On λ -commuting operators

by

JOHN B. CONWAY (Knoxville, TN) and GABRIEL PRĂJITURĂ (Brockport, NY)

Abstract. For a scalar λ , two operators T and S are said to λ -commute if $TS = \lambda ST$. In this note we explore the pervasiveness of the operators that λ -commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

For a scalar λ , two operators T and S are said to λ -commute if $TS = \lambda ST$. This notion has received attention in the past. In particular, both [B] and [CC] examined the concept. [B] shows that if $T \lambda$ -commutes with a compact operator, then T has a non-trivial hyperinvariant subspace. In [CC] it is shown that for an integer n, the commutants of T and T^n are different if and only if there is a non-zero operator Y and an nth root of unity, $\lambda \neq 1$, such that $TY = \lambda YT$. In [L] some additional properties and examples of λ -commuting operators are explored. In this note we explore the pervasiveness of the operators that λ -commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

Throughout we will denote by $\mathcal{B}(\mathcal{H})$ the set of all operators on the Hilbert space \mathcal{H} , and by $\mathcal{B}_0(\mathcal{H})$ and $\mathcal{B}_{00}(\mathcal{H})$, respectively, the set of all compact and finite rank operators on \mathcal{H} . For a complex number λ define the following classes of operators:

 $\mathcal{C}_1(\lambda) = \{T \in \mathcal{B}(\mathcal{H}) : \text{there is } S \in \mathcal{B}_{00}(\mathcal{H}) \setminus \{0\} \text{ such that } TS = \lambda ST\},\$

 $\mathcal{C}_2(\lambda) = \{T \in \mathcal{B}(\mathcal{H}) : \text{there is } S \in \mathcal{B}_0(\mathcal{H}) \setminus \{0\} \text{ such that } TS = \lambda ST \},\$

 $\mathcal{C}_3(\lambda) = \{T \in \mathcal{B}(\mathcal{H}) : \text{there is } S \in \mathcal{B}(\mathcal{H}) \setminus \{0\} \text{ such that } TS = \lambda ST \}.$

Note that when $\lambda = 1$, these classes and their topological properties were examined in [CP]. If the scalar λ is understood, write C_1 , C_2 , and C_3 .

It is clear that $C_1 \subset C_2 \subset C_3$ and that all three sets are invariant under similarities. Every operator in C_1 has a finite-dimensional invariant subspace

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B07, 47A58.

and, if $\lambda \neq 0$, so does its adjoint. Therefore if T is in C_1 , then $\sigma_p(T) \neq \emptyset$ and, for a non-zero λ , $\sigma_c(T) \neq \emptyset$. Here σ_p and σ_c denote the point spectrum and the compression spectrum of the operator.

1. EXAMPLE. Let T be an operator with the property that there is a complex number α such that $\alpha \in \sigma_{\rm c}(T)$ and $\lambda \alpha \in \sigma_{\rm p}(T)$. Let x be a normone eigenvector corresponding to the eigenvalue $\lambda \alpha$ of T and y a normone eigenvector corresponding to the eigenvalue $\overline{\alpha}$ of T^* (here the bar stands for complex conjugate). For two non-zero vectors u and v, we will use $u \otimes v$ to denote the rank-one operator that maps v into u. Then $Tx \otimes y = (Tx) \otimes y = (\lambda \alpha x) \otimes y = \lambda \alpha x \otimes y$, while $(x \otimes y)T = x \otimes (T^*y) = x \otimes (\overline{\alpha}y) = \alpha x \otimes y$. Thus $T(x \otimes y) = \lambda(x \otimes y)T$, so $T \in \mathcal{C}_1(\lambda)$.

In a similar way we can construct operators that λ -commute with a rank *n* operator for every $n \geq 1$. The previous example, as simple as it is, is nevertheless characteristic for the operators in C_1 . Next we show an example of an operator that belongs to C_2 but does not belong to C_1 .

2. EXAMPLE. Let S be the unilateral shift with respect to the basis $\{e_n\}_{n\geq 1}$. For $|\lambda| > 1$, let K_{λ} be the operator defined by $K_{\lambda}e_n = \lambda^{-n}e_n$ for $n \geq 1$. Then K_{λ} is a compact operator and S λ -commutes with K_{λ} . Thus S belongs to \mathcal{C}_2 , but, since S does not have eigenvalues, it does not belong to \mathcal{C}_1 .

