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Self-affine measures and vector-valued representations

by

Qi-Rong Deng (Fuzhou and Hong Kong),
Xing-Gang He (Wuhan) and Ka-Sing Lau (Hong Kong)

Abstract. Let A be a d× d integral expanding matrix and let Sj(x) = A−1(x+ dj)
for some dj ∈ Zd, j = 1, . . . ,m. The iterated function system (IFS) {Sj}mj=1 generates
self-affine measures and scale functions. In general this IFS has overlaps, and it is well
known that in many special cases the analysis of such measures or functions is facilitated
by expressing them in vector-valued forms with respect to another IFS that satisfies the
open set condition. In this paper we prove a general theorem on such representation. The
proof is constructive; it depends on using a tiling IFS {ψj}lj=1 to obtain a graph directed
system, together with the associated probability on the vertices to form some transition
matrices. As applications, we study the dimension and Lebesgue measure of a self-affine
set, the Lq-spectrum of a self-similar measure, and the existence of a scaling function (i.e.,
an L1-solution of the refinement equation).

1. Introduction. Throughout this paper we assume that A is a d × d
integral expanding matrix (i.e., all its eigenvalues have moduli > 1) and
D = {d1, . . . , dm} ⊂ Zd. We call (A,D) an integral affine pair. This pair
defines an iterated function system (IFS) {Sj}mj=1 on Rd by

Sj(x) = A−1(x+ dj), x ∈ Rd.

It is known that under a suitable norm on Rd, the expanding property of A
implies that the Sj ’s are contractive, hence there exists a unique nonempty
compact set K satisfying

K =
m⋃
j=1

Sj(K).

Alternatively, K can be written in the form of radix expressions{ ∞∑
n=1

A−ndjn : djn ∈ D
}
.
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We call the attractor K a self-affine set, and a self-affine region if K◦ 6= ∅.
In the case where |detA| = m, a self-affine region K will tile Rd by certain
translations of K (cf., e.g., [19]); we call such a K a self-affine tile. If we
associate to the family {Sj}mj=1 a set of positive probability weights {pj}mj=1,
then there exists a unique probability measure µ supported on K satisfying

(1.1) µ(E) =
m∑
j=1

pjµ(S−1
j (E)) =

m∑
j=1

pjµ(A(E)− dj)

for any Borel subset E of Rd. This measure is called a self-affine measure.
If, in addition, the matrix A is a constant multiple of an orthonormal ma-
trix, (i.e., A is a similarity and {Sj}mj=1 are similitudes), then in the above
terminology we replace self-affine by self-similar.

The above IFS also plays a special role in the refinement equation in
wavelet theory:

(1.2) f(x) =
m∑
j=1

ajf(Ax− dj), x ∈ Rd,

where aj ∈ R and
∑m

j=1 aj = |detA|. An L1-solution of this equation is
called a scaling function. It can be seen that the Radon–Nikodym derivative
of the µ in (1.1) satisfies the refinement equation.

One of the most basic assumptions in the study of iterated function
systems is the open set condition (OSC): there exists a bounded open set U
such that

Sj(U) ⊂ U for each j and Si(U) ∩ Sj(U) = ∅ if i 6= j.

Under this condition the attractor K can be identified with a symbolic space
and the invariant measure µ can be identified with a product measure on the
symbolic space; their geometric and analytic properties are well understood
(see, for example, [8], [2], [29], [37]). However, there are many important
cases where the OSC is not satisfied (we loosely say that the IFS has over-
lap), for example when m (= #D) > |detA| in the above {Sj}mj=1. The
overlapping IFS’s have very complicated and rich structure; there are many
attempts to study them by imposing various conditions such as the transver-
sality condition [35], the weak separation condition ([17], [23], [26], [33]) and
the finite type condition [30].

In this paper we consider a vector-valued representation of the self-affine
measure µ through a new IFS that satisfies the OSC. This approach was
first used by Daubechies and Lagarias [3, 4] for the refinement equation
(1.2) with A = [2], D = {0, . . . ,m− 1}. The vector form of the equation is

F (x) = T0F (2x) + T1F (2x− 1)

where F : [0, 1]→ Rm−1 is defined by F (x) = [f(x), . . . , f(x+m− 2)]t and
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T0, T1 are (m−1)× (m−1) matrices determined by the coefficients aj , they
are called transfer matrices. This representation initiated the investigation
of the joint spectral radius to prove the existence and regularity of scaling
functions (e.g., [18], [16], [27]). Another attempt of vector-valued represen-
tation was due to Strichartz [36] and Lau and Ngai [23] for the Bernoulli
convolution associated with the golden ratio; it was used to give an explicit
formula for the Lq-spectrum and verify the multifractal formalism for q > 0
in such case. Feng has made a further investigation for q ≤ 0 and extended
this to the Pisot numbers [9, 10].

Note that all the established cases are on R. Here we will concentrate
on integral self-affine measures on Rd. We will use a tiling IFS (i.e., the
attractor is a self-affine tile) to be the new IFS with OSC for the vector-
valued representation. Our main result is

Theorem 1.1. For each self-affine measure µ generated by an integral
affine pair (A,D), there exists a self-affine Zd-tile T such that , for the set
E = {e1, . . . , eN} = {e ∈ Zd : K ∩ (T ◦ + e) 6= ∅}, the vector-valued measure

µ(E) = [µ((E ∩ T ) + e1), . . . , µ((E ∩ T ) + eN )]t

satisfies

(1.3) µ(·) =
l∑

i=1

Wiµ(ψ−1
i (·)),

where l = |det(An0)| for some n0 ≥ 1, {ψi(x) = A−n0(x + ci)}li=1 is the
associated integral IFS generating T , and Wi = [Wi(u, v)], 1 ≤ i ≤ l, are
nonnegative N × N matrices satisfying : (i) W :=

∑l
i=1Wi is irreducible;

(ii) W is Markov , i.e., the column sums of W are all 1.

The Zd-tile T in the theorem means T admits Zd as a tiling set. The IFS
{ψi}li=1 corresponding to T satisfies the OSC. One of the most important
consequences of this representation is that

(1.4) µ(ψσ(T )) = Wσµ(T ),

where σ = (i1, . . . , in) ∈ Σn
l , Σl = {1, . . . , l}, ψσ = ψi1 ◦ · · · ◦ ψin and

Wσ = Wi1 · · ·Win . The family of {ψσ(T )} generates the Borel sets and the
product of the matrices determines the local property (see Corollary 3.5)
of µ.

In the theorem the tile T is generated by A (or An0 for some n0) and a
suitable choice of the digit set C ∈ Zd (it has to meet the technical require-
ment that µ(∂T + e) = 0 for all e ∈ Zd, see §2). The set E = {e1, . . . , eN}
is considered as a set of vertices, and an edge from eu to ev exists if there
exist ci ∈ C and dj ∈ D such that

(1.5) ci − dj +Aeu = ev
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(see (3.4), Lemma 3.1(iii) and Lemma 3.3). The associated weights of this
graph-directed system are the Wi = [wi(u, v)] with wi(u, v) = pj where the
j is determined by (1.5).

The theorem also holds for the refinement equation (1.2) with some
obvious adjustments. With the vector form, all the known theory for the
joint spectral radius will go through.

For a given pair (A,D), it is in general difficult to determine whether the
self-affine set K is a self-affine region, which is a necessary condition for (1.2)
to have an L1-solution; in the case #D = |detA|, the K is a self-affine tile
[19]. This question has been studied in some detail in [14] and an algorithm
was given there (see also [30], [37] for self-affine tiles). We make use of the
main theorem to give a unified and more satisfactory criterion as follows:

Theorem 1.2. Let {Wi}li=1 be the transition matrices in Theorem 1.1
corresponding to pj = 1/m. Then the following conditions are equivalent :

(i) K is a self-affine region, i.e., K◦ 6= ∅;
(ii) K has positive Lebesgue measure;
(iii) (Wσ1)∼ 6= 0 for any σ = (i1, . . . , in), 1 ≤ ij ≤ l, n > 0, where ṽ

denotes the vector with 1 in the nonzero entries of v and 0 elsewhere;
1 is the column vector with 1 in all entries.

