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Power means and the reverse Hölder inequality

by

Victor D. Didenko (Brunei) and Anatolii A. Korenovskyi (Odessa)

Abstract. Let w be a non-negative measurable function defined on the positive
semi-axis and satisfying the reverse Hölder inequality with exponents 0 < α < β. In
the present paper, sharp estimates of the compositions of the power means Pαw(x) :=
((1/x)

	x
0
wα(t) dt)1/α, x > 0, are obtained for various exponents α. As a result, for the

function w a property of self-improvement of summability exponents is established.

1. Introduction. Let R+ denote the set of all non-negative real num-
bers, and let w : R+ → R+ be a measurable function. The power mean
(transform) Pα of order α > 0 is defined by

(1.1) Pαw(x) :=
(

1
x

x�

0

wα(t) dt
)1/α

, x > 0.

The operators Pα are widely used in various problems of analysis. Thus
P1 is the usual Hardy transform, and the famous Hardy inequality for the
transform P1 [HLP] has an enormous amount of applications.

If 0 < α < β, then an immediate consequence of the Hölder inequality
is that Pαw ≤ Pβw for any function w. In addition, if x is a fixed number,
then the equality

Pβw(x) = Pαw(x)

is satisfied if and only if the function f is equivalent to a constant on the
interval [0, x].

Let 0 < α < β and B > 1. A function w is said to satisfy the reverse
Hölder inequality, denoted w ∈ RHα,β(B), if for any x > 0 the inequality

(1.2) Pβw(x) ≤ B · Pαw(x)

holds. If α = 1, this inequality represents a particular case of Gehring’s con-
dition [G]. Starting with the works of Muckenhoupt [M], Gehring [G], and
Coifman and Fefferman [CF], the classes of functions satisfying the reverse
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Hölder inequality have found various applications in the theory of weighted
spaces, quasiconformal mappings, PDEs, and in other fields of analysis. The
reason for such popularity is a remarkable property of functions belonging
to RHα,β classes. This property, called self-improvement of summability
exponents, draw close attention and soon became an object of independent
investigations.

The main result of the present paper concerns the sharp two-sided esti-
mates of the compositions of Pα transforms for functions from the classes
RHα,β(B); see Theorem 2.4 below. It is worth mentioning that our proof of
Theorem 2.4 is extremely simple. Nevertheless, it gives the sharp estimates
(2.6)–(2.7).

In Section 3 we show how to obtain the property of self-improvement of
summability exponents for both power means and monotone functions from
RHα,β.

Remark 1.1. Using the substitution v = wα or v = wβ, one can reduce
the problem under consideration to one of the cases: α = 1 < β or 0 < α <
1 = β. Nevertheless, for the sake of symmetry of the conditions involved,
here we consider arbitrary parameters 0 < α < β. In our opinion, such an
approach may help the reader in a better understanding of the conditions
obtained.

2. Estimates of power means. Let α be a positive real number. In
the present section we derive certain estimates for the transform (1.1). These
estimates can be conveniently expressed in terms of a special function ϕα
defined on the set Eα := (−∞, 0) ∪ [α,∞) by

ϕα(γ) :=
(

1− α

γ

)1/α

, γ ∈ Eα.

Note that ϕα is continuous on Eα. Moreover, it increases on each interval
(−∞, 0) and [α,∞) with ϕα((−∞, 0)) = (1,∞) and ϕα([α,∞)) = [0, 1), and
for any γ ∈ Eα \ {α} it satisfies the relation

(2.1) ϕα(γ) =
1

ϕα(α− γ)
.

For the sake of convenience, let us agree that
1

0±
:= ±∞, 1

∞±
:= 0±, ϕ(0−) :=∞, ϕ(±∞) := 1∓ 0.

Remark 2.1. The function ϕα is closely connected with the transform
(1.1). Namely, if w0(x) := xε, then identity (2.1) implies that

(2.2) Pαw0 =
w0

ϕα(−1/ε)
= ϕα

(
α+

1
ε

)
w0, ε > −1/α,
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which means that the operator Pα acts on the function w0 as the operator
of multiplication by the constant ϕα(α+ 1/ε).

Let 0 < α < β, and let Φα,β be the function defined on the set Eβ \ {β}
by

Φα,β(γ) :=
ϕα(γ)
ϕβ(γ)

.

