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L
p type mapping estimates for

oscillatory integrals in higher dimensions

by

G. Sampson (Auburn, AL)

Abstract. We show in two dimensions that if Kf =
T

R2
+

k(x, y)f(y) dy, k(x, y) =

eixa
·yb

/|x − y|η, p = 4/(2 + η), a ≥ b ≥ 1̄ = (1, 1), vp(y) = y(p/p′)(1̄−b/a), then ‖Kf‖p ≤
C‖f‖p,vp if η +α1 +α2 < 2, αj = 1−bj/aj , j = 1, 2. Our methods apply in all dimensions
and also for more general kernels.

0. Introduction. Our purpose is to study mapping properties of the
operators given by

(0.1) Kf = Ka,bf(x) =
\

R
d
+

k(x, y)f(y) dy with x ∈ R
d
+,

i.e. x = (x1, . . . , xd) with xj ≥ 0 for 1 ≤ j ≤ d. Here we are forced to consider
mappings from Lp

v into Lp
w where w(x), v(y) are non-negative, measurable

functions (generally referred to as weights) that are positive a.e., and for the
most part the weights will be power weights.

For the kernel, we take

(0.2)
k(x, y) = ϕ(x, y)eig(x,y) with

g(x, y) = xa · yb =
∑d

j=1 x
aj

j y
bj

j , aj , bj ≥ 1,

and ϕ(x, y) satisfies (0.4) below; we also set |x|a · |y|b =
∑d

j=1 |xj|aj |yj |bj .

The model case occurs when k(x, y) = |x− y|−ηeixa·yb
, 0 ≤ η < 2−α1 −α2,

and αj = 1 − bj/aj , j = 1, 2. We also consider the case where k(x, y) =

|x − y|−ηeixa·yb
γ(x − y), 0 ≤ η < 2, where γ ∈ C∞(R2) and γ(x) = 0 if

|x| ≤ 1, γ(x) = 1 if |x| ≥ 2, and 0 ≤ γ(x) ≤ 1.
We mostly work in d = 2 dimensions, and since most of the arguments

are iteration type these results can be extended to higher dimensions. We
shall give a more detailed explanation of this at the end of Section 0.

Our aim is thus to prove an (Lp
v, L

p
w) estimate for the operators defined

in (0.1) and (0.2), where ϕ(x, y) satisfies (0.4), a1 ≥ b1 ≥ 1, a2 ≥ b2 ≥ 1,
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w(x) = 1 and v(y) = vp(y) = y(p/p′)(1̄−b/a), where 1̄ = (1, 1). In the case of
convolutions, we obtained similar estimates in [JS1].

In Section 1, we do the cases where p = 2 and ϕ(x, y) satisfies (0.3);
this result appears in Theorem 1.9. In this case, we characterize all the
power weights. In Sections 2 and 3, we study the special cases where we
place support restrictions on the kernel. The combined result appears in
Theorem 3.2 in Section 3. In Theorem 4.1, we prove the first result without
any support restrictions on the kernel and we also obtain a necessity result.
In the case p = 2 (η = 0) we characterize fully the power weights that are
mapped; the case p 6= 2 still remains open. See also Corollary 4.2. For similar
results in 1-d, see [S].

For the (L2, L2) case, the Fourier transform is included among the op-
erators. In this case, the authors of [PhS] obtained an (L2, L2) result in d
dimensions with g(x, y) = x · y and with (N = {0, 1, . . . })

(0.3) |∂α
x∂

β
yϕ(x, y)| ≤ Cα,β|x− y|−(|α|+|β|) for all α, β ∈ N

d.

Recently in [SS] (see also [S1] for simplifications) we studied the (Lp, Lp)
mapping problem in dimension d = 2, in case a1/b1 = a2/b2 and aj , bj ≥ 1.
There we considered ϕ’s so that for some 0 ≤ η < 2,

(0.4) |∂α
x∂

β
yϕ(x, y)| ≤ C|x− y|−(η+|α|+|β|) for all α, β ∈ N

2.

Actually in Proposition 5.1 of [SS], we only needed that ϕ(x, y) satisfies
(0.4) for 0 ≤ |α|, |β| ≤ 3, rather than for all α, β.

Thus Proposition 5.1 and Theorem 5.2 of [SS] imply the following weaker
result:

Theorem A. Let d = 2, and a1/b1 = a2/b2 and a, b > 1̄. If 0 ≤ η < 2
and ϕ satisfies (0.4), then

‖Kf‖p ≤ C‖f‖p if p ∈ J =

[
a1 + b1

a1 + b1η/2
,

a1 + b1
a1(1 − η/2)

]
.

Furthermore, if ϕ(x, y) ≥ C|x− y|−η, then

(0.5) ‖Kf‖p ≤ C‖f‖p if and only if p ∈ J.

Remark 1. When ϕ(x, y) = |x− y|−η+iτ (the model case) we get (0.5)
if aj , bj ≥ 1, j = 1, 2, i.e. we can include the cases where aj or bj is 1.

Remark 2. The sufficiency result of Theorem A also applies in case
p = 1, in that case we get ‖Kf‖1 ≤ C‖f‖HE

(see Definition 2.1 on p. 1037
in [SS]); but then this holds if a1, a2, b1, b2 ≥ 1 and ϕ(x, y) satisfies (0.4) for
η = 2 and ϕ(x, y) is in Lloc (see Theorem 2.2 in [SS]). In other words, we
can drop the restriction a1/b1 = a2/b2 here.
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For the weights v(y), w(x) described above and for any locally integrable
function h(y), we set

‖h‖p,v =
( \

R2

|h(y)|pv(y) dy
)1/p

.

We suppose that 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1.
We use C as an arbitrary positive constant, and we find it convenient

to use the letter M as another positive constant. For y ∈ R
2
+ and σ ∈ R

2

we set yσ = yσ1
1 yσ2

2 , similarly in case y, σ are in d dimensions (keep in mind
the exceptional cases when yi = 0 and σi < 0); also for a, b ∈ R

2, we write
a ≥ b to mean that aj ≥ bj for j = 1, 2. For any real number s, we set
s = (s, s), i.e. s ∈ R

2. If a > 0̄, we set b/a = (b1/a1, b2/a2) and also we set
1̄− b/a = (1− b1/a1, 1− b2/a2). In d dimensions this same notation is used
and it should be clear from the context. Finally, for a given function h(y),
we note that h(yσ1

1 , yσ2
2 ) = h(yσ).

