5.3(2).
(2) Let H∈H. Then d(H) ≤ b(H) (Theorem 5.3(1)) and hence D(A(H))

= b(H) = b(G) = card(X), where D(A(H)) is the smallest cardinality of
a norm dense subset of A(H) and X is the same set as in Lemma 5.9. Let
{uα : α ∈ X} be a norm dense subset of the unit ball in A(H) and let
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tH : VN(H) → l∞(X) be defined by tH(T )(α) = 〈T, uα〉 (T ∈ VN(H)
and α ∈ X). Then tH is a linear isometry. Let ωH : VN(H)/WAP(Ĥ) →
l∞(X) be the surjection as constructed in Lemma 5.9. We take ZH =
ω−1
H [tH(VN(H))] (⊆ VN(H)/WAP(Ĥ)) and ΠH = t−1

H (ωH |ZH ). Then ZH
is a closed linear subspace of VN(H)/WAP(Ĥ), ΠH : ZH → VN(H) is a
continuous linear map, and ΠH(ZH) = VN(H).

It is clear that ‖ΠH‖ ≤ ‖ωH‖. By Lemma 5.9, the family {‖ΠH‖ : H ∈
H} is bounded by a constant which depends only on b(G).

(3) Let K ∈ H. Let tK , ZK , and ΠK be as constructed in (2). Let
H ∈ HK and t′H = tKΦHK . Then t′H : VN(H) → l∞(X) is also a linear
isometry since ΦHK is an isometry. Now we take ZH = ω−1

H [t′H(VN(H))] (⊆
VN(H)/WAP(Ĥ)) and ΠH = (t′H)−1 (ωH |ZH ). Then ΠH : ZH → VN(H) is
also a continuous linear surjection and we still have ‖ΠH‖ ≤ ‖ωH‖.

Suppose that H,J ∈ HK and H ⊆ J . Since ΦHK = ΦJKΦHJ , we
have ΦHK(VN(H)) = ΦJK [ΦHJ(VN(H))] ⊆ ΦJK(VN(J)) and hence
tKΦHK(VN(H)) ⊆ tKΦJK(VN(J)), i.e., t′H(VN(H)) ⊆ t′J(VN(J)). Note
that ωJΓHJ = ωH (Lemma 5.9). Therefore, we have

ΓHJ [ω−1
H (t′H(VN(H)))] ⊆ ω−1

J (t′H(VN(H))) ⊆ ω−1
J [t′J(VN(J))],

i.e., ΓHJ(ZH) ⊆ ZJ . Finally, the construction of {ZH ,ΠH} and {ZJ ,ΠJ}
makes the diagram commutative.

Remark 5.11. Let K ∈ H and {ZK ,ΠK} be the same as constructed
in Theorem 5.10(2). If H,J ∈ HK with H ⊆ J and {ZH ,ΠH}, {ZJ ,ΠJ}
are chosen as in the proof of Theorem 5.10(3), then we only have ZH ⊆
ΘHJ(ZJ), where ΘHJ : VN(J)/WAP(Ĵ )→ VN(H)/WAP(Ĥ) is the surjec-
tion as defined in Lemma 5.7. So, generally, we cannot simultaneously have
the following commutative diagram when ΘHJ is restricted to ZJ :

ZH VN(H)

ZJ VN(J)

ΠH //

ΘHJ

OO

ΠJ //

ΨHJ

OO

However, for H ∈ HK , if we let QH = ΘHK(ZK) (⊆ VN(H)/WAP(Ĥ)) and
let ΣH : QH → VN(H) be defined by

ΣH [ΘHK(T + WAP(K̂))] = ΨHKΠK(T + WAP(K̂)) (T + WAP(K̂) ∈ ZK),

then it can be seen that QH is a linear subspace of VN(H)/WAP(Ĥ), ΣH :
QH → VN(H) is well defined, linear, onto VN(H), and ‖ΣH‖ ≤ ‖τ‖, where
τ : l∞(X)/c(X) → l∞(X) is the surjection as appeared in the proof of
Lemma 5.9. Let YH denote the norm closure of QH in VN(H)/WAP(Ĥ) and
extend ΣH continuously to YH . Then ΣH : YH → VN(H) is a continuous
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linear surjection. Now, if H,J ∈ HK and H ⊆ J , then ΘHJ(QJ) ⊆ QH
and hence ΘHJ(YJ) ⊆ YH . Also, we have ΣHΘHJ [ΘJK(T + WAP(K̂))] =
ΨHJΣJ [ΘJK(T + WAP(K̂))] for ΘJK(T + WAP(K̂)) ∈ QJ and thus the
following diagram commutes when ΘHJ is restricted to YJ :

YH VN(H)

YJ VN(J)

ΣH //

ΘHJ

OO

ΣJ //

ΨHJ

OO

But, in this case, we do not have ΓHJ(YH) ⊆ YJ and hence we cannot have
ΣJΓHJ |YH = ΦHJΣH , i.e., we do not have the commutative diagram in
Theorem 5.10 when {ZH ,ΠH} and {ZJ ,ΠJ} are replaced by {YH , ΣH} and
{YJ , ΣJ}, respectively.

It is not clear whether in Theorem 5.10 we could choose a family
{{ZH ,ΠH} : H ∈ H} compatible with all of the maps ΦHJ and ΓHJ
(H,J ∈ H and H ⊆ J). If so, then we would be able to obtain a continuous
linear surjection Π :

⋃
H∈H ΓH(ZH)→ VN(G) and hence we would be able

to conclude that A(G) is extremely non-Arens regular. For this reason, we
give the following version of extreme non-Arens regularity.

Definition 5.12. Let A be a Banach algebra. A is called inductively ex-
tremely non-Arens regular if there exists a family {Ai}i∈I of Banach algebras
such that:

(1) For each i ∈ I, Ai is extremely non-Arens regular.
(2) A =

⊔
i∈I Ai is a WAP-strong inductive union of {Ai}i∈I with A∗ =⊔

i∈I A
∗
i via {Φi}i∈I and A∗/WAP(A) =

⊔
i∈I [A

∗
i /WAP(Ai)] via {Γi}i∈I .

(3) Let k ∈ I and let Ik = {i ∈ I : i � k}. Then, for each i ∈ Ik, there
exists a closed linear subspace Zi of A∗i /WAP(Ai) and a continuous linear
surjection Πi : Zi → A∗i such that {‖Πi‖ : i ∈ Ik} is bounded (by a constant
independent of k) and {{Zi,Πi} : i ∈ Ik} is compatible. That is, if i, j ∈ Ik
and i � j, then Γij(Zi) ⊆ Zj and ΦijΠi = ΠjΓij |Zi , where Φij and Γij are
the same maps as in Corollary 3.5.

Combining Theorem 5.3 and Theorem 5.10 with [10, Corollary 4.2 and
Remark 4.7], we are able to deduce the non-Arens regularity of A(G) as
follows.

Corollary 5.13. Let G be a non-discrete locally compact group. Then:

(1) A(G) is extremely non-Arens regular if b(G) ≥ d(G).
(2) A(G) is inductively extremely non-Arens regular if b(G) < d(G).
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As an immediate consequence of Corollary 5.13, we have the following
result on the non-Arens regularity of the group algebra L1(G) of any non-
compact locally compact abelian group G.

Corollary 5.14. Let G be a non-compact locally compact abelian group.
Then:

(1) L1(G) is extremely non-Arens regular if b(G) ≤ d(G).
(2) L1(G) is inductively extremely non-Arens regular if b(G) > d(G).
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