Let F = {1 = v1, . . . , vr} be the set of all distinct (Wσ1)∼. It is easy
to see that r ≤ 2N . Hence we can determine whether K◦ 6= ∅ in at most
2N steps. It is known that the Lebesgue measure of such a K is a rational
number [14], and is an integer if K is a tile [19]. We prove

Theorem 1.3. Let K be a self-affine region generated by an integral
affine pair. Then the Lebesgue measure of K is given by

L(K) =
r∑
i=1

aiα(vi),

where α(vi) is the number of nonzero entries of vi ∈ F and {ai}ri=1 is defined
through the matrix G = [G(s, t)]r×r with

G(s, t) = l−1#{i : (Wivs)∼ = vt}, 1 ≤ s, t ≤ r.
The detailed definition of {ai}ri=1 is given in Theorem 5.3. For the case

K◦ = ∅, we want to determine its dimension. As a consequence of Theo-
rem 1.2, we have vr = 0 in F (after rearrangement), and the matrix G in
Theorem 1.3 can be expressed as

G =
[
G1 g

0 1

]
.

Theorem 1.4. Let K be the self-similar set coming from a pair (A,D),
where A is a similarity , and suppose that K◦ = ∅. Then dimBK = dimHK
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= d − log λ1/log % < d, where λ1 is the maximal eigenvalue of G1 and % is
the contraction ratio of the IFS.

As another application of Theorem 1.1, we consider the multifractal
structure of the self-similar measure in (1.1). Let

α(x) = lim
r→0

logµ(Br(x))
log r

be the local dimension of µ at x. Let Kα = {x ∈ K : α = α(x)}. A classical
heuristic principle called the multifractal formalism says that

dimHKα = τ∗(α),

where τ∗(α) is the Legendre transform of τ(q), the Lq-spectrum of µ (see §6).
The validity of the formalism has to be considered in individual cases and
depends on the differentiability of τ(q). For example, if the IFS consists
of similitudes and satisfies the OSC, then there is an explicit expression of
τ(q) and the formalism holds ([8], [2], [7]). For overlapping IFS, there were
extensive investigations of the Bernoulli convolution associated with the
golden ratio [23] and the Pisot numbers [10], the convolution of the Cantor
measure ([28], [12]) and some other related self-similar measures ([34], [38]).
In these cases some extraordinary phenomena were revealed when q < 0.
There was also a study of the scaling functions where the coefficients are
allowed to be negative (e.g., [5]).

By using the vector representation in Theorem 1.1, the product of ma-
trices in (1.4) and the results in [11] and [24], we have

Theorem 1.5. Let µ be the self-similar measure associated with the in-
tegral similar pair (A,D). Then

τ(q) = lim
n→∞

log
∑
|σ|=n ‖Wσ‖q1
n log %

, q > 0,

where |σ| is the length of σ and ‖Wσ‖1 is the sum of all entries of Wσ. More-
over , τ(q) is differentiable and the multifractal formalism holds for q > 0.

We organize the paper as follows. In §2, we set up some notation and
introduce an auxiliary tiling system. We prove Theorem 1.1 in §3; the analog
for the scaling function is also described. The vector-valued measure in The-
orem 1.1 is constructive; we illustrate the construction by some examples
in §4. In §5, we use a special case of Theorem 1.1 to consider self-affine sets;
Theorems 1.2–4 are proved there. Finally, in §6, we consider the multifractal
structure of integral self-similar measures, and prove Theorem 1.5.

2. The auxiliary tiling system. Let (A,D) be an integral affine
pair as in the last section with D = {d1, . . . , dm} and let {Sj}mj=1 be the
associated self-affine IFS. We will use the following symbols throughout:
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Σm = {1, . . . ,m} (or just Σ if there is no confusion) and Σ∗ =
⋃
n≥0Σ

n.
For any J = j1 . . . jn ∈ Σn, let SJ = Sj1 ◦ · · · ◦ Sjn and

dJ = djn +Adjn−1 + · · ·+An−1dj1 , Dn = D +AD + · · ·+An−1D.

We call a compact set T ⊆ Rd a tile if there exists a discrete set T (tiling
set) such that Rd =

⋃
z∈T (T + z) and (T ◦ + z) ∩ (T ◦ + z′) = ∅ for any two

distinct z, z′ ∈ T . If the tiling set can be chosen to be Zd, then we call T
a Zd-tile. It is known that if T is a self-affine tile (i.e., the attractor of an
integral affine pair (A, C)), then T admits a Zd-tiling if and only if L(T )
(the Lebesgue measure of T ) is 1; in this case #C = |detA| = l and C is a
complete residue set, i.e., the set of cosets {[d] : d ∈ C} equals Zd/AZd [21].

Using Corollary 5 and Theorem 1 of [39] (or Theorem 1.3 of [19]), we
have the following lemma which guarantees the existence of a Zd-tile for a
given A.

Lemma 2.1. For any integral expanding matrix A, there exists an integer
k > 0 and a digit set C ⊆ Zd with #C = |det(Ak)| such that T := T (Ak, C)
is a Zd-tile.

Indeed, according to [39], the k can be chosen such that all eigenvalues
of Ak are greater than 3

√
d in modulus. For such k, let Q = {Akx : x =

[x1, . . . , xd]t, xi ∈ (−1/2, 1/2]}. Then C = Q ∩ Zd satisfies the condition of
Lemma 2.1. In the one- or two-dimensional cases, the bound 3

√
d can be

improved to 2. We also remark that the Ak, k ≥ 1, in the above lemma
cannot be taken to be A as there exist expanding integral matrices A (with
size d > 3) such that T (A, C) is not a Zd-tile for any integral digit set C
with #C = |det(A)| ([25, corrigendum/addendum] and [32]). So far, for an
integral similarity matrix A, no example has been found for which we must
choose k > 1.

In the following we will introduce an auxiliary IFS {ψi}li=1 such that
the attractor T is a Zd-tile; this system satisfies the open set condition
automatically and we will reduce the self-affine measure µ to be a vector-
valued self-affine measure µ of {ψi}li=1 in the next section. First we state

Lemma 2.2. Let {Sj}mj=1 be the IFS generated by the integral affine pair
(A,D), let µ be a self-affine measure, and let K be the attractor of the IFS
{Sj}mj=1. Let T = T (A, C) be a Zd-tile and let V =

⋃
{T ◦+ z : µ(T + z) > 0,

z ∈ Zd}. Then

(i) V is a nonempty open set and is invariant with respect to {Sj}mj=1;
(ii) if V ∩K 6= ∅, then µ(∂T + z) = 0 for all z ∈ Zd (∂T is the boundary

of T ).

Consequently , µ is concentrated on either
⋃
z∈Zd(T ◦+ z) or

⋃
z∈Zd(∂T + z).
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Proof. Set Sj(x) = A−1(x+dj), dj ∈ D. If µ(T+z) > 0, then µ(Sj(T+z))
≥ pjµ(T + z) > 0. Since T = T (A, C) is a Zd-tile, C is a complete residue set
of A. Hence there exist ci ∈ C and e ∈ Zd such that z + dj = ci +Ae and

Sj(T + z) = A−1(T + z + dj) = A−1(T + ci +Ae)

= A−1(T + ci) + e ⊆ T + e.

Hence µ(T+e) ≥ µ(Sj(T+z)) ≥ pjµ(T+z) > 0 and Sj(T ◦+z) ⊆ T ◦+e ⊆ V .
It follows that Sj(V ) ⊆ V for all j. This proves (i).

To prove (ii), we assume V ∩K 6= ∅; then we can find x0 ∈ V ∩K, ε > 0
and J0 ∈ Σk such that SJ0(K) ⊆ Bε(x0) ⊆ V. We rearrange the distinct
SJ ’s, J ∈ Σk, as {φj}rj=1 with φ1 = SJ0 and let wj =

∑
SJ=φj

pJ > 0. Then
we have

(a) φ1(K) = SJ0(K) ⊆ V and φj(V ) ⊆ V , j = 1, . . . , r;
(b) K =

⋃r
j=1 φj(K);

(c) µ(·) =
∑r

j=1wjµ(φ−1
j (·)).

