Completely multi-positive linear maps between locally C^{*}-algebras and representations on Hilbert modules

by
Maria Joiţa (Bucureşti)

Abstract

A KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) type construction for strict (respectively, covariant non-degenerate) completely multi-positive linear maps between locally C^{*}-algebras is described.

1. Introduction. It is well known that a positive linear functional on a C^{*}-algebra A induces a $*$-representation of A on a Hilbert space by the GNS (Gel'fand, Naimark, Segal) construction. Stinespring [12] extended this construction to completely positive linear maps from A to $L(H)$, the C^{*}-algebra of all bounded linear operators on a Hilbert space H. On the other hand, Paschke [9] (respectively, Kasparov [7]) showed that a completely positive linear map from A to another C^{*}-algebra B (respectively, from A to the C^{*}-algebra of all adjointable operators on the Hilbert C^{*}-module H_{B}) induces a *-representation of A on a Hilbert B-module. Kaplan [6] introduced the notion of n-positive linear functional on a C^{*}-algebra A, an $n \times n$ matrix of linear functionals on A which induces a positive linear map from $M_{n}(A)$ to $M_{n}(\mathbb{C})$, and showed that an n-positive linear functional on a C^{*}-algebra induces a $*$-representation of this C^{*}-algebra on a Hilbert space in terms of the GNS construction. On the other hand, Heo [1] generalized Kaplan's construction to a completely multi-positive linear map from a unital C^{*}-algebra A to another unital C^{*}-algebra B, an $n \times n$ matrix of linear maps from A to B which induces a completely positive linear map from $M_{n}(A)$ to $M_{n}(B)$, showing that a completely multi-positive linear map from A to B induces a *-representation of A on a Hilbert B-module.

Locally C^{*}-algebras are generalizations of C^{*}-algebras. Instead of being given by a single norm, the topology on a locally C^{*}-algebra is defined

[^0]by a directed family of C^{*}-seminorms. Such important concepts as Hilbert C^{*}-modules, adjointable operators, (completely) positive linear maps, (completely) multi-positive linear maps, C^{*}-dynamical systems can be defined with obvious modifications in the framework of locally C^{*}-algebras. The proofs are not always straightforward. In [2], the author extended the KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) construction to a strict continuous, completely positive linear map from a locally C^{*}-algebra A to $L_{B}(E)$, the locally C^{*}-algebra of all adjointable operators on a Hilbert module E over a locally C^{*}-algebra B. A covariant version of this construction is proved in [5].

In this paper we extend the KSGNS construction to strict continuous, completely multi-positive linear maps from a locally C^{*}-algebra A to $L_{B}(E)$ and prove a covariant version of this construction. That is, we consider multipositive linear maps between locally C^{*}-algebras, not necessarily unital, and show that a strict completely multi-positive linear map $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ from a locally C^{*}-algebra A to $L_{B}(E)$ induces a non-degenerate continuous *representation $\Phi_{[\varrho]}$ of A on a Hilbert B-module $E_{[\varrho]}$, called the KSGNS representation of A associated with [ϱ] (Theorem 3.4). Moreover, this representation is unique up to unitary equivalence. In particular, when A and B are unital C^{*}-algebras and $E=B$ we obtain Theorem 2.1 of [1]. Then we consider the covariant version of this construction: given a locally C^{*}-dynamical system (G, A, α), a covariant non-degenerate completely multi-positive linear map from A to $L_{B}(E)$ induces a non-degenerate, covariant representation of (G, A, α) on a Hilbert B-module which is unique up to unitary equivalence (Theorem 4.3). This construction extends Heo's construction associated with a covariant completely multi-positive linear map with respect to a unital C^{*}-dynamical system. Finally, as an application of this construction we show that given a locally C^{*}-dynamical system (G, A, α) such that α is a continuous inverse limit action, a covariant non-degenerate, completely multi-positive linear map from A to $L_{B}(E)$ extends to a nondegenerate, completely multi-positive linear map from $A \times_{\alpha} G$ to $L_{B}(E)$ (Proposition 4.5).
2. Preliminaries. A locally C^{*}-algebra is a complete complex Hausdorff topological $*$-algebra whose topology is determined by a directed family of C^{*}-seminorms. If A is a locally C^{*}-algebra and $S(A)$ is the set of all continuous C^{*}-seminorms on A, then for each $p \in S(A)$, the quotient algebra $A / \operatorname{ker} p$, denoted by A_{p}, is a C^{*}-algebra with the norm induced by p. The canonical map from A onto A_{p} is denoted by π_{p}. For $p, q \in S(A)$ with $p \geq q$, there is a canonical map $\pi_{p q}$ from A_{p} onto A_{q} such that $\pi_{p q}\left(\pi_{p}(a)\right)=\pi_{q}(a)$ for all $a \in A$. Then $\left\{A_{p} ; \pi_{p q}\right\}_{p, q \in S(A), p \geq q}$ is an inverse system of C^{*}-algebras and A can be identified with $\lim _{\rightleftarrows} A_{p}$.

An approximate unit of A is an increasing net $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ of positive elements of A such that $p\left(e_{\lambda}\right) \leq 1$ for all $p \in S(A)$ and for all $\lambda \in \Lambda$, $p\left(a e_{\lambda}-a\right) \rightarrow 0$ and $p\left(e_{\lambda} a-a\right) \rightarrow 0$ for all $p \in S(A)$ and $a \in A$. Any locally C^{*}-algebra has an approximate unit [10, Proposition 3.11].

A morphism of locally C^{*}-algebras is a continuous *-morphism Φ from a locally C^{*}-algebra A to another locally C^{*}-algebra B. An isomorphism of locally C^{*}-algebras is a bijective linear map Φ from A to B such that Φ and Φ^{-1} are morphisms of locally C^{*}-algebras.

Let $M_{n}(A)$ denote the $*$-algebra of all $n \times n$ matrices over A with the algebraic operations and the topology obtained by regarding it as a direct sum of n^{2} copies of A. Then $\left\{M_{n}\left(A_{p}\right) ; \pi_{p q}^{(n)}\right\}_{p, q \in S(A), p \geq q}$, where $\pi_{p q}^{(n)}\left(\left[\pi_{p}\left(a_{i j}\right)\right]_{i, j=1}^{n}\right)=$ $\left[\pi_{q}\left(a_{i j}\right)\right]_{i, j=1}^{n}$, is an inverse system of C^{*}-algebras and $M_{n}(A)$ can be identified with $\lim _{p} M_{n}\left(A_{p}\right)$.

A linear map $\varrho: A \rightarrow B$ between two locally C^{*}-algebras is completely positive if the linear maps $\varrho^{(n)}: M_{n}(A) \rightarrow M_{n}(B), \varrho^{(n)}\left(\left[a_{i j}\right]_{i, j=1}^{n}\right)=$ $\left[\varrho\left(a_{i j}\right)\right]_{i, j=1}^{n}, n=1,2, \ldots$, are all positive.

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow A$ which is \mathbb{C} - and A-linear in its second variable and satisfies the following relations:
(i) $\langle\xi, \eta\rangle^{*}=\langle\eta, \xi\rangle$ for every $\xi, \eta \in E$;
(ii) $\langle\xi, \xi\rangle \geq 0$ for every $\xi \in E$;
(iii) $\langle\xi, \xi\rangle=0$ if and only if $\xi=0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the family $\left\{\|\cdot\|_{p}\right\}_{p \in S(A)}$ of seminorms, where $\|\xi\|_{p}=\sqrt{p(\langle\xi, \xi\rangle)}$ for $\xi \in E[10$, Definition 4.1].

