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Normed algebras of differentiable functions
on compact plane sets: completeness and

semisimple completions

by

Heiko Hoffmann (Karlsruhe)

Abstract. We continue the study of the completeness and completions of normed
algebras of differentiable functions Dn(K) (where K is a perfect, compact plane set),
initiated by Bland, Dales and Feinstein [Studia Math. 170 (2005) and Indian J. Pure
Appl. Math. 41 (2010)]. We prove new characterizations of the completeness of D1(K)
and results concerning the semisimplicity of the completion of D1(K). In particular, we
prove that semi-rectifiability is necessary for the completion of D1(K) to be semisimple in
the case where K lies on a rectifiable, injective curve. Furthermore, we answer a question
posed by Dales and Feinstein and show that another question posed by them has an
affirmative answer in some special cases. As compared with the approach taken by Bland,
Dales and Feinstein, which comes from the theory of function algebras, we move within an
operator-theoretic framework by investigating the mapping properties of certain derivation
operators.

1. Introduction. Throughout this paper, let K ⊆ C be a non-empty,
compact, perfect set, i.e., a set without isolated points. Then one can define
differentiability of a function defined on K at a point z0 ∈ K in the usual
way via the difference quotient: f : K → C is differentiable at z0 if the limit

f ′(z0) := lim
K\{z0}3z→z0

f(z)− f(z0)
z − z0

exists. Now it is clear how to define n-times and infinitely continuously
differentiable functions. We denote the space of n-times continuously differ-
entiable functions by Dn(K). We endow it with the norm defined by

‖ · ‖Dn(K) : Dn(K)→ [0,∞); f 7→
n∑
k=0

1
k!
‖f (k)‖K
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(where ‖ · ‖K is the uniform norm on K). It is easy to show that (Dn(K),
‖ · ‖Dn(K)) is a unital, commutative, normed algebra. These algebras, to-
gether with certain algebras of infinitely differentiable functions in the above
sense, were first introduced by Dales and Davie in [7], and are therefore also
known as Dales–Davie algebras. However, there are many examples showing
that these algebras are not necessarily complete (see, e.g., Theorem 2.3 and
Example 2.4 in [6], and also Theorem 10.12, Example 10.13 and Theorem
10.16 in [8]).

If this is the case, we can consider the completion D̃n(K) of the normed
algebra (Dn(K), ‖ · ‖Dn(K)) and ask whether or not it is possible to regard
D̃n(K) as a Banach function algebra over K. Here by a Banach function
algebra over K we mean a subalgebra of C(K) (the space of continuous
functions on K) endowed with a complete algebra norm and containing at
least the constant functions and separating the points of K. Unfortunately,
this is not possible in general since an example due to Bishop shows that
the completion need not be semisimple (see [4] combined with Example 6.2
in [8] as well as Theorems 3.2 and 3.5 below).

As a result, we are confronted with the task of finding necessary and
sufficient conditions for (Dn(K), ‖ · ‖Dn(K)) to be either complete or for
its completion to be semisimple. Moreover, several results in [1], [9]–[15]
and [22] rely on completeness assumptions imposed on certain Dales–Davie
algebras, which gives, especially in view of Theorem 2.2 in [6], an additional
impetus to examine these algebras and their properties. However, unlike the
approach in [6] and in [8], we shall adopt a mainly operator-theoretical point
of view in order to attend to these questions.

Now we give an overview of the article and its organization. In the second
section, we shall provide some auxiliary results used later; these are mostly
from measure and integration theory and the theory of unbounded linear
operators. In the short third section, we shall give an operator-theoretical
interpretation of the questions we are interested in; we extensively use this
approach in what follows. The fourth section is devoted to the examination
of the semisimplicity of D̃1(K). In the fifth section, we shall consider the
problem of the completeness of (D1(K), ‖ · ‖D1(K)). Some applications are
given in the last sixth section.

Some notations and definitions. Let (X, τ) be a topological space
and A ⊆ X. Then A, intA, ∂A and 1A denote the closure, the interior, the
boundary and the indicator function of A, respectively. If (X, τ) is Hausdorff,
let rca(X) denote the space of all regular, countably additive Borel measures
on (X, τ) equipped with the total variation norm.
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By D we denote the open unit disk in the complex plane. For a non-
empty, compact set L ⊆ C, we denote by C(L) the space of continuous
functions on L, usually endowed with the uniform norm ‖ · ‖L. By A(L) we
denote the space of continuous functions whose restriction to intL is holo-
morphic. We denote the set of polynomial functions on L by P0(L) and its
uniform closure in C(L) by P(L). Furthermore, R(L) denotes the uniform
closure of the set of rational functions on L with poles off L. Recall that a
compact set L is polynomially convex if it coincides with its polynomially
convex hull PCH(L) given by {z ∈ C; |p(z)| ≤ ‖p‖L for all p ∈ P0(L)}. Fur-
thermore, recall that PCH(L) is the union of L and all bounded components
of C \L. Thus, L is polynomially convex if and only if C \L is connected. If
U is a non-empty, open subset of C, let O(U) denote the set of holomorphic
functions on U .

Let (E, ‖·‖E) and (F, ‖·‖F ) be two Banach spaces over K ∈ {R,C}, D(T )
a subspace of E and T : D(T ) → F a linear map. By ker(T ), ran(T ) and
G(T ) we denote the kernel, the range and the graph of T , respectively. By
T̂ we denote the operator induced by T on the quotient space D(T )/ker(T ).
Moreover, ‖ ·‖T denotes the graph norm on D(T ) induced by T . For A ⊆ E,
let LHA denote the linear hull of A. The symbol E′ denotes the (topological)
dual space of E (endowed with the norm topology).

Recall that the (Jacobson) radical rad(A) of a Banach algebra (A, ‖·‖A)
is the intersection of all maximal (left or respectively right) ideals of A, and
it coincides in the commutative case with the intersection of the kernels of
all multiplicative functionals on A, and thus with the set of all elements with
spectral radius zero. Recall that (A, ‖ · ‖A) is semisimple if rad(A) consists
only of the null vector.

Let (X, d) be a metric space. If γ : [a, b]→ X is a continuous path (where
a and b are real numbers with a ≤ b), then we denote by γ− := γ(a) its
starting point and by γ+ := γ(b) its end point. As usual, we call γ closed if
γ+ = γ−. The image γ([a, b]) will be denoted by γ∗. An injective path is a
Jordan path. A path γ in X such that γ|[a,b) is injective and with γ(a) = γ(b)
is a simple closed path. In addition, a path γ : [a, b]→ X with a < b is called
admissible if for all c, d ∈ [a, b] with c < d the path γ|[c,d] is not constant
(see also Definition 2.4 in [8]).

The length L(γ) ∈ [0,∞] of a path γ is defined in the usual way and γ
is called rectifiable if L(γ) <∞.

If γ is a closed path in C and z ∈ C\γ∗, then indγ(z) denotes the winding
number of γ with respect to the point z. If f ∈ C(γ∗) for a rectifiable path
γ : [a, b] → C, then we define the path integral

	
γ f :=

	
γ f(z) dz of f

along γ to be the Riemann–Stieltjes integral
	b
a f(γ(t)) dγ(t) as introduced

in Chapter 7 of [3].
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A non-empty, compact subset K of the complex plane is rectifiably con-
nected if K contains at least two points and any two points of K can be
joined by a rectifiable path in K.

If K is rectifiably connected, we define the geodesic metric δK on K by

δK(z, w) = inf{L(γ); γ is a path in K joining z to w}
for all z, w ∈ K. It can be shown that this infimum is indeed a minimum
(see, e.g., 1.4.11 and 1.4.12 in [24]), actually attained on a Jordan path as
one can see by using 1.2.2 in [24]. Such a path of minimum length is called
a geodesic path.

The set K is geodesically bounded if K is rectifiably connected and the
metric space (K, δK) has finite diameter.