For this new IFS {φj}rj=1, let Σ̃r = {2, 3, . . . , r} and let

En =
⋃

J∈Σn
r \ eΣn

r

φJ(K).

For any J = j1 · · · jn ∈ Σn
r \ Σ̃n

r , there is an 1 ≤ s ≤ n such that js = 1.
Note that φj(K) ⊆ K for all j, so it follows from (a) that

φJ(K) ⊆ φj1···js−1(φjs(K)) ⊆ φj1···js−1(V ) ⊆ V
and hence En ⊆ V. Using (b) and (c), we have

1 ≥ µ(V ) ≥ µ(En) =
∑
J∈Σn

r

wJµ(φ−1
J (En))

≥
∑

J∈Σn
r \ eΣn

r

wJµ(φ−1
J (En)) ≥

∑
J∈Σn

r \ eΣn
r

wJµ(φ−1
J (φJ(K)))

=
∑

J∈Σn
r \ eΣn

r

wJµ(K) =
∑
J∈Σn

r

wJ −
∑
J∈ eΣn

r

wJ

=
( r∑
j=1

wj

)n
−
( r∑
j=2

wj

)n
= 1− (1− w1)n.

Since w1 > 0, we have (1 − w1)n → 0 as n → ∞. Therefore µ(V ) = 1 and
µ(V ) = µ(K) = 1. Noting that ∂V =

⋃
{∂T + z : µ(T + z) > 0, z ∈ Zd},

we have µ(∂V ) = µ(∂T + z) = 0 for all z ∈ Zd.

In view of the above lemma, we need to find a Zd-tile T such that

µ(∂T + z) = 0 for all z ∈ Zd,
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or equivalently, (T ◦ + z) ∩K 6= ∅ for some z ∈ Zd. This can be achieved by
a certain translation of the tile:

Lemma 2.3. Let K be the attractor of the integral affine pair (A,D) and
let T = T (A, C) be a Zd-tile. Then there are k > 0 and e ∈ Ck such that
Tk := T (Ak, Ck − e) is also a Zd-tile and K ∩ (T ◦k + z) 6= ∅ for some z ∈ Zd.

Proof. Let Bδ(x0) ⊆ T ◦ and let a ∈ Nd be such that x0 ∈ K + a. Since
T is a tile, a + z ∈ T for some z ∈ Zd; hence there exist cij ∈ C such that
a + z =

∑∞
j=1A

−jcij (recall that T = {
∑∞

n=1A
−nxn : xn ∈ C}). Let I be

the identity matrix and let

ak = −z + (I −A−k)−1
k∑
j=1

A−jcij .

Note that A−k converges to the zero matrix, hence limk→∞ ak = a. Let k be
such that ak ∈ a+Bδ(0). Then (K+ak)∩T ◦ 6= ∅. Let e = Ak

∑k
j=1A

−jcij =∑k
j=1A

k−jcij . We see that e ∈ Ck and

Tk = T (Ak, Ck − e) = T (Ak, Ck)−
∞∑
j=1

A−kje

= T (Ak, Ck)− (I −A−k)−1A−ke = T − (ak + z).

This implies K ∩ (T ◦k + z) 6= ∅.

We can now give the main result in this section.

Theorem 2.4. Let (A,D) be an integral affine pair. Then there is n0 > 0
and a digit set C ⊆ Zd with #C = |det(An0)| such that

(i) T = T (An0 , C) is a Zd-tile;
(ii) for any self-affine measure µ associated with (A,D),

µ
( ⋃
z∈Zd

(∂T + z)
)

= 0.

Proof. Lemma 2.1 implies that there exists an integer k > 0 and a digit
set C̃ such that T (Ak, C̃) is a Zd-tile. Lemma 2.3 shows that there exists
an integer r > 0 and an integral vector e ∈ C̃r such that K ∩ ((T (Akr,
C̃r − e))◦ + z) 6= ∅ for some z ∈ Zd. Let n0 = kr and C = C̃r − e. Then
T (An0 , C) is a Zd-tile and (T (An0 , C)◦ + z) ∩K 6= ∅ for some z ∈ Zd. The
remaining assertion follows from Lemma 2.2.

3. Vector-valued self-affine measures. We will prove Theorem 1.1
via several lemmas. For the n0 and C defined in Theorem 2.4, if n0 > 1, let
{φj}rj=1 be the distinct SJ ’s, J ∈ Σn0 , and wj =

∑
{pJ : J ∈ Σn0

m , SJ = φj}.
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Then µ satisfies

µ(·) =
r∑
j=1

wjµ(φ−1
j (·)).

We can therefore replace {Sj}mj=1 and the corresponding probability weights
{pj}mj=1 by the IFS {φj}rj=1 and {wj}rj=1, respectively. Hence, in order to
prove Theorem 1.1, we can assume without loss of generality that n0 = 1 in
Theorem 2.4, i.e., we assume

(H) T = T (A, C) is a Zd-tile such that µ(
⋃
z∈Zd(∂T + z)) = 0.

This assumption ensures that, for any z ∈ Zd, µ(T + z) > 0 if and only if
K ∩ (T ◦ + z) 6= ∅.

Let ψi(x) = A−1(x + ci) for some ci ∈ C. Since we have two IFS’s
and so two index sets, to avoid confusion we will use I, J to denote the
multi-indices in Σ∗m, and σ, τ to denote those in Σ∗l (l = |detA|). Note that
SI(0) = A−ndI and SI(x) = A−n(x + dI). Since Sj and ψi are defined by
the same matrix A, one can show directly that

(3.1) S−1
I ψσ(x) = x+ cσ − dI ∀I ∈ Σn

m, σ ∈ Σn
l ,

and

µ(ψσ(T + e)) =
∑
I∈Σn

m

pIµ(S−1
I (ψσ(T + e)))

=
∑
I∈Σn

m

pIµ(T + e+ cσ − dI) ∀e ∈ Zd, σ ∈ Σn
l .

The above reveals the basic relationship of {Sj}mj=1 and {ψi}li=1 and we
make use of this to form a weighted directed graph system. Let

(3.2) E = {e1, . . . , eN} = {e ∈ Zd : K ∩ (T ◦ + e) 6= ∅}
and

(3.3) Bn = {ψσ(T ) + eu : eu ∈ E , σ ∈ Σn
l }, n ≥ 0.

Since T is a Zd-tile by our assumption (H), it is easy to prove

Lemma 3.1. With the above notations, we have

(i) for any E,F ∈ Bn, E◦ ∩ F ◦ 6= ∅ if and only if E = F ;
(ii) Bn is a partition (with overlaps at the boundary) of the union⋃

E∈Bn
E (⊇ K);

(iii) if z ∈ Zd and E = A−n(T + z), then E ∈ Bn if and only if there are
unique σ ∈ Σn

l and eu ∈ E such that cσ +Aneu = z;
(iv) (T ◦ + eu) ∩K 6= ∅ for all eu ∈ E.

Lemma 3.2. For any I ∈ Σn
m, J ∈ Σk

m, σ ∈ Σn
l , τ ∈ Σk

l and z ∈ Zd,

cστ − dIJ +An+kz ∈ E implies cσ − dI +Anz ∈ E .
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Proof. Observe that ψσ(T ) + z = A−n(T + cσ +Anz), so (3.1) implies

S−1
I (ψσ(T ) + z) = T + cσ − dI +Anz.

Since µ(S−1
I (E)) =

∑
J ′∈Σk

m
pJ ′µ(S−1

IJ ′(E)), we have

µ(T + cσ − dI +Anz) = µ(S−1
I (ψσ(T ) + z)) ≥ µ(S−1

I (ψστ (T ) + z))

≥ pJµ(S−1
IJ (ψστ (T ) + z))

= pJµ(T + cστ − dIJ +An+kz) > 0,

and the lemma follows.