Let E be a Hilbert A-module. For $p \in S(A), \mathcal{E}_{p}=\{\xi \in E ; p(\langle\xi, \xi\rangle)=0\}$ is a closed submodule of E and $E_{p}=E / \mathcal{E}_{p}$ is a Hilbert A_{p}-module with $\left(\xi+\mathcal{E}_{p}\right) \pi_{p}(a)=\xi a+\mathcal{E}_{p}$ and $\left\langle\xi+\mathcal{E}_{p}, \eta+\mathcal{E}_{p}\right\rangle=\pi_{p}(\langle\xi, \eta\rangle)$. The canonical map from E onto E_{p} is denoted by σ_{p}. For $p, q \in S(A)$ with $p \geq q$ there is a canonical morphism of vector spaces $\sigma_{p q}$ from E_{p} onto E_{q} such that $\sigma_{p q}\left(\sigma_{p}(\xi)\right)=\sigma_{q}(\xi)$ for $\xi \in E$. Then $\left\{E_{p} ; A_{p} ; \sigma_{p q}\right\}_{p, q \in S(A), p \geq q}$ is an inverse system of Hilbert C^{*}-modules in the following sense: $\sigma_{p q}\left(\xi_{p} a_{p}\right)=$ $\sigma_{p q}\left(\xi_{p}\right) \pi_{p q}\left(a_{p}\right)$ for $\xi_{p} \in E_{p}$ and $a_{p} \in A_{p} ;\left\langle\sigma_{p q}\left(\xi_{p}\right), \sigma_{p q}\left(\eta_{p}\right)\right\rangle=\pi_{p q}\left(\left\langle\xi_{p}, \eta_{p}\right\rangle\right)$ for $\xi_{p}, \eta_{p} \in E_{p} ; \sigma_{p p}\left(\xi_{p}\right)=\xi_{p}$ for $\xi_{p} \in E_{p}$ and $\sigma_{q r} \circ \sigma_{p q}=\sigma_{p r}$ if $p \geq q \geq r$, and $\lim _{p} E_{p}$ is a Hilbert A-module which can be identified with E [10, Proposition 4.4].

Let E and F be Hilbert A-modules. We say that an A-module morphism $T: E \rightarrow F$ is adjointable if there is an A-module morphism T^{*} : $F \rightarrow E$ such that $\langle T \xi, \eta\rangle=\left\langle\xi, T^{*} \eta\right\rangle$ for every $\xi \in E$ and $\eta \in F$. Any
adjointable A-module morphism is continuous. The set $L_{A}(E, F)$ of all adjointable A-module morphisms from E into F becomes a locally convex space with topology defined by the family $\{\tilde{p}\}_{p \in S(A)}$ of seminorms, where $\widetilde{p}(T)=\left\|\left(\pi_{p}\right)_{*}(T)\right\|_{L_{A_{p}}\left(E_{p}, F_{p}\right)}$ for $T \in L_{A}(E, F)$ and $\left(\pi_{p}\right)_{*}(T)\left(\xi+\mathcal{E}_{p}\right)=$ $T \xi+\mathcal{F}_{p}$ for $\xi \in E$. Moreover, $\left\{L_{A_{p}}\left(E_{p}, F_{p}\right) ;\left(\pi_{p q}\right)_{*}\right\}_{p, q \in S(A), p \geq q}$ is an inverse system of Banach spaces, where $\left(\pi_{p q}\right)_{*}: L_{A_{p}}\left(E_{p}, F_{p}\right) \rightarrow \bar{L}_{A_{q}}\left(E_{q}, F_{q}\right)$, $\left(\pi_{p q}\right)_{*}\left(T_{p}\right)\left(\sigma_{q}(\xi)\right)=\chi_{p q}\left(T_{p}\left(\sigma_{p}(\xi)\right)\right)$, and $\chi_{p q}, p, q \in S(A), p \geq q$, are the connecting maps of the inverse system $\left\{F_{p}\right\}_{p \in S(A)}$; the limit $\varliminf_{p} L_{A_{p}}\left(E_{p}, F_{p}\right)$ can be identified with $L_{A}(E, F)$ [10, Proposition 4.7]. Thus topologized, $L_{A}(E, E)$ becomes a locally C^{*}-algebra, and we write $L_{A}(E)$ for $L_{A}(E, E)$.

The strict topology on $L_{A}(E)$ is defined by the family $\left\{\|\cdot\|_{p, \xi}\right\}_{(p, \xi) \in S(A) \times E}$ of seminorms, where $\|T\|_{p, \xi}=\|T \xi\|_{p}+\left\|T^{*} \xi\right\|_{p}$ for $T \in L_{A}(E)$.

Two Hilbert A-modules E and F are unitarily equivalent if there is a unitary element in $L_{A}(E, F)$.

Let G be a locally compact group and let A be a locally C^{*}-algebra. An action of G on A is a morphism α from G to $\operatorname{Aut}(A)$, the set of all isomorphisms of the locally C^{*}-algebra. The action α is continuous if the function $(t, a) \mapsto \alpha_{t}(a)$ from $G \times A$ to A is jointly continuous. An action α is called an inverse limit action if we can write A as an inverse $\operatorname{limit}_{\lim _{\delta \in \Delta}} A_{\delta}$ of C^{*}-algebras in such a way that there are actions $\alpha^{(\delta)}$ of G on A_{δ} such that $\alpha_{t}=\varliminf_{\delta \in \Delta} \alpha_{t}^{(\delta)}$ for all t in G [11, Definition 5.1]. An action α of G on A is a continuous inverse limit action if there is a cofinal subset $S_{G}(A, \alpha)$ of G-invariant continuous C^{*}-seminorms on A (a continuous C^{*}-seminorm p on A is G-invariant if $p\left(\alpha_{t}(a)\right)=p(a)$ for all a in A and for all t in $\left.G\right)$. So if α is a continuous inverse limit action of G on A we can suppose that $S(A)=S_{G}(A, \alpha)$.

A unitary representation of G on a Hilbert module E over a locally C^{*}-algebra B is a map u from G to $L_{B}(E)$ such that
(i) u_{g} is a unitary element in $L_{B}(E)$ for all $g \in G$;
(ii) $u_{g t}=u_{g} u_{t}$ for all $g, t \in G$;
(iii) the map $g \mapsto u_{g} \xi$ from G to E is continuous for all $\xi \in E$.

If u is a unitary representation of G on E, then for each $q \in S(B)$, $g \mapsto\left(\pi_{q}\right)_{*} \circ u$ is a unitary representation of G on E_{q}. Moreover, $u_{g}=\varliminf_{\curvearrowleft} \lim _{q} u_{g}^{(q)}$, where

$$
u_{g}^{(q)}=\left(\pi_{q}\right)_{*}\left(u_{g}\right) \quad \text { for all } g \in G
$$

A locally C^{*}-dynamical system is a triple (G, A, α), where G is a locally compact group, A is a locally C^{*}-algebra and α is a continuous action of G on A.

A non-degenerate, covariant representation of (G, A, α) on a Hilbert B module E is a triple (Φ, v, E), where Φ is a non-degenerate, continuous
*-representation of A on E, v is a unitary representation of G on E and

$$
\Phi\left(\alpha_{g}(a)\right)=v_{g} \Phi(a) v_{g}^{*}
$$

for all $g \in G$ and $a \in A$.
Let α be a continuous inverse limit action of G on A. The set $C_{\mathrm{c}}(G, A)$ of all continuous functions from G to A with compact support becomes a *-algebra with convolution of two functions

$$
(f \times h)(s)=\int_{G} f(t) \alpha_{t}\left(h\left(t^{-1} s\right)\right) d t
$$

as product and involution defined by

$$
f^{\sharp}(t)=\Delta(t)^{-1} \alpha_{t}\left(f\left(t^{-1}\right)^{*}\right)
$$

where Δ is the modular function on G. The Hausdorff completion of $C_{\mathrm{c}}(G, A)$ with respect to the topology defined by the family $\left\{N_{p}\right\}_{p \in S(A)}$ of submultiplicative *-seminorms, where

$$
N_{p}(f)=\int_{G} p(f(s)) d s
$$

is denoted by $L^{1}(G, A, \alpha)$, and the enveloping locally C^{*}-algebra $A \times{ }_{\alpha} G$ of $L^{1}(G, A, \alpha)$ is called the crossed product of A by α [4, Definition 3.14]. Moreover, the C^{*}-algebras $\left(A \times{ }_{\alpha} G\right)_{p}$ are isomorphic with $A \times_{\alpha^{(p)}} G$ for all $p \in S(A)$ and so $A \times{ }_{\alpha} G$ can be identified with $\lim _{\rightleftarrows} A \times_{\alpha^{(p)}} G$ [4, Remark 3.15].
3. Representations associated with a completely multi-positive linear map. Let A and B be two locally C^{*}-algebras. An $n \times n$ matrix $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ of continuous linear maps from A to B can be regarded as a linear map from $M_{n}(A)$ to $M_{n}(B)$ defined by

$$
\left[\varrho_{i j}\right]_{i, j=1}^{n}\left(\left[a_{i j}\right]_{i, j=1}^{n}\right)=\left[\varrho_{i j}\left(a_{i j}\right)\right]_{i, j=1}^{n} .
$$

Moreover, $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ is continuous.
We say that $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ is a multi-positive (respectively, completely multipositive) linear map from A to B if it is a positive (respectively, completely positive) linear map from $M_{n}(A)$ to $M_{n}(B)$.

