Completely multi-positive linear maps between locally C^* -algebras and representations on Hilbert modules

by

MARIA JOIŢA (Bucureşti)

Abstract. A KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) type construction for strict (respectively, covariant non-degenerate) completely multi-positive linear maps between locally C^* -algebras is described.

1. Introduction. It is well known that a positive linear functional on a C^* -algebra A induces a *-representation of A on a Hilbert space by the GNS (Gel'fand, Naimark, Segal) construction. Stinespring [12] extended this construction to completely positive linear maps from A to L(H), the C^{*}-algebra of all bounded linear operators on a Hilbert space H. On the other hand, Paschke [9] (respectively, Kasparov [7]) showed that a completely positive linear map from A to another C^* -algebra B (respectively, from A to the C^* -algebra of all adjointable operators on the Hilbert C^* -module H_B) induces a *-representation of A on a Hilbert B-module. Kaplan [6] introduced the notion of *n*-positive linear functional on a C^* -algebra A, an $n \times n$ matrix of linear functionals on A which induces a positive linear map from $M_n(A)$ to $M_n(\mathbb{C})$, and showed that an *n*-positive linear functional on a C^{*}-algebra induces a \ast -representation of this C^{\ast} -algebra on a Hilbert space in terms of the GNS construction. On the other hand, Heo [1] generalized Kaplan's construction to a completely multi-positive linear map from a unital C^* -algebra A to another unital C^{*}-algebra B, an $n \times n$ matrix of linear maps from A to B which induces a completely positive linear map from $M_n(A)$ to $M_n(B)$, showing that a completely multi-positive linear map from A to B induces a *-representation of A on a Hilbert B-module.

Locally C^* -algebras are generalizations of C^* -algebras. Instead of being given by a single norm, the topology on a locally C^* -algebra is defined

²⁰⁰⁰ Mathematics Subject Classification: 46L05, 46L08, 46L40.

Key words and phrases: completely multi-positive linear maps, covariant completely multi-positive linear maps, locally C^* -algebras, Hilbert modules, representations of locally C^* -algebras.

by a directed family of C^* -seminorms. Such important concepts as Hilbert C^* -modules, adjointable operators, (completely) positive linear maps, (completely) multi-positive linear maps, C^* -dynamical systems can be defined with obvious modifications in the framework of locally C^* -algebras. The proofs are not always straightforward. In [2], the author extended the KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) construction to a strict continuous, completely positive linear map from a locally C^* -algebra A to $L_B(E)$, the locally C^* -algebra of all adjointable operators on a Hilbert module E over a locally C^* -algebra B. A covariant version of this construction is proved in [5].

In this paper we extend the KSGNS construction to strict continuous, completely multi-positive linear maps from a locally C^* -algebra A to $L_B(E)$ and prove a covariant version of this construction. That is, we consider multipositive linear maps between locally C^* -algebras, not necessarily unital, and show that a strict completely multi-positive linear map $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ from a locally C*-algebra A to $L_B(E)$ induces a non-degenerate continuous *representation $\Phi_{[\rho]}$ of A on a Hilbert B-module $E_{[\rho]}$, called the KSGNS representation of A associated with $[\rho]$ (Theorem 3.4). Moreover, this representation is unique up to unitary equivalence. In particular, when A and B are unital C^* -algebras and E = B we obtain Theorem 2.1 of [1]. Then we consider the covariant version of this construction: given a locally C^* -dynamical system (G, A, α) , a covariant non-degenerate completely multi-positive linear map from A to $L_B(E)$ induces a non-degenerate, covariant representation of (G, A, α) on a Hilbert B-module which is unique up to unitary equivalence (Theorem 4.3). This construction extends Heo's construction associated with a covariant completely multi-positive linear map with respect to a unital C^* -dynamical system. Finally, as an application of this construction we show that given a locally C^* -dynamical system (G, A, α) such that α is a continuous inverse limit action, a covariant non-degenerate, completely multi-positive linear map from A to $L_B(E)$ extends to a nondegenerate, completely multi-positive linear map from $A \times_{\alpha} G$ to $L_B(E)$ (Proposition 4.5).

2. Preliminaries. A locally C^* -algebra is a complete complex Hausdorff topological *-algebra whose topology is determined by a directed family of C^* -seminorms. If A is a locally C^* -algebra and S(A) is the set of all continuous C^* -seminorms on A, then for each $p \in S(A)$, the quotient algebra $A/\ker p$, denoted by A_p , is a C^* -algebra with the norm induced by p. The canonical map from A onto A_p is denoted by π_p . For $p, q \in S(A)$ with $p \ge q$, there is a canonical map π_{pq} from A_p onto A_q such that $\pi_{pq}(\pi_p(a)) = \pi_q(a)$ for all $a \in A$. Then $\{A_p; \pi_{pq}\}_{p,q \in S(A), p \ge q}$ is an inverse system of C^* -algebras and A can be identified with $\lim_p A_p$.

An approximate unit of A is an increasing net $\{e_{\lambda}\}_{\lambda \in A}$ of positive elements of A such that $p(e_{\lambda}) \leq 1$ for all $p \in S(A)$ and for all $\lambda \in A$, $p(ae_{\lambda} - a) \to 0$ and $p(e_{\lambda}a - a) \to 0$ for all $p \in S(A)$ and $a \in A$. Any locally C^* -algebra has an approximate unit [10, Proposition 3.11].

A morphism of locally C^* -algebras is a continuous *-morphism Φ from a locally C^* -algebra A to another locally C^* -algebra B. An isomorphism of locally C^* -algebras is a bijective linear map Φ from A to B such that Φ and Φ^{-1} are morphisms of locally C^* -algebras.

Let $M_n(A)$ denote the *-algebra of all $n \times n$ matrices over A with the algebraic operations and the topology obtained by regarding it as a direct sum of n^2 copies of A. Then $\{M_n(A_p); \pi_{pq}^{(n)}\}_{p,q \in S(A), p \ge q}$, where $\pi_{pq}^{(n)}([\pi_p(a_{ij})]_{i,j=1}^n) = [\pi_q(a_{ij})]_{i,j=1}^n$, is an inverse system of C^* -algebras and $M_n(A)$ can be identified with $\lim_{p \to \infty} M_n(A_p)$.

A linear map $\varrho : A \to B$ between two locally C^* -algebras is completely positive if the linear maps $\varrho^{(n)} : M_n(A) \to M_n(B), \ \varrho^{(n)}([a_{ij}]_{i,j=1}^n) = [\varrho(a_{ij})]_{i,j=1}^n, n = 1, 2, \ldots$, are all positive.

DEFINITION 2.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ which is \mathbb{C} - and A-linear in its second variable and satisfies the following relations:

- (i) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- (ii) $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$;
- (iii) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a *Hilbert A-module* if E is complete with respect to the topology determined by the family $\{\|\cdot\|_p\}_{p\in S(A)}$ of seminorms, where $\|\xi\|_p = \sqrt{p(\langle \xi, \xi \rangle)}$ for $\xi \in E$ [10, Definition 4.1].