To see these results in d dimensions, we proceed as follows. We set up
an analytic family of operators, say Szf. In Section 1, we prove the (2, 2)
result for the operators S−η+iτ . Then in the remainder of the paper, we first
decompose (for d = 2) Sd−η+iτ = T1+T2 and we need to prove that T1 maps
L1 into itself and T2 maps HE into L1. For the operator T1 we need to show
an estimate (2.18). This follows from (2.17) and its counterpart is true in
d dimensions. The proof for T2, which appears in (3.3), essentially follows
from Proposition 2.4 in [SS], which was done in 2-d. In quoting from the top
of p. 1040 of [SS], the proof of Proposition 2.4 is accomplished by reduction
to the one-dimensional case. Similarly the inequality in d dimensions ((2.3)
of [SS]) is reduced to the one in dimension d− 1.

1. Preliminaries and an L2-result. Here we study the operator K
defined by (0.1) for ϕ satisfying (0.3). Only in this section do we consider
weights that are not power weights. We begin with the following well known
result.

Proposition 1.1. Let 1 ≤ p ≤ ∞ and X,Y be measure spaces. Set

Kf(x) =
\
Y

k(x, y)f(y) dy, x ∈ X.

If for some weight v(y),

r1(x) = r1(x; v) =
\
Y

|k(x, y)|(v(y))1−p′ dy ∈ L∞(X),

r2(y) =
\
X

|k(x, y)| dx ∈ L∞(Y ),
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then for all 1 ≤ p ≤ ∞,

‖Kf‖p ≤ Cp,v‖f‖p,v, inf Cp,v = ‖r1‖1/p′

∞ ‖r2‖1/p
∞ .

For some M ≥ 1, let |h(y)| ≥ h1(y1)h2(y2) and hj(yj) ≥ 0, j = 1, 2, with
1/hj(yj) ∈ Lloc(R)∩L∞(|yj| ≥M) for j = 1, 2. We call such functions h(y)
admissible; let S be the collection of all such admissible h(y)’s.

Corollary 1.2. Let k(x, y) ∈ L∞, r1(x; 1), r2(y) ∈ L∞(R2). If

(1.1) sup
x,y2

∞\
1

|k(x, y)| dy1 + sup
x,y1

∞\
1

|k(x, y)| dy2 = C <∞,

then for admissible v ∈ S,

‖Kf‖2 ≤ C‖f‖2,v, inf C = ‖r1(·, v)‖1/2
∞ ‖r2(·)‖1/2

∞ .

Remark 3. We get this result in all dimensions, and in one dimension
it takes the following form. If 1/v(y1) ∈ Lloc(R) ∩ L∞(|y1| ≥ M), and S1 is
the collection of all such v’s, and

(1.2) sup
x1∈R

∞\
1

|k(x1, y1)| dy1 + sup
y1∈R

∞\
1

|k(x1, y1)| dx1 <∞

then for all v ∈ S1,

‖Kf‖2 ≤ C‖f‖2,v, inf C = ‖r1‖1/2
∞ ‖r2‖1/2

∞ .

Proof of Corollary 1.2. By Proposition 1.1, it suffices to show that r1 ∈
L∞(R2) for each admissible v. But in all these cases we get (we set [n,m] =
[n1,m1] × [n2,m2])

r1(x) ≤ C

( \
[0̄,M̄ ]

1

v(y)
dy +

M\
0

1

v1(y1)

( ∞\
M

|k(x, y)| dy2

)
dy1

+

M\
0

1

v2(y2)

( ∞\
M

|k(x, y)| dy1

)
dy2 +

\
[M̄,∞̄)

|k(x, y)| dy
)
≤ C.

Let T be the set of m(x, y) supported in |x− y| ≤ β for some β > 0 and
such that m(x, y) satisfies (1.1).

Proposition 1.3. Let ϕ ∈ L∞, k ∈ T and suppose k satisfies (0.2).
Then

‖Kf‖2 ≤ C‖f‖2,v for each v ∈ S.

Proof. This follows immediately from Corollary 1.2.

Remark 4. We get this result in all dimensions. In one dimension, with

T1 = {m(x1, y1) : m ∈ L∞,m satisfies (1.2) and has bounded support},



Mapping estimates for oscillatory integrals 105

we get: if

ϕ ∈ L∞ and k(x1, y1) = eix
a1
1 y

b1
1 ϕ(x1, y1) ∈ T1

then

‖Kf‖2 ≤ C‖f‖2,v for all v ∈ S1.

In [St] the pseudodifferential class S0
0,0 is discussed, of all C∞-functions

λ(x, y) so that

|∂α
x∂

β
y λ(x, y)| ≤ Cα,β for all α, β.

In the Proposition on p. 282 of [St], the following is shown:

Theorem B. If λ ∈ S0
0,0 and Tf =

T
eix·yλ(x, y)f(y) dy, then

‖Tf‖2 ≤ C‖f‖2.

Set

µ(x1) = 1 if |x1| ≥ 2, µ(x1) = 0 if |x1| ≤ 1,

0 ≤ µ(x1) ≤ 1 and µ ∈ C∞(R).

Lemma 1.4. Let a1, b1 ≥ 1 and suppose ϕ satisfies (0.3). Then\
R+

∣∣∣
\

R+

eix1y1µ(x
1/a1

1 − y
1/b1
1 )ϕ(x

1/a1

1 , y
1/b1
1 , y2)g(y1) dy1

∣∣∣
2
dx1

≤ C
\

R+

|g(y1)|2 dy1.

Additionally , the variable y2 (as well as x2) in the argument of the term ϕ
plays a passive role here.

Proof. We set

l(x1, y1) = eix1y1µ(x
1/a1

1 − y
1/b1
1 )ϕ(x

1/a1

1 , y
1/b1
1 , y2)

and notice that

l(x1, y1) = ((1 − µ(x1))(1 − µ(y1)) + (1 − µ(x1))µ(y1)

+µ(x1)(1 − µ(y1)) + µ(x1)µ(y1))l(x1, y1)

= I1(x1, y) + I2(· · · ) + I3(· · · ) + I4(· · · ).
The estimate for I1 follows by Proposition 1.1 with v(y) = 1, and the esti-
mate for I4 follows from Theorem B for

µ(x
1/a1

1 − y
1/b1
1 )ϕ(x

1/a1

1 , y
1/b1
1 , y2) ∈ S0

0,0, since x1, y1 ≥ 1.

We are left with the terms I2, I3.
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We just need to estimate I3, since the case of I2 follows by duality. Now,
∞\
0

(µ(x1))
2
∣∣∣
∞\
0

(1 − µ(y1))e
ix1y1(µ(x

1/a1

1 − y
1/b1
1 ) − 1)ϕ(· · · )g(y1) dy1

∣∣∣
2
dx1

+

∞\
0

(µ(x1))
2
∣∣∣
∞\
0

(1 − µ(y1))e
ix1y1ϕ(· · · )g(y1) dy1

∣∣∣
2
dx1 = A31 +A32.

Since 0 ≤ y1 ≤ 2 that implies 0 ≤ x
1/a1

1 ≤ 4 for the term A31; otherwise, the
integrand is zero. The estimates of A31 follow by Proposition 1.1.