Definition 3.1. Let E be a Hilbert B-module. A continuous completely multi-positive linear map $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ from A to $L_{B}(E)$ is strict (respectively, non-degenerate) if the nets $\left\{\varrho_{i i}\left(e_{\lambda}\right)\right\}_{\lambda \in \Lambda}, i=1, \ldots, n$, are strictly Cauchy (respectively, strictly convergent to the identity map on E) in $L_{B}(E)$, for some approximate unit $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ of A.

Recall that a continuous *-representation of A on E is a continuous *-morphism Φ from A to $L_{B}(E)$. A continuous $*$-representation Φ of A on E is non-degenerate if $\Phi(A) E$ is dense in E.

Proposition 3.2. Let A and B be two locally C^{*}-algebras, let E and F be Hilbert B-modules, let $V_{i}, i=1, \ldots, n$, be n elements in $L_{B}(E, F)$, and let Φ be a non-degenerate, continuous *-representation of A on F. Then $\left[\varrho_{i j}\right]_{i, j=1}^{n}$, where

$$
\varrho_{i j}(a)=V_{i}^{*} \Phi(a) V_{j} \quad \text { for all } a \in A \text { and } i, j \in\{1, \ldots, n\}
$$

is a strict completely multi-positive linear map from A to $L_{B}(E)$.
Proof. It is a simple verification.
Construction 3.3. Let A and B be locally C^{*}-algebras, let E be a Hilbert B-module and let $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ be a completely multi-positive linear map from A to $L_{B}(E)$.

Let $q \in S(B)$. Then $\left[\varrho_{q}\right]=\left[\left(\pi_{q}\right)_{*} \circ \varrho_{i j}\right]_{i, j=1}^{n}$ is a completely multi-positive linear map from A to $L_{B_{q}}\left(E_{q}\right)$. We denote by $\left(A \otimes_{\text {alg }} E_{q}\right)^{n}$ the direct sum of n copies of the algebraic tensor product $A \otimes_{\mathrm{alg}} E_{q}$ of A and E_{q}. Using the fact that $\left[\varrho_{q}\right]$ is a completely multi-positive linear map from A to $L_{B_{q}}\left(E_{q}\right)$, and the same arguments as in the proof of Theorem 2.1 in [1], it is not difficult to check that $\left(A \otimes_{\mathrm{alg}} E_{q}\right)^{n}$ becomes a right B_{q}-module with the action of B_{q} on $\left(A \otimes_{\text {alg }} E_{q}\right)^{n}$ defined by

$$
\left(\sum_{s=1}^{m} \bigoplus_{i=1}^{n}\left(a_{i, s} \otimes \xi_{i, s}\right)\right) b=\sum_{s=1}^{m} \bigoplus_{i=1}^{n}\left(a_{i, s} \otimes \xi_{i, s} b\right)
$$

and the map $\langle\cdot, \cdot\rangle_{0}$ from $\left(A \otimes_{\mathrm{alg}} E_{q}\right)^{n} \times\left(A \otimes_{\mathrm{alg}} E_{q}\right)^{n}$ to B_{q} defined by

$$
\left\langle\sum_{s=1}^{m} \bigoplus_{i=1}^{n}\left(a_{i, s} \otimes \xi_{i, s}\right), \sum_{t=1}^{l} \bigoplus_{j=1}^{n}\left(b_{j, t} \otimes \eta_{j, t}\right)\right\rangle_{0}=\sum_{s, t=1}^{m, l} \sum_{i, j=1}^{n}\left\langle\xi_{i, s},\left(\pi_{q}\right)_{*}\left(\varrho_{i j}\left(a_{i, s}^{*} b_{j, t}\right)\right) \eta_{j, t}\right\rangle
$$

is \mathbb{C} - and B_{q}-linear in its second variable and satisfies conditions (i) and (ii) of Definition 2.1.

Let $\mathcal{N}_{q}=\left\{x \in\left(A \otimes_{\text {alg }} E_{q}\right)^{n} ;\langle x, x\rangle_{0}=0\right\}$. By the Cauchy-Schwarz inequality, \mathcal{N}_{q} is a B_{q}-submodule of $\left(A \otimes_{\text {alg }} E_{q}\right)^{n}$. Then $\left(A \otimes_{\text {alg }} E_{q}\right)^{n} / \mathcal{N}_{q}$ becomes a pre-Hilbert B_{q}-module with the action of B_{q} on $\left(A \otimes_{\mathrm{alg}} E_{q}\right)^{n} / \mathcal{N}_{q}$ defined by

$$
\left(x+\mathcal{N}_{q}\right) b=x b+\mathcal{N}_{q}
$$

and the inner product defined by

$$
\left\langle x+\mathcal{N}_{q}, y+\mathcal{N}_{q}\right\rangle=\langle x, y\rangle_{0}
$$

The completion of $\left(A \otimes_{\text {alg }} E_{q}\right)^{n} / \mathcal{N}_{q}$ is denoted by $E_{\left[\varrho_{q}\right]}$. Let $q, r \in S(B)$ be such that $q \geq r$. Since
$\left\langle\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{r}\left(\xi_{i}\right)\right), \bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{r}\left(\xi_{i}\right)\right)\right\rangle_{0}=\pi_{q r}\left(\left\langle\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{q}\left(\xi_{i}\right)\right), \bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{q}\left(\xi_{i}\right)\right)\right\rangle_{0}\right)$
for all $a_{i} \in A$ and $\xi_{i} \in E, i=1, \ldots, n$, we can define a linear map $\widetilde{\sigma}_{q r}$ from $\left(A \otimes_{\text {alg }} E_{q}\right)^{n} / \mathcal{N}_{q}$ to $\left(A \otimes_{\text {alg }} E_{r}\right)^{n} / \mathcal{N}_{r}$ by

$$
\tilde{\sigma}_{q r}\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{q}\left(\xi_{i}\right)\right)+\mathcal{N}_{q}\right)=\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{r}\left(\xi_{i}\right)\right)+\mathcal{N}_{r} .
$$

Moreover, $\widetilde{\sigma}_{q r}$ extends by continuity and linearity to a surjective linear map $\widetilde{\sigma}_{q r}$ from $E_{\left[\varrho_{q}\right]}$ to $E_{\left[\varrho_{r}\right]}$. One can check that $\left\{E_{\left[\varrho_{q}\right]} ; B_{q} ; \widetilde{\sigma}_{q r}\right\}_{q \geq r, q, r \in S(B)}$ is an inverse system of Hilbert C^{*}-modules. We denote by $E_{[\rho]}$ the Hilbert B-module ${\underset{\longleftarrow}{\leftrightarrows}}_{q} E_{\left[\varrho_{q}\right]}$. Also it is not difficult to check that $\left(E_{[\varrho]}\right)_{q}$ can be identified with $\overleftarrow{E_{\left[\varrho_{q}\right]}}$ for all $q \in S(B)$. Then by Proposition 4.7 of [10], the locally C^{*}-algebras $L_{B}\left(E_{[\varrho]}\right)$ and $\lim _{q} L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}\right)$ are isomorphic, as are the locally convex spaces $L_{B}\left(F, E_{[\varrho]}\right)$ and $\lim _{\subsetneq} L_{B_{q}}\left(F_{q}, E_{\left[\varrho_{q}\right]}\right)$, where F is an arbitrary Hilbert B-module.

The following theorem extends the KSGNS construction for strict continuous completely positive linear maps between locally C^{*}-algebras [2, Theorem 4.6] to the case of strict completely multi-positive linear maps between locally C^{*}-algebras.