As a crucial step to reformulate the self-affine measure of {Sj}mj=1 in
terms of the auxiliary IFS {ψi}li=1, we have

Lemma 3.3. The family {A−n(T + z) : z ∈ Zd, n ≥ 0} generates the
Borel subsets of Rd, and for any z ∈ Zd,

µ(A−n(T + z)) =
N∑
v=1

(∑
{pI : I ∈ Σn

m, z − dI = ev}
)
µ(T + ev)

for some ev ∈ E.

Proof. The first part is clear as T is a tile with Zd as a tiling set. For
the identity we note that

µ(A−n(T + z)) =
∑
I∈Σn

m

pIµ(S−1
I (A−n(T + z)))

=
∑
I∈Σn

m

pIµ(T − dI + z).

By the definition of E , µ(T − dI + z) > 0 if and only if z − dI = ev for
some ev ∈ E . The lemma follows by replacing z − dI with ev in the above
expression.

It follows from Lemma 3.1(iii) that we only need to consider those sets
A−n(T + z) such that z = cσ + Aneu ∈ E . In view of the above lemma, we
define Wi = [wi(u, v)]N×N , 1 ≤ i ≤ l, by

(3.4) wi(u, v) =
{
pj , ci − dj +Aeu = ev for some j,
0, otherwise.

Then we have

Lemma 3.4. For any σ = σ1 · · ·σn ∈ Σn
l , let Wσ = [wσ(u, v)] be the

corresponding product matrix. Then

(3.5) wσ(u, v) =
∑
{pI : I ∈ Σn

m, cσ − dI +Aneu = ev}.
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Proof. We will use induction. The identity is obviously true for n = 1
by the definition of Wi. Assume it is true when n = k − 1. For n = k, let
σ = τr, τ ∈ Σk−1

l , Jj ∈ Σk
m. By Lemma 3.2, cσ + Akeu − dJj ∈ E implies

cτ +Ak−1eu− dJ ∈ E . Let Wτ = [au,v]N×N . By the induction hypothesis we
have

au,v =
∑
{pI : I ∈ Σk−1

m , cτ − dI +Ak−1eu = ev}.

This implies that

wσ(u, v) =
N∑
t=1

au,twr(t, v)

=
N∑
t=1

(∑
{pI : I ∈ Σk−1

m , cτ − dI +Ak−1eu = et}
)

·
(∑

{pi : cr − di +Aet = ev}
)

=
N∑
t=1

∑
{pIi : I ∈ Σk−1

m , cτ − dI +Ak−1eu = et, cr − di +Aet = ev}

=
∑
{pJ : J ∈ Σk

m, cσ − dJ +Akeu = ev},

(the last equality follows from Lemma 3.2).

Proof of Theorem 1.1. We have assumed in (H) that n0 = 1 in the
statement of Theorem 2.4. Also we assume all dj in D are distinct, otherwise
we can combine the corresponding Sj and pj together. Let V =

⋃N
j=1(T ◦+ej).

Lemma 2.2 implies that V is open and invariant with respect to {Sj}mj=1,
and µ(∂T + z) = 0 for all z ∈ Zd. For

µ(E) = [µ((E ∩ T ) + e1), . . . , µ((E ∩ T ) + eN )]t

we have, by the self-affine identity,

(µ(E))v = µ((T ∩ E) + ev) =
m∑
i=1

piµ(A(T ∩ E) +Aev − di)

=
m∑
i=1

piµ
(( l⋃

j=1

(T + cj) ∩A(E)
)

+Aev − di
)

=
m∑
i=1

piµ
( l⋃
j=1

(T ∩ (A(E)− cj) + cj) +Aev − di
)
.
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Use µ(∂T + z) = 0, (3.4) and the fact that T is a Zd-tile to obtain

(µ(E))v =
m∑
i=1

l∑
j=1

piµ(T ∩ (A(E)− cj) + cj +Aev − di)

=
l∑

j=1

N∑
r=1

wj(v, r)µ(T ∩ (A(E)− cj) + er).

This implies µ(E) =
∑l

j=1Wjµ(ψ−1
j (E)).

To prove statement (i), we note that for any 1 ≤ u, v ≤ N , our assump-
tion (H) on T implies that K ∩ (T ◦ + eu) 6= ∅, so there exists an integer n
and I ∈ Σn

m such that SI(T + ev) ⊆ T + eu. Since

SI(T + ev) = A−n(T + ev + dI)

with ev + dI ∈ Zd, Lemma 3.1(iii) implies that there exists σ ∈ Σn
l such

that cσ−dI +Aneu = ev; by Lemma 3.4, we see that for W =
∑m

i=1Wi, the
(u, v) entry of Wn is ≥ pI and hence is positive. Thus we have proved that
W is irreducible.

For (ii), we first consider the expression ci − ds +Aeu = ev in (3.4). We
claim that the pair (eu, ci) is uniquely determined by ev and ds. Indeed, if
cj − ds +Aeu′ = ev, then A−1(ci − cj) = eu′ − eu ∈ Zd. Since T is a Zd-tile,
{c1, . . . , cl} is a complete set of residues (mod A) [21], and we conclude that
u′ = u and i = j, which yields the claim.

It follows from the claim that distinct pairs (eu, ci) and (eu′ , cj) with
wi(u, v) > 0 and wj(u′, v) > 0 correspond to distinct ds. Hence

(3.6)
N∑
u=1

w(u, v) =
l∑

i=1

N∑
u=1

wi(u, v) ≤
m∑
s=1

ps = 1, v = 1, . . . , N,

i.e., the column sums of W are ≤ 1. On the other hand, by the vector
self-affine identity just proved, [µ(T + e1), . . . , µ(T + eN )]t is a positive 1-
eigenvector of W . This implies that all column sums of W must be 1. The
proof is complete.

The above proof yields

Corollary 3.5. With the same assumptions and notations of Theorem
1.1, we have

µ(ψσ(T )) = Wσµ(T ), ∀σ ∈ Σ∗.

We remark that in the above proof, each pj appears exactly once in each
column of W . Also the matrices {Wi}li=1 are not unique, not even the same
size. They depend on the choice of C for the tile T ; an example is given in
Section 4 for the case A = [3] on R.
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For the actual construction of µ and Wi, we have to find the set E in
the theorem as both the tile T and the attractor K may not be expressed
explicitly. We provide an algorithm to construct E by using the expression
in (3.4).

Proposition 3.6. Let K be the attractor of (A,D), and let T = T (A, C)
be a Zd-tile such that K ∩ (T ◦+z) 6= ∅ for some z ∈ Zd as above. Let E0 = ∅
and let ∅ 6= E1 ⊆ E. Define

(3.7) En+1 = En ∪ (Zd ∩A−1((En \ En−1) +D − C)), n > 0.

Then there is an n > 0 such that En = En+1, and for this n we have En = E.

Proof. Since E is a finite set, we need only prove En ⊆ E for all n > 0,
and E ⊆

⋃
n>0 En.

We prove the first inclusion by induction. Assume that En ⊆ E and let
z ∈ En+1 \ En. Then there exist e ∈ En, di ∈ D and cj ∈ C such that
z = A−1(e+ di − cj). Hence

µ(T + z) ≥ piµ(A(T + z)− di) = piµ(AT + e− cj).
Note that AT ⊇ T + cj and e ∈ En ⊆ E , so µ(T + z) ≥ piµ(T + e) > 0. This
implies En+1 ⊆ E and induction follows.

For the second inclusion, let ev ∈ E . Choose eu ∈ E1. Since W =
∑l

i=1Wi

is irreducible, there exist ev1 , . . . , evn ∈ E with v1 = u and vn = v such
that w(vj+1, vj) > 0. From the definition of {Wi}li=1, we see that evj+1 ∈
A−1(evj + D − C). Therefore ev ∈ En from the definition of Ej and since
ev1 ∈ E1. Hence E ⊆

⋃
n>0 En.