Let *E* be a Hilbert *A*-module. For $p \in S(A)$, $\mathcal{E}_p = \{\xi \in E; p(\langle \xi, \xi \rangle) = 0\}$ is a closed submodule of *E* and $E_p = E/\mathcal{E}_p$ is a Hilbert A_p -module with $(\xi + \mathcal{E}_p)\pi_p(a) = \xi a + \mathcal{E}_p$ and $\langle \xi + \mathcal{E}_p, \eta + \mathcal{E}_p \rangle = \pi_p(\langle \xi, \eta \rangle)$. The canonical map from *E* onto E_p is denoted by σ_p . For $p, q \in S(A)$ with $p \geq q$ there is a canonical morphism of vector spaces σ_{pq} from E_p onto E_q such that $\sigma_{pq}(\sigma_p(\xi)) = \sigma_q(\xi)$ for $\xi \in E$. Then $\{E_p; A_p; \sigma_{pq}\}_{p,q \in S(A), p \geq q}$ is an inverse system of Hilbert *C*^{*}-modules in the following sense: $\sigma_{pq}(\xi_p, \eta_p) = \sigma_{pq}(\xi_p, \pi_p(\xi_p), \pi_{pq}(a_p))$ for $\xi_p \in E_p$ and $a_p \in A_p$; $\langle \sigma_{pq}(\xi_p), \sigma_{pq}(\eta_p) \rangle = \pi_{pq}(\langle \xi_p, \eta_p \rangle)$ for $\xi_p, \eta_p \in E_p$; $\sigma_{pp}(\xi_p) = \xi_p$ for $\xi_p \in E_p$ and $\sigma_{qr} \circ \sigma_{pq} = \sigma_{pr}$ if $p \geq q \geq r$, and $\lim_{p \to p} E_p$ is a Hilbert *A*-module which can be identified with *E* [10, Proposition 4.4].

Let E and F be Hilbert A-modules. We say that an A-module morphism $T: E \to F$ is *adjointable* if there is an A-module morphism $T^*: F \to E$ such that $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for every $\xi \in E$ and $\eta \in F$. Any adjointable A-module morphism is continuous. The set $L_A(E, F)$ of all adjointable A-module morphisms from E into F becomes a locally convex space with topology defined by the family $\{\widetilde{p}\}_{p\in S(A)}$ of seminorms, where $\widetilde{p}(T) = \|(\pi_p)_*(T)\|_{L_{A_p}(E_p,F_p)}$ for $T \in L_A(E,F)$ and $(\pi_p)_*(T)(\xi + \mathcal{E}_p) =$ $T\xi + \mathcal{F}_p$ for $\xi \in E$. Moreover, $\{L_{A_p}(E_p,F_p); (\pi_{pq})_*\}_{p,q\in S(A), p\geq q}$ is an inverse system of Banach spaces, where $(\pi_{pq})_* : L_{A_p}(E_p,F_p) \to L_{A_q}(E_q,F_q),$ $(\pi_{pq})_*(T_p)(\sigma_q(\xi)) = \chi_{pq}(T_p(\sigma_p(\xi))),$ and $\chi_{pq}, p, q \in S(A), p \geq q$, are the connecting maps of the inverse system $\{F_p\}_{p\in S(A)}$; the limit $\varprojlim_p L_{A_p}(E_p,F_p)$ can be identified with $L_A(E,F)$ [10, Proposition 4.7]. Thus topologized, $L_A(E,E)$ becomes a locally C^* -algebra, and we write $L_A(E)$ for $L_A(E,E)$.

The strict topology on $L_A(E)$ is defined by the family $\{\|\cdot\|_{p,\xi}\}_{(p,\xi)\in S(A)\times E}$ of seminorms, where $\|T\|_{p,\xi} = \|T\xi\|_p + \|T^*\xi\|_p$ for $T \in L_A(E)$.

Two Hilbert A-modules E and F are unitarily equivalent if there is a unitary element in $L_A(E, F)$.

Let G be a locally compact group and let A be a locally C^* -algebra. An action of G on A is a morphism α from G to Aut(A), the set of all isomorphisms of the locally C^* -algebra. The action α is continuous if the function $(t, a) \mapsto \alpha_t(a)$ from $G \times A$ to A is jointly continuous. An action α is called an inverse limit action if we can write A as an inverse limit $\lim_{\delta \in \Delta} A_{\delta}$ of C^* -algebras in such a way that there are actions $\alpha^{(\delta)}$ of G on A_{δ} such that $\alpha_t = \lim_{\delta \in \Delta} \alpha_t^{(\delta)}$ for all t in G [11, Definition 5.1]. An action α of G on A is a continuous inverse limit action if there is a cofinal subset $S_G(A, \alpha)$ of G-invariant continuous C^* -seminorms on A (a continuous C^* -seminorm p on A is G-invariant if $p(\alpha_t(a)) = p(a)$ for all a in A and for all t in G). So if α is a continuous inverse limit action of G on A we can suppose that $S(A) = S_G(A, \alpha)$.

A unitary representation of G on a Hilbert module E over a locally C^* -algebra B is a map u from G to $L_B(E)$ such that

- (i) u_q is a unitary element in $L_B(E)$ for all $g \in G$;
- (ii) $u_{gt} = u_g u_t$ for all $g, t \in G$;
- (iii) the map $g \mapsto u_g \xi$ from G to E is continuous for all $\xi \in E$.

If u is a unitary representation of G on E, then for each $q \in S(B)$, $g \mapsto (\pi_q)_* \circ u$ is a unitary representation of G on E_q . Moreover, $u_g = \varprojlim_q u_g^{(q)}$, where

$$u_g^{(q)} = (\pi_q)_*(u_g) \quad \text{ for all } g \in G.$$

A locally C^* -dynamical system is a triple (G, A, α) , where G is a locally compact group, A is a locally C^* -algebra and α is a continuous action of G on A.

A non-degenerate, covariant representation of (G, A, α) on a Hilbert *B*module *E* is a triple (Φ, v, E) , where Φ is a non-degenerate, continuous *-representation of A on E, v is a unitary representation of G on E and

$$\Phi(\alpha_g(a)) = v_g \Phi(a) v_q^*$$

for all $g \in G$ and $a \in A$.

Let α be a continuous inverse limit action of G on A. The set $C_{c}(G, A)$ of all continuous functions from G to A with compact support becomes a *-algebra with convolution of two functions

$$(f \times h)(s) = \int_{G} f(t)\alpha_t(h(t^{-1}s)) dt$$

as product and involution defined by

$$f^{\sharp}(t) = \Delta(t)^{-1} \alpha_t(f(t^{-1})^*)$$

where Δ is the modular function on G. The Hausdorff completion of $C_{c}(G, A)$ with respect to the topology defined by the family $\{N_{p}\}_{p\in S(A)}$ of submultiplicative *-seminorms, where

$$N_p(f) = \int_G p(f(s)) \, ds,$$

is denoted by $L^1(G, A, \alpha)$, and the enveloping locally C^* -algebra $A \times_{\alpha} G$ of $L^1(G, A, \alpha)$ is called the *crossed product* of A by α [4, Definition 3.14]. Moreover, the C^* -algebras $(A \times_{\alpha} G)_p$ are isomorphic with $A \times_{\alpha^{(p)}} G$ for all $p \in S(A)$ and so $A \times_{\alpha} G$ can be identified with $\varprojlim_p A \times_{\alpha^{(p)}} G$ [4, Remark 3.15].