For the term A32, set u = y
1/b1
1 and note that

ϕ(x
1/a1

1 , u, y2) =
M−1∑

j=0

∂j
uϕ(x

1/a1

1 , 0, y2)
uj

j!
+ ∂M

u ϕ(x
1/a1

1 , ξ, y2)
uM

M !

where M is an integer chosen so that M/a1 > 1. Hence we get

A32 ≤ C

(∞\
0

(µ(x1))
2

(
1 −

(
µ

(
x1

22a1

))2)

×
∣∣∣
∞\
0

(1 − µ(y1))e
ix1y1ϕ(· · · )g(y1) dy1

∣∣∣
2
dx1

+

M−1∑

j=0

∞\
0

(
µ

(
x1

22a1

))2∣∣∣∣
∞\
0

(1 − µ(y1))e
ix1y1∂jϕ(· · · ) u

j

j!
g(y1) dy1

∣∣∣∣
2

dx1

+

∞\
0

(
µ

(
x1

22a1

))2∣∣∣∣
∞\
0

(1 − µ(y1))e
ix1y1∂Mϕ(· · · ) u

M

M !
g(y1) dy1

∣∣∣∣
2

dx1

)

= A+
M∑

j=0

A32j.

The estimates for A follow from Proposition 1.1. By (0.3) since x
1/a1

1 ≥ 4,
we get

A32M ≤ C

∞\
1

1

x
2M/a1

1

( 2\
0

|g(y1)| dy1

)2
dx1 ≤ C‖g‖2

2.

For the remaining terms A32j, µ(x1/2
2a1)(1− µ(y1))∂

jϕ(x
1/a1

1 , 0, y2) ∈ S0
0,0,

as a function of the variables x1, y1. This completes the proof.

Proposition 1.5. With the hypotheses of Lemma 1.4,
∞\
0

∣∣∣
∞\
0

eix
a1
1 y

b1
1 ϕ(x1, y)f(y) dy1

∣∣∣
2
dx1 ≤ C‖f‖2

2,v1
, where v1(y1) = yα1

1 .

For the term ϕ note the role of the variable y2 (as well as x2).
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Proof. Using Remark 4 and then changing variables for the remaining
expression, we end up considering

I =

∞\
0

x
1/a1−1
1

∣∣∣
∞\
0

eix1y1µ(x
1/a1

1 − y
1/b1
1 )ϕ(x

1/a1

1 , y
1/b1
1 , y2)

× f(y
1/b1
1 , y2)y

1/b1−1
1 dy1

∣∣∣
2
dx1.

But by Lemma 1.4 the operator

Kg(x1) =

∞\
0

eix1y1µ(x
1/a1

1 − y
1/b1
1 )ϕ(x

1/a1

1 , y
1/b1
1 , y2)g(y1) dy1

maps L2 into itself with a bounded integrand, therefore it satisfies the as-
sumptions of Theorem 1 of [JS3] and so by Theorem 2 of [JS2] it follows
that

I ≤ C

∞\
0

|f(y
1/b1
1 , y2)y

1/b1−1
1 |2y1−1/a1

1 dy1

and we get our result after a change of variables.

With ψ1̄(x) = µ(x1) · · ·µ(xd) in d dimensions (in particular, ψ11(x) =
µ(x1)µ(x2) for d = 2) we set

h(x, y) = ψ1̄(x
1/a)ψ1̄(y

1/b)γ(x1/a − y1/b)ϕ(x1/a, y1/b)eix·y,

(1.3)
Lg(x) =

\
R

d
+

h(x, y)g(y) dy.

Proposition 1.6. Let a, b ≥ 1̄. If ϕ(x, y) satisfies (0.3), x, y ∈ R
d
+, and

the operator L (and the kernel h(x, y)) are as defined in (1.3), then

(i) ‖Lf‖2 ≤ C‖f‖2,

(ii)
\

R
d
+

∣∣∣
\

R
d
+

h(xa, yb)f(y) dy
∣∣∣
2
dx ≤ C‖f‖2

2.

Proof. Since x, y, a, b ≥ 1̄, by (0.3) we get

ψ1̄(x
1/a)ψ1̄(y

1/b)γ(x1/a − y1/b)ϕ(x1/a, y1/b) ∈ S0
0,0,

and so (i) follows by Theorem B.
To see (ii), note that x, y, a, b ≥ 1̄, and therefore

A =
\

R
d
+

x1/a−1̄
∣∣∣
\

R
d
+

h(x, y)g(y) dy
∣∣∣
2
dx ≤ ‖Lg‖2

2

≤ C‖ψ1̄(y
1/b)g(y)‖2

2 ≤ C
\

R
d
+

y1̄−1/b|g(y)|2 dy.
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Now set g(y) = f(y1/b)y1/b−1̄ into A, and after changing variables we get
the result.

Proposition 1.7. Let a, b ≥ 1̄, and let v(y) = y1̄−b/a and w(x) = 1 in

case a ≥ b ≥ 1̄, and w(x) = xa/b−1̄ and v(y) = 1 in case b ≥ a ≥ 1̄, where

K is defined by (0.1) and (0.2). Suppose ϕ does not depend upon one of the

variables x1, x2, y1, y2 and satisfies (0.3). Then

(i) ‖Kf‖2,w ≤ C‖f‖2,v,

(ii) ‖ψ11(x)Kf(x)‖2 ≤ C‖f‖2.

Proof. We begin with (i). By duality we need only consider the case
where a ≥ b ≥ 1̄. Also it is enough to suppose that ϕ does not depend upon
x2 or y2.

In case x2 is missing from ϕ, from Proposition 1.5 we get
∞\
0

∣∣∣
∞\
0

eix
a2
2 y

b2
2 H(x1, y2) dy2

∣∣∣
2
dx2 ≤ C

∞\
0

|H(x1, y2)|2yα2
2 dy2

with H(x1, y2) =
T∞
0 eix

a1
1 y

b1
1 ϕ(x1, y)f(y) dy1. Again Proposition 1.5 yields

‖Kf‖2
2 ≤ C

∞\
0

(∞\
0

|H(x1, y2)|2 dx1

)
yα2
2 dy2 ≤ C‖f‖2

2,v.

This proves the estimates in case x2 is missing from ϕ in (i).
Next suppose that ϕ does not depend on y2; then again we deduce from

Proposition 1.5 that
∞\
0

∣∣∣
∞\
0

eix
a1
1 y

b1
1 ϕ(x, y1)

(∞\
0

eix
a2
2 y

b2
2 f(y) dy2

)
dy1

∣∣∣
2
dx1

≤ C

∞\
0

∣∣∣
∞\
0

eix
a2
2 y

b2
2 f(y) dy2

∣∣∣
2
yα1
1 dy1,

and now proceed as above to complete (i).
To prove (ii), we consider the four terms,

Kf(x) =
\

R
2
+

((1 − µ(y1))(1 − µ(y2)) + (1 − µ(y1))µ(y2)

+ (1 − µ(y2))µ(y1) + µ(y1)µ(y2))k(x, y)f(y) dy

= I1(x) + I2(x) + I3(x) + I4(x).