Theorem 3.4. Let A and B be locally C^{*}-algebras, let E be a Hilbert B-module and let $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ be a strict completely multi-positive linear map from A to $L_{B}(E)$.
(1) There is a continuous *-representation $\Phi_{[\varrho]}$ of A on $E_{[\varrho]}$ and n elements $V_{[\varrho], i}, i=1, \ldots, n$, in $L_{B}\left(E, E_{[\varrho]}\right)$ such that
(a) $\varrho_{i j}(a)=V_{[\varrho], i}^{*} \Phi_{[\varrho]}(a) V_{[\varrho], j}$ for all a in A and $i, j \in\{1, \ldots, n\}$;
(b) $\left\{\Phi_{[\varrho]}(a) V_{[\varrho], i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ spans a dense submodule of $E_{[\varrho]}$.
(2) If F is a Hilbert B-module, Φ is a continuous *-representation of A on F, and $W_{i}, i=1, \ldots, n$, are n elements in $L_{B}(E, F)$ such that
(a) $\varrho_{i j}(a)=W_{i}^{*} \Phi(a) W_{j}$ for all a in A and $i, j \in\{1, \ldots, n\}$;
(b) $\left\{\Phi(a) W_{i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ spans a dense submodule of F,
then there is a unitary operator U in $L_{B}\left(E_{[\varrho]}, F\right)$ such that
(i) $\Phi(a) U=U \Phi_{[\varrho]}(a)$ for all a in A;
(ii) $W_{i}=U V_{[\varrho], i}$ for all $i \in\{1, \ldots, n\}$.

Definition 3.5. The representation $\left(\Phi_{[\varrho]} ; V_{[\varrho], i}, i=1, \ldots, n ; E_{[\varrho]}\right)$ constructed in Theorem 3.4 is called the KSGNS construction associated with $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$.

REMARK 3.6. The KSGNS construction associated with a strict completely multi-positive map $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ is unique up to unitary equivalence.

REMARK 3.7. In particular, we obtain the GNS construction for continuous completely multi-positive linear functionals on locally C^{*}-algebras [3, Theorem 4.1] as well as Stinespring's construction for completely multipositive maps between unital C^{*}-algebras [1, Corollary 2.4].

Proof of Theorem 3.4. We partition the proof into three steps.
Step 1. Suppose that A and B are C^{*}-algebras. Let $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ be an approximate unit of A such that the nets $\left\{\varrho_{i i}\left(e_{\lambda}\right)\right\}_{\lambda \in \Lambda}, i=1, \ldots, n$, are strictly Cauchy in $L_{B}(E)$.
(1) Let $a \in A$. It is not difficult to check that the linear map $\Phi_{[\varrho]}(a)$ from $\left(A \otimes_{\text {alg }} E\right)^{n}$ to $\left(A \otimes_{\text {alg }} E\right)^{n}$ defined by

$$
\Phi_{[\varrho]}(a)\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)\right)=\bigoplus_{i=1}^{n}\left(a a_{i} \otimes \xi_{i}\right)
$$

extends to a bounded linear operator $\Phi_{[\varrho]}$ from $E_{[\varrho]}$ to $E_{[\varrho]}$. Moreover, $\Phi_{[\varrho]}(a)$ is adjointable and $\left(\Phi_{[\varrho]}(a)\right)^{*}=\Phi_{[\varrho]}\left(a^{*}\right)$. Thus we have obtained a map $\Phi_{[\varrho]}$ from A to $L_{B}\left(E_{[\varrho]}\right)$. It is easy to verify that $\Phi_{[\varrho]}$ is a continuous *-representation of A on $E_{[\varrho]}$.

Let $i \in\{1, \ldots, n\}$. Since

$$
\begin{aligned}
\left\|\sum_{s=1}^{m} \sum_{k=1}^{n} \varrho_{i k}\left(a_{k, s}\right) \xi_{k, s}\right\|^{2} & =\left\|\left\langle\sum_{s=1}^{m} \sum_{k=1}^{n} \varrho_{i k}\left(a_{k, s}\right) \xi_{k, s}, \sum_{s=1}^{m} \sum_{k=1}^{n} \varrho_{i k}\left(a_{k, s}\right) \xi_{k, s}\right\rangle\right\| \\
& \leq\left\|\sum_{i=1}^{n}\left\langle\sum_{s=1}^{m} \sum_{k=1}^{n} \varrho_{i k}\left(a_{k, s}\right) \xi_{k, s}, \sum_{s=1}^{m} \sum_{k=1}^{n} \varrho_{i k}\left(a_{k, s}\right) \xi_{k, s}\right\rangle\right\| \\
& =\left\|\sum_{s, t=1}^{m} \sum_{k, j=1}^{n}\left\langle\xi_{k, s}, \sum_{i=1}^{n} \varrho_{k i}\left(a_{k, s}^{*}\right) \varrho_{i j}\left(a_{j, t}\right) \xi_{j, t}\right\rangle\right\| \\
& \leq\left\|\left[\varrho_{i j}\right]_{i, j=1}^{n}\right\|\left\|\sum_{s, t=1}^{m} \sum_{k, j=1}^{n}\left\langle\xi_{k, s}, \varrho_{k j}\left(a_{k, s}^{*} a_{j, t}\right) \xi_{j, t}\right\rangle\right\|
\end{aligned}
$$

(Lemma 5.4 in [8])
$=\left\|\left[\varrho_{i j}\right]_{i, j=1}^{n}\right\|\left\|\sum_{s=1}^{m} \bigoplus_{k=1}^{n}\left(a_{k, s} \otimes \xi_{k, s}\right)+\mathcal{N}\right\|^{2}$
for all $\sum_{s=1}^{m} \bigoplus_{k=1}^{n}\left(a_{k, s} \otimes \xi_{k, s}\right) \in\left(A \otimes_{\text {alg }} E\right)^{n}$, the linear map $\bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)$ $+\mathcal{N} \mapsto \sum_{k=1}^{n} \varrho_{i k}\left(a_{k}\right) \xi_{k}$ from $\left(A \otimes_{\text {alg }} E\right)^{n} / \mathcal{N}$ to E extends by continuity and linearity to a bounded linear operator \widetilde{V}_{i} from $E_{[\varrho]}$ to E.

Let $\lambda \in \Lambda$ and $\xi \in E$. We denote by ξ_{i}^{λ} the element in $\left(A \otimes_{\mathrm{alg}} E\right)^{n}$ whose i th component is $e_{\lambda} \otimes \xi$ and all the other components are 0 . Since

$$
\left\|\left(\xi_{i}^{\lambda}+\mathcal{N}\right)-\left(\xi_{i}^{\mu}+\mathcal{N}\right)\right\|^{2}=\left\|\left\langle\xi, \varrho_{i i}\left(\left(e_{\lambda}-e_{\mu}\right)^{2}\right) \xi\right\rangle\right\| \leq 2\left\|\left\langle\xi, \varrho_{i i}\left(e_{\lambda}-e_{\mu}\right) \xi\right\rangle\right\|
$$

for all $\lambda, \mu \in \Lambda$ with $\lambda \geq \mu$, and since the net $\left\{\varrho_{i i}\left(e_{\lambda}\right) \xi\right\}_{\lambda \in \Lambda}$ is convergent
in E, the net $\left\{\xi_{i}^{\lambda}+\mathcal{N}\right\}_{\lambda \in \Lambda}$ is convergent in $E_{[\varrho]}$. Define a map $V_{[\varrho], i}$ from E to $E_{[\rho]}$ by

$$
V_{[\varrho], i} \xi=\lim _{\lambda \in \Lambda}\left(\xi_{i}^{\lambda}+\mathcal{N}\right) .
$$

To show that $V_{[\varrho], i}$ is an element in $L_{B}\left(E, E_{[\rho]}\right)$ it is sufficient to show that

$$
\left\langle V_{[\varrho], i}, \bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)+\mathcal{N}\right\rangle=\left\langle\xi, \widetilde{V}_{i}\left(\bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)+\mathcal{N}\right)\right\rangle
$$

for all $\xi \in E$ and $\bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right) \in\left(A \otimes_{\text {alg }} E\right)^{n}$.
Let $\xi \in E$ and $\bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right) \in\left(A \otimes_{\mathrm{alg}} E\right)^{n}$. Then we have

$$
\begin{aligned}
\left\langle V_{[\varrho], i} \xi, \bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)+\mathcal{N}\right\rangle & =\lim _{\lambda \in \Lambda}\left\langle\xi_{i}^{\lambda}, \bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)+\mathcal{N}\right\rangle \\
& =\lim _{\lambda \in \Lambda}\left\langle\xi, \sum_{k=1}^{n} \varrho_{i k}\left(e_{\lambda} a_{k}\right) \xi_{k}\right\rangle \\
& =\left\langle\xi, \sum_{k=1}^{n} \varrho_{i k}\left(a_{k}\right) \xi_{k}\right\rangle \\
& =\left\langle\xi, \widetilde{V}_{i}\left(\bigoplus_{k=1}^{n}\left(a_{k} \otimes \xi_{k}\right)+\mathcal{N}\right)\right\rangle
\end{aligned}
$$

Hence $V_{[\varrho, ~}, i \in L_{B}\left(E, E_{[\varrho]}\right)$.
Let $a \in A$ and $\xi \in E$. We denote by $\xi_{i, a}$ the element in $\left(A \otimes_{\operatorname{alg} g} E\right)^{n}$ whose i th component is $a \otimes \xi$ and all the other components are 0 . It is not difficult to check that $\Phi_{[\rho]}(a) V_{[\varrho], i} \xi=\xi_{i, a}+\mathcal{N}$. Therefore the submodule of $E_{[\varrho]}$ generated by $\left\{\Phi_{[\varrho]}(a) V_{[e], i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ is exactly $\left(A \otimes_{\text {alg }} E\right)^{n} / \mathcal{N}$ and thus condition (b) is satisfied.