If K is rectifiably connected and z ∈ K is such that there exists a
constant Cz > 0 with

δK(z, w) ≤ Cz|z − w|
for all w ∈ K, then we call K regular at z. We say that K is pointwise regular
(see also [6] and [8]) if K is regular at each of its points. If the Euclidean
and the geodesic metric are strongly equivalent on a rectifiably connected,
compact plane set K, i.e., δK(z, w) ≤ C|z − w| for some C > 0 and all
z, w ∈ K, then K is said to be uniformly regular or quasi-convex.

We mention that all continuously differentiable Jordan paths with no-
where vanishing derivatives, all circles and all convex sets with at least two
points are uniformly regular and that all connected unions of finitely many
continuously differentiable Jordan paths with nowhere vanishing derivatives
are pointwise regular. Examples of uniformly regular, compact plane sets
more sophisticated than the ones just listed are provided by (generalized)
Sierpiński carpets (see, e.g., Lemma 7.2 in [3] and 3.25 in [21]).

In what follows, K is always a non-empty, perfect, compact plane set.

2. Auxiliary results

2.1. Results from measure and integration theory. We first record
a simple lemma, whose proof is omitted since it is an immediate consequence
of the Jordan decomposition of complex measures and a well-known unique-
ness result from measure theory.

Lemma 2.1. Let (X,M) be a measurable space and µ : M → C a com-
plex measure. Furthermore, let E be a generator of M stable with respect to
intersection such that:

(i) µ|E = 0,
(ii) there is a sequence (En)∞n=1 in E such that

⋃∞
n=1En = X.

Then µ = 0.
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Next, we recall the classical Riesz representation theorem for the dual
space of the space of continuous functions on a compact interval. For this,
we need some notation.

For a < b, denote by NBV([a, b]) the space of normalized functions of
bounded variation on [a, b], i.e., the set

{f ∈ BV([a, b]); f(a) = 0 and f is continuous from the right on (a, b)},

where BV([a, b]) denotes the space of functions of bounded variation on
[a, b]. As usual we endow NBV([a, b]) with the variation norm var(·, [a, b]).
Finally, we put BVC([a, b]) := C([a, b]) ∩ BV([a, b]).

Theorem 2.2 (see, e.g., [2, U4.10]). The mapping

J : rca([a, b])→ NBV([a, b]); µ 7→ Jµ,

where

Jµ : [a, b]→ C; x 7→
{

0 if x = a,
µ([a, x]) if a < x ≤ b,

is a well-defined isometric isomorphism, and

�

[a,b]

f(x) dµ(x) =
b�

a

f(x) d(Jµ)(x)

for all µ ∈ rca([a, b]) and all f ∈ C([a, b]).

We now prove some useful corollaries of this version of the Riesz repre-
sentation theorem.

Corollary 2.3. Let a < b and α ∈ BVC([a, b]). Then there exists
exactly one µ ∈ rca([a, b]) such that

d�

c

f(x) dα(x) =
�

[c,d]

f(x) dµ(x)

for all a ≤ c < d ≤ b and all f ∈ C([a, b]). In addition, this complex measure
satisfies µ(A) = 0 for all countable subsets A of [a, b] and it is identically 0
if and only if α is constant.

Proof. The uniqueness is an immediate consequence of the Riesz repre-
sentation theorem. Furthermore, one easily verifies that the measure µ :=
(J[a,b])−1(α−α(a)) has the desired properties. Finally, the bijectivity of J[a,b]

implies that µ is the trivial measure if and only if α− α(a) is identically 0,
i.e., if and only if α is constant.

Applying the last result to path integrals, we obtain the following corol-
lary.



24 H. Hoffmann

Corollary 2.4. Let γ : [a, b] → C be an admissible rectifiable path.
Furthermore, let f ∈ C(γ∗) be such that�

γ|[c,d]

f(z) dz = 0

for all a ≤ c < d ≤ b. Then f vanishes on the whole of γ∗.

Proof. Assume, for contradiction, that f 6= 0. Since f is continuous, we
can find t1 < t2 belonging to [a, b] such that f does not vanish anywhere on
γ([t1, t2]). Then for all t1 ≤ c < d ≤ t2,

0 =
�

γ|[c,d]

f(z) dz =
d�

c

f(γ(t)) dγ(t) =
d�

c

f(γ(t)) dµ(t),

where µ is the measure associated to γ|[t1,t2] ∈ BVC([t1, t2]) as in Corollary
2.3. Lemma 2.1 implies that the complex measure f ◦ γ|[t1,t2] dµ is the zero
measure, which implies by a standard argument that µ itself is the zero
measure. However, this shows by Corollary 2.3 that γ must be constant on
[t1, t2], contradicting the premise that γ is admissible.

Another application of the Riesz representation theorem is given by the
following result.

Lemma 2.5. Let ∅ 6= L ⊆ C be compact and let γ : [a, b] → L (with
a < b) be a rectifiable path. For the mapping�

γ

· dz : C(L)→ C; f 7→
�

γ

f,

the following assertions hold:

(i)
	
γ · dz is in C(L)′ and ‖

	
γ · dz‖C(L)′ ≤ L(γ).

(ii) If γ is a Jordan path, then ‖
	
γ · dz‖C(L)′ = L(γ).

Proof. Part (i) is well-known, so let us turn to (ii). Clearly, γ : [a, b]→ γ∗

is a homeomorphism inducing an isometric isomorphism T from C(γ∗) onto
C([a, b]) by dint of f 7→ f ◦γ. The transpose operator T ′ is also an isometric
isomorphism. Now we consider the following element of C([a, b])′:

b�

a

· dγ : C([a, b])→ C; g 7→
b�

a

g(t) dγ(t).

A straightforward calculation yields T ′(
	b
a · dγ) =

	
γ · dz. Consequently, the

isometry property of T ′ implies that∥∥∥ �
γ

· dz
∥∥∥
C(γ∗)′

=
∥∥∥ b�
a

· dγ
∥∥∥
C([a,b])′

= var(γ, [a, b]) = L(γ)

by 2.2 and the Riesz representation theorem on compact Hausdorff spaces.
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Now let ε > 0. By the above, there exists an f ∈ C(γ∗) with ‖f‖γ∗ ≤ 1
such that |

	
γ f | > L(γ) − ε. Clearly, there exists F ∈ C(L) with F |γ∗ = f

and ‖F‖L = ‖f‖γ∗ . Then |
	
γ F | = |

	
γ f | > L(γ)− ε. Hence, ‖

	
γ · dz‖C(L)′ >

L(γ)− ε. Letting ε→ 0 gives ‖
	
γ · dz‖C(L)′ ≥ L(γ).

To end this subsection, we mention the fundamental theorem of calcu-
lus for rectifiable paths stated in [6] and [8]. A proof can be found in [21,
Section 4 of Anhang A], where the idea to use a bisection argument, as in-
dicated in [6], is carried out based on appropriately adopting the scheme of
the proof in [11].

Theorem 2.6. Let γ : [a, b] → C be a rectifiable path and f ∈ D1(γ∗).
Then �

γ

f ′(z) dz = f(γ(b))− f(γ(a)).

2.2. Unbounded operators. In this subsection, let (E, ‖ · ‖E) and
(F, ‖ · ‖F ) be two Banach spaces over K ∈ {R,C}, D(T ) a subspace of E
and T : D(T )→ F a linear map.

We have the following characterization of the closability of T .

Theorem 2.7. The following assertions are equivalent:

(i) The operator T is closable.
(ii) There is a set A ⊆ F ′ separating the points of F such that the linear

map ϕT : (D(T ), ‖ · ‖E)→ C is continuous for each ϕ ∈ A.

Proof. (i)⇒(ii): See the proof of Theorem II.2.11 in [19] and observe that
this proof does not use the density assumption made in the formulation of
the cited theorem in order to show the implication in question.