Finally, we give an example of an operator that belongs to C_3 but does not belong to C_2 .

3. EXAMPLE. Let S be the unilateral shift with respect to the basis $\{e_n\}_{n\geq 1}$. Let T be the operator defined by $Te_n = (-1)^n e_n$ for $n \geq 1$. Then S(-1)-commutes with T. To see that S does not (-1)-commute with any non-zero compact operator, notice first that SK = -KS implies that $S^2K = KS^2$. Since S^2 is unitarily equivalent to $S \oplus S$, it does not commute with any non-zero compact operator.

4. EXAMPLE. Let M be the Bergman shift (the operator of multiplication by z on L_a^2 of the open unit disc, \mathbb{D}). The relation $MX = \lambda XM$ means in this case $zX(f) = \lambda X(zf)$ or, since λ cannot be equal to 0, $X(zf) = z\lambda^{-1}X(f)$ for every function f in the Bergman space. In particular, if g = X(1), then this implies that $X(z^n) = (z/\lambda)^n g$. Now $z^n \to 0$ weakly in $L_a^2(\mathbb{D})$, the Hilbert space of the analytic functions on \mathbb{D} which are square integrable with respect to the area measure; hence $X(z^n) \to 0$ weakly. But if $|\lambda| < 1$, then $\lim_n ||(z/\lambda)^n g|| = \infty$. Thus there can be no such operator X when $|\lambda| < 1$.

If $|\lambda| \ge 1$, then the above equation gives

(5)
$$X(f) = gf(z/\lambda),$$

when f is a polynomial. By taking limits of polynomials we deduce that (5) holds for every function f in the Bergman space.

If $|\lambda| = 1$, let U_{λ} be the unitary operator defined by $(U_{\lambda}f)(z) = f(\lambda z)$. Then $XU_{\lambda}f = gf$ and therefore g must be a bounded analytic function. In this case no such compact operator X, other than 0, can exist.

Recall that if a sequence in $L^2_{\mathrm{a}}(\mathbb{D})$ converges weakly, then it converges uniformly on compact subsets of \mathbb{D} . Therefore if $|\lambda| > 1$, g can be any function in the Bergman space and all operators X of this type are compact.

For a normal operator we can characterize the operators that λ -commute with it. We start with a more general result that does not seem to be readily accessible in the literature, though it is surely known.

6. THEOREM. For j = 1, 2 let N_j be a normal operator on \mathcal{H}_j with scalar-valued spectral measure μ_j . There is a non-trivial bounded operator $T : \mathcal{H}_1 \to \mathcal{H}_2$ such that $TN_1 = N_2T$ if and only if there is a Borel set Δ with $\mu_1(\Delta) > 0$ and $\mu_1 | \Delta \ll \mu_2 | \Delta$.

Proof. Assume that such a Borel set Δ exists. By passing to a subset of Δ we may assume that $[\mu_1|\Delta] = [\mu_2|\Delta]$. That is, $\mu_1|\Delta$ and $\mu_2|\Delta$ have the same sets of zero measure. If $N_j = \int z \, dE_j(z)$ is the spectral decomposition of N_j , there is a separating vector e_j for $W^*(N_j)$ such that $\mu_j(S) = \langle E_j(S)e_j, e_j \rangle$ for all Borel sets S [C, Corollary IX.7.9]. Thus we can identify the reducing subspace $\mathcal{K}_j = \operatorname{cl}[W^*(N_j)e_j]$ with $L^2(\mu_j)$ in such a way that the action of N_j on \mathcal{K}_j is identified with multiplication by z on $L^2(\mu_j)$. If we can find a non-trivial bounded operator $T_0: L^2(\mu_1) \to L^2(\mu_2)$ such that $T_0M_z = M_zT_0$, then this can be extended to a bounded operator $T: \mathcal{H}_1 \to \mathcal{H}_2$ by letting T = 0 on $\mathcal{H}_{e_1}^{\perp}$, completing the proof of this half of the theorem.