3. Representations associated with a completely multi-positive linear map. Let A and B be two locally C*-algebras. An $n \times n$ matrix $[\varrho_{ij}]_{i,j=1}^n$ of continuous linear maps from A to B can be regarded as a linear map from $M_n(A)$ to $M_n(B)$ defined by

$$[\varrho_{ij}]_{i,j=1}^n([a_{ij}]_{i,j=1}^n) = [\varrho_{ij}(a_{ij})]_{i,j=1}^n$$

Moreover, $[\varrho_{ij}]_{i,j=1}^n$ is continuous.

We say that $[\varrho_{ij}]_{i,j=1}^n$ is a multi-positive (respectively, completely multipositive) linear map from A to B if it is a positive (respectively, completely positive) linear map from $M_n(A)$ to $M_n(B)$.

DEFINITION 3.1. Let E be a Hilbert B-module. A continuous completely multi-positive linear map $[\varrho_{ij}]_{i,j=1}^n$ from A to $L_B(E)$ is *strict* (respectively, *non-degenerate*) if the nets $\{\varrho_{ii}(e_\lambda)\}_{\lambda \in \Lambda}$, i = 1, ..., n, are strictly Cauchy (respectively, strictly convergent to the identity map on E) in $L_B(E)$, for some approximate unit $\{e_\lambda\}_{\lambda \in \Lambda}$ of A.

Recall that a continuous *-representation of A on E is a continuous *-morphism Φ from A to $L_B(E)$. A continuous *-representation Φ of A on E is non-degenerate if $\Phi(A)E$ is dense in E.

M. Joiţa

PROPOSITION 3.2. Let A and B be two locally C^* -algebras, let E and F be Hilbert B-modules, let V_i , i = 1, ..., n, be n elements in $L_B(E, F)$, and let Φ be a non-degenerate, continuous *-representation of A on F. Then $[\varrho_{ij}]_{i,j=1}^n$, where

$$\varrho_{ij}(a) = V_i^* \Phi(a) V_j$$
 for all $a \in A$ and $i, j \in \{1, \dots, n\}$

is a strict completely multi-positive linear map from A to $L_B(E)$.

Proof. It is a simple verification.

CONSTRUCTION 3.3. Let A and B be locally C^{*}-algebras, let E be a Hilbert B -module and let $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ be a completely multi-positive linear map from A to $L_B(E)$.

Let $q \in S(B)$. Then $[\varrho_q] = [(\pi_q)_* \circ \varrho_{ij}]_{i,j=1}^n$ is a completely multi-positive linear map from A to $L_{B_q}(E_q)$. We denote by $(A \otimes_{\text{alg}} E_q)^n$ the direct sum of n copies of the algebraic tensor product $A \otimes_{\text{alg}} E_q$ of A and E_q . Using the fact that $[\varrho_q]$ is a completely multi-positive linear map from A to $L_{B_q}(E_q)$, and the same arguments as in the proof of Theorem 2.1 in [1], it is not difficult to check that $(A \otimes_{\text{alg}} E_q)^n$ becomes a right B_q -module with the action of B_q on $(A \otimes_{\text{alg}} E_q)^n$ defined by

$$\left(\sum_{s=1}^{m} \bigoplus_{i=1}^{n} (a_{i,s} \otimes \xi_{i,s})\right) b = \sum_{s=1}^{m} \bigoplus_{i=1}^{n} (a_{i,s} \otimes \xi_{i,s}b)$$

and the map $\langle \cdot, \cdot \rangle_0$ from $(A \otimes_{\text{alg}} E_q)^n \times (A \otimes_{\text{alg}} E_q)^n$ to B_q defined by

$$\left\langle \sum_{s=1}^{m} \bigoplus_{i=1}^{n} (a_{i,s} \otimes \xi_{i,s}), \sum_{t=1}^{l} \bigoplus_{j=1}^{n} (b_{j,t} \otimes \eta_{j,t}) \right\rangle_{0} = \sum_{s,t=1}^{m,l} \sum_{i,j=1}^{n} \langle \xi_{i,s}, (\pi_{q})_{*} (\varrho_{ij}(a_{i,s}^{*}b_{j,t})) \eta_{j,t} \rangle$$

is \mathbb{C} - and B_q -linear in its second variable and satisfies conditions (i) and (ii) of Definition 2.1.

Let $\mathcal{N}_q = \{x \in (A \otimes_{\text{alg}} E_q)^n; \langle x, x \rangle_0 = 0\}$. By the Cauchy–Schwarz inequality, \mathcal{N}_q is a B_q -submodule of $(A \otimes_{\text{alg}} E_q)^n$. Then $(A \otimes_{\text{alg}} E_q)^n / \mathcal{N}_q$ becomes a pre-Hilbert B_q -module with the action of B_q on $(A \otimes_{\text{alg}} E_q)^n / \mathcal{N}_q$ defined by

$$(x + \mathcal{N}_q)b = xb + \mathcal{N}_q$$

and the inner product defined by

$$\langle x + \mathcal{N}_q, y + \mathcal{N}_q \rangle = \langle x, y \rangle_0.$$

The completion of $(A \otimes_{\text{alg}} E_q)^n / \mathcal{N}_q$ is denoted by $E_{[\varrho_q]}$. Let $q, r \in S(B)$ be such that $q \geq r$. Since

$$\langle \bigoplus_{i=1}^{n} (a_i \otimes \sigma_r(\xi_i)), \bigoplus_{i=1}^{n} (a_i \otimes \sigma_r(\xi_i)) \rangle_0 = \pi_{qr}(\langle \bigoplus_{i=1}^{n} (a_i \otimes \sigma_q(\xi_i)), \bigoplus_{i=1}^{n} (a_i \otimes \sigma_q(\xi_i)) \rangle_0)$$

for all $a_i \in A$ and $\xi_i \in E$, i = 1, ..., n, we can define a linear map $\widetilde{\sigma}_{qr}$ from $(A \otimes_{\text{alg}} E_q)^n / \mathcal{N}_q$ to $(A \otimes_{\text{alg}} E_r)^n / \mathcal{N}_r$ by

$$\widetilde{\sigma}_{qr}(\bigoplus_{i=1}^n (a_i \otimes \sigma_q(\xi_i)) + \mathcal{N}_q) = \bigoplus_{i=1}^n (a_i \otimes \sigma_r(\xi_i)) + \mathcal{N}_r.$$

Moreover, $\tilde{\sigma}_{qr}$ extends by continuity and linearity to a surjective linear map $\tilde{\sigma}_{qr}$ from $E_{[\varrho_q]}$ to $E_{[\varrho_r]}$. One can check that $\{E_{[\varrho_q]}; B_q; \tilde{\sigma}_{qr}\}_{q \geq r, q, r \in S(B)}$ is an inverse system of Hilbert C^* -modules. We denote by $E_{[\varrho]}$ the Hilbert B-module $\lim_{q \to q} E_{[\varrho_q]}$. Also it is not difficult to check that $(E_{[\varrho]})_q$ can be identified with $E_{[\varrho_q]}$ for all $q \in S(B)$. Then by Proposition 4.7 of [10], the locally C^* -algebras $L_B(E_{[\varrho]})$ and $\lim_{q \to q} L_{B_q}(E_{[\varrho_q]})$ are isomorphic, as are the locally convex spaces $L_B(F, E_{[\varrho]})$ and $\lim_{q \to q} L_{B_q}(F_q, E_{[\varrho_q]})$, where F is an arbitrary Hilbert B-module.

