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Modulation space estimates for multilinear

pseudodifferential operators

by

Árpád Bényi (Bellingham, WA) and Kasso A. Okoudjou (Ithaca, NY)

Abstract. We prove that for symbols in the modulation spaces Mp,q, p ≥ q, the
associated multilinear pseudodifferential operators are bounded on products of appropriate
modulation spaces. In particular, the symbols we study here are defined without any
reference to smoothness, but rather in terms of their time-frequency behavior.

1. Introduction. An m-linear pseudodifferential operator is a priori
defined through its (distributional) symbol σ as a mapping from the m-fold
product S(Rd) × · · · × S(Rd) into S ′(Rd) by

(1) Tσ(f1, . . . , fm)(x)

=
\

Rmd

σ(x, ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm) dξ1 · · · dξm

for f1, . . . , fm ∈ S(Rd). Such operators model the product of m functions and
their derivatives and one expects their boundedness properties on products
of Lebesgue spaces to mimic those given by Hölder’s inequality. The main
question then is to find sufficient optimal conditions on the symbol σ that
guarantee the boundedness of the corresponding operator Tσ on various
spaces of functions. The search for such conditions can be traced back to
the pioneering work of Coifman and Meyer [9–11]. They have proved, for
instance, that (if we assume for simplicity m = 2) the conditions

|∂β
ξ ∂γ

η σ(x, ξ, η)| ≤ Cβ,γ

and

|∂β
ξ ∂γ

η σ(x′, ξ, η) − ∂β
ξ ∂γ

η σ(x, ξ, η)| ≤ Cβ,γ |x
′ − x|δ

for all β, γ ≥ 0 and some δ > 0 imply that Tσ is bounded from Lp ×Lq into
Lr when 1/p + 1/q = 1/r, p, q > 1.
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The ideas of Coifman and Meyer have had far reaching consequences
and have led, in particular, to the investigation of bilinear and multilinear
pseudodifferential operators in the realm of other classical function spaces,
such as Sobolev or Besov–Triebel–Lizorkin spaces in the works of Grafakos
and Torres [19, 20]; see also [1, 3, 5–7]. In all these papers the recurrent
assumptions on the symbol are sufficient smoothness and decay conditions,
as well as size estimates.

More recently, in [4], we have initiated the study of multilinear pseudo-
differential operators in the context of modulation spaces, which surprisingly
appear as the right spaces in certain problems where more common Lp es-
timates fail. These spaces play a dual role of classes of symbols and spaces
of functions on which the operators act. For example, we proved in [4] that
symbols in the so-called Feichtinger algebra yield bilinear operators that are
bounded on products of modulation spaces. As a corollary, we also obtained
boundedness results for operators in this class on products of Lebesgue and
Sobolev spaces. It is important to note that the Feichtinger algebra as well
as all the family of modulation spaces it belongs to are defined without any
reference to smoothness, but rather by imposing some decay conditions on
the time-frequency content of functions; see Gröchenig’s book [15] for further
details about modulation spaces. The analysis of multilinear pseudodiffer-
ential operators in the realm of modulation spaces was continued in [2],
where it was shown that the modulation space M∞,1(R(m+1)d) also yields
bounded operators on products of modulation spaces. The space M∞,1 has
played an important role in the recent development of the theory of linear
pseudodifferential operators; see the works of Gröchenig and Heil [16–18],
Heil, Ramanathan, and Topiwala [21], Labate [22, 23], Sjöstrand [25], and
Toft [26]. The results in [2] could be viewed as multilinear extension of the
celebrated Calderón–Vaillancourt theorem [8] about the L2 boundedness of
linear operators with bounded symbols having all their derivatives bounded.
Indeed, it can be shown that symbols satisfying such conditions also belong
to the modulation space M∞,1; see [24, 16, 21]. We also wish to point out
that the conditions on the symbols we employed in [4] and [2] are not compa-
rable to the ones previously used in the “hard analysis” works cited above.

In this paper, we investigate the boundedness properties of multilin-
ear pseudodifferential operators with symbols in more general modulation
spaces. More precisely, we show that symbols in modulation spaces
Mp,q(R(m+1)d), p ≥ q, give rise to bounded operators on products of cor-
responding modulation spaces; see the article of Czaja [12] and [17, 18]
for analogous results in the linear case. As a by-product of our analy-
sis, we improve one of the main results in [4]. More precisely, we prove
that if the symbol of a bilinear (or multilinear) pseudodifferential operator
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is in the Feichtinger algebra M1, then the corresponding operator maps
M∞ × M∞ into M1, and hence it maps Mp1,q1 × Mp2,q2 into M1 for all
indices 1 ≤ pi, qi ≤ ∞.