Let $d(\mu_2|\Delta)/d(\mu_1|\Delta) = h^2$, h a positive function in $L^2(\mu_1|\Delta)$. Choose a positive scalar c such that $\Delta_c = \{z \in \Delta : h(z) \leq c\}$ has $\mu_1(\Delta_c) > 0$. If $f \in L^2(\mu|\Delta_c)$, then

$$\int |f|^2 \, d\mu_2(z) = \int_{\Delta_c} |f|^2 h^2 \, d\mu_1 \le c^2 \int |f|^2 \, d\mu_1.$$

Thus if $T_0: L^2(\mu_1|\Delta_c) \to L^2(\mu_2)$ is defined by $(T_0f)(z) = f(z)$, then T_0 is a bounded operator. Also $(T_0N_1f)(z) = (T_0(zf))(z) = zf(z) = (N_2T_0f)(z)$. If we set $T_0 = 0$ on $L^2(\mu_1) \ominus L^2(\mu_1|\Delta_c)$, we have the desired operator that intertwines N_1 and N_2 .

For the converse, assume that there is a non-trivial bounded operator T: $\mathcal{H}_1 \to \mathcal{H}_2$ such that $TN_1 = N_2T$. According to Proposition IX.6.10 of [C], $\mathcal{K}_2 = \operatorname{cl}[\operatorname{ran} T]$ reduces N_2 , $\mathcal{K}_1 = (\ker T)^{\perp}$ reduces N_1 , and $M_1 = N_1|\mathcal{K}_1$ is unitarily equivalent to $M_2 = N_2|\mathcal{K}_2$. If ν_j is the scalar-valued spectral measure for M_j , then ν_1 and ν_2 are equivalent. But there is a Borel set Δ such that $[\nu_1|\Delta] = [\mu_1|\Delta]$. Thus $\mu_2|\Delta \ll \mu_1|\Delta$. For any compactly supported measure μ on \mathbb{C} and scalar $\lambda \neq 0$, define the measure μ^{λ} by $\mu^{\lambda}(S) = \mu(\lambda^{-1}S)$. If μ is a scalar-valued spectral measure for the normal operator N and λ is a non-zero scalar, then a scalar-valued spectral measure for the normal operator λN is μ^{λ} . Also note that for any function f in $L^{1}(\mu^{\lambda})$, $\int f d\mu^{\lambda} = \int f(\lambda z) d\mu(z)$. The next result is immediate from the preceding theorem.

7. COROLLARY. If N is a normal operator on \mathcal{H} with scalar-valued spectral measure μ and $\lambda \neq 0$, then $N \in \mathcal{C}_3(\lambda)$ if and only if there is a Borel set Δ with $\mu(\Delta) > 0$ such that $\mu|\Delta \ll \mu^{\lambda}|\Delta$.

8. COROLLARY. If N is a normal operator with scalar-valued spectral measure μ and $\lambda \neq 0$, then the following statements are equivalent:

- (a) $N \in \mathcal{C}_1(\lambda)$.
- (b) $N \in \mathcal{C}_2(\lambda)$.
- (c) μ has an atom at some a_0 such that $\lambda^{-1}a_0$ is also an atom.

Proof. Assume that T is a compact operator such that $TN = \lambda NT$. Again Proposition IX.6.10 of [C] implies that $\mathcal{K}_1 = (\ker T)^{\perp}$ and $\mathcal{K}_2 = cl[\operatorname{ran} T]$ reduce N and $N|\mathcal{K}_1$ is unitarily equivalent to $\lambda N|\mathcal{K}_2$. By the Fuglede–Putnam Theorem $T^*N = \lambda NT^*$ and it follows that T^*T commutes with N. But $\ker T = \ker T^*T$. Since T^*T is a non-zero, positive compact operator, this implies there is a finite-dimensional reducing subspace for N contained in \mathcal{K}_1 . Thus there is an eigenvalue a_0 for N with an eigenvector contained in \mathcal{K}_1 . Since $N|\mathcal{K}_1 \cong \lambda N|\mathcal{K}_2$, this implies that $\lambda^{-1}a_0 \in \sigma_p(N)$, proving (c).

Now assume that (c) holds. So $b_0 = \lambda^{-1} a_0 \in \sigma_p(N)$ and $\lambda b_0 = a_0 \in \sigma_p(N) \subseteq \sigma_c(N)$. By Example 1, $N \in C_1$.

With a bit more work using standard tools from operator theory, the operators that λ -commute with a cyclic normal operator can be characterized. As in the characterization of the normal operators in $C_2(\lambda)$ it is easier to start with a more general result, which, again, is probably known but does not seem to have a reference.