(ii)⇒(i): Let A be as in (ii). Using the Hahn–Banach theorem, we choose
for each ϕ ∈ A a functional ψϕ ∈ E′ that extends ϕT . Next, we define

D(TA) := {x ∈ E; ∃y ∈ F ∀ϕ ∈ A : ψϕ(x) = ϕ(y)}.
One easily sees that for every x ∈ E there is at most one y ∈ F such that
ψϕ(x) = ϕ(y) for all ϕ ∈ A. For x ∈ D(TA), we denote by TAx this unique
element of F . One easily verifies that D(TA) is a linear subspace of E and
that TA : D(TA)→ F ; x 7→ TAx is a closed linear extension of T .

3. Operator-theoretical characterizations. We start by endowing
C(K)n+1 (n ∈ N) with a suitable norm and multiplication to make it a
commutative Banach algebra with unit. For this, we define

‖ · ‖n+1 : C(K)n+1 → [0,∞); (f0, . . . , fn) 7→
n∑
j=0

1
j!
‖fj‖K .
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For (f0, . . . , fn) and (g0, . . . , gn) in C(K)n+1, we set

(f0, . . . , fn) · (g0, . . . , gn) :=
( j∑
k=0

(
j

k

)
fkgj−k

)n
j=0

.

It is easy to verify that with this norm and multiplication, C(K)n+1 becomes
a commutative Banach algebra with unit (1, 0, . . . , 0).

Next, we determine the radical of the Banach algebra (C(K)n+1, ‖·‖n+1)
in the following obvious lemma.

Lemma 3.1.

rad(C(K)n+1) = {(g0, . . . , gn) ∈ C(K)n+1; g0 = 0}.
In addition, all elements belonging to rad(C(K)n+1) are nilpotent with nilpo-
tency index at most n+ 1.

For n ∈ N, we consider the mappings

ιn : (Dn(K), ‖ · ‖Dn(K))→ (C(K)n+1, ‖ · ‖n+1); f 7→ (f (0), f (1), . . . , f (n))

and the derivation operators

Tn : (Dn(K), ‖ · ‖K)→ (C(K)n+1, ‖ · ‖n+1); f 7→ (0, f (1), . . . , f (n)).

We define D(Tn) := Dn(K) as well as D := π2◦T1, where π2 is the canonical
projection onto the second component.

It is immediate that ιn is an isometrical algebra homomorphism. There-
fore, we can identify (up to an isometrical algebra isomorphism) the comple-
tion D̃n(K) of (Dn(K), ‖ · ‖Dn(K)) with the closure of ran(ιn) in (C(K)n+1,
‖·‖n+1). Moreover, G(Tn) endowed with the sum norm arising from ‖·‖K and
‖ ·‖n+1 is isometrically isomorphic to (ran(ιn), ‖ ·‖n+1) via (f, Tnf) 7→ ιn(f)
(f ∈ D(Tn)). We finally note that (Dn(K), ‖ · ‖Tn) = (Dn(K), ‖ · ‖Dn(K))
with equal norms.

These simple observations are crucial for the proof of the following the-
orem that completely characterizes those cases in which D̃n(K) is a Banach
function algebra over K.

Theorem 3.2. The following assertions are equivalent:

(i) The operator

Tn : (Dn(K), ‖ · ‖K)→ (C(K)n+1, ‖ · ‖n+1); f 7→ (0, f (1), . . . , f (n))

is closable.
(ii) There is a Banach function algebra (A, ‖·‖A) on K such that Dn(K)

is dense in (A, ‖ · ‖A) and ‖ · ‖A extends ‖ · ‖Dn(K). In particular,
D̃n(K) is a Banach function algebra over K.

(iii) The completion D̃n(K) of (Dn(K), ‖ · ‖Dn(K)) is semisimple.
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Proof. (i)⇒(ii): Let Tn be the minimal closed extension of Tn. Then
the space G(Tn) = G(Tn) is isometrically isomorphic to ran(ιn), which is a
closed subalgebra of (C(K)n+1, ‖·‖n+1); on the other hand, it is isometrically
isomorphic to the Banach space (D(Tn), ‖ · ‖Tn

). Furthermore, D(Tn) =
π1(G(Tn)) ⊆ C(K). Hence, (D(Tn), ‖·‖Tn

) is a Banach algebra with the usual
multiplication of continuous functions. Since this algebra is the completion
of D(Tn) with respect to the graph norm, we see that the algebra (A, ‖·‖A) =
(D(Tn), ‖ · ‖Tn

) fulfills the desired conditions.
(ii)⇒(iii): As we can identify D̃n(K) with (A, ‖ · ‖A), it suffices to show

that (A, ‖ · ‖A) is semisimple—but every Banach function algebra is semi-
simple.

(iii)⇒(i): Assume to the contrary that Tn is not closable. Then there
exists (f1, . . . , fn) ∈ C(K)n \ {(0, . . . , 0)} such that (0, f1, . . . , fn) ∈ ran(ιn)
∼= D̃n(K) (with an isometrical algebra isomorphism). However, by 3.1,
(0, f1, . . . , fn) is a nilpotent element of C(K)n+1 different from (0, . . . , 0).
Thus rad(D̃n(K)) cannot be trivial, contrary to (iii).

Similarly, we have the following simple, but useful observation, whose
proof we omit.

Lemma 3.3. The following assertions are equivalent:

(i) (Dn(K), ‖ · ‖Dn(K)) is complete.
(ii) The operator

Tn : (Dn(K), ‖·‖K)→ (C(K)n+1, ‖·‖C(K)n+1); f 7→ (0, f (1), . . . , f (n))

is closed.

Clearly, the preceding two results also hold for n = 1 with T1 replaced
by D.

As an immediate consequence of these two results, we obtain the follow-
ing corollary, whose second assertion has been stated, e.g., in [6] and [8].
Since the proof is routine, we leave it to the reader.

Corollary 3.4.

(i) If there exists an n ∈ N such that D̃n(K) is semisimple, then D̃m(K)
is semisimple for all m ≥ n.

(ii) If there exists an n ∈ N such that (Dn(K), ‖ · ‖Dn(K)) is complete,
then (Dm(K), ‖ · ‖Dm(K)) is complete for all m ≥ n.

To close this section, we give a class of compact plane sets for which
D̃n(K) is not semisimple (and thus (Dn(K), ‖ · ‖Dn(K)) is not complete)
for any n ∈ N. Even stronger results have been stated in [4] and [5] and
proved in the latter paper. Here we state a weaker result, but sufficient for
our purposes. An elementary proof can be found in [21, 2.11].
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Theorem 3.5. Suppose that K is a totally disconnected set. Then D̃n(K)
∼= C(K)n+1 (with an isometrical algebra isomorphism) for each n ∈ N.
Hence, D̃n(K) is not semisimple.

4. Semisimplicity of D̃1(K). From now on, we are interested only in
D1(K) and D̃1(K). Thus we frequently write just ‖ · ‖ instead of ‖ · ‖D1(K).

Applying 3.2 in combination with 2.7 and with the Riesz representation
theorem on compact Hausdorff spaces, we obtain the following result.

Theorem 4.1. The completion D̃1(K) of (D1(K), ‖ · ‖) is semisimple if
and only if there is a family A ⊆ rca(K) such that:

(i)
⋂
µ∈A ker(C(K)→ C; f 7→

	
K f dµ) = {0}.

(ii) ∀µ ∈ A ∃C > 0 ∀f ∈ D1(K) : |
	
K f
′(z) dµ(z)| ≤ C‖f‖K .

Next, we turn to a broad class of non-empty, perfect, compact plane
sets K introduced in [8] for which D̃1(K) is semisimple. For this, we need a
definition.

Definition 4.2. We denote by FK the set of all rectifiable, admissi-
ble paths in K. Moreover, we put FK(K) :=

⋃
γ∈FK

γ∗. We call K semi-
rectifiable if FK(K) is dense in K.

Now we give an alternative proof of Theorem 6.3 in [8] within the
operator-theoretic framework that we have developed (see also Remark 4.5).