Let $a \in A$ and $i, j \in\{1, \ldots, n\}$. Then we have

$$
V_{[\varrho], i}^{*} \Phi_{[\varrho]}(a) V_{[\varrho], j} \xi=V_{[\varrho], i}^{*}\left(\xi_{j, a}+\mathcal{N}\right)=\varrho_{i j}(a) \xi
$$

for all $\xi \in E$ and so condition (a) is also satisfied.
(2) Using the fact that

$$
\varrho_{i j}(a)=V_{[\varrho], i}^{*} \Phi_{[\rho]}(a) V_{[\varrho], j}=W_{i}^{*} \Phi(a) W_{j}
$$

for all $a \in A$ and $i, j \in\{1, \ldots, n\}$, it is not difficult to check that

$$
\left\|\sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_{i} \Phi_{[\varrho]}\left(a_{s}\right) V_{[\varrho], i} \xi_{s}\right\|=\left\|\sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_{i} \Phi\left(a_{s}\right) W_{i} \xi_{s}\right\|
$$

for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}, a_{1}, \ldots, a_{m} \in A$ and $\xi_{1}, \ldots, \xi_{m} \in E$. Therefore the linear map $\Phi_{[\varrho]}(a) V_{[\varrho, i, i} \xi \mapsto \Phi(a) W_{i} \xi$ from the submodule of $E_{[\varrho]}$ generated by $\left\{\Phi_{[\varrho]}(a) V_{[\varrho], i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ to the submodule of F generated by $\left\{\Phi(a) W_{i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ extends to a surjective isometric B-linear map U from $E_{[e]}$ onto F. Then, by Theorem 3.5 of $[8], U$ is unitary.

Let $a \in A$. From

$$
\begin{aligned}
\Phi(a) U\left(\Phi_{[\varrho]}(b) V_{[\varrho], i} \xi\right) & =\Phi(a) \Phi(b) W_{i} \xi=U\left(\Phi_{[\varrho]}(a b) V_{[\varrho], i} \xi\right) \\
& =U \Phi_{[\varrho]}(a)\left(\Phi_{[\varrho]}(b) V_{[\varrho], i} \xi\right)
\end{aligned}
$$

for all $b \in A, \xi \in E$ and $i \in\{1, \ldots, n\}$, we conclude that $\Phi(a) U=U \Phi_{[\varrho]}(a)$.
Since Φ and $\Phi_{[\varrho]}$ are non-degenerate, by Proposition 4.2 of [2], we have

$$
U V_{[\varrho], i} \xi=\lim _{\lambda \in \Lambda} U \Phi_{[\varrho]}\left(e_{\lambda}\right) V_{[\varrho], i} \xi=\lim _{\lambda \in \Lambda} \Phi\left(e_{\lambda}\right) W_{i} \xi=W_{i} \xi
$$

for all $\xi \in E$ and $i \in\{1, \ldots, n\}$. Therefore $W_{i}=U V_{[\varrho], i}$ for all $i \in\{1, \ldots, n\}$.
Step 2. Suppose that A is a locally C^{*}-algebra and B is a C^{*}-algebra. Then there is $p \in S(A)$, a strict completely multi-positive map [ϱ_{p}] $=$ $\left[\varrho_{i j}^{p}\right]_{i, j=1}^{n}$ from A_{p} to $L_{B}(E)$ such that $\left[\varrho_{i j}\right]_{i, j=1}^{n}=\left[\varrho_{i j}^{p} \circ \pi_{p}\right]_{i, j=1}^{n}$, and a *representation Φ_{p} of A_{p} on F such that $\Phi=\Phi_{p} \circ \pi_{p}$.

It is not difficult to check that the linear map \widetilde{U} from $\left(A \otimes_{\text {alg }} E\right)^{n}$ to $\left(A_{p} \otimes_{\text {alg }} E\right)^{n}$ defined by

$$
\widetilde{U}\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)\right)=\bigoplus_{i=1}^{n}\left(\pi_{p}\left(a_{i}\right) \otimes \xi_{i}\right)
$$

extends to a bounded linear map \widetilde{U} from $E_{[\varrho]}$ to $E_{\left[\varrho_{p}\right]}$. Moreover, \widetilde{U} is unitary. Therefore, the Hilbert B-modules $E_{[\varrho]}$ to $E_{\left[\varrho_{p}\right]}$ are unitarily equivalent.

By Step 1, there is a $*$-representation $\Phi_{\left[\varrho_{p}\right]}$ of A_{p} on $E_{\left[\varrho_{p}\right]}$, and n elements $V_{\left[\varrho_{p}\right], i}, i=1, \ldots, n$, in $L_{B}\left(E, E_{\left[\varrho_{p}\right]}\right)$ such that

$$
\varrho_{i j}^{p}(a)=V_{\left[\varrho_{p}\right], i}^{*} \Phi_{\left[\varrho_{p}\right]}(a) V_{\left[\varrho_{p}\right], j}
$$

for all $a \in A_{p}$ and $i, j \in\{1, \ldots, n\}$, and $\left\{\Phi_{\left[\varrho_{p}\right]}(a) V_{\left[\varrho_{p}\right], i} \xi ; a \in A_{p}, \xi \in E, i=\right.$ $1, \ldots, n\}$ spans a dense submodule of $E_{\left[\varrho_{p}\right]}$. Also there is a unitary operator U^{p} in $L_{B}\left(E_{\left[\varrho_{p}\right]}, F\right)$ such that $\Phi_{p}(a) U^{p}=U^{p} \Phi_{\left[\varrho_{p}\right]}(a)$ for all a in A_{p}, and $W_{i}=U^{p} V_{\left[\varrho_{p}\right], i}$ for all $i=1, \ldots, n$.

Let $\Phi_{[\varrho]}=\Phi_{\left[\varrho_{p}\right]} \circ \pi_{p}, V_{[\varrho], i}=\widetilde{U}^{*} V_{\left[\varrho_{p}\right], i}, i=1, \ldots, n$, and $U=U^{p} \widetilde{U}$. A simple calculation shows $\left(\Phi_{[\varrho]} ; V_{[\varrho], i}, i=1, \ldots, n ; E_{[\varrho]}\right)$ is the KSGNS construction associated with $\left[\varrho_{i j}\right]_{i, j=1}^{n}$, and U is a unitary operator in $L_{B}\left(E_{[\varrho]}, F\right)$ such that $\Phi(a) U=U \Phi_{[\varrho]}(a)$ for all a in A and $W_{i}=U V_{[\varrho], i}$ for all $i=$ $1, \ldots, n$.

Step 3 (The general case). For each $q \in S(B),\left[\varrho_{q}\right]=\left[\left(\pi_{q}\right)_{*} \circ \varrho_{i j}\right]_{i, j=1}^{n}$ is a strict completely multi-positive linear map from A to $L_{B_{q}}\left(E_{q}\right)$, and $\Phi_{q}=$ $\left(\pi_{q}\right)_{*} \circ \Phi$ is a continuous $*$-representation of A on E_{q} such that $\left(\pi_{q}\right)_{*}\left(\varrho_{i j}(a)\right)=$ $\left(\pi_{q}\right)_{*}\left(W_{i}^{*}\right) \Phi_{q}(a)\left(\pi_{q}\right)_{*}\left(W_{j}\right)$ for all $a \in A$ and $\left\{\Phi_{q}(a)\left(\pi_{q}\right)_{*}\left(W_{i}\right) \xi ; a \in A, \xi \in E\right.$, $i=1, \ldots, n\}$ spans a dense submodule of F_{q}.