9. PROPOSITION. For j = 1, 2 let μ_j be a compactly supported measure on the plane and let N_j be the normal operator defined on $L^2(\mu_j)$ as multiplication by the independent variable. If $T : L^2(\mu_1) \to L^2(\mu_2)$ is a bounded operator such that $TN_1 = N_2T$, then there is a Borel set Δ , a positive function u in $L^{\infty}(\mu_1|\Delta)$, and a function ψ in $L^2(\mu_2|\Delta)$ such that T = 0 on $L^2(\mu_1|\mathbb{C}\backslash\Delta)$ and for f in $L^2(\mu_1|\Delta)$,

$$Tf = u\psi f.$$

Conversely, if Δ , u, and ψ are as described and $Tf = u\psi f$ defines a bounded operator on $L^2(\mu_1|\Delta)$, then $TN_1 = N_2T$.

Proof. Let $T: L^2(\mu_1) \to L^2(\mu_2)$ be a bounded operator such that $TN_1 = N_2T$. By the Fuglede–Putnam Theorem, $N_1T^* = T^*N_2$. Thus $T^*T \in \{N_1\}'$. So there is a positive function u in $L^{\infty}(\mu_1)$ such that $T^*T = u(N_1)^2 = M_{u^2}$ on $L^2(\mu_1)$ ([C, Theorem IX.6.6]). It follows that there are Borel sets Δ_j such that

$$(\ker T)^{\perp} = L^2(\mu_1|\Delta_1), \quad \operatorname{cl}[\operatorname{ran} T] = L^2(\mu_2|\Delta_2).$$

If $T = VM_u$ is the polar decomposition of T, then $V : L^2(\mu_1|\Delta_1) \rightarrow L^2(\mu_2|\Delta_2)$ is an isomorphism that intertwines multiplication by the independent variable. By Proposition IX.6.10 of [C], if $\psi = V(\chi_{\Delta_1})$, then

(a) $Vf = f\psi$ for all f in $L^2(\mu_1|\Delta_1)$, (b) $[\mu_1|\Delta_1] = [\mu_2|\Delta_2]$, (c) $\mu_1|\Delta_1 = |\psi|^2\mu_2|\Delta_2$.

Because of (b), $\mu_j(\Delta_1 \setminus \Delta_2) = \mu_j(\Delta_2 \setminus \Delta_1) = 0$. Thus we can assume that $\Delta_1 = \Delta_2 = \Delta$, a Borel set. If $f \in L^2(\mu_1 | \Delta)$, then $Tf = VM_u f = \psi u f$, as desired.

The converse is clear. \blacksquare

As before the next result is immediate from the preceding one since λN is unitarily equivalent to M_z on $L^2(\mu^{\lambda})$ when N is M_z on $L^2(\mu)$.

10. COROLLARY. If $\lambda \neq 0$, N is multiplication by the independent variable on $L^2(\mu)$, and T λ -commutes with N, then there is a Borel set Δ , there is a function u in $L^{\infty}(\mu|\Delta)$ with $u \geq 0$, and there is a function ψ in $L^2(\mu^{\lambda}|\Delta)$ such that T = 0 on $L^2(\mu|\mathbb{C}\backslash\Delta)$ and for f in $L^2(\mu|\Delta)$,

$$(Tf)(z) = u(\lambda z)\psi(\lambda z)f(\lambda z).$$

Conversely, if T is so defined and bounded, then $TN = \lambda NT$.

The next result shows that all classes considered have the same closure and gives a spectral description of this closure. Let $\sigma_{\rm r}(T)$ and $\sigma_{\rm l}(T)$ denote the right and the left spectrum of the operator T.

11. THEOREM. For an operator T the following are equivalent.

(a) $T \in \operatorname{cl} \mathcal{C}_1(\lambda)$. (b) $T \in \operatorname{cl} \mathcal{C}_2(\lambda)$. (c) $T \in \operatorname{cl} \mathcal{C}_3(\lambda)$. (d) $\sigma_{\mathrm{r}}(T) \cap \sigma_{\mathrm{l}}(\lambda T) \neq \emptyset$.

Proof. It is clear that $(a) \Rightarrow (b) \Rightarrow (c)$.