The following theorem extends the KSGNS construction for strict continuous completely positive linear maps between locally C^* -algebras [2, Theorem 4.6] to the case of strict completely multi-positive linear maps between locally C^* -algebras.

THEOREM 3.4. Let A and B be locally C^{*}-algebras, let E be a Hilbert B-module and let $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ be a strict completely multi-positive linear map from A to $L_B(E)$.

- (1) There is a continuous *-representation $\Phi_{[\varrho]}$ of A on $E_{[\varrho]}$ and n elements $V_{[\varrho],i}$, i = 1, ..., n, in $L_B(E, E_{[\varrho]})$ such that
 - (a) $\varrho_{ij}(a) = V^*_{[\varrho],i} \varPhi_{[\varrho]}(a) V_{[\varrho],j}$ for all a in A and $i, j \in \{1, \ldots, n\};$
 - (b) $\{\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi; a \in A, \xi \in E, i = 1, ..., n\}$ spans a dense submodule of $E_{[\varrho]}$.
- (2) If F is a Hilbert B-module, Φ is a continuous *-representation of A on F, and W_i , i = 1, ..., n, are n elements in $L_B(E, F)$ such that
 - (a) $\varrho_{ij}(a) = W_i^* \Phi(a) W_j$ for all a in A and $i, j \in \{1, \ldots, n\}$;
 - (b) $\{\Phi(a)W_i\xi; a \in A, \xi \in E, i = 1, ..., n\}$ spans a dense submodule of F,

then there is a unitary operator U in $L_B(E_{[o]}, F)$ such that

- (i) $\Phi(a)U = U\Phi_{[o]}(a)$ for all a in A;
- (ii) $W_i = UV_{[\rho],i}$ for all $i \in \{1, ..., n\}$.

DEFINITION 3.5. The representation $(\Phi_{[\varrho]}; V_{[\varrho],i}, i = 1, ..., n; E_{[\varrho]})$ constructed in Theorem 3.4 is called the *KSGNS construction* associated with $[\varrho] = [\varrho_{ij}]_{i,j=1}^{n}$.

REMARK 3.6. The KSGNS construction associated with a strict completely multi-positive map $[\varrho_{ij}]_{i,j=1}^n$ is unique up to unitary equivalence. REMARK 3.7. In particular, we obtain the GNS construction for continuous completely multi-positive linear functionals on locally C^* -algebras [3, Theorem 4.1] as well as Stinespring's construction for completely multipositive maps between unital C^* -algebras [1, Corollary 2.4].

Proof of Theorem 3.4. We partition the proof into three steps.

STEP 1. Suppose that A and B are C^{*}-algebras. Let $\{e_{\lambda}\}_{\lambda \in \Lambda}$ be an approximate unit of A such that the nets $\{\varrho_{ii}(e_{\lambda})\}_{\lambda \in \Lambda}$, $i = 1, \ldots, n$, are strictly Cauchy in $L_B(E)$.

(1) Let $a \in A$. It is not difficult to check that the linear map $\Phi_{[\varrho]}(a)$ from $(A \otimes_{\text{alg}} E)^n$ to $(A \otimes_{\text{alg}} E)^n$ defined by

$$\Phi_{[\varrho]}(a)(\bigoplus_{i=1}^n (a_i \otimes \xi_i)) = \bigoplus_{i=1}^n (aa_i \otimes \xi_i)$$

extends to a bounded linear operator $\Phi_{[\varrho]}$ from $E_{[\varrho]}$ to $E_{[\varrho]}$. Moreover, $\Phi_{[\varrho]}(a)$ is adjointable and $(\Phi_{[\varrho]}(a))^* = \Phi_{[\varrho]}(a^*)$. Thus we have obtained a map $\Phi_{[\varrho]}$ from A to $L_B(E_{[\varrho]})$. It is easy to verify that $\Phi_{[\varrho]}$ is a continuous *-representation of A on $E_{[\varrho]}$.

Let $i \in \{1, \ldots, n\}$. Since

$$= \left\| \left[\varrho_{ij} \right]_{i,j=1}^{n} \right\| \left\| \sum_{s=1}^{m} \bigoplus_{k=1}^{n} \left(a_{k,s} \otimes \xi_{k,s} \right) + \mathcal{N} \right\|^{2}$$

for all $\sum_{s=1}^{m} \bigoplus_{k=1}^{n} (a_{k,s} \otimes \xi_{k,s}) \in (A \otimes_{\text{alg}} E)^n$, the linear map $\bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N} \mapsto \sum_{k=1}^{n} \varrho_{ik}(a_k)\xi_k$ from $(A \otimes_{\text{alg}} E)^n / \mathcal{N}$ to E extends by continuity and linearity to a bounded linear operator \widetilde{V}_i from $E_{[\rho]}$ to E.

Let $\lambda \in \Lambda$ and $\xi \in E$. We denote by ξ_i^{λ} the element in $(A \otimes_{\text{alg}} E)^n$ whose *i*th component is $e_{\lambda} \otimes \xi$ and all the other components are 0. Since

 $\|(\xi_i^{\lambda} + \mathcal{N}) - (\xi_i^{\mu} + \mathcal{N})\|^2 = \|\langle \xi, \varrho_{ii}((e_{\lambda} - e_{\mu})^2)\xi \rangle\| \le 2\|\langle \xi, \varrho_{ii}(e_{\lambda} - e_{\mu})\xi \rangle\|$ for all $\lambda, \mu \in \Lambda$ with $\lambda \ge \mu$, and since the net $\{\varrho_{ii}(e_{\lambda})\xi\}_{\lambda \in \Lambda}$ is convergent in E, the net $\{\xi_i^{\lambda} + \mathcal{N}\}_{\lambda \in \Lambda}$ is convergent in $E_{[\varrho]}$. Define a map $V_{[\varrho],i}$ from E to $E_{[\varrho]}$ by

$$V_{[\varrho],i}\xi = \lim_{\lambda \in \Lambda} (\xi_i^{\lambda} + \mathcal{N}).$$

To show that $V_{[\varrho],i}$ is an element in $L_B(E, E_{[\varrho]})$ it is sufficient to show that

$$\langle V_{[\varrho],i}\xi, \bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N} \rangle = \langle \xi, \widetilde{V}_i(\bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N}) \rangle$$

for all $\xi \in E$ and $\bigoplus_{k=1}^{n} (a_k \otimes \xi_k) \in (A \otimes_{\text{alg}} E)^n$. Let $\xi \in E$ and $\bigoplus_{k=1}^{n} (a_k \otimes \xi_k) \in (A \otimes_{\text{alg}} E)^n$. Then we have

$$\begin{split} \langle V_{[\varrho],i}\xi, \bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N} \rangle &= \lim_{\lambda \in \Lambda} \langle \xi_i^{\lambda}, \bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N} \rangle \\ &= \lim_{\lambda \in \Lambda} \left\langle \xi, \sum_{k=1}^{n} \varrho_{ik}(e_\lambda a_k) \xi_k \right\rangle \\ &= \left\langle \xi, \sum_{k=1}^{n} \varrho_{ik}(a_k) \xi_k \right\rangle \\ &= \langle \xi, \widetilde{V}_i(\bigoplus_{k=1}^{n} (a_k \otimes \xi_k) + \mathcal{N}) \rangle. \end{split}$$

Hence $V_{[\rho],i} \in L_B(E, E_{[\rho]})$.