By (i) we get (note a ≥ b ≥ 1̄)

‖ψ11(x)I1(x)‖2 ≤ ‖I1(x)‖2 ≤ C‖f(y)(1 − µ(y1))(1 − µ(y2))‖2,v.

Next notice that Proposition 1.6(ii) yields ‖ψ11(x)I4(x)‖2 ≤ C‖f‖2. To es-
timate the term I2 (the proof for I3 is similar) we suppose that ϕ does not
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depend upon y2, thus we notice (as in (i)) that by Proposition 1.5 it follows
that

∞\
0

ψ11(x)|I2(x)|2 dx1 ≤ C

2\
0

yα1
1

∣∣∣
∞\
0

µ(y2)e
ix

a2
2 y

b2
2 f(y) dy2

∣∣∣
2
dy1

and then by Proposition 1.6(ii) (in dimension d = 1) we get
∞\
0

(∞\
0

ψ11(x)|I2(x)|2 dx1

)
dx2

≤ C

2\
0

yα1
1

(∞\
0

µ(x2)
∣∣∣
∞\
0

µ(y2)e
ix

a2
2 y

b2
2 f(y) dy2

∣∣∣
2
dx2

)
dy1

≤ C

2\
0

yα1
1

(∞\
1

|f(y)|2 dy2

)
dy1,

and this completes the proof in case y2 is missing from ϕ; if x2 is missing
we first employ Proposition 1.6(ii).

Remark 5. In the special case where ϕ(x, y) = 1, we obtain the same
conclusion as in Proposition 1.7.

Proposition 1.8. Take k(x, y) as in (0.2) with a, b ≥ 1̄. Assume that ϕ
satisfies (0.3). Let K be the operator with any of the kernels (1−µ(xl))k(x, y),
(1 − µ(yl))k(x, y), or k(x, y)(1 − γ(x− y)) (l = 1 or 2). Then

(i) ‖Kf‖2,w ≤ C‖f‖2,v,

(ii) ‖ψ11(x)Kf(x)‖2 ≤ C‖f‖2,

for v(y) and w(x) as in Proposition 1.7.

Proof. It suffices to consider the case when a ≥ b ≥ 1̄. First consider the
kernel k(x, y)(1− γ(x− y)). Then (i) follows from Proposition 1.3 and also
(ii) with v(y) = 1.

Next by the above we only need to consider the case where the kernel is
supported in |x− y| ≥ 1. Thus, it suffices to take l = 1 in the x1 variable,

(1 − µ(x1))k(x, y)γ(x− y) = (1 − µ(x1))γ(x− y)eixa·yb
ϕ(x, y)

= (1 − µ(x1))γ(x− y)eixa·yb

×
[
ϕ(0, x2, y) + x1∂x1ϕ(0, x2, y) +

1

2
x2

1∂
2
x1
ϕ(0, x2, y) + r(x, y)

]

=

3∑

j=0

kj(x, y)

and let Kj denote the associated operators.
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We notice by (0.3) that |k3(x, y)| ≤ Cmin(1, |x− y|−3). Thus we get (i)
and (ii) by Corollary 1.2 for the operator K3.

For the remaining operators K0,K1,K2 we just apply Proposition 1.7(j),
j = (i),(ii), respectively for cases (i), (ii).

We are in a position to obtain the main result of this section.

Theorem 1.9. Suppose k(x, y) satisfies (0.2) and ϕ(x, y) satisfies (0.3)
with a, b ≥ 1̄. Then

(1.3) ‖Kf‖2,w ≤ C‖f‖2,v

where v(y) and w(x) are given in Proposition 1.7.

Proof. It is enough to assume that a ≥ b ≥ 1̄. Suppose that v(y) =

y1̄−b/a and a = b = 1̄. Then (1.4) follows from [PhS].
Putting together Proposition 1.6(ii) and Proposition 1.8(i), we obtain

the proof.

2. More of the special cases. In this section, we handle the cases
where ϕ(x, y) has bounded support in one of the variables y1, y2, i.e. we
consider ϕ(x, y)(1 − µ(2yl/β)) for some β > 0 for l = 1 or 2 and where
ϕ(x, y) satisfies (0.4) for some η ∈ [0, 2).

We follow the approach we employed in Propositions 1.7 and 1.8 in case
η = 0.

We begin with

Proposition 2.1. Let a ≥ b ≥ 1̄, vp(y) = y(p/p′)(1̄−b/a), η ∈ [0, 2) and

let the operator K be as in (0.1). Also suppose ϕ(x, y) does not depend upon

one of the variables y1, y2 and satisfies (0.4). Then for p = 4/(2 + η),

(2.1)





(i)
( \

R
2
+

∣∣∣
\

R
2
+

k1(x, y)f(y) dy
∣∣∣
p
dx

)1/p
≤ C‖f‖p,vp ,

(ii)
( \

R2
+

∣∣∣
\

R2
+

k2(x, y)f(y) dy
∣∣∣
p
dx

)1/p
≤ C‖f‖p,vp ,

with

k1(x, y) = eixa·yb
µ

(
x1

3β

)
ϕ(x, 0, y2)

(
1 − µ

(
2y1

β

))
,

k2(x, y) = eixa·yb
µ

(
x2

3β

)
ϕ(x, y1, 0)

(
1 − µ

(
2y2

β

))
.

Proof. If η = 0, then p = 2 and the result follows from Proposition 1.7(i).
We can suppose that 0 < η < 2, thus 1 < p < 2, and that ϕ does not

depend upon y1, as in (2.1)(i), and without any loss we can take β = 1. As
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we did in Proposition 1.7, we shall iterate the estimates. We first show that
with χn(x1) = χ

(
1
2 · 2n ≤ x1 ≤ 2 · 2n

)
,

(2.2) χn(x1)

∞\
0

∣∣∣
∞\
0

eix
a2
2 y

b2
2 ϕ(x, 0, y2)h(x1, y2) dy2

∣∣∣
p
dx2

≤ C

2npη/2

∞\
0

|h(x1, y2)|py(p/p′)α2

2 dy2,

where h(x1, y2) =
T∞
0 eix

a1
1 y

b1
1 f1(y) dy1 with f1(y) = (1 − µ(2y1))f(y).