In the next section, we illustrate this algorithm by some examples. To
conclude this section, we consider the refinement equation

(3.8) f(x) =
m∑
j=1

ajf(Ax− dj), x ∈ Rd,

where A and dj ∈ D are as before, and the coefficients {aj}mj=1 are real and
satisfy

∑m
j=1 aj = |detA|. The L1-solution of the equation is called a scaling

function. In this case, f is supported by K and is unique up to a constant
multiple. It is well known that for the scaling function in R with scaling
2, the analysis depends very much on a vector-valued setup ([3], [4], [16],
[27]). For the higher dimensional case, the same technique in the proof of
Theorem 1.1 can be used for the vector-valued reduction. Below we state
such a theorem without proof.

Similarly to the definition of Wi, we define the N ×N matrices Ci, 1 ≤
i ≤ l, by

Ci(u, v) =
{
aj , ci − dj +Aeu = ev for some j,
0, otherwise.
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Then l = |detA| is an eigenvalue of C :=
∑l

j=1Cj . For any function f , we
define an N -dimensional vector function F = (F1, . . . , FN ) by

(3.9) Fi(x) =
{
f(x+ ei), x ∈ T ,
0, otherwise.

Theorem 3.7. Let f be a function supported by K, the attractor of
(A,D), and let F be defined as above. Then f is an L1-solution of the re-
finement equation (3.8) if and only if F is an L1-solution of

(3.10) F (x) =
l∑

j=1

CjF ◦ ψ−1
j (x), a.e. x ∈ Rd.

Remark. Since ∂T has Lebesgue measure zero and f is defined a.e.
with respect to Lebesgue measure, the technicality on µ(∂T + z) = 0 in
the proof of Theorem 1.1 is not needed (as µ is absolutely continuous and
µ(
⋃
z∈Zd(∂T + z)) = 0 automatically). Hence we do not need Lemmas 2.2

and 2.3 in the proof.

There is vast literature on scaling functions on R using the joint spectral
radius associated with the above {Ci}li=1. Most of the theorems can be
generalized directly once the vector-valued form is established. We list one
of these as an example ([27], [17]). For any vector ν ∈ RN , let H(ν) be the
linear subspace spanned by {Cσ(I − Ci)ν : i = 1, . . . , l, σ ∈ Σ∗l }, where I is
the N ×N identity matrix.

Proposition 3.8. With the above notations, let ν be a nonzero l-eigen-
vector of

∑l
j=1Cj. Then the following three statements are equivalent :

(i) the equation (3.8) has a nontrivial L1-solution;
(ii) limn→∞ l

−n∑
σ∈Σn

l

∑l
j=1 ‖Cσ(I − Cj)ν‖ = 0;

(iii) there exists an integer k > 0 such that

l−k
∑
σ∈Σk

l

‖Cσw‖ < 1 ∀w ∈ H(ν), ‖w‖ ≤ 1.

4. Examples. In this section, we will illustrate the construction of the
vector form in Theorem 1.1. First we consider the well known cases associ-
ated with A = 2 on R under our present setting.

Example 4.1. LetA = 2,D = {0, . . . ,m−1} and let µ be the self-similar
measure generated by (A,D) with associated weights {pj}mj=1.

The attractor is K = [0,m − 1]. According to Theorem 1.1, we choose
C = {0, 1}; then T = [0, 1]. It follows that

E = {i : µ(K ∩ [i, i+ 1]) > 0} = {0, 1, . . . ,m− 2}.
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Let ci = i− 1, dj = j − 1 and eu = u− 1 ∈ E . Then the definition of Wi in
(3.4) implies that wi(u, v) = pj if and only if j = 2u− v + i− 1. Hence

W1 = [p2u−v] =



p1 0 0 · · · 0
p3 p2 p1 · · · 0
p5 p4 p3 · · · 0
...

...
...

. . .
...

0 0 0 · · · pm−1


,

W2 = [p2u−v+1] =



p2 p1 0 · · · 0
p4 p3 p2 · · · 0
p6 p5 p4 · · · 0
...

...
...

. . .
...

0 0 0 · · · pm


.

The W1 and W2 are uniquely determined regardless of the choice of C, since,
for any other digit set C′ such that T (2, C′) is a Z-tile of R, there is an integer
k such that T (2, C) = T (2, C′) + k and the sets {T + ei} are unchanged.

Example 4.2. Let A = 3, D = {0, 2, 4, 6} and let µ be the self-similar
measure generated by (A,D) with associated weights {pj}4j=1.

The attractor is K = [0, 3]. If we choose C = {0, 1, 2}, then T = [0, 1]
and hence E = {0, 1, 2}. Let

ci = i− 1, dj = 2j − 2, eu = u− 1.

Then the definition of Wi implies that wi(u, v) = pj if and only if 2j =
3u− v + i− 1. Hence we have

W1 =

p1 0 0
0 p2 0
p4 0 p3

 , W2 =

 0 p1 0
p3 0 p2

0 p4 0

 , W3 =

p2 0 p1

0 p3 0
0 0 p4

 .
These coincide with the T0, T1 and T2 defined in [28].

If we choose C = {−1, 0, 1}, then T = [−1/2, 1/2] and so E = {0, 1, 2, 3}.
For this choice,

W1 =


0 0 0 0
p2 0 p1 0
0 p3 0 p2

0 0 p4 0

, W2 =


p1 0 0 0
0 p2 0 p1

p4 0 p3 0
0 0 0 p4

, W3 =


0 p1 0 0
p3 0 p2 0
0 p4 0 p3

0 0 0 0

.
We see that, unlike the case in Example 4.1, if we choose a different C (and
hence T ), we may have different E and Wj .
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Also, note that D ⊂ 2Z; if we consider ν(E) .= µ(2E) and choose C =
{0, 1, 2}, let µ(E) = (µ(E ∩ (2T )), µ(E ∩ (2T ) + 2))t. Then

µ(E) =
3∑
j=1

Wjµ(3E − 2j)

with

W1 =
[
p1 0
p4 p3

]
, W2 =

[
p2 p1

0 p4

]
, W3 =

[
p3 p2

0 0

]
.

This is simpler than the previous two representations.

Example 4.3. Let A =
[

1 1
−1 1

]
, D = {[0, 0]t, [1, 0]t, [0, 1]t} and let µ be

the self-similar measure generated by (A,D) with associated weights {pj}3j=1

and K be the attractor.
Choose C = {[0, 0]t, [1, 0]t}. Then T = T (A, C) is a Z2-tile (the twin

dragon). For this example, both K and T are more complicated. Note that
T ⊆ K and D−C = {[0,−1]t, [1,−1]t, [0, 0]t, [1, 0]t, [0, 1]t}. Let E1 = {[0, 0]t}.
By Proposition 3.6 we find Ei inductively and the process stops at the 11th
step with

E11 = {[−1,−2]t, [−2,−1]t, [−2, 0]t, [0,−2]t, [−1,−1]t, [−1, 0]t, [0,−1]t,

[0, 0]t, [−1, 1]t, [1,−1]t, [1, 0]t, [0, 1]t, [1, 1]t}.

Therefore E = E11 and there are 13 translates of T ◦ intersecting K. By the
definition of Wj in (3.4), we have

W1 =



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 p3 p1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 p3 0 0 p1 0 0 0 0
p3 p2 0 0 p1 0 0 0 0 0 0 0 0
0 0 0 0 0 p2 p3 p1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 p3 0
p2 0 0 p1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 p2 0 0 p1 0 0 0
0 0 0 0 0 0 0 0 0 0 p3 p2 p1

0 0 0 0 0 0 0 0 0 0 p2 0 0



,
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W2 =



0 p1 0 0 0 0 0 0 0 0 0 0 0
0 0 p3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 p3 0 0 0 0
p1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 p2 0 p3 p1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p3 p2 0 0 p1 0
0 0 0 p3 p2 0 p1 0 0 0 0 0 0
0 0 0 0 0 0 0 p2 0 p3 p1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 p3

0 0 0 p2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 p2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 p2

0 0 0 0 0 0 0 0 0 0 0 0 0



.

5. Application to self-affine sets. This section is devoted to the cal-
culation of the Lebesgue measure and Hausdorff dimension of integral self-
affine sets. These problems have been investigated in [37] and [14]. We will
make use of the matrix representation of Section 3 to give an alternative
approach, which unifies the considerations with the measures and functions
and seems to be simpler.