Then Φα,β is continuous on Eβ \ {β} and is increasing on (−∞, 0) and de-
creasing on (β,∞) with Φα,β((−∞, 0)) = Φα,β((β,∞)) = (1,∞). Therefore,
for any B > 1 the equation

(2.3) Φα,β(γ) = B

possesses exactly two roots γ− ∈ (−∞, 0) and γ+ ∈ (β,∞), and the identity
Φα,β(γ+) = Φα,β(γ−) implies

(2.4)
ϕα(γ−)
ϕα(γ+)

=
ϕβ(γ−)
ϕβ(γ+)

.

Equation (2.3) is used to define the range of parameters in various inequali-
ties below. Note that modifications of this equation have already been men-
tioned in the literature [DS, K1, K2, P].

Remark 2.2. If w � 0 on R+, then the condition w ∈ RHα,β(B) implies
that Pαw(x) > 0 for all x > 0. Indeed, if

y = sup{x : Pαw(x) = 0} ∈ (0,∞),

then for any h > 0 the Hölder inequality leads to the estimate

(2.5)
Pβw(y + h)
Pαw(y + h)

=
(

h

y + h

)1/β−1/α

(
1
h

y+h�

y

wβ(x) dx
)1/β

(
1
h

y+h�

y

wα(x) dx
)1/α

≥
(

h

y + h

)1/β−1/α

.

The expression on the right-hand side of (2.5) tends to ∞ as h tends to 0+,
and this contradicts the assumption w ∈ RHα,β(B).

Remark 2.3. If 0 < α < β and if w is a function such that wβ is locally
summable on R+, then

t1−α/β
( t�

0

wβ(τ) dτ
)α/β

= o(t1−α/β), t→ 0+.
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Moreover, using the Hölder inequality with exponent β/α > 1 one gets

t1−β/α
( t�

0

wα(τ) dτ
)β/α

≤ t
(

1
t

t�

0

wβ(τ) dτ
)

= o(1), t→ 0+.

In the following, we will often use the notation Pα := Pαw = Pαw(x).
Accordingly, Pβ

α := (Pαw(x))β, PαPβ := PαPβw(x) and so on.

Theorem 2.4. Let 0 < α < β, B > 1, and let γ± be the roots of
equation (2.3). Then for any function w ∈ RHα,β(B) the inequalities

ϕα(γ+) ≤ ϕα
(

αPα
αPβ

Pα
αPβ −Pα

β

)
≤ ϕα(γ−), x > 0,(2.6)

ϕβ(γ+) ≤ ϕβ
(

βPβ
βPα

Pβ
βPα −Pβ

α

)
≤ ϕβ(γ−), x > 0,(2.7)

hold. Moreover, the constants on the left- and the right-hand sides of (2.6)
and (2.7) are sharp.

Proof. Setting

(2.8) γ = α
Pα
αPβ

Pα
αPβ −Pα

β

,

and taking into account the properties of the function ϕα, one can see that
the left inequality in (2.6) is satisfied if and only if

γ ∈ E+ := (−∞, 0) ∪ [γ+,∞),

whereas the right inequality of (2.6) is valid if and only if

γ ∈ E− := (−∞, γ−] ∪ [α,∞),

so (2.6) is equivalent to

γ ∈ E− ∩ E+ = (−∞, γ−] ∪ [γ+,∞).

However, the last relation is equivalent to

(2.9) Φα,β(γ) ≤ B.
To prove (2.9) we will use the identity

(2.10)
d

dt

[
t1−α/β

( t�
0

wβ(τ) dτ
)α/β]

=
(

1− α

β

)(
1
t

t�

0

wβ(τ) dτ
)α/β

+
α

β

(
1
t

t�

0

wβ(τ) dτ
)α/β−1

wβ(t),

which is valid for almost all t > 0. Fix an x > 0. It follows from Remark
2.3 that the integral of the left-hand side of (2.10) over [0, x] is equal to
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x(x−1
	x
0 w

β(t) dt))α/β, so integrating (2.10) over [0, x] we derive the identity(
1
x

x�

0

wβ(τ) dτ
)α/β

=
(

1− α

β

)
1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ)α/β dt(2.11)

+
α

β

1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β−1

wβ(t) dt.