To prove (2.2) we set

Szg(x) = χn(x1)

∞\
0

eix
a2
2 y

b2
2 ϕ(x, 0, y2)|x− (0, y2)|−z(u(y2))

z+η−2g(y2) dy2

where u(y2) = y
α2/4
2 ; note Szg is a 1-dimensional integral. We first notice

that (the 1-norm is in the x2-variable)

(2.3) ‖S2−η+iτg‖1

=
∥∥∥χn(x1)

∞\
0

eix
a2
2 y

b2
2 ϕ(x, 0, y2)|x− (0, y2)|−2+η−iτ (u(y2))

iτg(y2) dy2

∥∥∥
1

≤ C

∞\
0

1

22n + x2
2

dx2 ‖g‖1 ≤ C

2n
‖g‖1,

and notice all that we needed from (0.4) in order to get (2.3) is the size of
the function ϕ.

It follows from Proposition 1.5 that

(2.4) ‖S−η+iτg‖2 ≤ C
(∞\

0

|g(y2)(u(y2))
−2|2yα2

2 dy2

)1/2
≤ C‖g‖2.

By interpolation with (2.3) and (2.4) for this analytic family, we get

‖S0g‖p =
∥∥∥χn(x1)

∞\
0

eix
a2
2 y

b2
2 ϕ(x, 0, y2)(u(y2))

η−2g(y2) dy2

∥∥∥
p

(2.5)

≤ C

2nt
‖g‖p

for 1
p = t+ 1−t

2 and z = tz0 + (1 − t)z1 with z0 = 2 − η + iτ , z1 = −η + iτ ,

therefore 0 = (−η+ iτ) + t(z0 − z1) or η = 2t. Thus (2.2) follows from (2.5).
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Now we sum up (2.2) to obtain

(2.6)
∞∑

n=2

2·2n\
1
2
·2n

(∞\
0

∣∣∣
∞\
0

eix
a2
2 y

b2
2 ϕ(x, 0, y2)h(x1, y2) dy2

∣∣∣
p
dx2

)
dx1

≤ C

∞\
0

y
(p/p′)α2

2

(∞\
2

1

x
ηp/2
1

∣∣∣
∞\
0

eix
a1
1 y

b1
1 f1(y) dy1

∣∣∣
p
dx1

)
dy2.

We take

(2.7) p = p1 + p2, 1 < p2 ≤ p, p2 = p only in case b1 = a1.

Note that if a1 > b1 ≥ 1, then since 1 < p2 < p and p < 2, by (2.7) we
get 0 < p1 < 1.

We notice that for the inner term on the right side of (2.6) we get

∞\
2

1

x
ηp/2
1

∣∣∣
∞\
0

eix
a1
1 y

b1
1 f1(y) dy1

∣∣∣
p2

dx1

=

∞\
2

∣∣∣
∞\
0

eix
a1
1 y

b1
1 h̃(x1, y1)f1(y) dy1

∣∣∣
p2

dx1

≤ C

(∞\
2

∣∣∣∣
∞\
0

eix
a1
1 y

b1
1

(
1

x
ηp/(2p2)
1

− 1

(x1 − y1)
ηp/(2p2)

)
f1(y) dy1

∣∣∣∣
p2

dx1

+

∞\
2

∣∣∣∣
∞\
0

eix
a1
1 y

b1
1

1

(x1 − y1)
ηp/(2p2)

f1(y) dy1

∣∣∣∣
p2

dx1

)
= II1 + II2,

with

h̃(x1, y1) =
1

x
ηp/(2p2)
1

− 1

(x1 − y1)
ηp/(2p2)

+
1

(x1 − y1)
ηp/(2p2)

.

Since the integrand for the term II1 can be estimated by an L1 convo-
lution kernel, and we can employ Theorem 4 of [PS] to II2, we see that

(2.8) II1 + II2 ≤ C

1\
0

|f(y)|p2 dy1

as long as

(2.9) p2 ≥ a1 + b1

a1 + b1ηp
2p2

.

And in order for (2.8) to hold we need that p2 > 1.
In case b1 = a1 (the exceptional case) we take p2 = p and so by (2.6),

(2.8) and (2.9) we get the result.
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Now we are left with the cases where a1 > b1 ≥ 1. We first note that

(2.10)
∣∣∣
∞\
0

eix
a1
1 y

b1
1 f1(y) dy1

∣∣∣
p1

≤ C
( 1\

0

|f(y)|py(p/p′)α1

1 dy1

)p1/p
.

It remains to estimate the term on the right side of (2.8). We note that

(2.11)

1\
0

|f(y)|p2 dy1 ≤
( 1\

0

|f(y)|pyα1p/p′

1 dy1

)p2/p( 1\
0

y
−α1p2p/(p′p1)
1 dy1

)p1/p
.

To complete this argument we need to show that α1p2p/p
′p1 < 1 and 1 <

p2 < p for each pair (a1, b1) with a1 > b1 ≥ 1 and each 0 < η < 2, and that
(2.9) holds.

In order to see that (2.9) holds and p2 > 1, note that p2a1 + b1ηp/2 ≥
a1 + b1, or

p2 ≥ 1 +
b1
a1

(
1 − 2η

2 + η

)
,

and since η < 2 this implies we can choose p2 > 1 that satisfies (2.9).
In order to see (2.11) we need that p2 < p and α1p2p/p

′p1 < 1. For the
first inequality note that

p > 1 +
b1
a1

− b1ηp

2a1
,

or
4

2 + η
+

2b1η

a1(2 + η)
> 1 +

b1
a1
,

since

4 +
2b1η

a1
> 2 + η +

(2 + η)b1
a1

or

2

(
1 − b1

a1

)
> η

(
1 − b1

a1

)
,

and this last inequality is always true since η < 2 and a1 > b1. To complete
this argument we still need to see that α1p2p/p

′p1 < 1, so take p1 = p−1−ε
(this is possible for some ε > 0); then from (2.7) we get p2 = 1 + ε. Hence

p2p

p′p1
=

(p− 1)(1 + ε)

p− 1 − ε
= 1 + δ,

or δ = εp
p−1−ε (> 0). Thus

α1p2p

p′p1
= α1(1 + δ) = (1 + δ) − b1

a1
(1 + δ) < 1,

where the last inequality follows from

(2.12) δ

(
1 − b1

a1

)
<
b1
a1
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for δ > 0 small enough. Thus for each pair (a1, b1) we can always find a
δ > 0 close enough to zero in order that (2.12) is satisfied. Putting (2.6),
(2.10) and (2.11) together we get the result.

Proposition 2.2. Assume the hypothesis of Proposition 2.1, except this

time we allow ϕ(x, y) to depend upon y1 or y2. Then for p = 4/(2 + η),

(2.13)





(i)
( \

R
2
+

∣∣∣
\

R
2
+

k1(x, y)f(y) dy
∣∣∣
p
dx

)1/p
≤ C‖f‖p,vp ,

(ii)
( \

R
2
+

∣∣∣
\

R
2
+

k2(x, y)f(y) dy
∣∣∣
p
dx

)1/p
≤ C‖f‖p,vp

with

kl(x, y) = eixa·yb
µ

(
xl

3β

)
ϕ(x, y)

(
1 − µ

(
2yl

β

))
, l = 1, 2.