(c) \Rightarrow (d). Let $\mathcal{C}(\lambda)$ be the set of all operators with the property in (d). Recall from [DR] that if $\sigma_{\rm r}(A) \cap \sigma_{\rm l}(B) = \emptyset$, then the operator $S \to AS - BS$ defined on $\mathcal{B}(\mathcal{H})$ is bounded below. In particular it is one-to-one. This implies that $\mathcal{C}_3(\lambda) \subset \mathcal{C}(\lambda)$. The conclusion follows because $\mathcal{C}(\lambda)$ is a closed set. (d) \Rightarrow (a). Let T be an operator such that $\sigma_{\rm r}(T) \cap \sigma_{\rm l}(\lambda T) \neq \emptyset$. Thus there is $\mu \in \sigma_{\rm l}(T)$ such that $\lambda \mu \in \sigma_{\rm r}(T)$. We have $\mu \in \sigma_{\rm lre}(T) \cup \sigma_{\rm p}^{0}(T) \cup \rho_{\rm sF}(T)$, where $\sigma_{\rm lre}(T)$ denotes the intersection of left and right essential spectrum of the operator, $\sigma_{\rm p}^{0}(T)$ is the set of isolated eigenvalues of finite multiplicity, and $\rho_{\rm sF}(T)$ is the semi-Fredholm domain. Since $\rho_{\rm sF}(T) \cap \sigma_{\rm r}(T) \subset \sigma_{\rm c}(T)$, we conclude that, in fact, $\mu \in \sigma_{\rm lre}(T) \cup \sigma_{\rm c}(T)$. In a similar way it follows that $\lambda \mu \in \sigma_{\rm lre}(T) \cup \sigma_{\rm p}(T)$.

If $\mu \in \sigma_{\rm c}(T)$ and $\lambda \mu \in \sigma_{\rm p}(T)$, then, from Example 1, we deduce that $T \in \mathcal{C}_1(\lambda)$. If $\mu \in \sigma_{\rm c}(T)$ and $\lambda \mu \in \sigma_{\rm lre}(T)$, then let x be a non-zero vector in ker $(\mu - T)^*$ and let \mathcal{M} be the one-dimensional subspace spanned by x. Since \mathcal{M}^{\perp} is invariant for T, we obtain

$$T = \begin{bmatrix} T_1 & A \\ 0 & \mu \end{bmatrix}$$

with respect to the decomposition $\mathcal{H} = \mathcal{M}^{\perp} \oplus \mathcal{M}$. Since \mathcal{M} has dimension 1, $\lambda \mu \in \sigma_{\text{lre}}(T_1)$. By Theorem 2.2 of [AFV], for every $\varepsilon > 0$, there is a compact operator K_{ε} such that $||K_{\varepsilon}|| < \varepsilon$ and $\lambda \mu \in \sigma_p(T_1 - K_{\varepsilon})$. Let

$$T_{\varepsilon} = \begin{bmatrix} T_1 - K_{\varepsilon} & A \\ 0 & \mu \end{bmatrix}.$$

Then $||T - T_{\varepsilon}|| < \varepsilon$ and as $\mu \in \sigma_{c}(T_{\varepsilon})$ and $\lambda \mu \in \sigma_{p}(T_{\varepsilon})$, we conclude that $T \in cl \mathcal{C}_{1}(\lambda)$.

If $\mu \in \sigma_{\text{lre}}(T)$ and $\lambda \mu \in \sigma_{\text{p}}(T)$, an argument similar to the previous one will lead to the same conclusion.

If $\mu \in \sigma_{\operatorname{lre}}(T)$ and $\lambda \mu \in \sigma_{\operatorname{lre}}(T)$, then, by Corollary 3.50 in [H], for every $\varepsilon > 0$, there is an operator L_{ε} such that $||T - L_{\varepsilon}|| < \varepsilon, \ \mu \in \sigma_{\operatorname{c}}(L_{\varepsilon})$, and $\lambda \mu \in \sigma_{\operatorname{p}}(L_{\varepsilon})$. Therefore T belongs to $\operatorname{cl} \mathcal{C}_1(\lambda)$.

We will give next a spectral description of the interior of the first class. But first we need to introduce some notation. If T is an operator, then use $P_+(T)$ and $P_-(T)$ to denote the semi-Fredholm domain of T where the index is positive and negative, respectively.

12. THEOREM. If T is an operator and $\lambda \neq 0$, then $T \in \text{int } C_1(\lambda)$ if and only if one of the following three conditions holds:

(a) $\lambda P_{-}(T) \cap P_{+}(T) \neq \emptyset;$ (b) $\lambda \sigma_{\mathbf{p}}^{0}(T) \cap P_{+}(T) \neq \emptyset;$

(c) $\lambda P_{-}(T) \cap \sigma_{\mathbf{p}}^{0}(T) \neq \emptyset$.