Our paper is organized as follows. In Section 2 we set the notation and the
fundamental facts about the modulation spaces that will be used throughout
the paper. In Section 3 we state our main results. Their proofs and some
corollaries are presented in Section 4.

2. Notation and preliminaries

2.1. General notation. We will be working on the d-dimensional space Rd.
We let S = S(Rd) be the subspace of C∞(Rd) of Schwartz rapidly decreasing
functions, with its usual topology. Its dual is S ′ = S ′(Rd), the set of all
tempered distributions on Rd. Translation and modulation of a function f
with domain Rd are defined, respectively, by

Txf(t) = f(t − x) and Myf(t) = e2πiy·tf(t).

The Fourier transform of f ∈ L1(Rd) is f̂(ω) =
T
Rd f(t)e−2πit·ω dt, ω ∈ Rd.

The Fourier transform is an isomorphism of the Schwartz space S onto itself,
and extends to the space S ′ of tempered distributions by duality.

The inner product of two functions f, g ∈ L2 is 〈f, g〉 =
T
Rd f(t)g(t)dt,

and its extension to S ′ × S will also be denoted by 〈·, ·〉.

The Short-Time Fourier Transform (STFT) of a function f with respect
to a window g is

Vgf(x, y) = 〈f, MyTxg〉 =
\

Rd

e−2πiy·t g(t − x) f(t) dt,

whenever the integral makes sense. Similar to the Fourier transform, the
STFT extends in a distributional sense to f, g ∈ S ′; see Folland’s book [14,
Prop. 1.42].

An important technical tool used throughout this paper is the extended
isometry property of the STFT [15, (14.31)]: if φ ∈ S(Rd), ‖φ‖2 = 1, then

(2) 〈f, h〉 = 〈Vφf, Vφh〉, ∀f ∈ S ′, h ∈ S.

We let LqLp = LqLp(R2d) be the space of measurable functions f(x, y)
for which the mixed norm

‖f‖Lq(dy)Lp(dx) =
( \

Rd

(\
Rd

|f(x, y)|p dx
)q/p

dy
)1/q

is finite. If p = q, we have LpLp(R2d) = Lp(R2d), the usual Lebesgue space.

2.2. Modulation spaces. Given 1 ≤ p, q ≤ ∞, and given a fixed, non-zero
window function g ∈ S, the modulation space Mp,q = Mp,q(Rd) is the space
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of all distributions f ∈ S ′ for which the following norm is finite:

‖f‖Mp,q =
(\

Rd

(\
Rd

|Vgf(x, y)|p dx
)q/p

dy
)1/q

= ‖Vgf‖LqLp ,

with the usual modifications if p and/or q are infinite. When p = q, we write
Mp for Mp,p. Note that for p = q = 2, M2 = L2.

Remark 1. When p = q = 1 the resulting modulation space M1 is also
known as the Feichtinger algebra. It is sometimes denoted S0, and it has some
remarkable properties; see [13] for a detailed description. In [4], we proved
that M1 as well as some of its weighted versions are convenient classes of
symbols that give rise to bounded bilinear pseudodifferential operators on
products of modulation spaces.

Remark 2. The definition of modulation spaces is independent of the
choice of the window g in the sense of equivalent norms. It is important
to note that the Schwartz class S is dense in Mp,q for 1 ≤ p, q < ∞. One
can also show that the dual of Mp,q is Mp′,q′ , where 1 ≤ p, q < ∞ and
1/p + 1/p′ = 1/q + 1/q′ = 1.

Remark 3. Most of our results will be stated even for the cases p = ∞
and/or q = ∞. To properly deal with duality (which will be used con-
stantly in our proofs) in these cases, we define the related modulation spaces
M0,q,Mp,0, and M0,0 = M0. Let L0 denote the space of bounded measur-
able functions on R2d vanishing at infinity. Then

M0,q = {f ∈ M∞,q : Vgf ∈ L0}, q < ∞,

Mp,0 = {f ∈ Mp,∞ : Vgf ∈ L0}, p < ∞,

M0,0 = {f ∈ M∞ : Vgf ∈ L0},

equipped with the norms of M∞,q,Mp,∞, and M∞,∞ = M∞ respectively.
Moreover, it follows from [2, Lemma 2.2] that (Mp,0)′ = Mp′,1, (M0,q)′ =
M1,q′ , and (M0,0)′ = M1,1. From now on we will will use these duality
relations in the cases p = ∞ and/or q = ∞ without any further explanations.