We will use the notations defined in the previous sections with the special
set of probabilities p1 = · · · = pm = 1/m (actually any set of positive
probabilities {pi}li=1 will do). We also suppose that the assumption (H)
holds for the auxiliary affine system.

For any r×s matrix (or vector if s = 1) B = (bij), let B∼ = (̃bij) be such
that b̃ij equals 1 if bij 6= 0, and equals 0 if bij = 0. For any two nonnegative
matrices B and C such that BC is well defined, we have

(5.1) (BC)∼ = (BC∼)∼ ∀B,C ≥ 0.

This follows from the fact that
∑

s biscsj 6= 0 if and only if
∑

s bisc̃sj 6= 0.
We first provide a constructive way to check if K is a self-affine region,

i.e., K◦ 6= ∅ (see the remark after the theorem). By Theorem 1.1, we have

Theorem 5.1. Let K be the attractor generated by the integral affine
pair (A,D) and let T = T (A, C) be a Zd-tile satisfying (H). Then the follow-
ing statements are equivalent :

(i) K is a self-affine region, i.e., K◦ 6= ∅;
(ii) L(K) > 0;
(iii) Wσ 6= 0 (equivalently (Wσ1)∼ 6= 0) for any σ ∈ Σn

l , n > 0;
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(iv) T ⊆
⋃N
j=1(K−ej), where E={e1, . . . , eN}={e ∈ Zd : µ(T +e) > 0}

as in (3.3).

Proof. The implications (i)⇒(ii) and (iv)⇒(i) are obviously true.
(ii)⇒(iii). If there exist n > 0 and σ ∈ Σn

l such that Wσ = 0, then the
identity in Theorem 1.1 implies that

µ(·) =
∑

τ∈Σn
l \{σ}

Wτµ(ψ−1
τ (·)).

It follows that µ is supported by the attractor of the IFS {ψτ : τ ∈ Σn
l \{σ}}

which is of Lebesgue measure zero. Since we have supp µ=
⋃N
j=1 supp µj =⋃N

j=1(T ∩ (K − ej)), it follows that L(T ∩ (K − ej)) = 0. Therefore L(K) ≤∑N
j=1 L((T + ej) ∩K) = 0, a contradiction.
(iii)⇒(iv). Assume that T 6⊆

⋃N
j=1(K − ej). Then T ◦ \

⋃N
j=1(K − ej) is

a nonempty open set. Since µ is supported by K, the definition of µ implies
that µ is supported by

⋃N
j=1(K − ej), hence µ(T ◦ \

⋃N
j=1(K − ej)) = 0.

Since T is the attractor of {ψj}lj=1, there exist n > 0 and σ ∈ Σn
l such that

ψσ(T ) ⊆ T ◦ \
⋃N
j=1(K − ej). Corollary 3.5 implies that 0 = µ(ψσ(T )) =

Wσµ(T ), hence Wσ = 0, a contradiction.

Remark. Let F := {(Wσ1)∼ : σ ∈ Σ∗l }. Since each (Wσ1)∼ is an
N -vector with values 0 and 1, F has cardinality ≤ 2N . Let F0 = {1},
F1 = {(Wj1)∼ : j ∈ Σl} ∪ F0 and

Fn+2 = Fn+1 ∪ {(Wiα)∼ : i ∈ Σl, α ∈ Fn+1 \ Fn}, n ≥ 0.

Note that (5.1) implies (Wστ1)∼ = (Wσ(Wτ1)∼)∼, so (Wτ1)∼ ∈ Fn if |τ | =
n. Hence there exists an n > 0 such that Fn = Fn+1 and, for this n, F = Fn.
Theorem 5.1(iii) can be used to check whether the attractor K has nonvoid
interior in at most 2N steps.

In the following we will use the above setup to consider the Lebesgue
measure of a self-affine region. According to the Remark we denote the set
of distinct elements of F = {(Wσ1)∼ : σ ∈ Σ∗l } by {1 = v1, v2, . . . , vr}. Let
α(vt) denote the number of nonzero entries of vt, and let

Nn,t = #{σ ∈ Σn
l : (Wσ1)∼ = vt}, n > 0.

Let Bn be the tile partition defined in (3.3), and let

B∗n = {E ∈ Bn : E◦ ∩K 6= ∅}.
It is easy to see that

⋂∞
n=1

⋃
E∈B∗n E = K.

Lemma 5.2. With the above notation, we have

(i) L(K) = limn→∞ l
−n#B∗n;

(ii) #B∗n =
∑r

t=1Nn,tα(vt), n = 1, 2, . . . .
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Proof. Since T is a Zd-tile, L(T ) = 1. Therefore L(E) = l−nL(T ) = l−n

for E ∈ B∗n, and

L(K) = lim
n→∞

L
( ⋃
E∈B∗n

E
)

= lim
n→∞

∑
E∈B∗n

L(E) = lim
n→∞

l−n#B∗n.

This proves (i).
For each E ∈ Bn, there exist unique σ ∈ Σn

l and et such that E =
ψσ(T ) + et (Lemma 3.1) and µ(ψσ(∂T )) = 0 for all σ ∈ Σ∗l (Lemma 2.2).
Hence Corollary 3.5 implies ψσ(T )+et ∈ B∗n if and only if the tth row of Wσ

is nonzero (i.e. the tth coordinate of (Wσ1)∼ is 1). This means that, for any
given σ ∈ Σn

l , the number of nonzero rows of Wσ is given by #{ψσ(T )+et ∈
B∗n : 1 ≤ t ≤ N} = 1t(Wσ1)∼. Hence

(5.2) #B∗n =
∑
σ∈Σn

l

#{ψσ(T ) + et ∈ B∗n : 1 ≤ t ≤ N} =
∑
σ∈Σn

l

1t(Wσ1)∼.

The identity in (ii) follows directly from this and the definition of Nn,t.

Let G be the r × r matrix defined by

(5.3) G(s, t) = l−1#{i ∈ Σl : (Wivs)∼ = vt}, 1 ≤ s, t ≤ r,
where l is the number of Wi in Theorem 1.1 and F = {1 = v1, v2, . . . , vr}.
It is clear from the definition that each row sum of G is 1, hence G is a
Markov matrix.

Before going on, we will recall some basic facts on the Perron–Frobenius
theory on nonnegative matrices [1]. If a Markov matrix B is primitive then
it is easy to show that limn→∞B

n exists. For the Markov matrix G, there
is q > 0 and a permutation matrix P such that

PGqP t =
[
X Y

0 Z

]
with Z =


R1 0 · · · 0
0 R2 · · · 0
...

. . .
...

0 0 · · · Rk

 ,
where each Ri is primitive with maximal eigenvalue %(Ri) = 1, and X has
maximal eigenvalue %(X) < 1.

It follows that limn→∞ Z
n = R0 exists. Since %(X) < 1, limn→∞X

n = 0
and each Ri is primitive. Therefore limn→∞G

qn = G
(q)
0 exists and

PG
(q)
0 P t = lim

n→∞
PGqnP t(5.4)

= lim
n→∞

[
Xn Xn−1Y +Xn−2Y Z + · · ·+ Y Zn−1

0 Zn

]
=
[
0 (I −X)−1Y R0

0 R0

]
.
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If in addition G has rational entries, we claim that the limiting matrix
G

(q)
0 also has rational entries. Indeed, in view of (5.4), we can assume G to be

primitive. In that case, 1 is a simple eigenvalue and all the other eigenvalues
have moduli < 1. Let u be the left 1-eigenvector with

∑
j uj = 1. Then

lim
n→∞

Gn =


u
...
u

 .
Hence the claim will follow if we can show that u is rational. Note that if G
is of order k, then G− I has rank k − 1. We can assume

G− I =
[
C ∗
b ∗

]
,

where C is a (k−1)× (k−1) nonsingular matrix. It is checked directly that
[−bC−1, 1] is a left 1-eigenvector of G by noticing that G− I has rank k−1
and has rational coordinates. By uniqueness it equals u after normalization.
This proves the claim.