Proof. As in the proof of Proposition 1.8 (take β = 1 with l = 1),

(2.14) ϕ(x, y) = ϕ(x, 0, y2) + y1∂
1
y1
ϕ(x, 0, y2) +

y2
1

2
∂2

y1
ϕ(x, 0, y2) + r(x, y),

and so since x1 ≥ 3 and y1 ≤ 1, we get µ(x1/3)(1 − µ(2y1))|r(x, y)| ≤
Cmin(1, |x− y|−3−η). Thus (2.13)(i) holds by Proposition 1.1 for the oper-
ator K1 with the kernel k1(x, y), with r(x, y) in place of ϕ(x, y) and v(y) =

vp(y) = y(p/p′)(1̄−b/a).
For the three remaining terms in (2.14), if we let K1 this time be the

operator with these terms in place of ϕ(x, y) in k1(x, y), then we get the
result by Proposition 2.1.

Proposition 2.3. Let a ≥ b ≥ 1̄, vp(y) = y(p/p′)(1̄−b/a), η ∈ [0, 2) and

let the operator Kl be as in (0.1), where

kl(x, y) = eixa·yb
ϕ(x, y)

(
1 − µ

(
2yl

β

))
γ(x− y), l = 1, 2.

If ϕ(x, y) satisfies (0.4), then for p = 4/(2 + η),

(2.15) ‖Klf‖p ≤ C‖f‖p,vp for l = 1, 2.

Proof. Because of Proposition 2.2, say with β = 1 and l = 1 (note that
x1 ≥ 3 and y1 ≤ 1 implies γ(x− y) = 1), it suffices to show that

(2.16)

6\
0

(∞\
0

∣∣∣
\

R
2
+

k1(x, y)f(y) dy
∣∣∣
p
dx2

)
dx1 ≤ C‖f‖p

p,vp
.

First notice that

(2.17)

6\
0

(∞\
0

γ(x− y)

|x− y|2 dx2

)
dx1 +

6\
0

(∞\
0

γ(x− y)

|x− y|2 dx1

)
dx2 ≤ C.
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We return to (2.17) at the end of this proof. Consider the analytic family
given by

Szf(x) = χ(0 ≤ x1 ≤ 6)
\

R2
+

k1(x, y)|x− y|−z(w(y))z+η−2f(y) dy

with w(y) = y
1
4
(1̄−b/a). Then it follows from (2.17) that

(2.18) ‖S2−η+iτf‖1 ≤ C‖f‖1.

From Proposition 1.8(i) we get

(2.19) ‖S−η+iτf‖2 ≤ C‖f‖2,

which implies that

(2.20) ‖S0f‖p ≤ C‖f‖p for p =
4

2 + η
,

and now (2.16) follows from (2.20).
We are left with showing (2.17). Note that

∞\
0

γ(x− y)

|x− y|2 dx2

≤
∞\
0

γ(x− y)

|x− y|2 (χ(|x1 − y1| ≤ 1/2) + χ(|x1 − y1| ≥ 1/2)) dx2 = I + II.

In I we notice that 1/4 + (x2 − y2)
2 ≥ |x − y|2 ≥ 1, or |x2 − y2| ≥

√
3/2,

therefore

I ≤
\

|x2−y2|≥
√

3/2

1

|x2 − y2|2
dx2 ≤ 4

√
3

3
.

Moreover,

II ≤ 4

∞\
−∞

1

1 + 4|x2 − y2|2
dx2 = 2π.

Therefore,
6\
0

(∞\
0

γ(x− y)

|x− y|2 dx2

)
dx1 ≤ C.

The proof in case 0 ≤ x2 ≤ 6 is similar, and this implies (2.17).

3. The first sufficiency result. In this section we wish to complete
the result given in Proposition 2.3 by dropping the support restriction on ϕ.
This is the main result in this section and it appears in Theorem 3.2.
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We begin with the operator

(3.1) Sf(x) = ψ22(x)
\

R
2
+

eixa·yb
ϕ(x, y)γ(x− y)ψ11(y)f(y) dy,

where ψ22(y) = µ(y1/2)µ(y2/2) (ψ11(y) is defined prior to (1.3)) and ϕ(x, y)
satisfies (0.4). Notice that the kernel for S is supported in x1, x2, y1, y2 ≥ 1.

Proposition 3.1. Let a ≥ b ≥ 1̄, η ∈ [0, 2), and suppose ϕ(x, y) satisfies

(0.4). Then the operator defined by (3.1) satisfies

(3.2) ‖Sf‖p ≤ C‖f‖p,vp for p =
4

2 + η
.

Proof. We consider the analytic family

S̃zf(x) = ψ22(x)
\

R2

ei|x|a·|y|bϕ(x, y)γ(x− y)|x− y|−zf(y) dy.

From Theorem 2.2 of [SS] (also see Remark 2 in Section 0), we get

(3.3) ‖S̃−η+2+iτf‖1 ≤ C‖f‖HE
,

where HE is a specially constructed Hardy space related to the operator S̃.

It suffices to obtain (2, 2) estimates for the operator S̃−η+iτ .
For this operator, since ϕ(x, y) satisfies (0.4), it follows that γ(x − y)

ϕ(x, y)|x − y|η+iτ satisfies (0.3) and so by Propositions 1.6(ii) and 1.8(ii),
we get

(3.4) ‖S̃−η+iτf‖2 ≤ C‖f‖2.

Thus by (3.3) and (3.4) it follows that

(3.5) ‖S̃0f‖p ≤ C‖f‖p for p =
4

2 + η
.

Hence the operator given in (3.1) satisfies

‖Sf‖p ≤ C‖f(y)ψ11(y)‖p ≤ C‖f‖p,vp

and this completes the argument.

Now we are in a position to state and prove the main result in this
section. This completes the result begun in Proposition 2.3, by dropping the
support restriction placed on ϕ there.

Theorem 3.2. Let a ≥ b ≥ 1̄, η ∈ [0, 2), and suppose ϕ(x, y) satisfies

(0.4), and the operator K as in (0.1) has the kernel

k(x, y) = eixa·yb
ϕ(x, y)γ(x− y).

Then for p = 4/(2 + η),

(3.6) ‖Kf‖p ≤ C‖f‖p,vp .
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Proof. Because of Propositions 2.3 and 3.1, it suffices to prove that

(3.7)
( 6\

0

∞\
0

+

∞\
0

6\
0

)
|Kf(x)|p dx2 dx1 ≤ C‖f‖p

p,vp
.

To do that, we set up the analytic family defined in the proof of Propo-
sition 2.3 and we notice that the corresponding estimate (2.18) follows from
(2.17), and (2.19) follows from Theorem 1.9. This completes the proof of
(3.7) and hence the proof of the result.