In order to estimate the second term on the right-hand side of (2.11) one can
use the Hölder inequality with the exponent α/β ∈ (0, 1) and the condition
w ∈ RHα,β(B). Thus

1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β−1

wβ(t) dt

≥
(

1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β

dt

)1−β/α(1
x

x�

0

wα(t) dt
)β/α

≥ B−β
(

1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β

dt

)1−β/α 1
x

x�

0

wβ(t) dt.

Hence the identity (2.11) implies that(
1
x

x�

0

wβ(t) dt
)α/β

≥
(

1− α

β

)
1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β

dt

+B−β α

β

(
1
x

x�

0

(
1
t

t�

0

wβ(τ) dτ
)α/β

dt

)1−β/α 1
x

x�

0

wβ(t) dt.

The last inequality can be written as

(2.12) Pα
β ≥

(
1− α

β

)
Pα
αPβ +B−β α

β
Pα−β
α Pβ ·Pβ

β,

and simple transformations of (2.12) lead to the inequality

(2.13)
(

1− α
Pα
αPβ −Pα

β

αPα
αPβ

)1/α

≤ B
(

1− β
Pα
αPβ −Pα

β

αPα
αPβ

)1/β

.

Recalling now the notation (2.8), one notes that (2.13) is equivalent to the
inequality (2.9), and (2.6) is proved.

Reciprocally changing parameters α and β in (2.8), i.e. setting

(2.14) γ = β
Pβ
βPα

Pβ
βPα −Pα

β

,

we note that inequality (2.7) is equivalent to (2.9) but with γ defined now by
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(2.14). It is clear that the same interchange of α and β does not influence the
validity of the identities (2.10) and (2.11). Therefore, the Hölder inequality,
this time with the exponent β/α > 1, can be exploited once again, and the
rest of the proof is similar to the corresponding steps in the proof of (2.9).

It remains to show that the constants ϕα(γ±) and ϕβ(γ±) in (2.6) and
(2.7) are sharp. Choosing w0 = w0(x) = x−1/γ± and taking into account
Remark 2.1 along with (2.1) and (2.2), one obtains

α
PααPβw0

PααPβw0 − Pαβw0
= α

ϕαα(α− γ±) · ϕαβ(β − γ±)
ϕαα(α− γ±) · ϕαβ(β − γ±)− ϕαβ(β − γ±)

= α
ϕ−αα (γ±)

ϕ−αα (γ±)− 1
=

α

1− (1− α/γ±)
= γ±.

Analogously,

β
PββPαw0

PββPαw0 − Pβαw0

= γ±.

This means that the values γ±, present in (2.6) and (2.7), cannot be im-
proved, and the proof of Theorem 2.4 is complete.

Remark 2.5. Using the obvious equalities

ϕα

(
αPα

αPβ

Pα
αPβ −Pα

β

)
=

Pβ

PαPβ
, ϕβ

(
βPβ

βPα

Pβ
βPα −Pβ

α

)
=

Pα

PβPα
,

one can rewrite inequalities (2.6) and (2.7) as

ϕα(γ+) ≤
Pβw
PαPβw

≤ ϕα(γ−),(2.15)

ϕβ(γ+) ≤ Pαw
PβPαw

≤ ϕβ(γ−),(2.16)

respectively.

To proceed we need an auxiliary result.

Lemma 2.6 ([M, W]). Let m and M be positive numbers. If a function
f : R+ → R+ satisfies the condition

(2.17) m ≤ f(τ)

1
τ

τ�

0

f(ξ) dξ

≤M, τ > 0,
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then

(2.18)
(
x

t

)m−1

≤

1
x

x�

0

f(τ) dτ

1
t

t�

0

f(τ) dτ

≤
(
x

t

)M−1

, 0 < t ≤ x.

Proof. To make the paper self-contained we give a short proof of this
result. Rewrite condition (2.17) as

(2.19)
m

τ
≤ f(τ)

τ�

0

f(ξ) dξ

≤ M

τ
, τ > 0,

and note that
f(τ)

τ�

0

f(ξ) dξ

=
d

dτ

[
ln
τ�

0

f(ξ) dξ
]
.

Integrating (2.19) over [t, x], where 0 < t ≤ x, we get

m ln
x

t
≤ ln

x�

0

f(τ) dτ

τ�

0

f(τ) dτ

≤M ln
x

t
,

and inequality (2.18) follows.

Combining Theorem 2.4 and Lemma 2.6 leads to the following result.