Let $\left(\Phi_{\left[\varrho_{q}\right]} ; V_{\left[\varrho_{q}\right], i}, i=1, \ldots, n ; E_{\left[\varrho_{q}\right]}\right)$ be the KSGNS construction associated with $\left[\varrho_{q}\right]$. By Step 2, there is a unitary operator U_{q} in $L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}, F_{q}\right)$
such that $\Phi_{q}(a) U_{q}=U_{q} \Phi_{\left[\varrho_{q}\right]}(a)$ for all a in A and $\left(\pi_{q}\right)_{*}\left(W_{i}\right)=U_{q} V_{\left[\varrho_{q}\right], i}$ for all $i=1, \ldots, n$.

It is not difficult to check that

$$
\left(\pi_{q r}\right)_{*} \circ \Phi_{\left[\varrho_{q}\right]}=\Phi_{\left[\varrho_{r}\right]}
$$

for all $q, r \in S(A)$ with $q \geq r$. This implies that there is a continuous *-morphism $\Phi_{[\varrho]}$ from A to $L_{B}\left(E_{[\varrho]}\right)$ such that $\left(\pi_{q}\right)_{*} \circ \Phi_{[\varrho]}=\Phi_{\left[\varrho_{q}\right]}$ for all $q \in S(B)$. Also it is not difficult to check that $\left(V_{\left[\varrho_{q}\right], i}\right)_{q}, i=1, \ldots, n$, are coherent sequences in $L_{B_{q}}\left(E_{q}, E_{\left[\varrho_{q}\right]}\right)$ and $\left(U_{q}\right)_{q}$ is a coherent sequence in $L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}, F_{q}\right)$.

Let $V_{[\varrho], i}=\left(V_{\left[\varrho_{q}\right], i}\right)_{q}, i=1, \ldots, n$, and $U=\left(U_{q}\right)_{q}$. A simple calculation shows that $\left(\Phi_{[\varrho]} ; V_{[\varrho], i}, i=1, \ldots, n ; E_{[\varrho]}\right)$ is the KSGNS construction associated with $[\varrho], \Phi(a) U=U \Phi_{[\varrho]}(a)$ for all a in A, and $W_{i}=U V_{[\varrho, i}$ for all $i \in\{1, \ldots, n\}$.

4. Covariant representations associated with a covariant completely multi-positive linear map

Definition 4.1. Let (G, A, α) be a locally C^{*}-dynamical system and let u be a unitary representation of G on a Hilbert B-module E. We say that a completely multi-positive linear map $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ from A to $L_{B}(E)$ is u-covariant with respect to the locally C^{*}-dynamical system (G, A, α) if

$$
\varrho_{i j}\left(\alpha_{g}(a)\right)=u_{g} \varrho_{i j}(a) u_{g}^{*} \quad \text { for all } a \in A, g \in G \text { and } i, j \in\{1, \ldots, n\}
$$

Proposition 4.2. Let (G, A, α) be a locally C^{*}-dynamical system, let u be a unitary representation of G on a Hilbert module E over a locally C^{*}-algebra B, let (Φ, v, F) be a covariant non-degenerate representation of (G, A, α) on a Hilbert B-module F, and let $V_{i}, i=1, \ldots, n$, be n partial isometries in $L_{B}(E, F)\left(\right.$ that is, $V_{i}^{*} V_{i}=\operatorname{id}_{E}$ for all $\left.i=1, \ldots, n\right)$ such that $V_{i} u_{g}=v_{g} V_{i}$ for all $g \in G$ and $i=1, \ldots, n$. Then there is a u-covariant non-degenerate completely multi-positive linear map $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ from A to $L_{B}(E)$ such that

$$
\varrho_{i j}(a)=V_{i}^{*} \Phi(a) V_{j} \quad \text { for all } a \in A \text { and } i, j=1, \ldots, n
$$

Proof. It is a simple verification.
The following theorem is a covariant version of Theorem 3.4.
Theorem 4.3. Let (G, A, α) be a locally C^{*}-dynamical system, let u be a unitary representation of G on a Hilbert module E over a locally C^{*} algebra B, and let $[\varrho]=\left[\varrho_{i j}\right]_{j i, j=1}^{n}$ be a u-covariant, non-degenerate, completely multi-positive linear map from A to $L_{B}(E)$.
(1) There is a covariant representation $\left(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]}\right)$ of (G, A, α) and n elements $V_{[\varrho], i}, i=1, \ldots, n$, in $L_{B}\left(E, E_{[\varrho]}\right)$ such that
(a) $\varrho_{i j}(a)=V_{[\varrho], i}^{*} \Phi_{[\varrho]}(a) V_{[\varrho], j}$ for all $a \in A$ and $i, j \in\{1, \ldots, n\}$;
(b) $\left\{\Phi_{[\varrho]}(a) V_{[\varrho], i} \xi ; a \in A, \xi \in E, i=1, \ldots, n\right\}$ spans a dense submodule of $E_{[\varrho]}$;
(c) $v_{g}^{[\varrho]} V_{[\varrho, i}=V_{[\varrho], i} u_{g}$ for all $g \in G$ and $i \in\{1, \ldots, n\}$.
(2) If F is a Hilbert B-module, (Φ, v, F) is a covariant representation of (G, A, α) and $W_{i}, i=1, \ldots, n$, are n elements in $L_{B}(E, F)$ such that
(a) $\varrho_{i j}(a)=W_{i}^{*} \Phi(a) W_{j}$ for all $a \in A$ and $i, j \in\{1, \ldots, n\}$;
(b) $\left\{\Phi(a) W_{i} \xi ; a \in A, \xi \in F, i=1, \ldots, n\right\}$ spans a dense submodule of F;
(c) $v_{g} W_{i}=W_{i} u_{g}$ for all $g \in G$ and for all $i \in\{1, \ldots, n\}$,
then there is a unitary operator U in $L_{B}\left(E_{[\varrho]}, F\right)$ such that
(i) $\Phi(a) U=U \Phi_{[\varrho]}(a)$ for all $a \in A$;
(ii) $v_{g} U=U v_{g}^{[\varrho]}$ for all $g \in G$;
(iii) $W_{i}=U V_{[\varrho], i}$ for all $i \in\{1, \ldots, n\}$.

Proof. We partition the proof into two steps.
Step 1. Suppose that B is a C^{*}-algebra.
(1) Let $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ be an approximate unit of A such that the nets $\left\{\varrho_{i i}\left(e_{\lambda}\right)\right\}_{\lambda \in \Lambda}, i=1, \ldots, n$, are strictly convergent to the identity operator on E, and let $\left(\Phi_{[\varrho]} ; V_{[\varrho], i}, i=1, \ldots, n ; E_{[\varrho]}\right)$ be the KSGNS construction associated with $\left[\varrho_{i j}\right]_{i, j=1}^{n}$. Then $V_{[\varrho], i}$ is a partial isometry for each $i \in\{1, \ldots, n\}$. For each $g \in G$, we define a linear map $v_{g}^{[\varrho]}$ from $\left(A \otimes_{\mathrm{alg}} E\right)^{n}$ to $\left(A \otimes_{\mathrm{alg}} E\right)^{n}$ by

$$
v_{g}^{[\varrho]}\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)\right)=\bigoplus_{i=1}^{n}\left(\alpha_{g}\left(a_{i}\right) \otimes u_{g} \xi_{i}\right)
$$

Using the fact that $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ is u-covariant, it is not difficult to check that $v_{g}^{[\varrho]}$ extends to a bounded linear map $v_{g}^{[\varrho]}$ from $E_{[\varrho]}$ to $E_{[\varrho]}$, and since

$$
\begin{aligned}
\left\langle v_{g}^{[\varrho]}\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)+\mathcal{N}\right), \bigoplus_{i=1}^{n}\right. & \left.\left(b_{i} \otimes \eta_{i}\right)+\mathcal{N}\right\rangle \\
& =\left\langle\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)+\mathcal{N}, v_{g^{-1}}^{[\varrho]}\left(\bigoplus_{i=1}^{n}\left(b_{i} \otimes \eta_{i}\right)+\mathcal{N}\right)\right\rangle
\end{aligned}
$$

for all $\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right), \bigoplus_{i=1}^{n}\left(b_{i} \otimes \eta_{i}\right) \in\left(A \otimes_{\mathrm{alg}} E\right)^{n}, v_{g}^{[\varrho]} \in L_{B}\left(E_{[\varrho]}\right)$ and moreover, $\left(v_{g}^{[\varrho]}\right)^{*}=v_{g^{-1}}^{[\varrho]}$. Also it is not difficult to check that the map $g \mapsto$ $v_{g}^{[\varrho]}$ is a unitary representation of G on $E_{[\varrho]}$.