Theorem 5.3. Let K be the attractor generated by the integral affine
pair (A,D). Let G be defined as in (5.3). Then limn→∞G

nq exists for some
q and L(K) is rational. Furthermore,

L(K) =
r∑
j=1

ajα(vj),

where [a1, . . . , ar] is the first row of G(q)
0 = limn→∞G

qn given by (5.4).

Proof. First we claim that G satisfies

(5.5) Gn(s, t) = l−n#{σ ∈ Σn
l : (Wσvs)∼ = vt}, 1 ≤ s, t ≤ r.

The case n = 1 follows from the definition. Assume that (5.5) is true for
n > 0, and consider Gn+1. Since (WiWσ1)∼ = (Wi(Wσ1)∼)∼ by (5.1), we
have

Gn+1(s, t) =
r∑
i=1

G(s, i)Gn(i, t)

= l−n−1
r∑
i=1

#{j ∈ Σl : (Wjvs)∼ = vi}#{σ ∈ Σn
l : (Wσvi)∼ = vt}

= l−n−1
r∑
i=1

#{σj ∈ Σn+1
l : (Wjvs)∼ = vi, (Wσvi)∼ = vt}

= l−n−1#{τ ∈ Σn+1
l : (Wτvs)∼ = vt},

proving the claim.
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This implies that Nn,t = lnGn(1, t), t = 1, . . . , r. By Lemma 5.2,

L(K) = lim
n→∞

l−n#B∗n = lim
n→∞

e1G
nα(v).

Now with the choice of q, it follows from the above digression on nonnegative
matrices that G(q)

0 = limn→∞G
qn exists and L(K) has the expression as in

the theorem follows. That L(K) is rational also follows from the digression.

We remark that the theorem and (5.4) allow us to obtain a simple algo-
rithm to calculate L(K). That L(K) is rational was proved in [14] using a
different method.

Next we consider the case of K◦ = ∅. Theorem 5.1 implies that Wσ = 0
for some σ. Without loss of generality, let vr = 0. Then G has the following
expression:

G =
[
G1 g

0 1

]
, g 6= 0.

We denote the maximal eigenvalue of G1 by λ1.

Lemma 5.4. With the above notations, if K◦ = ∅, we have

(i) 0 < λ1 < 1;

(ii) lim
n→∞

log #B∗n
− log %n

= d− log λ1

log %
, where % = |detA|−1/d.

Proof. (i) For any 1 ≤ s ≤ r − 1, assume that the tth coordinate of vs
is positive. Since

∑
jWj is irreducible, there exists Wj such that the tth

column of Wj is nonzero, so Wjvs 6= 0. Hence the sth row of G1 contains at
least one nonzero entry, which is ≥ l−1 by the definition of G1. This means
that each row sum of G1 is at least l−1, and therefore λ1 ≥ l−1 > 0.

By Theorem 5.1, there is a σ ∈ Σn
l such that Wσ = 0. (5.5) implies that

all entries in the last column of Gn are positive. This means that all row
sums of Gn1 are less than 1. Hence λ1 < 1.

(ii) By the definition of Nn,i, (5.5) implies Nn,s = lnGn(1, s) for any
1 ≤ s ≤ r. Using Lemma 5.2(ii) and α(vr) = 0, we have

#B∗n = ln[1, 0, . . . , 0]Gn1α,

where α = [α(v1), . . . , α(vr−1)]t is positive. Let β be a nonnegative right
λ1-eigenvector of G1 satisfying ‖β‖1 = 1. Then β ≤ α coordinatewise. For
any 1 ≤ j ≤ r − 1, let σ ∈ Σ∗ be such that (Wσ1)∼ = vj . As (5.5) implies
that there exists k ≥ 0 such that the (1, j) entry of Gk1 is positive, we
have [1, 0, . . . , 0]Gk1β = λk1[1, 0, . . . , 0]β = λk1β1 > 0. This implies that β1 =
[1, 0, . . . , 0]β > 0. Hence #B∗n ≥ ln[1, 0, . . . , 0]Gn1β = %−ndλn1β1 > 0. It
follows that

lim inf
n→∞

log #B∗n
− log %n

≥ d− log λ1

log %
.
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On the other hand, for λ > λ1, we have λ−nGn1 → 0 as n → ∞. There is a
constant aλ > 0 such that #B∗n = ln[1, 0, . . . , 0]Gn1α ≤ lnaλλ

n = %−ndaλλ
n

(n > 0). Therefore

lim sup
n→∞

log #B∗n
− log %n

≤ d− log λ
log %

for any λ > λ1, and (ii) follows by combining the estimations of the limsup
and liminf.

Theorem 5.5. Let K be the attractor of an integral affine pair (A,D)
with A a similarity. Suppose K◦ = ∅. Then

dimBK = dimHK = d− log λ1/log % < d.

Proof. The theorem follows by showing that

(5.6) d− log λ1/log % ≥ dimBK ≥ dimHK ≥ d− log λ1/log %.

For E ⊂ Rd and δ > 0, let Eδ = {y ∈ Rd : ‖x− y‖ < δ for some x ∈ E}
be the δ-neighborhood of E. Let δn = %n. It is clear that

L(Eδn) = %ndL(T1) ∀E ∈ B∗n, n > 0.

(Here T1 is the 1-neighborhood of T .) It follows from Kδn ⊆
⋃
E∈B∗n Eδn that

L(Kδn) ≤
∑
E∈B∗n

L(Eδn) = (#B∗n)%ndL(T1).

By Lemma 5.4(ii), we have

lim inf
n→∞

logL(Kδn)
log %

≥ log λ1

log %
.

Hence the first inequality in (5.6) holds in view of [8, Proposition 3.3.2].
The second inequality is well known. For the third, since (T ◦+ei)∩K 6= ∅

for any ei ∈ E , we can find a constant ε > 0 and points xi ∈ K such that
Bε(xi) ⊆ T ◦ + ei, 1 ≤ i ≤ N . Choose an invariant open set V of the IFS
{Si}mi=1 such that K ⊂ V . Then there exists k > 0 such that |A−k(V )| < 1

2ε.
Hence there exists Ii ∈ Σk

m such that

(5.7) SIi(V ) ⊆ Bε(xi) ⊆ T ◦ + ei, 1 ≤ i ≤ N.
For any E ∈ B∗n, we can write E = ψσ(T ) + eu = SI(T + ei) for some
σ ∈ Σn

l , I ∈ Σn
m and eu, ei ∈ E (by Lemma 3.1(iii) and the proof of Theorem

1.1). Hence SIIi(V ) ⊂ E◦. Therefore, there exist IE ∈ Σn+k
m such that

SIE (V ) ⊂ E. Let Ψn be the set of all those SIE ; they are in one-to-one
correspondence with E ∈ B∗n, so Ψn has cardinality #B∗n. We use this class
of maps as an IFS; each Ψn has contraction ratio %n+k, and from (5.7), they
satisfy the open set condition. Let Kn be the attractor. It follows from the
well known identity that

dimHKn = − log(#B∗n)/((n+ k) log %).
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Since Kn ⊆ K, we have dimHK ≥ −log(#B∗n)/((n+ k) log %) for all n > 0.
Hence Lemma 5.4 implies that the third inequality in (5.6) holds.

Example 5.6. Let A =
[

2 1
−1 2

]
, D = {[0, 0]t, [1, 0]t, [0, 1]t, [1, 1]t, [2,−1]t}

and let K be the attractor generated by (A,D). Then dimHK ≈ 1.820.
For this we let

C = {[0, 0]t, [1, 0]t, [0, 1]t, [−1, 0]t, [0,−1]t}.

Then, from the remark after Lemma 2.1, we see that T = T (A, C) is a Z2-tile,
and T ◦ ∩K 6= 0, since C = Q ∩ Z2. Let E1 = {[0, 0]t}. By using Proposition
3.6, we find E = {[0, 0]t, [1, 0]t, [0, 1]t, [1, 1]t}.