Theorem 4.3. Suppose that K is semi-rectifiable. Then D̃1(K) is semi-
simple.

Proof. We consider the family A := {
	
γ · dz}γ∈FK

of continuous, linear
functionals on C(K). The set A separates the points of C(K). Indeed, if
f ∈ C(K) with

	
γ f(z) dz = 0 for all γ ∈ FK , then 2.4 tells us that f

must vanish on the whole of γ∗ for all γ ∈ FK , i.e., f = 0 on FK(K). The
continuity of f and the premise FK(K) = K thus imply that f must be
the zero function. Moreover, 2.6 immediately shows that for all ϕ ∈ A the
composition ϕ ◦D : (D1(K), ‖ · ‖K)→ C is continuous. Because of 2.7, D is
closable, so the assertion follows from 3.2.

Obviously, this theorem applies, e.g., to the closure of bounded open sets
and to the image of non-constant paths γ : [a, b] → C with L(γ|[a,t]) < ∞
for all a < t < b. Furthermore, we have the following corollary, where we let
H1 denote the one-dimensional Hausdorff measure on C.

Corollary 4.4. If K is connected with H1(K) < ∞, then D̃1(K) is
semisimple.
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Proof. Due to [11, 3.12], the set K is pathwise connected. The proof of
[11, 3.13] now shows that K is semi-rectifiable.

Remark 4.5. We want to relate our proof of 4.3 to the approach in [8]
(for details on this approach see [6] and [8]). In view of the proof of 2.7, we
see that Dales and Feinstein indeed construct a closed extension of D by
using the family {

	
γ · dz}γ∈FK

. However, whereas in [8] the semisimplicity
primarily looks like a technical premise to make sure that the so called FK-
derivatives are unique, we now see that the applicability of families similar
to {

	
γ · dz}γ∈FK

and implicitly used in [6] and in [8] is probably only useful
for semi-rectifiable sets. If K is not semi-rectifiable, the family {

	
γ · dz}γ∈FK

of continuous, linear functionals does not separate the points of C(K) any
longer; e.g., the function

K → C; z 7→ inf{|z − a|; a ∈ A}
inf{|z − a|; a ∈ A}+ |z − z0|

,

where A := FK and z0 ∈ K \ FK , cannot be distinguished from the zero
function by means of the family {

	
γ · dz}γ∈FK

.

To close this section, we address the question whether semi-rectifiability
is not only sufficient, but also necessary for D̃1(K) to be semisimple. In a
special situation, the answer is affirmative.

Before stating the corresponding theorem, note that for a Jordan path
γ all connected subsets of γ∗ have the form (γ|I)∗, where I ⊆ [0, 1] is any
kind of interval (including the empty set and singletons). This can be easily
seen, using that γ : [0, 1] → γ∗ is a homeomorphism. Furthermore, observe
that every subset X of γ∗ has at most countably many components with
more than one point. Indeed, consider

K := {C ⊆ X; C is a component of X with ]C ≥ 2}
first for the special case X ⊆ [0, 1] and let λ be the one-dimensional Lebesgue
measure on R. Since λ(C) > 0 for each C ∈ K, the set K must be countable;
otherwise, by the pairwise disjointness of components, we would arrive at
the contradiction

1 = λ([0, 1]) ≥ sup
{∑
C∈K

λ(C); K ⊆ K, ]K <∞
}

=∞.

Since γ : [0, 1] → γ∗ is a homeomorphism, we obtain the general statement
for X ⊆ γ∗.

Theorem 4.6. Let K⊆γ∗ for a rectifiable Jordan path γ : [0, 1]→C. The
Banach algebra D̃1(K) is semisimple if and only if the union of all compo-
nents of K having more than one point is dense in K, and this occurs if and
only if the interior of K relative to γ∗ is dense in K, which is equivalent to
K being semi-rectifiable.
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Proof. The second and third equivalence statements are easy. The suffi-
ciency in the first equivalence statement follows from 4.3. Now we turn to
the necessity and assume that the interior of K relative to γ∗ is not dense
in K. We shall show that D̃1(K) cannot be semisimple. Set as above

K := {C ⊆ K; C is a component of K with ]C ≥ 2}.
For K = ∅, K is totally disconnected and the assertion follows from 3.5. Now
suppose that K 6= ∅ and put K0 :=

⋃
C∈KC.

By assumption, K \K0 6= ∅. Fix z0 ∈ K \K0. Let C(z0) be the connected
component of γ∗ \K0 that contains z0. Since γ∗ \K0 is open in γ∗, one easily
sees (once again using that γ : [0, 1]→ γ∗ is a homeomorphism) that C(z0)
itself is open in γ∗. Since this set is also connected with C(z0) ( γ∗, only
three cases are possible:

• ∃0 < t1 < t2 < 1 : C(z0) = γ((t1, t2)).
• ∃0 < t̃ < 1 : C(z0) = γ((t̃, 1]).
• ∃0 < t̃ < 1 : C(z0) = γ([0, t̃)).

Let ∂γ∗C(z0) denote the boundary of C(z0) relative to γ∗. We then have
∂γ∗C(z0) ⊆ K0, which can be rapidly verified by taking into consideration
the maximality of components and that C(z0) is open in γ∗.

Next, we define K̃ := C(z0) ∩K. The set K̃ is non-empty, compact and
perfect. The first two properties are obvious and the third one holds since
C(z0) ∩K is (relatively) open in K.

Now C(z0) ∩ K ⊆ K̃ ⊆ C(z0) ∩ K = C(z0) ∩ K. As a result, we have
K̃ \ (C(z0) ∩K) ⊆ ∂γ∗C(z0).

Let C̃ be a component of K̃. Then ]C̃ = 1. Otherwise, we could find
0 ≤ a < b ≤ 1 with C̃ = (γ|[a,b])∗. This would lead to

∅ 6= (γ|[a,b])∗ \ ∂γ∗C(z0) ⊆ C(z0) ∩K.
Since ]∂γ∗C(z0) ≤ 2, this implies the existence of a C ∈ K with C∩C(z0) 6= ∅,
contradicting the definition of C(z0).

Therefore, K̃ is totally disconnected. But then it has a base of clopen sets.
Consequently, there is a clopen subset U of K̃ with z0 ∈ U and U ∩K0 = ∅.
Clearly, U is closed in K. We infer U ⊆ C(z0)∩K from ∂γ∗C(z0) ⊆ K0 and
K̃ \ (C(z0)∩K) ⊆ ∂γ∗C(z0). Thus, it is easy to see that U is also open in K.

By 3.5, there exists a sequence (f̃n)∞n=1 in D1(K̃) such that (f̃n)∞n=1 con-
verges uniformly on K̃ to the zero function and (f̃ ′n)∞n=1 converges uniformly
on K̃ to 1U | eK . Since U is a clopen subset of K, the functions

fn : K → C; z 7→
{
f̃n(z) if z ∈ U ,
0 if z /∈ U ,
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are obviously differentiable on K with continuous derivatives

f ′n(z) =
{
f̃ ′n(z) if z ∈ U ,
0 if z /∈ U ,

for all z ∈ K. The sequence (fn)∞n=1 clearly converges uniformly on K to the
zero function, whereas (f ′n)∞n=1 converges uniformly on K to the indicator
function of U . By 3.2, this shows that D̃1(K) is not semisimple.

We have the following immediate corollaries.

Corollary 4.7. The conclusion of 4.6 also holds for a simple closed,
rectifiable path γ instead of a Jordan path.

Proof. For K = γ∗, there is nothing to show. For K ( γ∗, the set K lies
on a Jordan path running in γ∗.

Theorem 4.8. Let K ⊆ γ∗ for a (not necessarily rectifiable) Jordan path
γ : [0, 1] → C. If the Banach algebra D̃1(K) is semisimple, then the union
of all components of K having more than one point is dense in K, and the
latter occurs if and only if the interior of K relative to γ∗ is dense in K.