Let $a \in A$ and $\xi \in E$. We denote by $\xi_{i,a}$ the element in $(A \otimes_{\text{alg}} E)^n$ whose *i*th component is $a \otimes \xi$ and all the other components are 0. It is not difficult to check that $\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi = \xi_{i,a} + \mathcal{N}$. Therefore the submodule of $E_{[\varrho]}$ generated by $\{\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi; a \in A, \xi \in E, i = 1, ..., n\}$ is exactly $(A \otimes_{\text{alg}} E)^n / \mathcal{N}$ and thus condition (b) is satisfied.

Let $a \in A$ and $i, j \in \{1, \ldots, n\}$. Then we have

$$V_{[\varrho],i}^* \varPhi_{[\varrho]}(a) V_{[\varrho],j} \xi = V_{[\varrho],i}^* (\xi_{j,a} + \mathcal{N}) = \varrho_{ij}(a) \xi$$

for all $\xi \in E$ and so condition (a) is also satisfied.

(2) Using the fact that

$$\varrho_{ij}(a) = V_{[\varrho],i}^* \Phi_{[\varrho]}(a) V_{[\varrho],j} = W_i^* \Phi(a) W_j$$

for all $a \in A$ and $i, j \in \{1, ..., n\}$, it is not difficult to check that

$$\left\|\sum_{s=1}^{m}\sum_{i=1}^{n}\alpha_{i}\Phi_{[\varrho]}(a_{s})V_{[\varrho],i}\xi_{s}\right\| = \left\|\sum_{s=1}^{m}\sum_{i=1}^{n}\alpha_{i}\Phi(a_{s})W_{i}\xi_{s}\right\|$$

for all $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$, $a_1, \ldots, a_m \in A$ and $\xi_1, \ldots, \xi_m \in E$. Therefore the linear map $\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi \mapsto \Phi(a)W_i\xi$ from the submodule of $E_{[\varrho]}$ generated by $\{\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi; a \in A, \xi \in E, i = 1, \ldots, n\}$ to the submodule of F generated by $\{\Phi(a)W_i\xi; a \in A, \xi \in E, i = 1, \ldots, n\}$ extends to a surjective isometric B-linear map U from $E_{[\varrho]}$ onto F. Then, by Theorem 3.5 of [8], U is unitary.

Let $a \in A$. From

$$\Phi(a)U(\Phi_{[\varrho]}(b)V_{[\varrho],i}\xi) = \Phi(a)\Phi(b)W_i\xi = U(\Phi_{[\varrho]}(ab)V_{[\varrho],i}\xi)$$
$$= U\Phi_{[\varrho]}(a)(\Phi_{[\varrho]}(b)V_{[\varrho],i}\xi)$$

for all $b \in A$, $\xi \in E$ and $i \in \{1, ..., n\}$, we conclude that $\Phi(a)U = U\Phi_{[\varrho]}(a)$. Since Φ and $\Phi_{[\rho]}$ are non-degenerate, by Proposition 4.2 of [2], we have

$$UV_{[\varrho],i}\xi = \lim_{\lambda \in \Lambda} U\Phi_{[\varrho]}(e_{\lambda})V_{[\varrho],i}\xi = \lim_{\lambda \in \Lambda} \Phi(e_{\lambda})W_{i}\xi = W_{i}\xi$$

for all $\xi \in E$ and $i \in \{1, \ldots, n\}$. Therefore $W_i = UV_{[\varrho],i}$ for all $i \in \{1, \ldots, n\}$.

STEP 2. Suppose that A is a locally C*-algebra and B is a C*-algebra. Then there is $p \in S(A)$, a strict completely multi-positive map $[\varrho_p] = [\varrho_{ij}^p]_{i,j=1}^n$ from A_p to $L_B(E)$ such that $[\varrho_{ij}]_{i,j=1}^n = [\varrho_{ij}^p \circ \pi_p]_{i,j=1}^n$, and a *-representation Φ_p of A_p on F such that $\Phi = \Phi_p \circ \pi_p$.

It is not difficult to check that the linear map U from $(A \otimes_{\text{alg}} E)^n$ to $(A_p \otimes_{\text{alg}} E)^n$ defined by

$$\widetilde{U}(\bigoplus_{i=1}^n (a_i \otimes \xi_i)) = \bigoplus_{i=1}^n (\pi_p(a_i) \otimes \xi_i)$$

extends to a bounded linear map \widetilde{U} from $E_{[\varrho]}$ to $E_{[\varrho_p]}$. Moreover, \widetilde{U} is unitary. Therefore, the Hilbert *B*-modules $E_{[\varrho]}$ to $E_{[\varrho_p]}$ are unitarily equivalent.

By Step 1, there is a *-representation $\Phi_{[\varrho_p]}$ of A_p on $E_{[\varrho_p]}$, and n elements $V_{[\varrho_p],i}$, $i = 1, \ldots, n$, in $L_B(E, E_{[\varrho_p]})$ such that

$$\varrho_{ij}^p(a) = V_{[\varrho_p],i}^* \Phi_{[\varrho_p]}(a) V_{[\varrho_p],j}$$

for all $a \in A_p$ and $i, j \in \{1, \ldots, n\}$, and $\{\Phi_{[\varrho_p]}(a)V_{[\varrho_p],i}\xi; a \in A_p, \xi \in E, i = 1, \ldots, n\}$ spans a dense submodule of $E_{[\varrho_p]}$. Also there is a unitary operator U^p in $L_B(E_{[\varrho_p]}, F)$ such that $\Phi_p(a)U^p = U^p\Phi_{[\varrho_p]}(a)$ for all a in A_p , and $W_i = U^pV_{[\varrho_p],i}$ for all $i = 1, \ldots, n$.

Let $\Phi_{[\varrho]} = \Phi_{[\varrho_p]} \circ \pi_p, V_{[\varrho],i} = \widetilde{U}^* V_{[\varrho_p],i}, i = 1, \ldots, n$, and $U = U^p \widetilde{U}$. A simple calculation shows $(\Phi_{[\varrho]}; V_{[\varrho],i}, i = 1, \ldots, n; E_{[\varrho]})$ is the KSGNS construction associated with $[\varrho_{ij}]_{i,j=1}^n$, and U is a unitary operator in $L_B(E_{[\varrho]}, F)$ such that $\Phi(a)U = U\Phi_{[\varrho]}(a)$ for all a in A and $W_i = UV_{[\varrho],i}$ for all $i = 1, \ldots, n$.

STEP 3 (The general case). For each $q \in S(B)$, $[\varrho_q] = [(\pi_q)_* \circ \varrho_{ij}]_{i,j=1}^n$ is a strict completely multi-positive linear map from A to $L_{B_q}(E_q)$, and $\Phi_q = (\pi_q)_* \circ \Phi$ is a continuous *-representation of A on E_q such that $(\pi_q)_*(\varrho_{ij}(a)) = (\pi_q)_*(W_i^*)\Phi_q(a)(\pi_q)_*(W_j)$ for all $a \in A$ and $\{\Phi_q(a)(\pi_q)_*(W_i)\xi; a \in A, \xi \in E, i = 1, \ldots, n\}$ spans a dense submodule of F_q .