Let p1 = p2 = p3 = p4 = p5 = 1/5. By the definition of Wi, we have

W1 =
1
5


1 0 0 0
1 0 0 0
0 0 1 1
0 0 0 0

, W2 =
1
5


1 1 0 0
0 1 0 0
0 0 0 1
0 0 0 0

, W3=
1
5


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

,

W4 =
1
5


0 0 0 0
0 0 0 0
0 0 1 0
0 1 0 1

 , W5 =
1
5


0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 1

.
Therefore

F1 = {[1, 1, 1, 1]t, [1, 1, 1, 0]t, [0, 0, 1, 1]t, [1, 1, 0, 0]t},
F2 = F1 ∪ {[0, 0, 1, 0]t}, F3 = F2 ∪ {[0, 0, 0, 1]t},
F4 = F3 ∪ {[0, 0, 0, 0]t} = F5.

Hence F = F4 and K0 = ∅. It follows that

G1 =
1
5



0 2 2 1 0 0
0 1 1 2 1 0
0 0 2 1 2 0
0 0 0 3 1 1
0 0 0 1 3 0
0 0 1 0 2 1


,

so that λ1 ≈ 0.882 and dimHK = 2− log λ1/(− log 2) ≈ 1.820.

Remark 5.7. When A is not a similarity matrix, but all its eigenvalues
have the same modulus, then by using a similar proof, we can show that the
above theorem still holds. The reader is referred to [6] for details.
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6. The Lq-spectrum. Let {Bδ(xi)}i denote a family of disjoint balls
with radius δ and centers xi ∈ K. The Lq-spectrum (or moment scaling
exponent) of a self-similar measure µ is defined by

(6.1) τ(q) = lim
δ→0+

log(sup
∑

i µ(Bδ(xi))q)
log δ

if the above limit exists, where the supremum is taken over all such families
of balls [8]. (If the limit does not exist, one can replace the limit by lim inf.)

Proposition 6.1. Let µ be the self-similar measure generated by the
integral similar pair (A,D). Then

τ(q) = lim
n→∞

log
∑

E∈Bn
µ(E)q

n log %
, q > 0,

where Bn = {ψσ(T ) + e : e ∈ E , σ ∈ Σn
q } is a tile-partition of K defined in

(3.3).

Proof. Let a = 1 + |T | where |T | is the diameter of T . From [31], we
know that the limit in the definition of τ(q) exists for all q ≥ 0. Hence it
suffices to show that

(6.2)
∑
E∈Bn

µ(E)q ≈ sup
∑
i

µ(Ba%n(xi))q, q, n > 0,

where the supremum is taken over all families of disjoint balls {Ba%n(xi)}i
with xi ∈ K. For such a family, let

Fn,xi = {E ∈ Bn : E ∩Ba%n(xi) 6= ∅}, Gn,E = {i : E ∩Ba%n(xi) 6= ∅}.
It is easy to see that there exists a constant b > 0 such that

max
i

#Fn,xi , max
E∈Bn

#Gn,E ≤ b.

Hence ∑
i

µ(Ba%n(xi))q ≤
∑
i

µ
(⋃
{E ∈ Fn,xi}

)q
≤
∑
i

bq(max{µ(E) : E ∈ Fn,xi})q

≤ bq+1
∑
{µ(E)q : E ∈ Bn} ∀q ≥ 0.

It follows that

(6.3) sup
∑
i

µ(Ba%n(xi))q ≤ bq+1
∑
E∈Bn

µ(E)q ∀q ≥ 0.

On the other hand, for each E ∈ Bn satisfying µ(E) > 0, choose a point
from K ∩ E and denote this set by {yi : i = 1, . . . , r}. Then we have

(6.4)
∑
E∈Bn

µ(E)q ≤
r∑
i=1

µ(Ba%n(yi))q ∀q ≥ 0, n > 0.



Self-affine measures and vector-valued representations 283

For the family {Ba%n(yi)}, we can choose a disjoint subfamily {Ba%n(yij )}
and a number s depending only on T and d such that:

(i) #{i : Ba%n(yi) ∩Ba%n(yij ) 6= ∅} ≤ s for all ij (note that Ba%n(yi) ∩
Ba%n(yij ) 6= ∅ implies Ei ⊆ B2a%n(yij ));

(ii) µ(Ba%n(yi1)) = maxi≥1 µ(Ba%n(yi)) and for j ≥ 2, µ(Ba%n(yij )) =
max{µ(Ba%n(yi)) : Ba%n(yi) ∩

⋃j−1
k=1Ba%n(yik) = ∅};

(iii) any Ba%n(yi) intersects at least one Ba%n(yij ).

Therefore (6.4) implies

(6.5)
∑
E∈Bn

µ(E)q ≤ s
∑
j

µ(Ba%n(yij ))q ≤ s sup
∑
i

µ(Ba%n(xi))q ∀q ≥ 0

(the second inequality is by (i)), and (6.2) follows from (6.3) and (6.5).

We can now express τ(q) in terms of the transition matrices {Wi}lj=1 in
Theorem 1.1.

Theorem 6.2. Let µ be the self-similar measure generated by the integral
similar pair (A,D). Then

τ(q) = lim
n→∞

log
∑

σ∈Σn
l
‖Wσ‖q1

n log %
, q ≥ 0,

where Wσ is defined in Theorem 1.1, and ‖Wσ‖1 is the sum of all entries
of Wσ.

Proof. Let ei be the ith column of the N × N identity matrix. From
Lemma 3.1(iii), Lemma 3.3 and Corollary 3.5, for all n > 0 we have∑

E∈Bn

µ(E)q =
N∑
r=1

∑
σ∈Σn

l

µ(A−n(T + cσ) + er)q =
N∑
r=1

∑
σ∈Σn

l

(etrWσµ(T ))q.

Using (
∑N

i=1 ai)
q ≈

∑N
i=1 a

q
i (N , q > 0 fixed) for any ai ≥ 0, we have

N∑
r=1

∑
σ∈Σn

l

(etrWσµ(T ))q ≈
∑
σ∈Σn

l

( N∑
r=1

etrWσµ(T )
)q
.

Therefore

τ(q) = lim
n→∞

log
∑

σ∈Σn
l
(
∑N

r=1 etrWσµ(T ))q

n log %

= lim
n→∞

log
∑

σ∈Σn
l
‖Wσ‖q1

n log %
, q ≥ 0,

by using the fact that
∑N

i=1 eti = [1, . . . , 1] and µ(T ) is a fixed vector with
strictly positive coordinates.
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Note that τ(q) is a concave function. For a concave function g on R, the
Legendre transform (or concave conjugate) of g is defined as

g∗(α) = inf{qα− g(q) : q ∈ R}.
If g is differentiable at q and g′(q) = α, then g∗(α) = qα− g(q).

For a Borel measure µ with support K, we let

α(x) = lim
r→0

logµ(Br(x))
log r

be the local dimension of µ at x. Let Kα = {x ∈ K : α(x) = α} be the
α-level set of µ. A heuristic principle called multifractal formalism suggests
that the dimension spectrum dimHKα should equal the Legendre transform
of τ(q), i.e.,

τ∗(α) = dimHKα.

This is the case when the IFS satisfies the OSC ([2], [24]). In the present case,
by Theorem 1.1,

∑l
i=1Wi is irreducible, hence [11, Theorem 1.3] shows that

τ(q) is differentiable for all q > 0. Also the IFS satisfies the weak separation
condition under our assumption of integral entries in A and D. Hence [18,
Theorem B] implies that the multifractal formalism holds for all q > 0:

Theorem 6.3. Let A be an integral similarity matrix. Let µ be the self-
similar measure generated by the integral pair (A,D). Then the Lq-spectrum
τ(q) of µ is differentiable for all q > 0 and

τ∗(α) = dimHKα, ∀α = τ ′(q), q > 0.

We do not have a complete understanding for q < 0. In [25], it is shown
that for some special cases the equality of Theorem 6.3 also holds for q < 0.
Note that there is a simple example where τ(q), q < 0, is not differentiable
at one point: A = 3, D = {0, 1, 2, 3} and weights {1/8, 3/8, 3/8, 1/8} [28];
there is a modification of the multifractal formalism for that case [12]. Other
interesting cases were considered in [13], [38] and [34].
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