4. Necessity and sufficiency results. In this section, we show (3.6)
for the operator K defined in (0.1) and (0.2) where ϕ(x, y) satisfies (0.4).
We also obtain a necessity result.

We now state one of the main results of this paper. We recall that αj =
1 − bj/aj for j = 1, 2 in case a ≥ b ≥ 1̄.

Theorem 4.1. Let a ≥ b ≥ 1̄, 0 ≤ η < 2 − α1 − α2 and let K be as in

(0.1), (0.2) with ϕ satisfying (0.4). Then for vq(y) = y(q/p′)(1̄−b/a),

(4.1) ‖Kf‖p ≤ C‖f‖p,vp for p =
4

2 + η
.

Furthermore, if ϕ(x, y) ≥ C|x − y|−η and (4.1) holds with w(x) = 1 and

v(y) = yν , then for j = 1, 2,

(4.2) (p− 2)
bj
aj

− pη ≤ νj −
p

p′
αj ≤

bj
aj

(p− 2 + ηp).

Remark 6. If b ≥ a ≥ 1̄, η ∈ [0, 2), p′ = 4/(2 − η), and

Kf(x) =
\

R2
+

eixa·yb
ϕ(x, y)γ(x− y)f(y) dy,

then

‖Kf‖p′ ≤ C‖f‖p′,vp′
.

Proof of Theorem 4.1. To show the sufficiency, note that

Kf(x) =
\

R2
+

eixa·yb
ϕ(x, y)(γ(x− y) + (1 − γ(x− y)))f(y) dy

= K1f(x) +K2f(x).

By Theorem 3.2 we conclude that (4.1) holds for the operator K1.
To see that the operator K2 satisfies (4.1) we employ Proposition 1.1.

Note that in this case the kernel k2(x, y) = eixa·yb
ϕ(x, y)(1− γ(x− y)) is in

L1(dx) ∩ L1(dy).
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We get

r1(x) =

∞\
0

∞\
0

|ϕ(x, y)|y−α1
1 y−α2

2 (1 − γ(x− y)) dy

=
(1\

0

1\
0

+

1\
0

∞\
1

+

∞\
1

1\
0

+

∞\
1

∞\
1

)
(· · · ) dy =

4∑

j=1

Ij .

We see that

I4 ≤ C, since 1 ≤ y1, y2.

We shall be brief here and just estimate the terms that are the most chal-
lenging. We begin with the term I1 and 0 ≤ x1 ≤ x2 ≤ 1:

x1/2\
0

x2/2\
0

+

x1/2\
0

x2\
x2/2

+

x1/2\
0

1\
x2

+

x1\
x1/2

x2/2\
0

+

x1\
x1/2

x2\
x2/2

+

x1\
x1/2

1\
x2

+

1\
x1

x2/2\
0

+

1\
x1

x2\
x2/2

+

1\
x1

1\
x2

=

9∑

j=1

I1j .

First,

I11 ≤
x1/2\

0

( x2/2\
0

1

|x− y|ηyα1
1 yα2

2

dy2

)
dy1

≤ C

((x1/2)2 + (x2/2)2)η/2

(
x1

2

)1−α1
(
x2

2

)1−α2

≤ Cx2
2−α1−α2−η ≤ C.

Next we estimate

I19 ≤
1\
x1

( 1\
x2

1

|x− y|ηyα1
1 yα2

2

dy2

)
dy1 ≤

1\
0

( 1\
0

1

|y|ηyα1
1 yα2

2

dy2

)
dy1

≤
π/2\
0

( 1\
0

r

rη+α1+α2(cos θ)α1(sin θ)α2
dr

)
dθ ≤ C,

as long as 1 − η − α1 − α2 > −1 or η < 2 − α1 − α2.
Next,

I12 =

x1/2\
0

( x2\
x2/2

1

|x− y|ηyα1
1 yα2

2

dy2

)
dy1

≤
x1/2\

0

( x2\
x2/2

1

((x1/2)2 + (x2 − y2)2)η/2yα1
1 yα2

2

dy2

)
dy1

(set y2 = sx2)
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=

x1/2\
0

( 1\
1/2

x1−α2
2

((x1/2)2 + x2
2(1 − s)2)η/2yα1

1 sα2
ds

)
dy1

≤ C

1\
1/2

x1−α1
1 x1−α2

2

(x2
1 + x2

2(1 − s)2)η/2
ds ≤ C

1\
0

x1−α1
1 x1−α2

2

(x2
1 + x2

2(1 − s)2)η/2
ds

≤ C

( x1/x2\
0

x1−α1
1 x1−α2

2

xη
1

ds+

1\
x1/x2

x1−α1
1 x1−α2

2

(sx2)
η ds

)

≤ C(x2−α1−η
1 x−α2

2 + x1−α1
1 x1−α2−η

2 (1 + (x1/x2)
1−η)) ≤ C

for η 6= 1, where we used the fact that x1 ≤ x2 and η < 2−α1−α2. If η = 1,
we get

I12 ≤ C(1 + x1−α1
1 x−α2

2 log(x2/x1)) ≤ C(1 + x1−α1
1 x−α2

2 (x2/x1)
1−α1)

≤ C(1 + x1−α1−α2
2 ) ≤ C,

but here 1 = η < 2 − α1 − α2 or α1 + α2 < 1.
Now,

I13 =

x1/2\
0

( 1\
x2

1

((x1/2)2 + (x2 − y2)2)η/2yα1
1 yα2

2

dy2

)
dy1

≤
x1/2\

0

1

yα1
1

( \
|y2−x2|≤x1/2

χ(y2 ≥ x2)

xη
1y

α2
2

dy2

+
\

x1/2≤|y2−x2|≤1

χ(y2 ≥ x2)

|y2 − x2|ηyα2
2

dy2

)
dy1

≤ C

x1\
0

1

yα1
1

(
x1

xη
1x

α2
2

+

1\
x2+x1/2

1

(y2 − x2)ηyα2
2

dy2

)
dy1 ≤ C.

Finally,

I15 =

x1\
x1/2

( x2\
x2/2

1

|x− y|ηyα1
1 yα2

2

dy2

)
dy1

(set yl = slxl, l = 1, 2)

≤
1\

1/2

( 1\
1/2

x1−α1
1 x1−α2

2

((x1(1 − s1))2 + (x2(1 − s2))2)η/2
ds2

)
ds1

≤
1\
0

( 1\
0

x1−α1
1 x1−α2

2

((x1s1)2 + (x2s2)2)η/2
ds2

)
ds1
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≤
1\
0

( s1x1/x2\
0

x1−α1
1 x1−α2

2

(x1s1)η
ds2 +

1\
s1x1/x2

x1−α1
1 x1−α2

2

(x2s2)η
ds2

)
ds1

= I151 + I152.