Proof. Observe that in the proof of 4.6 we needed the rectifiability of
γ only to establish the third equivalence and the sufficiency in the first
equivalence statement.

Remark 4.9. If X is any non-empty, compact subset of C, one can
consider the operator

T : (P0(X), ‖ · ‖X)→ (C(X), ‖ · ‖X);
N∑
n=0

anZ
n 7→

N∑
n=1

nanZ
n−1

and ask for a characterization of the closability of T . In Theorem 3.1 of [2],
this question is completely answered for X ⊆ R. In this case, T is closable
if and only if the interior of X relative to R is dense in X. Thus, 4.6 can be
considered as an analogous result for D and non-empty, perfect, compact
subsets of rectifiable Jordan paths. In addition, if X is a non-empty, perfect,
compact subset of R, a consequence is that D̃1(X) is semisimple if and only
if T is closable.

5. Completeness of D1(K). Our main tool to examine the complete-
ness of D1(K) is the next theorem. It gives a new operator-theoretic char-
acterization of the completeness in terms of the mapping properties of the
derivation operator.

Theorem 5.1. The following assertions are equivalent:

(i) The normed algebra D1(K) is complete.
(ii) The operator D : (D1(K), ‖ · ‖K)→ C(K) is closed.
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(iii) The operator D : (D1(K), ‖ · ‖K)→ C(K) is closed, ranD is closed
in C(K) and dim kerD < ∞ (i.e., D is an upper semi-Fredholm
operator).

(iv) The subspaces kerD and ranD are closed in C(K) and the operator

D̂ : (D1(K)/kerD, ‖ · ‖Q)→ (ranD, ‖ · ‖K)

is continuously invertible, where ‖ · ‖Q denotes the quotient norm
on D1(K)/kerD arising from ‖ · ‖K .

Proof. The equivalence (i)⇔(ii) has already been shown in 3.3 in a more
general setting. The implication (iii)⇒(ii) is trivial.

The implication (iv)⇒(ii) can be deduced from IV.1.6 and IV.1.7 in [19].
To complete the proof, we show that (i) implies both (iii) and (iv).

Clearly, D is closed, and hence kerD is closed in C(K). Since D1(K) is com-
plete, K has only finitely many components (see 2.3 in [6]), say K1, . . . ,Kn,
and all of them are connected, compact and perfect. Moreover, it is easy to
establish the completeness of (D1(Kj), ‖·‖D1(Kj)) for all j ∈ {1, . . . , n}. As a
result, kerD = LH{1Kj ; j ∈ {1, . . . , n}}, by Lemma 9.2 in [8]; in particular,
kerD is finite-dimensional.

Now we fix a tuple (z1, . . . , zn) ∈ K1×· · ·×Kn. For each f ∈ ranD, there
exists, because of kerD = LH{1Kj ; j ∈ {1, . . . , n}}, exactly one function
Tf ∈ D1(K) with (Tf)′ = f and (Tf)(zj) = 0 for all j ∈ {1, . . . , n}. This
uniqueness implies that the map T : ranD → D1(K) defined this way is
linear. Theorem 9.3 in [8] gives constants c1, . . . , cn ∈ (0,∞) (each only
depending on zj and Kj) such that

‖Tf‖K = max
j=1,...,n

‖(Tf)|Kj‖Kj ≤ max
j=1,...,n

cj‖((Tf)|Kj )′‖Kj

= max
j=1,...,n

cj‖f |Kj‖Kj ≤ max{cj ; j = 1, . . . , n} · ‖f‖K .

Consequently, T : (ranD, ‖ · ‖K) → (D1(K), ‖ · ‖K) is continuous. Let π
denote the canonical epimorphism C(K)→ C(K)/kerD. Then

I := π ◦ T : (ranD, ‖ · ‖K)→ (D1(K)/kerD, ‖ · ‖Q)

is continuous and linear. For all f ∈ ranD, we have

D̂(If) = D̂(Tf + kerD) = (Tf)′ = f,

and for all f ∈ D1(K), we have

I(D̂(f + kerD)) = Tf ′ + kerD = f + kerD,

in view of (Tf ′)′ = f ′. This means that I is the inverse of D̂. Thus, D̂ is
continuously invertible. Note that D̂ is closed whenever D is closed (see, e.g.,
II.4.7(i) in [19]). As a consequence, I is itself closed as the inverse of a closed
operator. However, since I is both continuous and closed, (ranD, ‖ · ‖K)
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must be a Banach space, i.e., ranD is closed in C(K). Hence, the theorem
is established.

Next, we deduce some corollaries from the theorem just proved.
Once the conditions of Theorem 5.1 have been checked for certain well-

behaved compact sets K, the characterization of the completeness simplifies
for certain subsets of K, as shown in the following statements.

First, we need some notation. Consider a non-empty, perfect, compact
subset X of K as well as a set F of functions on K. We then denote by F|X
the set {f |X ; f ∈ F} and by DX the derivation operator on D1(X), i.e., the
mapping

DX : D1(X)→ C(X); f 7→ f ′.

Lemma 5.2. Let (D1(K), ‖ · ‖) be complete, and let X be a non-empty,
perfect, compact subset of K such that there is a constant M > 0 with the
property that for every f ∈ ranDX we can find f̂ ∈ ranD satisfying f̂ |X = f

and ‖f̂‖K ≤M‖f‖X . Then:

(i) The induced operator

D̂X : D1(X)/kerDX → ranDX

is continuously invertible, where D1(X)/ker (DX) is endowed with
the quotient seminorm arising from ‖ · ‖X and denoted by ‖ · ‖Q and
ranDX carries the norm topology of ‖ · ‖X .

(ii) The following assertions are equivalent:

(a) D1(X) is complete.
(b) dim kerDX <∞ and ranDX is closed in C(X).
(c) Both kerDX and ranDX are closed in C(X).

Proof. Part (ii) follows easily from (i) and 5.1. To prove (i), letK1, . . . ,Kn

and (z1, . . . , zn) ∈ K1 × · · · ×Kn be as in the proof of 5.1. As in that proof
we see that for each f ∈ ranDX there exists a unique Tf ∈ D1(K) with
(Tf)′ = f̂ and Tf(zj) = 0 for all j ∈ {1, . . . , n}, where f̂ is as in the state-
ment. In particular, (Tf)|X ∈ D1(X) with ((Tf)|X)′ = f . As in the proof
of 5.1, one gets a constant C > 0 (only depending on z1, . . . , zn) such that

‖(Tf)|X + kerDX‖Q ≤ ‖(Tf)|X‖X ≤ ‖Tf‖K ≤ C‖(Tf)′‖K
= C‖f̂‖K ≤ CM‖f‖X

for all f ∈ ranDX . As a consequence,

ranDX → D1(X)/kerDX ; f 7→ (Tf)|X + kerDX

is the required continuous inverse to D̂X .
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Corollary 5.3. Let D : (D1(K), ‖ · ‖K) → C(K) be closed and sur-
jective and let X be a non-empty, perfect, compact subset of K. Then the
following assertions are equivalent:

(i) D1(X) is complete.
(ii) DX has a kernel of finite dimension.

Proof. The implication from (i) to (ii) is clear in view of 5.1. So assume
conversely that condition (ii) holds. Extend any f ∈ C(X) to a function
f̂ ∈ C(K) with ‖f̂‖K = ‖f‖X . Our assumption implies the existence of
F ∈ D1(K) with F ′ = f̂ . In particular, F |X ∈ D1(X) and (F |X)′ = f .
Thus, ranDX = C(X). Now, apply 5.2.

Remark 5.4. Assume that K is polynomially convex and D1(K) is com-
plete. Let ∅ 6= X ⊆ ∂K be perfect and compact. If ranDX is closed and
coincides with A(K)|X , then all conditions of 5.2 are fulfilled.