Theorem 2.7. Let 0 < α < β, B > 1, and let γ± be the roots of
equation (2.3). Then for any w ∈ RHα,β(B) the functions x1/γ+PαPβw(x)
and x1/γ+PβPαw(x) are non-decreasing whereas x1/γ−PαPβw(x) and
x1/γ−PβPαw(x) are non-increasing, and the exponents 1/γ− and 1/γ+ are
sharp.

Note that in this case, “sharp” means that if an exponent passes the
value under consideration, then the corresponding function may lose the
monotonicity indicated. See the proof for more details.

Proof. Let x > 0. Set

f(x) :=
(

1
x

x�

0

wβ(t) dt
)α/β

.

Raise inequality (2.15) to the power α and note that the function f satisfies
condition (2.17) with m = 1 − α/γ+ and M = 1 − α/γ−. Therefore, by
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Lemma 2.6, for all t, 0 < t < x, one has

(
x

t

)−α/γ+
≤

1
x

x�

0

(
1
τ

τ�

0

wβ(ξ) dξ
)α/β

dτ

1
t

t�

0

(
1
τ

τ�

0

wβ(ξ) dξ
)α/β

dτ

≤
(
x

t

)−α/γ−
.

If raised to the power −1/α, this inequality is equivalent to the monotonic-
ity of the function x1/γ±PαPβw(x). Analogously, the inequality (2.16) and
Lemma 2.6 imply the monotonicity of the function x1/γ±PβPαw(x).

The proof of the sharpness of the exponents 1/γ± is similar to that in
Theorem 2.4. Consider the function w0(x) = xε. Using Remark 2.1, one
can see that for ε ∈ [−1/γ+,−1/γ−] the function w0 belongs to the class
RHα,β(B), and

PαPβw0(x) = PβPαw0(x) = ϕα(α+ 1/ε)ϕβ(β + 1/ε) · xε.

Choose ε = −1/γ+. If 0 < γ ≤ γ+, then the function

x1/γPαPβw0(x) = x1/γPβPαw0(x) = ϕα(α− γ+)ϕβ(β − γ+) · x1/γ−1/γ+

is non-decreasing. On the other hand, for γ > γ+ it is decreasing.
Analogously, setting ε = −1/γ−, one can see that if 0 > γ ≥ γ− then

the function

x1/γPαPβw0(x) = x1/γPβPαw0(x) = ϕα(α− γ−)ϕβ(β − γ−) · x1/γ−1/γ−

is non-increasing whereas for γ < γ− it is decreasing, and we are done.

3. The self-improvement property. As was already mentioned, Geh-
ring’s class possesses the property of self-improvement of the summability
exponent. For the class RHα,β(B) this property means that any function
w ∈ RHα,β(B) is locally summable with a power γ > β. The considerations
of the previous section allow us to establish the reverse Hölder inequality
for the power means Pαw and Pβw, as well. More precisely, the following
result is true.

Theorem 3.1. Let 0 < α < β, B > 1, let γ± be the roots of equation
(2.3), and let w ∈ RHα,β(B). If γ < γ+, then

Pβw ∈ RHα,γ

(
ϕα(γ−)
ϕγ(γ+)

)
,(3.1)

Pαw ∈ RHβ,γ

(
ϕβ(γ−)
ϕγ(γ+)

)
.(3.2)
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On the other hand, if γ > γ−, then

Pβw ∈ RHγ,α

(
ϕγ(γ−)
ϕα(γ+)

)
,(3.3)

Pαw ∈ RHγ,β

(
ϕγ(γ−)
ϕβ(γ+)

)
,(3.4)

and the conditions γ < γ+ and γ > γ− for the parameter γ are not
improvable.

Proof. Let 0 < t ≤ x. If γ > 0, then raising (2.15) to the power γ, one
obtains

ϕγα(γ+) t−γ/γ−(t1/γ−PαPβw(t))γ ≤ Pγβw(t)(3.5)

≤ ϕγα(γ−) t−γ/γ+(t1/γ+PαPβw(t))γ .

By Theorem 2.7 the functions t1/γ−PαPβw(t) and t1/γ+PαPβw(t) are mono-
tone, hence

(3.6) ϕγα(γ+) t−γ/γ−(x1/γ−PαPβw(x))γ ≤ Pγβw(t)

≤ ϕγα(γ−) t−γ/γ+(x1/γ+PαPβw(x))γ .

On the other hand, if γ < 0, then the inequality signs in (3.5) and (3.6)
should be reversed.