3. Main estimates. Our first main result, of which [2, Theorem 3.1]
should be regarded as the limiting case, can be stated as follows.

Theorem 1. Let σ ∈ Mp,1(R(m+1)d) and 1 ≤ p, pi, qi ≤ ∞, 0 ≤ i ≤ m,
be such that

1

p
+

m∑

i=1

1

pi
=

1

p0
and

m

p
+

m∑

i=1

1

qi
= (m − 1) +

1

q0
.

Then the m-linear pseudodifferential operator Tσ defined by (1) can be ex-

tended to a bounded operator from Mp1,q1 × · · · ×Mpm,qm into Mp0,q0 .
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More generally, if we assume that the symbol belongs to Mp,q(R(m+1)d),
p ≥ q, then we can prove the following.

Theorem 2. Let 1 ≤ p0, p, q, r, qi ≤ ∞ for 0 ≤ i ≤ m be such that




p0 ≤ q0,

qm ≤ r,

p′ ≤ q′, q′0, r, qi if 1 ≤ i ≤ m,

qi ≤ q′ if 1 ≤ i ≤ m − 1.

Moreover , assume that

m − 1

p
+

1

q
+

m∑

i=1

1

qi
= m − 1 +

1

q0
and

1

p
+

1

q
+

1

r
= 1 +

1

p0
.

If σ ∈ Mp,q(R(m+1)d), then the m-linear pseudodifferential operator Tσ de-

fined by (1) can be extended to a bounded operator from Mq′,q1 ×Mq′,q2 ×
· · · ×Mq′,qm−1 ×Mr,qm into Mp0,q0 .

4. Proofs. It is readily seen that the action of Tσ on f1, . . . , fm, g ∈ S
can be written as

〈Tσ(f1, . . . , fm), g〉

=
\

R(m+1)d

σ(x, ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm) g(x) dξ1 · · · dξm dx

= 〈σ, Wm(g, f1, . . . , fm)〉

where

(3) Wm(g, f1, . . . , fm)(x, ξ1, . . . , ξm)

= g(x) f̂1(ξ1) · · · f̂m(ξm)e−2πix·(ξ1+···+ξm).

Remark 4. For m = 1, the Kohn–Nirenberg correspondence can be
written as 〈Tσf, g〉 = 〈σ, W1(g, f)〉, where W1(g, f) = e−2πix·ξg(x)f̂(ξ) is
the so-called cross Ryhaczek distribution of f and g. One may think of
Wm as a multilinear version of the Ryhaczek distribution. The key idea in
obtaining any type of modulation spaces estimates on multilinear pseudo-
differential operators Tσ is to understand the time-frequency characteristics
of Wm(g, f1, . . . , fm).

To compactify the notation, we write

(ξ1, . . . , ξm) = ~ξ, dξ1 · · · dξm = d~ξ, Wm(g, f1, . . . , fm) = Wm(g, ~f ).

Let now (φ0, ~φ ) = (φ0, φ1, . . . , φm) ∈ S(R(m+1)d), and let (u0, ~u) =
(u0, u1, . . . , um), (v0, ~v) = (v0, v1, . . . , vm) ∈ (Rd)m+1. Then we clearly have

Wm(φ0, ~φ) ∈ S(R(m+1)d).
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The proofs of our main results will be based on the lemma and proposi-
tions below. The following result was proved in [2].

Lemma 1. Let (~f, g) ∈ (M∞(Rd))m+1. With the notation above, we

have

(4) V
Wm(φ0,~φ)

Wm(g, ~f )((u0, ~u), (v0, ~v))

= e2πiu0·
∑n

i=1 uiVφ0g
(
u0, v0 +

n∑

i=1

ui

) m∏

i=1

Vφi
fi(u0 + vi, ui).

The next proposition contains the main estimate needed for proving
Theorem 1.