Let $(\Phi_{[\varrho_q]}; V_{[\varrho_q],i}, i = 1, ..., n; E_{[\varrho_q]})$ be the KSGNS construction associated with $[\varrho_q]$. By Step 2, there is a unitary operator U_q in $L_{B_q}(E_{[\varrho_q]}, F_q)$

190

such that $\Phi_q(a)U_q = U_q\Phi_{[\varrho_q]}(a)$ for all a in A and $(\pi_q)_*(W_i) = U_qV_{[\varrho_q],i}$ for all $i = 1, \ldots, n$.

It is not difficult to check that

$$(\pi_{qr})_* \circ \Phi_{[\varrho_q]} = \Phi_{[\varrho_r]}$$

for all $q, r \in S(A)$ with $q \geq r$. This implies that there is a continuous *-morphism $\Phi_{[\varrho]}$ from A to $L_B(E_{[\varrho]})$ such that $(\pi_q)_* \circ \Phi_{[\varrho]} = \Phi_{[\varrho_q]}$ for all $q \in S(B)$. Also it is not difficult to check that $(V_{[\varrho_q],i})_q$, $i = 1, \ldots, n$, are coherent sequences in $L_{B_q}(E_q, E_{[\varrho_q]})$ and $(U_q)_q$ is a coherent sequence in $L_{B_q}(E_{[\varrho_q]}, F_q)$.

Let $V_{[\varrho],i} = (V_{[\varrho_q],i})_q$, i = 1, ..., n, and $U = (U_q)_q$. A simple calculation shows that $(\Phi_{[\varrho]}; V_{[\varrho],i}, i = 1, ..., n; E_{[\varrho]})$ is the KSGNS construction associated with $[\varrho], \Phi(a)U = U\Phi_{[\varrho]}(a)$ for all a in A, and $W_i = UV_{[\varrho],i}$ for all $i \in \{1, ..., n\}$.

4. Covariant representations associated with a covariant completely multi-positive linear map

DEFINITION 4.1. Let (G, A, α) be a locally C^* -dynamical system and let u be a unitary representation of G on a Hilbert B-module E. We say that a completely multi-positive linear map $[\varrho_{ij}]_{i,j=1}^n$ from A to $L_B(E)$ is *u*-covariant with respect to the locally C^* -dynamical system (G, A, α) if

$$\varrho_{ij}(\alpha_g(a)) = u_g \varrho_{ij}(a) u_g^* \quad \text{for all } a \in A, g \in G \text{ and } i, j \in \{1, \dots, n\}.$$

PROPOSITION 4.2. Let (G, A, α) be a locally C^* -dynamical system, let u be a unitary representation of G on a Hilbert module E over a locally C^* -algebra B, let (Φ, v, F) be a covariant non-degenerate representation of (G, A, α) on a Hilbert B-module F, and let V_i , $i = 1, \ldots, n$, be n partial isometries in $L_B(E, F)$ (that is, $V_i^*V_i = \mathrm{id}_E$ for all $i = 1, \ldots, n$) such that $V_i u_g = v_g V_i$ for all $g \in G$ and $i = 1, \ldots, n$. Then there is a u-covariant non-degenerate completely multi-positive linear map $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ from A to $L_B(E)$ such that

$$\varrho_{ij}(a) = V_i^* \Phi(a) V_j$$
 for all $a \in A$ and $i, j = 1, \dots, n$.

Proof. It is a simple verification.

The following theorem is a covariant version of Theorem 3.4.

THEOREM 4.3. Let (G, A, α) be a locally C^* -dynamical system, let u be a unitary representation of G on a Hilbert module E over a locally C^* algebra B, and let $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ be a u-covariant, non-degenerate, completely multi-positive linear map from A to $L_B(E)$.

(1) There is a covariant representation $(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]})$ of (G, A, α) and n elements $V_{[\varrho],i}$, i = 1, ..., n, in $L_B(E, E_{[\varrho]})$ such that

M. Joiţa

- (a) $\varrho_{ij}(a) = V^*_{[\varrho],i} \Phi_{[\varrho]}(a) V_{[\varrho],j}$ for all $a \in A$ and $i, j \in \{1, \dots, n\}$;
- (b) $\{\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi; a \in A, \xi \in E, i = 1, ..., n\}$ spans a dense submodule of $E_{[\varrho]};$

(c)
$$v_g^{[\varrho]} V_{[\varrho],i} = V_{[\varrho],i} u_g$$
 for all $g \in G$ and $i \in \{1, ..., n\}$.

- (2) If F is a Hilbert B-module, (Φ, v, F) is a covariant representation of (G, A, α) and W_i , i = 1, ..., n, are n elements in $L_B(E, F)$ such that
 - (a) $\varrho_{ij}(a) = W_i^* \Phi(a) W_j$ for all $a \in A$ and $i, j \in \{1, \ldots, n\}$;
 - (b) $\{ \Phi(a)W_i\xi; a \in A, \xi \in F, i = 1, ..., n \}$ spans a dense submodule of F;

(c)
$$v_g W_i = W_i u_g$$
 for all $g \in G$ and for all $i \in \{1, \ldots, n\}$,

then there is a unitary operator U in $L_B(E_{[\varrho]}, F)$ such that

(i) $\Phi(a)U = U\Phi_{[\varrho]}(a)$ for all $a \in A$;

(ii)
$$v_a U = U v_a^{[\varrho]}$$
 for all $g \in G$;

(iii) $W_i = UV_{[\rho],i}$ for all $i \in \{1, \dots, n\}$.

Proof. We partition the proof into two steps.

STEP 1. Suppose that B is a C^* -algebra.

(1) Let $\{e_{\lambda}\}_{\lambda \in \Lambda}$ be an approximate unit of A such that the nets $\{\varrho_{ii}(e_{\lambda})\}_{\lambda \in \Lambda}$, $i = 1, \ldots, n$, are strictly convergent to the identity operator on E, and let $(\varPhi_{[\varrho]}; V_{[\varrho],i}, i = 1, \ldots, n; E_{[\varrho]})$ be the KSGNS construction associated with $[\varrho_{ij}]_{i,j=1}^n$. Then $V_{[\varrho],i}$ is a partial isometry for each $i \in \{1, \ldots, n\}$. For each $g \in G$, we define a linear map $v_g^{[\varrho]}$ from $(A \otimes_{\text{alg}} E)^n$ to $(A \otimes_{\text{alg}} E)^n$ by

$$v_g^{[\varrho]}(\bigoplus_{i=1}^n (a_i \otimes \xi_i)) = \bigoplus_{i=1}^n (\alpha_g(a_i) \otimes u_g \xi_i).$$

Using the fact that $[\varrho_{ij}]_{i,j=1}^n$ is *u*-covariant, it is not difficult to check that $v_g^{[\varrho]}$ extends to a bounded linear map $v_g^{[\varrho]}$ from $E_{[\rho]}$ to $E_{[\rho]}$, and since

$$\langle v_g^{[\varrho]}(\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N}), \bigoplus_{i=1}^n (b_i \otimes \eta_i) + \mathcal{N} \rangle$$

= $\langle \bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N}, v_{g^{-1}}^{[\varrho]}(\bigoplus_{i=1}^n (b_i \otimes \eta_i) + \mathcal{N}) \rangle$

for all $\bigoplus_{i=1}^{n} (a_i \otimes \xi_i), \bigoplus_{i=1}^{n} (b_i \otimes \eta_i) \in (A \otimes_{\text{alg}} E)^n, v_g^{[\varrho]} \in L_B(E_{[\varrho]})$ and moreover, $(v_g^{[\varrho]})^* = v_{g^{-1}}^{[\varrho]}$. Also it is not difficult to check that the map $g \mapsto v_g^{[\varrho]}$ is a unitary representation of G on $E_{[\varrho]}$.