Proof. Mergelyan’s theorem (see, e.g., 9.1 in Chapter II of [17]) implies
that A(K) = P(K). We know that P(K) is a Dirichlet algebra on ∂K (see,
e.g., 3.4 in Chapter II of [17]). If ranDX = A(K)|X is closed, Glicksberg’s
interpolation theorem (see 4.6 in [12]) shows that for every f ∈ ranDX

we can find f̂ ∈ A(K) with f̂ |X = f and ‖f̂‖K = ‖f‖X . Since D1(K) is
assumed to be complete, we conclude that P(K) ⊆ ranD ⊆ A(K) by means
of 5.1. As a result, ranD = A(K).

We now turn to sets K satisfying the rather mild conditions of rectifiable
connectedness and geodesical boundedness. In this context, Theorem 5.1 also
allows simplified characterizations of the completeness of D1(K).

Corollary 5.5. If K is rectifiably connected and geodesically bounded,
then the following assertions are equivalent:

(i) D1(K) is complete.
(ii) ranD is closed in C(K).

Proof. The implication (i)⇒(ii) is clear by now. For the converse, observe
that in the case of a rectifiably connected K the fundamental theorem of
calculus on rectifiable paths implies that kerD consists only of constant
functions. Because of 5.1 and the premise that ranD is closed in C(K) it is
only left to show that

D̂ : (D1(K)/kerD, ‖ · ‖Q)→ (ranD, ‖ · ‖K)

is continuously invertible (where we use the notation of 5.1). For this purpose
we fix a z0 ∈ K as well as a geodesic path γz joining z0 to z for each z ∈ K.
For f ∈ ranD, Theorem 2.6 shows that

Tf : K → C; z 7→
�

γz

f(ζ) dζ
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is a primitive function for f . The mapping

T : (ranD, ‖ · ‖K)→ (D1(K), ‖ · ‖K)

defined in this way is obviously linear and satisfies

‖Tf‖K ≤ sup
z∈K

L(γz)‖f‖K = sup
z∈K

δK(z, z0)‖f‖K ≤ sup
z,w∈K

δK(z, w)‖f‖K

for every f ∈ ranD, i.e., T is continuous. As in the proof of 5.1, one now
concludes that the map π◦T (where π : C(K)→ C(K)/kerD is the canonical
epimorphism) is the continuous inverse to D̂.

We now assume that the compact set K is rectifiably connected and
geodesically bounded, that C \ K has finitely many bounded components
G1, . . . , Gn and that for each j ∈ {1, . . . , n} there exists a rectifiable closed
path γj in K such that

indγj (Gk)
{ 6= 0 if k = j,

= 0 if k 6= j.

Then A(K) = R(K) (see II.10.4 in [17]). Furthermore, we put

A := {A ⊆ C \K; ∀j ∈ {1, . . . , n} : A ∩Gj 6= ∅}.

and A = {∅} if K is polynomially convex. For A ∈ A \ {∅}, we define

XA := LH(P0(K) ∪ {K 3 z 7→ (z − a)−m; m ∈ N with m ≥ 2, a ∈ A}).

Furthermore, we set X∅ = P0(K). If (α1, . . . , αn) is any tuple of rectifiable
closed paths in K with

indαj (Gk)
{ 6= 0 if k = j,

= 0 if k 6= j,

we denote by ϕ(α1,...,αn) : C(K)→ Cn the continuous linear map defined via

ϕ(α1,...,αn)(f) :=
( �

α1

f(z) dz, . . . ,
�

αn

f(z) dz
)

for all f ∈ C(K).
The proof of the following statement is similar to that of 5.9 in [6] and

therefore omitted.

Lemma 5.6. For any tuple (α1, . . . , αn) of rectifiable closed paths in K as
described above and any tuple (a1, . . . , an) ∈

∏n
j=1Gj, we have the equality

X{a1,...,an} = ker(ϕ(α1,...,αn)|R(K)).

We have the following characterization of the completeness of D1(K) in
terms of the range of D only.
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Theorem 5.7. In the above circumstances, the following assertions are
equivalent:

(i) D1(K) is complete.
(ii) ranD = XA for some (or each) set A ∈ A.

(iii) For some (or each) tuple (α1, . . . , αn) of rectifiable closed paths in
K as described above, we have ranD = ker(ϕ(α1,...,αn)|R(K)).

Proof. The universally quantified statement in (ii) implies the corre-
sponding statement in (iii) by 5.6. The universally quantified statement in
(iii) trivially implies the existence assertion, which gives us the existence
assertion in (ii) because of 5.6. Furthermore, the existence assertion in (ii)
implies (i) due to 5.5.

To complete the proof, we show that (i) yields the universally quantified
assertion in (ii). Let A ∈ A. We choose an aj ∈ A∩Gj for each j ∈ {1, . . . , n}.
We then conclude

X{a1,...,an} ⊆ ranD ⊆ ker(ϕ(α1,...,αn)|R(K)) = X{a1,...,an},

by means of 5.6, thus arriving at ranD = X{a1,...,an} by using 5.5. Clearly,
X{a1,...,an} ⊆ XA. Mergelyan’s theorem yields A(PCH(K)) = P(PCH(K)).
As a result, all functions of the type K → C; z 7→ 1/(z − a) with a ∈ C \
PCH(K) can be uniformly approximated on K by holomorphic polynomials.
Thus

XA ⊆ LH
( ⋃

(b1,...,bn)∈
Qn

j=1(A∩Gj)

X{b1,...,bn} ∪ P(K)
)
.

The right hand side is clearly a subset of ker(ϕ(α1,...,αn)|R(K)) = X{a1,...,an}.
Summarizing, we now obtain the asserted equality XA = X{a1,...,an} =
ranD.

In particular, we can apply the above characterization to the case where
K is rectifiably connected, geodesically bounded and polynomially convex:

Theorem 5.8. If K is rectifiably connected, geodesically bounded and
polynomially convex, then the following assertions are equivalent:

(i) D1(K) is complete.
(ii) ranD = A(K).

Note that in this theorem the implication (i)⇒(ii) even holds if we drop
the rectifiable connectedness and geodesical boundedness of K (cf. Theo-
rem 9.6 in [8]); indeed, this follows immediately from 5.1 and Mergelyan’s
theorem (see the proof for (i)⇒(ii) of Theorem 5.14 below).

In Section 2, we defined the notion of a pointwise and uniformly regular,
compact plane set K. In the following results we explore the relation of these
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properties to the completeness of D1(K), thus indicating the importance of
these sets.

Lemma 5.9. If K is pointwise regular, then a function f ∈ C(K) has a
primitive function in D1(K) if and only if

	
γ f(z) dz = 0 for every rectifiable

closed path γ contained in K.

Proof. The necessity is an immediate consequence of the fundamental
theorem of calculus for rectifiable paths. We fix an a ∈ K. For z ∈ K, let γz
be any rectifiable path in K joining a to z. We define F (z) :=

	
γz
f(ζ) dζ for

z ∈ K. Furthermore, we fix a z0 ∈ K. Let ε > 0. Then there is an M > 0 such
that δK(z0, w) ≤ M |z0 − w| for all w ∈ K. Moreover, there exists a δ > 0
such that |f(z0) − f(w)| < ε/M for all w ∈ K with |z0 − w| < δ. Consider
any z ∈ K with 0 < |z0 − z| < δ/M . In addition, let γz0,z be an injective
geodesic path in K joining z0 to z. Then F (z)−F (z0) =

	
γz0,z

f(ζ) dζ. This

yields, by straightforward estimates, |(z−z0)−1 ·(F (z)−F (z0))−f(z0)| < ε.
In summary, F ∈ D1(K) is a primitive for f .

Clearly, the preceding result is inspired by an analogous result well-
known from complex analysis.

The following statement, for which different proofs have already been
given, e.g., in [7], [22] and [8], flows from the theory developed so far in a
very natural way.