Proposition 1. Assume that

1

p
+

m∑

i=1

1

pi
=

1

p0
and

m

p
+

m∑

i=1

1

qi
= m − 1 +

1

q0
,

where 1 ≤ p, pi, qi ≤ ∞, 0 ≤ i ≤ m. Then

‖V
Wm(φ0,~φ)

Wm(g, ~f )‖L∞(dv0d~v)Lp′ (du0d~u)

≤ C‖f1‖Mp1,q1 · · · ‖fm‖Mpm,qm‖g‖
M

p′0,q′0
,

whenever the right hand side is defined. Equivalently , Wm(g, ~f ) ∈ Mp′,∞.

Proof. Lemma 1 implies that for all (v0, ~v) ∈ R(m+1)d we have

Γ (v0, ~v)p′ =
\

R(m+1)d

|V
Wm(φ0,~φ)

Wm(g, ~f )((u0, ~u), (v0, ~v))|p
′

du0 d~u

=
\

R(m+1)d

∣∣∣Vφ0g
(
u0, v0 +

n∑

i=1

ui

)∣∣∣
p′∣∣∣

m∏

i=1

Vφi
fi(u0 + vi, ui)

∣∣∣
p′

du0 d~u.

Observe that the condition on the exponents pi is equivalent to 1/p′ =
1/p′0 +

∑m
i=1 1/pi. Hence, if we apply Hölder’s inequality we get

Γ (v0, ~v)p′ ≤
\

Rmd

∥∥∥Vφ0g
(
·, v0 +

n∑

i=1

ui

)∥∥∥
p′

Lp′0

m∏

i=1

‖Vφi
fi(·, ui)‖

p′

Lpi d~u.

Let G(v) = ‖Vφ0g(·, v)‖
Lp′

0
and Fi(ui) = ‖Vφi

fi(·,−ui)‖Lpi . With this no-

tation, ‖G‖
Lq′0

= ‖g‖
M

p′0,q′0
and ‖Fi‖Lqi = ‖fi‖Mpi,qi . Therefore, we may

rewrite the previous inequality as

Γ (v0, ~v)p′ ≤
\

Rmd

G
(
v0 +

n∑

i=1

ui

)p′
m∏

i=1

Fi(−ui)
p′ d~u

= (Gp′ ∗ F p′

1 ∗ · · · ∗ F p′
m )(v0).
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Note that the expression on the right hand side of this inequality is already
independent of ~v. Thus, the only meaningful estimate we may hope for is
an L∞ estimate. The condition on the exponents qi is equivalent to m/p′ +
1/∞ = 1/q′0 +

∑m
i=1 1/qi, and this allows us to use Young’s inequality for

convolution. We obtain

‖V
Wm(φ0,~φ)

Wm(g, ~f )‖p′

Lp′,∞
≤ ‖Gp′ ∗ F p′

1 ∗ · · · ∗ F p′

m‖L∞

≤ ‖Gp′‖
Lq′0/p′

m∏

i=1

‖F i
p′‖

Lqi/p′

= ‖G‖p′

Lq′0

m∏

i=1

‖Fi‖
p′

Lqi .

This proves that

‖V
Wm(φ0,~φ)

Wm(g, ~f )‖Lp′,∞ ≤ C‖g‖
M

p′0,q′0
‖f1‖Mp1,q1 · · · ‖fm‖Mpm,qm .

The appearance of the constant C is due to the use of different windows to
measure the modulation space norms and as such it depends only on the
dimension and the indices of these spaces.

We come now to the proof of Theorem 1.

Proof of Theorem 1. Let fi ∈ Mpi,qi be given, and let φ0, φ1, . . . , φm ∈
S(Rd) be fixed so that ‖φi‖L2 = 1 for each i. Then, using the extended
isometry property of the STFT (2), Hölder’s inequality, and Proposition 1,
for any g ∈ Mp′0,q′0 we have

|〈Tσ
~f, g〉| = |〈σ, Wm(g, ~f )〉| = |〈V

Wm(φ0,~φ)
σ, V

Wm(φ0,~φ)
Wm(g, ~f )〉|

≤ ‖V
Wm(φ0,~φ)

σ‖Lp,1 ‖VWm(φ0,~φ)
Wm(g, ~f )‖Lp′,∞

≤ C ‖σ‖Mp,1

m∏

i=1

‖fi‖Mpi,qi‖g‖
M

p′0,q′0
.

If p′0, q
′
0 < ∞, then the duality properties of the modulation spaces imply

that Tσ
~f ∈ Mp0,q0 with the norm estimate

‖Tσ
~f‖Mp0,q0 ≤ C‖σ‖M∞,1

m∏

i=1

‖fi‖Mpi,qi .