To show that $(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]})$ is a covariant representation of (G, A, α) it remains to prove that $\Phi_{[\varrho]}(\alpha_g(a)) = v_g^{[\varrho]} \Phi_{[\varrho]}(a) v_{q^{-1}}^{[\varrho]}$ for all $g \in G$ and $a \in A$. Let $g \in G$ and $a \in A$. We have

$$(v_g^{[\varrho]} \Phi_{[\varrho]}(a) v_{g^{-1}}^{[\varrho]}) (\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N})$$

$$= (v_g^{[\varrho]} \Phi_{[\varrho]}(a)) (\bigoplus_{i=1}^n (\alpha_{g^{-1}}(a_i) \otimes u_{g^{-1}}\xi_i) + \mathcal{N})$$

$$= v_g^{[\varrho]} (\bigoplus_{i=1}^n (a\alpha_{g^{-1}}(a_i) \otimes u_{g^{-1}}\xi_i) + \mathcal{N})$$

$$= \bigoplus_{i=1}^n (\alpha_g(a)a_i \otimes \xi_i) + \mathcal{N}$$

$$= (\Phi_{[\varrho]}(\alpha_g(a))) (\bigoplus_{i=1}^n (a_i \otimes \xi_i) + \mathcal{N})$$

for all $\bigoplus_{i=1}^{n} (a_i \otimes \xi_i) \in (A \otimes_{\text{alg}} E)^n$. Hence $\Phi_{[\varrho]}(\alpha_g(a)) = v_g^{[\varrho]} \Phi_{[\varrho]}(a) v_{g^{-1}}^{[\varrho]}$.

By Theorem 3.4(1) conditions (a) and (b) are satisfied. To show that (c) is satisfied, let $\xi \in E$, $g \in G$ and $i \in \{1, \ldots, n\}$. Then we have

$$\begin{split} \|v_g^{[\varrho]}V_{[\varrho],i}\xi - V_{[\varrho],i}u_g\xi\|^2 &= \lim_{\lambda \in \Lambda} \|v_g^{[\varrho]}\xi_i^\lambda - V_{[\varrho],i}u_g\xi\|^2 \\ &= \lim_{\lambda \in \Lambda} \|\langle\xi, \varrho_{ii}(e_\lambda^2)\xi\rangle + \langle\xi,\xi\rangle - \langle\varrho_{ii}(\alpha_g(e_\lambda))u_g\xi, u_g\xi\rangle - \langle u_g\xi, \varrho_{ii}(\alpha_g(e_\lambda))u_g\xi\rangle\| \\ &\leq \lim_{\lambda \in \Lambda} \|\langle\xi, \varrho_{ii}(e_\lambda)\xi\rangle + \langle\xi,\xi\rangle - \langle\varrho_{ii}(e_\lambda)\xi,\xi\rangle - \langle\xi, \varrho_{ii}(e_\lambda)\xi\rangle\| \\ &= \lim_{\lambda \in \Lambda} \|\langle\xi - \varrho_{ii}(e_\lambda)\xi,\xi\rangle\| = 0. \end{split}$$

Hence condition (c) is also satisfied.

(2) By Theorem 3.4(2), there is a unitary operator U in $L_B(E_{[\varrho]}, F)$ defined by $U(\sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_i \Phi_{[\varrho]}(a_s) V_{[\varrho],i}\xi_s) = \sum_{s=1}^{m} \sum_{i=1}^{n} \alpha_i \Phi(a_s) W_i\xi_s$ such that $\Phi(a)U = U\Phi_{[\varrho]}(a)$ for all $a \in A$, and $W_i = UV_{[\varrho],i}$ for all $i \in \{1, \ldots, n\}$. Let $q \in G, i \in \{1, \ldots, n\}, a \in A, \xi \in E$. We have

$$\begin{aligned} (v_g U)(\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi) &= v_g(\Phi(a)W_i\xi) = \Phi(a)v_g W_i\xi \\ &= \Phi(a)W_i u_g \xi = U(\Phi_{[\varrho]}(a)V_{[\varrho],i} u_g \xi) \\ &= U(\Phi_{[\varrho]}(a)v_g^{[\varrho]}V_{[\varrho],i}\xi) = (Uv_g^{[\varrho]})(\Phi_{[\varrho]}(a)V_{[\varrho],i}\xi). \end{aligned}$$

This implies that $v_g U = U v_g^{[\varrho]}$ and thus assertion (2) is proved.

STEP 2 (The general case). Let $q \in S(B)$. Then $[\varrho_q] = [(\pi_q)_* \circ \varrho_{ij}]_{i,j=1}^n$ is a u^q -covariant, non-degenerate, completely multi-positive linear map from Ato $L_{B_q}(E_q)$, $((\pi_q)_* \circ \Phi, v^q, F_q)$ is a covariant representation of (G, A, α) and $(\pi_q)_*(W_i)$, $i = 1, \ldots, n$, are n elements in $L_{B_q}(E_q, F_q)$ such that conditions (a)-(c) of (2) are satisfied. By Step 1, there is a covariant representation $(\Phi_{[\varrho_q]}, v^{[\varrho_q]}, E_{[\varrho_q]})$ of (G, A, α) and *n* elements $V_{[\varrho^q],i}$, i = 1, ..., n, in $L_{B_q}(E_q, E_{[\varrho_q]})$ which satisfy conditions (a)–(c) of (1) and there is a unitary operator U_q in $L_{B_q}(E_{[\varrho_q]}, F_q)$ which satisfies conditions (i)–(iii) of (2). Moreover,

$$v_g^{[\varrho_q]}(\bigoplus_{i=1}^n (a_i \otimes \sigma_q(\xi_i)) + \mathcal{N}_q) = \bigoplus_{i=1}^n (\alpha_g(a_i) \otimes u_g^q \sigma_q(\xi_i)) + \mathcal{N}_q$$

for all $\bigoplus_{i=1}^n (a_i \otimes \sigma_q(\xi_i)) \in (A \otimes_{\text{alg}} E_q)^n$ and $g \in G$.

Let $(\Phi_{[\varrho]}; V_{[\varrho],i}, i = 1, ..., n; E_{[\varrho]})$ be the KSGNS construction associated with $[\rho_{ij}]_{i,j=1}^n$. According to the proof of Theorem 3.4, $(\pi_q)_* \circ \Phi_{[\varrho]} = \Phi_{[\varrho_q]},$ $(\pi_q)_*(V_{[\varrho],i}) = V_{[\varrho_q],i}, i = 1, ..., n$, and $(E_{[\varrho]})_q = E_{[\varrho_q]}$ for all $q \in S(B)$.

It is not difficult to check that for each $g \in G$, $(v_g^{[\varrho_q]})_q$ is a coherent sequence in $L_{B_q}(E_{[\varrho_q]})$, and the map $g \mapsto v_g^{[\varrho]}$, where $v_g^{[\varrho]} = (v_g^{[\varrho_q]})_q$, is a unitary representation of G on $E_{[\varrho]}$. Also one can check that $(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]})$ is a covariant representation of (G, A, α) which satisfies conditions (a)–(c) of (1).