Let γ < γ+, γ 6= 0. If γ > 0, then we integrate the right inequality
in (3.6) in variable t from 0 to x and raise the result to the (1/γ)th power.
If γ < 0, the same should be done for the opposite inequality. As a result,
one obtains the inequality

(3.7)
PγPβw(x)
PαPβw(x)

≤ ϕα(γ−)
ϕγ(γ+)

,

no matter what the sign of γ is.
Analogously, using the left inequality in (3.6), one notes that for γ > γ−,

γ 6= 0, the inequality

(3.8)
PγPβw(x)
PαPβw(x)

≥ ϕα(γ+)
ϕγ(γ−)

holds. It is clear that inequalities (3.7) and (3.8) are equivalent to (3.1) and
(3.3), respectively.

Similarly, inequality (2.16) implies (3.2) and (3.4).
It remains to show that in (3.1)–(3.4) the conditions involving the pa-

rameter γ cannot be improved. This can be done as in the proof of Theorem
2.4. Thus if w0(x) := x−1/γ+ , then by Remark 2.1,

PαPβw0(x) = PβPαw0(x) =
x−1/γ+

ϕα(γ+)ϕβ(γ+)
<∞, x > 0.
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On the other hand, PγPβw0(x) = PβPγw0(x) =∞ for γ ≥ γ+. This means
that the condition γ < γ+ from (3.1)–(3.2) cannot be improved. Analogously,
for w1(x) := x−1/γ− one has

PαPβw1(x) = PβPαw1(x) =
x−1/γ−

ϕα(γ−)ϕβ(γ−)
<∞, x > 0,

and if γ ≤ γ−, then PγPβw1(x) = PβPγw1(x) =∞, so the condition γ > γ−
from (3.3)–(3.4) is also unimprovable, and the proof is complete.

Note that up to now we have not imposed any additional conditions on
the function w ∈ RHα,β(B). However, if w is monotone, then the property
of self-improvement of summability exponents can be specified as follows.

Theorem 3.2. Let 0 < α < β, B > 1, let γ± be the roots of equation
(2.3), and let w ∈ RHα,β(B). If w is non-increasing, then

(a) w ∈ RHα,γ

(
ϕα(γ−)

ϕα(γ+)ϕγ(γ+)

)
, γ ∈ (α, γ+);

(b) w ∈ RHβ,γ

(
ϕβ(γ−)

ϕβ(γ+)ϕγ(γ+)

)
, γ ∈ (β, γ+).

On the other hand, if w is non-decreasing, then

(c) w ∈ RHγ,α

(
ϕα(γ−)ϕγ(γ−)

ϕα(γ+)

)
, γ ∈ (γ−, 0);

(d) w ∈ RHγ,β

(
ϕβ(γ−)ϕγ(γ−)

ϕβ(γ+)

)
, γ ∈ (γ−, 0),

and the upper bound for γ in (a) and (b) and the lower bound in (c) and
(d) cannot be improved.

Proof. Using (3.2) and the left inequality in (2.16) one obtains

PγPαw ≤
ϕβ(γ−)
ϕγ(γ+)

PβPαw ≤
ϕβ(γ−)
ϕγ(γ+)

· 1
ϕβ(γ+)

Pαw.

If w is non-decreasing, then PγPαw ≥ Pγw, hence

Pγw ≤
ϕβ(γ−)
ϕβ(γ+)

· 1
ϕγ(γ+)

Pαw.

Applying (2.4), one obtains assertion (a). Analogously, assertions (b)–(d)
can be derived from Theorems 2.4 and 2.7.

The sharpness of the condition γ < γ+ in (a) and (b), as well as the
condition γ > γ− in (c) and (d), can be verified by using the power function
w = xε with an appropriate ε.
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Acknowledgements. This research was carried out when the second
author visited the University Brunei Darussalam (UBD). The support of
UBD provided via Grant UBD/GSR/S&T/19 is highly appreciated.

References

[CF] R. R. Coifman and Ch. Fefferman, Weighted norm inequalities for maximal func-
tions and singular integrals, Studia Math. 51 (1974), 241–250.

[DS] L. D’Apuzzo and C. Sbordone, Reverse Hölder inequalities. A sharp result, Rend.
Mat. 10 (1990), 357–366.

[G] F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal
mapping, Acta Math. 130 (1973), 265–273.

[HLP] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge
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