If either p′0 = ∞ or q′0 = ∞ or both, then we take g ∈ M0,q′0 , Mp′0,0, or
M0,0 instead, and, following Remark 3, a similar duality argument yields
the desired result.

Remark 5. If we let p = 1 in Theorem 1, we necessarily have p0 = q0 = 1
and pi = qi = ∞ for i = 1, . . . , m. The theorem then reads as follows:

If σ ∈ M1(R(m+1)d) then Tσ is bounded from M∞×· · ·×M∞ into M1.
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Thus, since M1 ⊂ Mp,q ⊂ M∞ for 1 ≤ p, q ≤ ∞, we infer that symbols
in the Feichtinger algebra produce bounded multilinear pseudodifferential
operators from arbitrary products of modulation spaces into an arbitrary
modulation space. This improves on our results in [4] where the technical
tools we used required further restrictions on the indices. Furthermore, since
M1 ⊂ Lp ⊂ M∞, it also follows from Theorem 1 that if σ ∈ M1, then Tσ

is bounded from any product of Lebesgue spaces into M1, thus into any Lp

space. These strong boundedness results are a consequence of the fact that
symbols in M1, although non-smooth, have a considerable smoothing effect
on the corresponding operators.

Remark 6. If p = ∞, we recover the main result of [2]. In a sense,
Theorem 1 should be viewed as a general result about a continuous family
of spaces that yields bounded multilinear pseudodifferential operators on
products of certain modulation spaces.

The next proposition provides us with the estimate needed in the proof
of Theorem 2.

Proposition 2. Let 1 ≤ p0, p, q, r, qi ≤ ∞ for 0 ≤ i ≤ m be such that




p0 ≤ q0,

qm ≤ r,

p′ ≤ q′, q′0, r, qi if 1 ≤ i ≤ m,

qi ≤ q′ if 1 ≤ i ≤ m − 1.

Moreover , assume that

m − 1

p
+

1

q
+

m∑

i=1

1

qi
= m − 1 +

1

q0
and

1

p
+

1

q
+

1

r
= 1 +

1

p0
.

Then

‖V
Wm(φ0,~φ)

Wm(g, ~f )‖Lp′,q′

≤ C‖f1‖Mq′,q1
· · · ‖fm−1‖

M
q′,qm−1

‖fm‖Mr,qm‖g‖
M

p′0,q′0
,

whenever the right hand side is defined. Equivalently , Wm(g, ~f) ∈ Mp′,q′.

Proof. We recall from the proof of Proposition 1 that

(5) Γ (v0, ~v)p′

=
\

(Rd)m+1

∣∣∣Vφ0g
(
u0, v0 +

n∑

i=1

ui

)∣∣∣
p′∣∣∣

m∏

i=1

Vφi
fi(u0 + vi, ui)

∣∣∣
p′

du0 d~u.

For a function F (x, y) on R2d, we let F̃ (x, y) = F (x,−y). With this no-
tation, (5) can be rewritten as an equality between Γ and a convolution
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integral

Γ (v0, ~v) =
( \

Rd

|Vφ0g(u0, ·)|
p′ ∗ |Ṽφ1f1(u0 + v1, ·)|

p′ ∗ · · ·

∗ |Ṽφmfm(u0 + vm, ·)|p
′

(v0) du0

)1/p′

.

Here, the convolution is only in the second variable. Consequently,

I =
\

R(m+1)d

Γ (v0, ~v)q′ dv0 d~v

can be rewritten as\
Rmd

\
Rd

(\
Rd

|Vφ0g(u0, ·)|
p′ ∗ |Ṽφ1f1(u0 + v1, ·)|

p′ ∗ · · ·

∗ |Ṽφmfm(u0 + vm, ·)|p
′

(v0) du0

)q′/p′

dv0 d~v.

Since q′/p′≥1, Minkowski’s inequality allows us to bound I by
T
Rmd II(~v) d~v,

where II(~v) is given by the following expression:
(\(\(

|Vφ0g(u0, ·)|
p′ ∗ |Ṽφ1f1(u0 + v1, ·)|

p′ ∗ . . .

∗ |Ṽφmfm(u0 + vm, ·)|p
′

(v0)
)q′/p′

dv0

)p′/q′

du0

)q′/p′

.