We have

I151 ≤ C
x2−α1

1 x−α2
2

xη
1

1\
0

s1−η
1 ds1 ≤ C, η 6= 1,

I152 ≤ C
x1−α1

1 x1−α2
2

xη
2

1\
0

((
s1x1

x2

)1−η

+ 1

)
ds1

≤ C
x1−α1

1 x1−α2
2

xη
2

((
x1

x2

)1−η

+ 1

)
≤ C.

If η = 1, then

I152 ≤ C
x1−α1

1 x1−α2
2

x2

1\
0

( 1\
s1x1/x2

1

s2−α1
2

ds2

)
ds1

≤ C
x1−α1

1 x1−α2
2

x2

x1−α1
2

x1−α1
1

1\
0

1

s1−α1
1

ds1 ≤ C.

This explains the reason for the hypothesis on η, 0 ≤ η < 2 − α1 − α2.
In order to see the necessity, we take w(x) = 1 and v(y) = yν . If we

assume that our operator maps continuously, then we get, with ϕ(x, y) ≥
C|x− y|−η and g(y) = f(y1/b)y1/b−1̄,

(4.3)
\

[N,2N ]

x1/a−1̄
∣∣∣

\
[1/(2N),1/N ]

ϕ(x1/a, y1/b)eix·yg(y) dy
∣∣∣
p
dx ≤ C‖f‖p

p,v

where for N = (N1, N2) we take

f(y) =

{
y−(ν+1̄)/p if 2−M/b ≤ y ≤ 2M/b,

0 elsewhere.

Set

G(l, k) =
\

[N,2N ]

x1/a−1̄
∣∣∣

\
[1/(2N),1/N ]

ϕ(x1/a, y1/b)eix·yg(y) dy
∣∣∣
p
dx

with N1 = 2l and N2 = 2k. It follows from (4.3) that, with −M1 ≤ l ≤ M1

and −M2 ≤ k ≤M2,

∑

(l,k)

G(l, k) ≤ C

2M1/b1\
2−(M1+1)/b1

2M2/b2\
2−(M2+1)/b2

|f(y)|pv(y) dy ≤ CM1M2.
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And so we get

(4.4) I + II + III + IV

=
1∑

l=−M1

1∑

k=−M2

+
1∑

l=−M1

M2∑

k=2

+

M1∑

l=2

1∑

k=−M2

+

M1∑

l=2

M2∑

k=2

≤ CM1M2.

In particular,

IV1 =

M1∑

l=2

M2∑

k=la2/a1

(· · · ) ≤ CM1M2.

Hence,
M1∑

l=2

M2∑

k=la2/a1

2k(κ2−pη/a2)2lκ1 ≤ CM1M2,

where
κj = 1/aj + (νj + 1)/bj − p/bj for j = 1, 2.

In order to avoid a contradiction, we must have

(4.5) κ2 − p
η

a2
≤ 0 or ν2 ≤ α2

p

p′
+ (p− 2 + ηp)

b2
a2
.

Considering the piece IV2 we would get a similar estimate for ν1.
Estimating the term I1, i.e.

I1 =

1∑

k=−M2

(b1/b2)k∑

l=−M1

2kκ22l(κ1+pη/b1) ≤ CM1M2,

in order to avoid a contradiction, we must have

(4.6) κ1 + p
η

b1
≥ 0, or ν1 ≥ p

p′
α1 +

b1
a1

(p− 2) − pη.

Putting (4.5) and (4.6) together gets us the result (4.2) and hence the proof
is complete.

Remark 7. To see the necessity to Theorem 1.9, if ϕ(x, y) ≥ C, and
(1.4) holds for v(y) = yν with a ≥ b ≥ 1̄ and w(x) = 1, then by (4.2) it
follows (p = 2 and η = 0) that ν = 1̄ − b/a. Similarly, if b ≥ a ≥ 1̄ and
w(x) = xν with v(y) = 1, then it follows that ν = 1̄−a/b. This characterizes
fully the power weights case for p = 2.

Remark 8. It should be pointed out that from Theorem A (and Re-
mark 1), if a1/b1 = a2/b2 and if p0 = 4/(2 + η) ∈ J , then our operators
map Lp0 into Lp0 (i.e. with constant weights). For example if aj/bj ≥ 1 in
Theorem A, then 4/(2 + η) is in J (if η ≥ 2/3), and so as this example
shows, ν1 = ν2 = 0 in (4.2) is possible for this p0.

But in contrast to Remark 8 we get
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Corollary 4.2. With the hypothesis in Theorem 4.1, suppose addition-

ally that ϕ(x, y) ≥ C|x − y|−η and νj ≥ (p/p′)αj for j = 1, 2. Then for

p = 4/(2 + η),

‖Kf‖p ≤ C‖f‖p,vp if and only if νj =
p

p′
αj for j = 1, 2.

Proof. It follows from (4.3) with

f(y) =

{
1 if (2N)−1/b ≤ y ≤ N−1/b,

0 elsewhere,

that for N2 = N̺
1 and ̺ ≥ 0,

(4.7)
N

(1/p)(κ1+̺κ2)
1

(N
2/a1

1 +N
2̺/a2

1 )η/2
≤ C.

Let 0 ≤ ̺ ≤ a2/a1 and a ≥ b ≥ 1̄. Then we get

(4.8) N
κ1/p−η/a1+̺κ2/p
1 ≤ C.

Thus if we let N1 → ∞ in (4.8), it follows that

ν1 ≤ p− 1 − b1
a1

(1 − pη) − b1̺κ2.

We select

(4.9) ̺ =
p(1 + η) − 2

a1κ2
.

To check that ̺ in (4.9) is consistent with our previous inequalities, we
first show that ̺ ≥ 0. Since p = 4/(2 + η), we get p(1 + η)− 2 ≥ 0. Thus, it
suffices to see that κ2 > 0. Indeed, since ν2 ≥ (p− 1)α2, it follows that

κ2 ≥ (1 − p)(b2/a2)

b2
+ 1/a2 =

2 − p

a2
> 0 for 1 ≤ p < 2.

Because of (4.2) of Theorem 4.1 we need only consider the cases where p 6= 2.
To check that ̺ ≤ a2/a1, note that this implies that

p(1 + η) − 2 ≤ a2κ2, or p((a2/b2) + 1 + η) ≤ 3 + (ν2 + 1)(a2/b2),

or

(p− (ν2 + 1))(a2/b2) ≤ 3 − 4(1 + η)

2 + η
, or p ≤ 2 − η

2 + η
(b2/a2) + ν2 + 1.

But ν2 + 1 ≥ p− (p− 1)(b2/a2), and since

p− 1 =
2 − η

2 + η
,

this finishes the argument because these steps can be reversed.
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We showed that if 1 ≤ p < 2 and ν2 ≥ (p/p′)α2, then ν1 ≤ (p/p′)α1;
similarly if ν1 ≥ (p/p′)α1, then ν2 ≤ (p/p′)α2. Putting these two results
together we get the proof.
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