To show that $\left(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]}\right)$ is a covariant representation of (G, A, α) it remains to prove that $\Phi_{[\varrho]}\left(\alpha_{g}(a)\right)=v_{g}^{[\varrho]} \Phi_{[\varrho]}(a) v_{g^{-1}}^{[\varrho]}$ for all $g \in G$ and $a \in A$.

Let $g \in G$ and $a \in A$. We have

$$
\begin{aligned}
\left(v_{g}^{[\varrho]} \Phi_{[\varrho]}(a) v_{g^{-1}}^{[\varrho]}\right)\left(\bigoplus _ { i = 1 } ^ { n } \left(a_{i} \otimes\right.\right. & \left.\xi_{i}\right) \\
& =(\mathcal{N}) \\
& =\left(v_{g}^{[\varrho]} \Phi_{[\varrho]}(a)\right)\left(\bigoplus_{i=1}^{n}\left(\alpha_{g^{-1}}\left(a_{i}\right) \otimes u_{g^{-1}} \xi_{i}\right)+\mathcal{N}\right) \\
& =v_{g}^{[\varrho]}\left(\bigoplus_{i=1}^{n}\left(a \alpha_{g^{-1}}\left(a_{i}\right) \otimes u_{g^{-1}} \xi_{i}\right)+\mathcal{N}\right) \\
& =\bigoplus_{i=1}^{n}\left(\alpha_{g}(a) a_{i} \otimes \xi_{i}\right)+\mathcal{N} \\
& =\left(\Phi_{[\varrho]}\left(\alpha_{g}(a)\right)\right)\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right)+\mathcal{N}\right)
\end{aligned}
$$

for all $\bigoplus_{i=1}^{n}\left(a_{i} \otimes \xi_{i}\right) \in\left(A \otimes_{\text {alg }} E\right)^{n}$. Hence $\Phi_{[\varrho]}\left(\alpha_{g}(a)\right)=v_{g}^{[\varrho]} \Phi_{[\varrho]}(a) v_{g^{-1}}^{[\varrho]}$.
By Theorem 3.4(1) conditions (a) and (b) are satisfied. To show that (c) is satisfied, let $\xi \in E, g \in G$ and $i \in\{1, \ldots, n\}$. Then we have

$$
\begin{aligned}
& \left\|v_{g}^{[\varrho]} V_{[\varrho], i} \xi-V_{[\varrho], i} u_{g} \xi\right\|^{2}=\lim _{\lambda \in \Lambda}\left\|v_{g}^{[\varrho]} \xi_{i}^{\lambda}-V_{[\varrho], i} u_{g} \xi\right\|^{2} \\
& =\lim _{\lambda \in \Lambda}\left\|\left\langle\xi, \varrho_{i i}\left(e_{\lambda}^{2}\right) \xi\right\rangle+\langle\xi, \xi\rangle-\left\langle\varrho_{i i}\left(\alpha_{g}\left(e_{\lambda}\right)\right) u_{g} \xi, u_{g} \xi\right\rangle-\left\langle u_{g} \xi, \varrho_{i i}\left(\alpha_{g}\left(e_{\lambda}\right)\right) u_{g} \xi\right\rangle\right\| \\
& \leq \lim _{\lambda \in \Lambda}\left\|\left\langle\xi, \varrho_{i i}\left(e_{\lambda}\right) \xi\right\rangle+\langle\xi, \xi\rangle-\left\langle\varrho_{i i}\left(e_{\lambda}\right) \xi, \xi\right\rangle-\left\langle\xi, \varrho_{i i}\left(e_{\lambda}\right) \xi\right\rangle\right\| \\
& =\lim _{\lambda \in \Lambda}\left\|\left\langle\xi-\varrho_{i i}\left(e_{\lambda}\right) \xi, \xi\right\rangle\right\|=0 .
\end{aligned}
$$

Hence condition (c) is also satisfied.
(2) By Theorem 3.4(2), there is a unitary operator U in $L_{B}\left(E_{[\varrho]}, F\right)$ defined by $U\left(\sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_{i} \Phi_{[\varrho]}\left(a_{s}\right) V_{[\varrho], i} \xi_{s}\right)=\sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_{i} \Phi\left(a_{s}\right) W_{i} \xi_{s}$ such that $\Phi(a) U=U \Phi_{[\varrho]}(a)$ for all $a \in A$, and $W_{i}=U V_{[\varrho], i}$ for all $i \in\{1, \ldots, n\}$.

Let $g \in G, i \in\{1, \ldots, n\}, a \in A, \xi \in E$. We have

$$
\begin{aligned}
\left(v_{g} U\right)\left(\Phi_{[\varrho]}(a) V_{[\varrho], i} \xi\right) & =v_{g}\left(\Phi(a) W_{i} \xi\right)=\Phi(a) v_{g} W_{i} \xi \\
& =\Phi(a) W_{i} u_{g} \xi=U\left(\Phi_{[\varrho]}(a) V_{[\varrho], i} u_{g} \xi\right) \\
& =U\left(\Phi_{[\varrho]}(a) v_{g}^{[\varrho]} V_{[\varrho], i} \xi\right)=\left(U v_{g}^{[\varrho]}\right)\left(\Phi_{[\varrho]}(a) V_{[\varrho], i} \xi\right)
\end{aligned}
$$

This implies that $v_{g} U=U v_{g}^{[\varrho]}$ and thus assertion (2) is proved.
Step 2 (The general case). Let $q \in S(B)$. Then $\left[\varrho_{q}\right]=\left[\left(\pi_{q}\right)_{*} \circ \varrho_{i j}\right]_{i, j=1}^{n}$ is a u^{q}-covariant, non-degenerate, completely multi-positive linear map from A to $L_{B_{q}}\left(E_{q}\right),\left(\left(\pi_{q}\right)_{*} \circ \Phi, v^{q}, F_{q}\right)$ is a covariant representation of (G, A, α) and $\left(\pi_{q}\right)_{*}\left(W_{i}\right), i=1, \ldots, n$, are n elements in $L_{B_{q}}\left(E_{q}, F_{q}\right)$ such that conditions (a)-(c) of (2) are satisfied.

By Step 1, there is a covariant representation $\left(\Phi_{\left[\varrho_{q}\right]}, v^{\left[\varrho_{q}\right]}, E_{\left[\varrho_{q}\right]}\right)$ of (G, A, α) and n elements $V_{\left[\varrho^{q}\right], i}, i=1, \ldots, n$, in $L_{B_{q}}\left(E_{q}, E_{\left[\varrho_{q}\right]}\right)$ which satisfy conditions (a)-(c) of (1) and there is a unitary operator U_{q} in $L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}, F_{q}\right)$ which satisfies conditions (i)-(iii) of (2). Moreover,

$$
v_{g}^{\left[\varrho_{q}\right]}\left(\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{q}\left(\xi_{i}\right)\right)+\mathcal{N}_{q}\right)=\bigoplus_{i=1}^{n}\left(\alpha_{g}\left(a_{i}\right) \otimes u_{g}^{q} \sigma_{q}\left(\xi_{i}\right)\right)+\mathcal{N}_{q}
$$

for all $\bigoplus_{i=1}^{n}\left(a_{i} \otimes \sigma_{q}\left(\xi_{i}\right)\right) \in\left(A \otimes_{\text {alg }} E_{q}\right)^{n}$ and $g \in G$.
Let $\left(\Phi_{[\varrho]} ; V_{[\varrho], i}, i=1, \ldots, n ; E_{[\varrho]}\right)$ be the KSGNS construction associated with $\left[\varrho_{i j}\right]_{i, j=1}^{n}$. According to the proof of Theorem 3.4, $\left(\pi_{q}\right)_{*} \circ \Phi_{[\varrho]}=\Phi_{\left[\varrho_{q}\right]}$, $\left(\pi_{q}\right)_{*}\left(V_{[\varrho], i}\right)=V_{\left[\varrho_{q}\right], i}, i=1, \ldots, n$, and $\left(E_{[\varrho]}\right)_{q}=E_{\left[\varrho_{q}\right]}$ for all $q \in S(B)$.