Since $U_q(\Phi_{[\varrho_q]}(a)V_{[\varrho_q],i}\sigma_q(\xi)) = (\pi_q)_*(\Phi(a))W_i\sigma_q(\xi)$ for all $a \in A, \xi \in E$, $i \in \{1, \ldots, n\}$ and $q \in S(B)$, it is not hard to verify that $(U_q)_q$ is a coherent sequence in $L_{B_q}(E_{[\varrho_q]}, F_q)$. Then $U = (U_q)_q$ is a unitary element in $L_B(E_{[\varrho]}, F)$ which satisfies conditions (i)–(iii) of (2), and the theorem is proved.

REMARK 4.4. In the particular case when (G, A, α) is a unital C^* dynamical system, B is a unital C^* -algebra and E = B, the statements of Theorem 4.3 are given in Theorem 3.1 of [1].

In [1], Heo showed that given a unital C^* -dynamical system (G, A, α) , a covariant completely multi-positive linear map $[\varrho_{ij}]_{i,j=1}^n$ from A to B extends to a completely multi-positive linear map on the crossed product $A \times_{\alpha} G$. We generalize this result to the case of locally C^* -dynamical systems, not necessarily unital, in the following proposition.

PROPOSITION 4.5. Let (G, A, α) be a locally C^* -dynamical system such that α is a continuous inverse limit action, let B be a locally C^* -algebra, let E be a Hilbert B-module and let u be a unitary representation of G on E. If $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ is a u-covariant, non-degenerate, completely multi-positive linear map from A to $L_B(E)$, then there is a unique completely multi-positive linear map $[\varphi_{ij}]_{i,j=1}^n$ from $A \times_{\alpha} G$ to $L_B(E)$ such that

$$\varphi_{ij}(f) = \int_{G} \varrho_{ij}(f(g)) u_g \, dg$$

for all $f \in C_c(G, A)$ and $i, j \in \{1, \ldots, n\}$. Moreover, $[\varphi_{ij}]_{i,j=1}^n$ is non-degenerate.

Proof. By Theorem 4.3, there is a covariant representation $(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]})$ of (G, A, α) and n elements $V_{[\varrho],i}, i = 1, ..., n$, in $L_B(E, E_{[\varrho]})$ such that $\rho_{ij}(a) = V^*_{[\varrho],i} \Phi_{[\varrho]}(a) V_{[\varrho],j}$ and $v^{[\varrho]}_g V_{[\varrho],i} = V_{[\varrho],i} u_g$ for all $a \in A, g \in G$ and $i, j \in \{1, ..., n\}$.

Let $\Phi_{[\varrho]} \times v^{[\varrho]}$ be the representation of $A \times_{\alpha} G$ associated with $(\Phi_{[\varrho]}, v^{[\varrho]}, E_{[\varrho]})$ [5, Proposition 3.4]. For each $i, j \in \{1, \ldots, n\}$, define $\varphi_{ij} : A \times_{\alpha} G \to L_B(E)$ by

$$\varphi_{ij}(x) = V_{[\varrho],i}^*(\Phi_{[\varrho]} \times v^{[\varrho]})(x)V_{[\varrho],j}.$$

Clearly $[\varphi_{ij}]_{i,j=1}^n$ is a completely multi-positive linear map from $A \times_{\alpha} G$ to $L_B(E)$. Let $\{e_{\lambda}\}_{\lambda \in \Lambda}$ be an approximate unit for A and let $\xi \in E$. Then, since $\Phi_{[\varrho]} \times v^{[\varrho]}$ and $[\varrho]$ are non-degenerate,

$$\lim_{\lambda} \varphi_{ii}(e_{\lambda})\xi = \lim_{\lambda} V_{[\varrho],i}^*(\Phi_{[\varrho]} \times v^{[\varrho]})(e_{\lambda})V_{[\varrho],i}\xi = V_{[\varrho],i}^*V_{[\varrho],i}\xi = \xi$$

for all i = 1, ..., n. Therefore $[\varphi_{ij}]_{i,j=1}^n$ is non-degenerate. Moreover, if $f \in C_c(G, A)$, then

$$\begin{aligned} \varphi_{ij}(f) &= V_{[\varrho],i}^*(\varPhi_{[\varrho]} \times v^{[\varrho]})(f) V_{[\varrho],j} = \int_G V_{[\varrho],i}^* \varPhi_{[\varrho]}(f(g)) v_g^{[\varrho]} V_{[\varrho],j} \, dg \\ &= \int_G V_{[\varrho],i}^* \varPhi_{[\varrho]}(f(g)) V_{[\varrho],j} u_g \, dg = \int_G \varrho_{ij}(f(g)) u_g \, dg, \end{aligned}$$

and since $C_{c}(G, A)$ is dense in $A \times_{\alpha} G$, $[\varphi_{ij}]_{i,j=1}^{n}$ is unique.

Using the fact that any continuous action of a compact group on a locally C^* -algebra is an inverse limit action [11, Lemma 5.2], from Proposition 4.5 we obtain the following corollary.

COROLLARY 4.6. Let (G, A, α) be a locally C^* -dynamical system, B a locally C^* -algebra, E a Hilbert B-module, u a unitary representation of G on E, and $[\varrho] = [\varrho_{ij}]_{i,j=1}^n$ a u-covariant, non-degenerate, completely multipositive linear map from A to $L_B(E)$. If G is a compact group, then there is a unique completely multi-positive linear map $[\varphi_{ij}]_{i,j=1}^n$ from $A \times_{\alpha} G$ to $L_B(E)$ such that

$$\varphi_{ij}(f) = \int_{G} \varrho_{ij}(f(g)) u_g \, dg$$

for all $f \in C_c(G, A)$ and $i, j \in \{1, \ldots, n\}$. Moreover, $[\varphi_{ij}]_{i,j=1}^n$ is non-degenerate.

References

 J. Heo, Completely multi-positive linear maps and representations on Hilbert C^{*}modules, J. Operator Theory 41 (1999), 3–22.

M. Joiţa

- [2] M. Joita, Strict completely positive maps between locally C*-algebras and representations on Hilbert modules, J. London Math. Soc. (2) 66 (2002), 421–432.
- [3] —, Multi-positive linear functionals on locally C*-algebras, Rend. Circ. Mat. Palermo (2) 53 (2004), 185–194.
- [4] —, Crossed products of locally C^* -algebras, Rocky Mountain J. Math., to appear.
- [5] —, Covariant completely positive linear maps between locally C*-algebras, Houston J. Math., submitted.
- [6] A. Kaplan, Multi-states on locally C^{*}-algebras, Proc. Amer. Math. Soc. 106 (1989), 437–446.
- G. G. Kasparov, Hilbert C^{*}-modules: Theorem of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133–150.
- [8] E. C. Lance, Hilbert C*-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995.
- W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468.
- [10] N. C. Phillips, Inverse limit of C^{*}-algebras, J. Operator Theory 19 (1988), 159–195.
- [11] —, Representable K-theory for σ -C^{*}-algebras, K-Theory 3 (1989), 441–478.
- W. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216.

Department of Mathematics Faculty of Chemistry University of Bucharest Bd. Regina Elisabeta nr. 4-12, București, Romania E-mail: mjoita@fmi.unibuc.ro

Received May 11, 2005

(5647)