Theorem 5.10 ([8, 2.7]). If K is the union of finitely many pointwise
regular, compact sets, then D1(K) is complete.

Proof. With a standard argument, one reduces the assertion to the case
where K itself is pointwise regular. Furthermore, the triangle inequality for
δK and the pointwise regularity immediately imply that K is geodesically
bounded. Due to 5.5, it only remains to show that ranD is closed in C(K).
Let (fn)∞n=1 be a sequence in ranD converging to some function f in C(K).
Then for each rectifiable closed path γ in K,�

γ

f(z) dz = lim
n→∞

�

γ

fn(z) dz = 0,

which implies that f ∈ ranD by 5.9.

In particular, all examples of pointwise and uniformly regular, compact
plane sets provided in the first section also serve as examples of perfect
compact sets K such that D1(K) is complete.

In [8], Dales and Feinstein asked whether the converse of 5.10 is also true.
Despite some positive results they obtained, the general question remained
open. Although we cannot decide this question either (even for the specific
class of sets discussed in §10 of [8]), our next aim is to continue these stud-
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ies. We start with a characterization of pointwise regularity under suitable
circumstances.

Definition 5.11. Let K be rectifiably connected and fix z ∈ K. For
each w ∈ K, choose a rectifiable path γw joining z to w and define (with
the notation of Lemma 2.5)

qK(z) := inf
w∈K\{z}

1
δK(z, w)

∥∥∥ �

γw

· dζ
∥∥∥

ran(D)′
.

Here, we denote by ran(D)′ the topological dual space of (ran(D), ‖ · ‖K)
and by ‖·‖ran(D)′ the corresponding norm of linear functionals. Theorem 2.6
guarantees that this definition is legitimate, i.e., independent of the chosen
path γw.

Lemma 5.12. If K is rectifiably connected and D1(K) is complete, then
the following assertions are equivalent for each z ∈ K:

(i) K is regular at z;
(ii) qK(z) > 0.

Proof. (i)⇒(ii): By assumption, there is a C > 0 such that for all w ∈ K
the inequality δK(z, w) ≤ C|z − w| holds. This yields

1
δK(z, w)

∥∥∥ �

γw

· dζ
∥∥∥

ran(D)′
≥ 1
δK(z, w)

∣∣∣ �
γw

1 dζ
∣∣∣ =

|z − w|
δK(z, w)

≥ 1
C

for all w ∈ K \ {z}, which implies that qK(z) > 0.
(ii)⇒(i): Since K is connected and D1(K) is complete, there exists an

A > 0 such that |f(z)−f(w)| ≤ A|z−w|·‖f ′‖K for all w ∈ K and f ∈ D1(K)
(see 9.3 in [8]). This leads to∥∥∥ �

γw

· dζ
∥∥∥

ran(D)′
= sup

f∈D1(K)\C

1
‖f ′‖K

∣∣∣ �
γw

f ′(ζ) dζ
∣∣∣ ≤ A|z − w|

for all w ∈ K. As a result, for all w ∈ K \ {z},

qK(z)δK(z, w) ≤
∥∥∥ �

γw

· dζ
∥∥∥

ran(D)′
≤ A|z − w|

and thus

δK(z, w) ≤ A

qK(z)
|z − w|

because qK(z) > 0. But this means precisely that K is regular at z.

Theorem 5.13. If K is rectifiably connected such that D1(K) is com-
plete and ranD = C(K), then K is pointwise regular.
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Proof. Fix z ∈ K. For an arbitrary w ∈ K \ {z} let γw be an injective
geodesic path joining z to w. Then 2.5 yields

1
δK(z, w)

∥∥∥ �

γw

· dζ
∥∥∥

ran(D)′
=

1
δK(z, w)

∥∥∥ �

γw

· dζ
∥∥∥
C(K)′

=
L(γw)
δK(z, w)

= 1,

which implies the assertion by means of 5.12.

Theorem 5.14. If K is polynomially convex and rectifiably connected
with int(K) = ∅, then the following assertions are equivalent:

(i) D1(K) is complete.
(ii) K is pointwise regular.
(iii) K is geodesically bounded and ranD = C(K).

Proof. (i)⇒(ii): Mergelyan’s theorem and 5.1 yield

P(K) ⊆ ranD ⊆ A(K) = P(K),

which implies that ranD = C(K) due to int(K) = ∅. This gives us (ii)
by 5.13.

(ii)⇒(iii): As indicated in the proof of 5.10, pointwise regularity always
implies geodesical boundedness. Moreover, if (ii) holds, then so does (i) by
5.10. This leads to ranD = A(K) = C(K) by means of 5.8, taking into
consideration int(K) = ∅.

(iii)⇒(i): This follows from 5.8 as A(K) = C(K).

The implication (i)⇒(ii) in the preceding theorem can also be found in
[8, Theorem 10.2]. Although the proof given there shares some important
ingredients with ours, it is indirect and cannot easily be turned into a direct
one, while we have given here a direct proof.

By applying 5.14 in the case where K is the image of a rectifiable Jordan
path and by observing that γ∗ is automatically geodesically bounded for a
rectifiable path γ, we obtain the following corollary.

Corollary 5.15 (see also [8]). If γ : [a, b] → C is a rectifiable Jordan
path, then the following statements are equivalent:

(i) D1(γ∗) is complete.
(ii) γ∗ is pointwise regular.
(iii) D : D1(γ∗)→ C(γ∗) is surjective.

Remark 5.16. Using Theorem 2.3 in [6], Corollary 5.15 and Theorem
5.10 as well as Theorem 4.6, we are now able to completely answer the ques-
tions asked in the introduction in the case of compact, perfect subsets K
of a rectifiable injective curve γ. Moreover, we could even describe D1(K)
and D̃1(K) quite explicitly in the case of completeness respectively semi-
simplicity by applying Theorem 7.2 in [8] respectively Theorem 5.7 in [6]. In
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addition, note that for a non-empty, perfect, compact subset X of γ∗ with
γ∗ being pointwise regular, the space D1(X) is complete if and only if X
has only finitely many components.

We note at this point that the implication (i)⇒(ii) in 5.15 is even true
for non-rectifiable paths (see 10.5 in [8]). Dales and Feinstein show that
this implication also holds if K is starshaped (see 10.14 in [8]) and even for
another kind of sets (see the remarks subsequent to 10.12 in [8]).

However, all these compact sets are polynomially convex, and so far there
seems to be no general result concerning classes of compact plane sets that
are not polynomially convex. We next prove such a result by using very
simple considerations.

Let K(C) be the set of all non-empty, perfect, compact subsets of C, and
denote by R(C) the set

{K ∈ K(C); K is a finite union of pointwise regular, compact plane sets}.

We call a set A ⊆ K(C) admissible if

∀K ∈ A : (D1(K) is complete⇒ K ∈ R(C)).

We set C :=
⋃
{A; A ⊆ K(C) is admissible}, the biggest admissible subset

of K(C). The question about the converse of 5.10 can now be formulated in
the following way: Does C = K(C) hold? Clearly, C contains all K ∈ K(C)
such that D1(K) is not complete, and C is a superset of R(C). It is equally
apparent that C is stable with respect to finite disjoint unions. In fact, a
slightly more general result holds.

Theorem 5.17. Let K1, . . . ,Kn be sets in C satisfying

]
(
Kk ∩

n⋃
j=1
j 6=k

Kj

)
<∞

for all k ∈ {1, . . . , n}. Then K :=
⋃n
j=1Kj ∈ C.