It is not difficult to check that for each $g \in G,\left(v_{g}^{\left[\varrho_{q}\right]}\right)_{q}$ is a coherent sequence in $L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}\right)$, and the map $g \mapsto v_{g}^{[\varrho]}$, where $v_{g}^{[\varrho]}=\left(v_{g}^{\left[\varrho_{q}\right]}\right)_{q}$, is a unitary representation of G on $E_{[\varrho]}$. Also one can check that $\left(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]}\right)$ is a covariant representation of (G, A, α) which satisfies conditions (a)-(c) of (1).

Since $U_{q}\left(\Phi_{\left[\varrho_{q}\right]}(a) V_{\left[\varrho_{q}\right], i} \sigma_{q}(\xi)\right)=\left(\pi_{q}\right)_{*}(\Phi(a)) W_{i} \sigma_{q}(\xi)$ for all $a \in A, \xi \in E$, $i \in\{1, \ldots, n\}$ and $q \in S(B)$, it is not hard to verify that $\left(U_{q}\right)_{q}$ is a coherent sequence in $L_{B_{q}}\left(E_{\left[\varrho_{q}\right]}, F_{q}\right)$. Then $U=\left(U_{q}\right)_{q}$ is a unitary element in $L_{B}\left(E_{[\varrho]}, F\right)$ which satisfies conditions (i)-(iii) of (2), and the theorem is proved.

Remark 4.4. In the particular case when (G, A, α) is a unital C^{*} dynamical system, B is a unital C^{*}-algebra and $E=B$, the statements of Theorem 4.3 are given in Theorem 3.1 of [1].

In [1], Heo showed that given a unital C^{*}-dynamical system (G, A, α), a covariant completely multi-positive linear map $\left[\varrho_{i j}\right]_{i, j=1}^{n}$ from A to B extends to a completely multi-positive linear map on the crossed product $A \times{ }_{\alpha} G$. We generalize this result to the case of locally C^{*}-dynamical systems, not necessarily unital, in the following proposition.

Proposition 4.5. Let (G, A, α) be a locally C^{*}-dynamical system such that α is a continuous inverse limit action, let B be a locally C^{*}-algebra, let E be a Hilbert B-module and let u be a unitary representation of G on E. If $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ is a u-covariant, non-degenerate, completely multi-positive linear map from A to $L_{B}(E)$, then there is a unique completely multi-positive linear map $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ from $A \times_{\alpha} G$ to $L_{B}(E)$ such that

$$
\varphi_{i j}(f)=\int_{G} \varrho_{i j}(f(g)) u_{g} d g
$$

for all $f \in C_{\mathrm{c}}(G, A)$ and $i, j \in\{1, \ldots, n\}$. Moreover, $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ is nondegenerate.

Proof. By Theorem 4.3, there is a covariant representation $\left(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]}\right)$ of (G, A, α) and n elements $V_{[\varrho], i}, i=1, \ldots, n$, in $L_{B}\left(E, E_{[\varrho]}\right)$ such that $\varrho_{i j}(a)=V_{[\varrho], i}^{*} \Phi_{[\varrho]}(a) V_{[\varrho], j}$ and $v_{g}^{[\varrho]} V_{[\varrho], i}=V_{[\varrho], i} u_{g}$ for all $a \in A, g \in G$ and $i, j \in\{1, \ldots, n\}$.

Let $\Phi_{[\varrho]} \times v^{[\varrho]}$ be the representation of $A \times{ }_{\alpha} G$ associated with ($\Phi_{[\varrho]}, v^{[\varrho]}$, $\left.E_{[\varrho]}\right)\left[5\right.$, Proposition 3.4]. For each $i, j \in\{1, \ldots, n\}$, define $\varphi_{i j}: A \times_{\alpha} G \rightarrow$ $L_{B}(E)$ by

$$
\varphi_{i j}(x)=V_{[\varrho], i}^{*}\left(\Phi_{[\varrho]} \times v^{[\varrho]}\right)(x) V_{[\varrho], j} .
$$

Clearly $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ is a completely multi-positive linear map from $A \times{ }_{\alpha} G$ to $L_{B}(E)$. Let $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ be an approximate unit for A and let $\xi \in E$. Then, since $\Phi_{[\varrho]} \times v^{[\varrho]}$ and $[\varrho]$ are non-degenerate,

$$
\lim _{\lambda} \varphi_{i i}\left(e_{\lambda}\right) \xi=\lim _{\lambda} V_{[\varrho], i}^{*}\left(\Phi_{[\varrho]} \times v^{[\varrho]}\right)\left(e_{\lambda}\right) V_{[\varrho], i} \xi=V_{[\varrho], i}^{*} V_{[\varrho], i} \xi=\xi
$$

for all $i=1, \ldots, n$. Therefore $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ is non-degenerate. Moreover, if $f \in$ $C_{\mathrm{c}}(G, A)$, then

$$
\begin{aligned}
\varphi_{i j}(f) & =V_{[\varrho], i}^{*}\left(\Phi_{[\varrho]} \times v^{[\varrho]}\right)(f) V_{[\varrho], j}=\int_{G} V_{[\varrho], i}^{*} \Phi_{[\varrho]}(f(g)) v_{g}^{[\varrho]} V_{[\varrho], j} d g \\
& =\int_{G} V_{[\varrho], i}^{*} \Phi_{[\varrho]}(f(g)) V_{[\varrho], j} u_{g} d g=\int_{G} \varrho_{i j}(f(g)) u_{g} d g
\end{aligned}
$$

and since $C_{\mathrm{c}}(G, A)$ is dense in $A \times{ }_{\alpha} G,\left[\varphi_{i j}\right]_{i, j=1}^{n}$ is unique.
Using the fact that any continuous action of a compact group on a locally C^{*}-algebra is an inverse limit action [11, Lemma 5.2], from Proposition 4.5 we obtain the following corollary.

Corollary 4.6. Let (G, A, α) be a locally C^{*}-dynamical system, B a locally C^{*}-algebra, E a Hilbert B-module, u a unitary representation of G on E, and $[\varrho]=\left[\varrho_{i j}\right]_{i, j=1}^{n}$ a u-covariant, non-degenerate, completely multipositive linear map from A to $L_{B}(E)$. If G is a compact group, then there is a unique completely multi-positive linear map $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ from $A \times{ }_{\alpha} G$ to $L_{B}(E)$ such that

$$
\varphi_{i j}(f)=\int_{G} \varrho_{i j}(f(g)) u_{g} d g
$$

for all $f \in C_{\mathrm{c}}(G, A)$ and $i, j \in\{1, \ldots, n\}$. Moreover, $\left[\varphi_{i j}\right]_{i, j=1}^{n}$ is nondegenerate.

References

[1] J. Heo, Completely multi-positive linear maps and representations on Hilbert C^{*} modules, J. Operator Theory 41 (1999), 3-22.
[2] M. Joiţa, Strict completely positive maps between locally C^{*}-algebras and representations on Hilbert modules, J. London Math. Soc. (2) 66 (2002), 421-432.
[3] - , Multi-positive linear functionals on locally C^{*}-algebras, Rend. Circ. Mat. Palermo (2) 53 (2004), 185-194.
[4] -, Crossed products of locally C^{*}-algebras, Rocky Mountain J. Math., to appear.
[5] -, Covariant completely positive linear maps between locally C^{*}-algebras, Houston J. Math., submitted.
[6] A. Kaplan, Multi-states on locally C^{*}-algebras, Proc. Amer. Math. Soc. 106 (1989), 437-446.
[7] G. G. Kasparov, Hilbert C^{*}-modules: Theorem of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
[8] E. C. Lance, Hilbert C^{*}-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995.
[9] W. L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[10] N. C. Phillips, Inverse limit of C^{*}-algebras, J. Operator Theory 19 (1988), 159-195.
[11] -, Representable K-theory for σ - C^{*}-algebras, K-Theory 3 (1989), 441-478.
[12] W. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

Department of Mathematics
Faculty of Chemistry
University of Bucharest
Bd. Regina Elisabeta nr. 4-12, Bucureşti, Romania
E-mail: mjoita@fmi.unibuc.ro

[^0]: 2000 Mathematics Subject Classification: 46L05, 46L08, 46L40.
 Key words and phrases: completely multi-positive linear maps, covariant completely multi-positive linear maps, locally C^{*}-algebras, Hilbert modules, representations of locally C^{*}-algebras.