Using now the conditions on the indices and Young’s inequality we can
further estimate

T
Rmd II(~v) d~v, and get

I ≤
\

Rmd

(\
Rd

‖Vφ0g(u0, ·)‖
p′

Lq′0

m∏

i=1

‖Vφi
fi(u0 + vi, ·)‖

p′

Lqi du0

)q′/p′

d~v.

By a repeated use of Minkowski’s inequality to each of the variables vi,
i = 1, . . . , m, we obtain

I ≤

m−1∏

i=1

\
Rd

‖Vφi
fi(vi, ·)‖

q′

Lqi

×
\

Rd

(
‖Vφ0g(u0, ·)‖

p′

Lq′0
‖Vφmfm(u0 + vm, ·)‖p′

Lqm du0

)q′/p′

d~v

=

m−1∏

i=1

\
Rd

‖Vφi
fi(vi, ·)‖

q′

Lqi

\
Rd

(G0 ∗ Fm(vm))q′/p′d~v,

where we have set

G0(u0) = ‖Vφ0g(u0, ·)‖
p′

Lq′
0

and Fm(u0) = ‖Vφmfm(u0, ·)‖
p′

Lqm .
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Now, it is easy to see that for i = 1, . . . , m − 1, we have on the one hand,

(6)
\

Rd

‖Vφi
fi(vi, ·)‖

q′

Lqi dvi ≤ ‖fi‖
q′

Mq′,qi
,

while on the other hand,

(7)
\

Rd

(
G0 ∗ Fm(vm)

)q′/p′
dvm ≤ ‖g‖q′

M
p′
0

,q′
0
‖fm‖q′

Mr,qm .

Consequently, from (6) and (7), we conclude that

‖Wm(g, ~f)‖
Mp′,q′ =

( \
R(m+1)d

Γ (v0, ~v)q′ dv0 d~v
)1/q′

(8)

≤ C‖g‖
M

p′0,q′0

m−1∏

i=1

‖fi‖Mq′,qi
‖fm‖Mr,qm ,

where C is a positive constant depending only on the dimension and the
indices of the spaces involved.

Proof of Theorem 2. The proof, making use of Proposition 2, is modeled
after the proof of Theorem 1 with the obvious changes. The details are left
to the interested reader.

If we choose q = p′ in Theorem 2, then p0 = r and we obtain a restricted
generalization of symbols in M∞,1 to symbols in Mp,p′ ; see Remark 6.

Corollary 1. Let p ≥ 2 and 1 ≤ r, qi ≤ ∞ for 0 ≤ i ≤ m be such that



r ≤ q0,

qm ≤ r,

p′ ≤ q′0, r, qi if 1 ≤ i ≤ m,

qi ≤ q′ if 1 ≤ i ≤ m − 1.

Moreover , assume that

m − 2

p
+

m∑

i=1

1

qi
= m − 2 +

1

q0
.

If σ ∈ Mp,p′(R(m+1)d) then Tσ can be extended to a bounded operator from

Mp,q1 × · · · ×Mp,qm−1 ×Mr,qm into Mr,q0 .

With some modifications in the proof of Proposition 2, we can also obtain
the following result.

Corollary 2. Let 1 ≤ p, q, qi ≤ ∞ for 0 ≤ i ≤ m be such that q ≤ p
≤ q0 and p′ ≤ qi ≤ q′ for all 1 ≤ i ≤ m. Moreover , assume that

m − 1

p
+

1

q
+

m∑

i=1

1

qi
= m − 1 +

1

q0
.
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If σ ∈ Mp,q(R(m+1)d), then Tσ can be extended to a bounded operator from

Mq′,q1 × · · · ×Mq′,qm into Mp,q0 .

Remark 7. The condition p ≥ q appears naturally in the hypothesis of
Theorem 2 or Corollary 2 due to the extensive use of Minkowski’s inequal-
ity. Furthermore, the absence of this condition has rather unexpected conse-
quences. If we assume, for example, that 1 ≤ p ≤ 2 and σ ∈ M1,p(R(m+1)d),
then it can be shown that Tσ is bounded from Lp × · · · × Lp into Lp. How-
ever, if p ≥ 2 and σ ∈ M1,p(R(m+1)d), then Tσ might actually fail to be
bounded on products of Lebesgue spaces. Indeed, if we let σ = δ0, the
Dirac (point mass) distribution at the origin, then it is easy to see that
σ ∈ M1,∞(R(m+1)d), but Tσ is not bounded on any product of Lebesgue
spaces. It is not clear to these authors how to proceed in the case p < q < ∞.
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