Proof. If D1(K) is not complete, there is nothing to show. So assume
that D1(K) is complete. Obviously, it is sufficient to prove that all Kj be-
long to R(C) (as R(C) is stable with respect to finite unions). Assume to
the contrary that, say, K1 /∈ R(C). As K1 ∈ C, the space D1(K1) cannot be
complete. Accordingly, there exists a Cauchy sequence (fm)∞m=1 in D1(K1)
with no limit in D1(K1). If K1 ∩

⋃n
j=2Kj = ∅, one easily deduces a contra-

diction to the completeness of D1(K). Thus, assume K1 ∩
⋃n
j=2Kj 6= ∅. By

the premise, there are pairwise distinct points a1, . . . , ar ∈ C such that K1∩⋃n
j=2Kj = {a1, . . . , ar}. Hermite interpolation yields (unique) polynomials
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p1,0, p1,1, p2,0, p2,1, . . . , pr,0, pr,1 with degree less than or equal to 2r such that

p
(j)
k,l (aν) =

{
1 if j = l and ν = k,
0 else,

for all ((j, l), (k, ν)) ∈ {0, 1}2 × {1, . . . , r}2.
For m ∈ N and z ∈ K, we now define

gm(z) :=
r∑
j=1

(
fm(aj)pj,0(z) + f ′m(aj)pj,1(z)

)
.

Clearly gm ∈ D1(K) with gm(aj) = fm(aj) and g′m(aj) = f ′m(aj) for all
m ∈ N and all j ∈ {1, . . . , r}. Next, we set

Fm : K → C; z 7→
{
fm(z) if z ∈ K1,
gm(z) if z /∈ K1,

for each m ∈ N. A standard argument shows that Fm ∈ D1(K) with

F ′m(z) =
{
f ′m(z) if z ∈ K1,
g′m(z) if z /∈ K1,

for all z ∈ K and all m ∈ N. Now put M := maxl,j=0,1 maxk=1,...,r ‖p
(j)
k,l‖K .

Then for m1,m2 ∈ N, j ∈ {0, 1} and z ∈ K,

|g(j)
m1

(z)− g(j)
m2

(z)| ≤M
r∑
j=1

(|fm1(aj)− fm2(aj)|+ |f ′m1
(aj)− f ′m2

(aj)|)

≤Mr‖fm1 − fm2‖D1(K1).

Therefore,

‖Fm1 − Fm2‖D1(K) ≤ max{1, rM}‖fm1 − fm2‖D1(K1).

As a result, (Fm)∞m=1 is a Cauchy sequence in D1(K) and thus converges to
some F in D1(K) by the completeness of D1(K). But then (fm)∞m=1 tends
to F |K1 in D1(K1), contradicting the choice of the sequence.

From this simple result one easily obtains interesting and in general not
polynomially convex compact plane sets for which the converse of 5.10 is
true. The following corollary gives us a class of such examples.

Corollary 5.18. Let γ : [0, 1]→ C be a path such that:

(i) ]γ−1({z}) < ∞ for every z ∈ C (“each point in the plane is passed
through at most finitely many times”).

(ii) ]{z ∈ C; ]γ−1({z}) > 1} < ∞ (“there are only finitely many points
passed through more than once”).

Then D1(γ∗) is complete if and only if γ∗ is pointwise regular.
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Proof. First, we treat the special case where γ is a simple closed path.
Then γ|[0,1/2] and γ|[1/2,1] are Jordan paths and (γ|[0,1/2])∗ ∩ (γ|[1/2,1])∗ =
{γ(0), γ(1/2)}. In this situation, the assertion follows from Theorem 10.5
in [8] and from 5.15 above combined with Theorem 5.17. Let us now turn
to the general case. Without much effort, one can see that the conditions
imposed on γ yield the existence of n ∈ N and 0 = t0 < t1 < · · · < tn = 1
such that γ−1({γ(t)}) = {t} for all t ∈ [0, 1] \ {t0, . . . , tn}. Consequently,
each path γ|[tj−1,tj ], where j = 1, . . . , n, is either a simple closed path or a
Jordan path and we have

(γ|[tj−1,tj ])
∗ ∩

n⋃
k=1
k 6=j

(γ|[tk−1,tk])
∗ ⊆ {γ(tj−1), γ(tj)}

for all j ∈ {1, . . . , n}. Hence, the special case gives the assertion by applying
10.5 in [8] and 5.15 in combination with 5.17.

6. Applications. This section concerns some applications of the re-
sults obtained in the preceding section, especially to properties of certain
holomorphic functions.

First, we assume K is rectifiably connected and geodesically bounded,
the space D1(K) is complete, C \K has finitely many bounded components
G1, . . . , Gn, the set G := int(K) is connected and dense in K and for each
j ∈ {1, . . . , n} there is a rectifiable closed path γj in G with

indγj (Gk)
{ 6= 0 if k = j,

= 0 if k 6= j.

We recall once again that in this situationA(K) = R(K) (see II.10.4 in [17]).

Theorem 6.1. If f ∈O(G) (with G as above) and if there exists an n ∈ N
such that f (n) can be continuously extended to K = G, then every function
f (j) for j = 0, . . . , n − 1 can be extended to a continuously differentiable
function on K.

Proof. A proof by induction reduces the assertion to the case n = 1. Let
f̃ be the continuous extension of f ′ to the whole of K. Fix z0 ∈ G. Since
γ∗j ⊆ G for all j ∈ {1, . . . , n}, as well as f ′ = f̃ |G and f̃ ∈ A(K) = R(K),
we deduce that

f̃ ∈ ker(ϕ(γ1,...,γn)|R(K))

(notation as in 5.6). Then 5.7 yields f̃ ∈ ranD. Let F ∈ D1(K) be the
(unique) primitive of f̃ fulfilling F (z0) = f(z0). Because of (F |G)′= f̃ |G=f ′,
G = K and the connectedness of G, we conclude that F is the desired
extension of f .
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For a non-empty, perfect, compact set L ⊆ C satisfying int(L) = L, we
set (as in [8])

A1(L) := {f ∈ A(L); (f |int(L))
′ can be continuously extended to L}.

In [8], Dales and Feinstein give an example of a compact, uniformly reg-
ular, polynomially convex set K with dense interior such that D1(K) and
A1(K) fail to coincide. The only flaw of this surprising example is that
the interior of K is not connected. This gives rise to the question whether
there is such an example with connected interior. We now have the following
result.

Corollary 6.2. D1(K) = A1(K) for K as described at the beginning
of this section.

Proof. The inclusion “⊆” always holds. Conversely, let f ∈ A1(K). Then
f |G ∈ O(G) has an extension F ∈ D1(K) thanks to 6.1. Due to G = K, a
continuity argument implies that f = F , i.e., f ∈ D1(K).

As a result, question 7 of [8] has a negative answer even under more
general conditions.

Next, we want to deduce a further corollary from 6.1. For this purpose,
we consider a simple closed path γ : [0, 1]→ C.

Owing to the famous Jordan curve theorem, we have

C = G ∪̇ γ∗ ∪̇ Ext(γ) and ∂G = γ∗ = ∂ Ext(γ),

where G := Int(γ) is the interior and Ext(γ) the exterior of γ. Moreover, G
and Ext(γ) are connected. Consequently, C \G = Ext(γ) is also connected,
implying that G is even simply connected. The Riemann mapping theorem
thus gives a conformal mapping Φ : D → G. Since C \ G = Ext(γ) is
connected, G = γ∗∪G is polynomially convex. In this situation, the following
statement holds.

Corollary 6.3. If Φ′ can be continuously extended to D, then each
function f ∈ O(G) for which f ′ is continuously extendable to G, has itself
a continuous extension to G.

Proof. By the Carathéodory–Osgood theorem (see Chapter IX, 4.9 in
[23]), Φ has a continuous extension to a bijective function Φ̂ : D → G. The
mapping Φ̂ is then automatically a homeomorphism. In particular, Φ−1 has
a continuous extension to G with values in D, namely Φ̂−1. For f as in the
assertion, the function f ◦Φ is an element of O(D) whose derivative (f ◦Φ)′ =
(f ′ ◦ Φ) · Φ′ can be continuously extended to D. Now Theorem 6.1 tells us
that f ◦Φ even has a differentiable extension to D. Hence, f = (f ◦Φ) ◦Φ−1

is continuously extendable to G.
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