Proof. It is easy to see that the set of all operators satisfying the above conditions is open and included in $C_1(\lambda)$. Therefore the conditions are sufficient.

For necessity, suppose that there is an operator T in $\operatorname{int} C_1(\lambda)$ such that $\lambda P_-(T) \cap P_+(T) = \emptyset$, $\lambda \sigma_p^0(T) \cap P_+(T) = \emptyset$, and $\lambda P_-(T) \cap \sigma_p^0(T) = \emptyset$. Let

 $\varepsilon > 0$ such that $||T - S|| < \varepsilon$ implies that S belongs to int $\mathcal{C}_1(\lambda)$. By Proposition 2.1 in [AM], there is an operator T_1 with the following properties: $||T - T_1|| < \varepsilon$; $\sigma_{\operatorname{Ire}}(T_1)$ is the closure of a finite number of Cauchy domains, $\{D_j\}_{j=1}^m$, with $\sigma_{\operatorname{Ire}}(T) \subset \bigcup_{j=1}^m D_j$; $\sigma(T_1) = \sigma(T) \cup \bigcup_{j=1}^m \operatorname{cl} D_j$; $\sigma_p^0(T_1) \subset \sigma_p^0(T)$ and is finite; $\operatorname{cl}(\varrho_{\mathrm{sF}}(T_1) \cap \sigma(T_1)) \subset \varrho_{\mathrm{sF}}(T) \cap \sigma(T)$; $\varrho_{\mathrm{sF}}(T_1) \cap \sigma(T_1)$ has a finite number of components; $\operatorname{ind}(\lambda - T_1) = \operatorname{ind}(\lambda - T)$ and $\operatorname{dim} \operatorname{ker}(\lambda - T_1) = \operatorname{dim} \operatorname{ker}(\lambda - T)$ for every λ in $\varrho_{\mathrm{sF}}(T_1) \cap \sigma(T_1)$.

Let $\sigma_p^0(T_1) = \{\lambda_1, \ldots, \lambda_r\}$. There are operators A and B_1, \ldots, B_r such that T_1 is similar to $T_2 = A \oplus \bigoplus_{j=1}^r B_j$, where $\sigma(B_j) = \{\lambda_j\}$, each B_j is in the Jordan form, and $\sigma(A) = \sigma(T_1) \setminus \sigma_p^0(T_1)$. Since $C_1(\lambda)$ is invariant under similarities, so is the interior of $C_1(\lambda)$. Thus T_2 is in the interior of $C_1(\lambda)$. Hence there is a $\delta_1 > 0$ such that $||T_2 - S|| < \delta_1$ implies that S belongs to the interior of $C_1(\lambda)$. By assumption, for $1 \leq j \leq r$, $\lambda\lambda_j \notin \operatorname{cl} P_+(T_2)$ and $\lambda_j \notin \lambda \operatorname{cl} P_-(T_2)$. Therefore there is a $\delta_2 > 0$ such that $\lambda D_{\delta_2}(\lambda_j) \cap \operatorname{cl} P_+(T_2) = \emptyset$ and $D_{\delta_2}(\lambda_j) \cap \lambda \operatorname{cl} P_-(T_2) = \emptyset$ for $1 \leq j \leq r$. (Here $D_{\delta}(\alpha)$ denotes the disk of radius δ centered at α .) Let $\delta = \min\{\delta_1, \delta_2\}$ and let $\{\beta_1, \ldots, \beta_r\}$ be such that $|\beta_j - \lambda_j| < \delta$ and $\lambda\beta_j \neq \beta_k$ for $1 \leq j, k \leq r$. Let $C_j = B_j + (\beta_j - \lambda_j)I_j$, $C = \bigoplus_{j=1}^r C_j$ and $T_3 = A \oplus C$. Since $||T_2 - T_3|| < \delta$, T_3 is in the interior of $C_1(\lambda)$. For $1 \leq j, k \leq r, \sigma(C_j) \cap \sigma(\lambda C_k) = \emptyset$. So there is no non-zero operator F such that $C_jF = \lambda FC_k$. This implies that C does not λ -commute with any non-zero operator.

Let U_1, \ldots, U_p be the components of $P_-(T_3)$. For $1 \leq j \leq p$, let M_j be the Bergman operator on $L^2_a(U_j)$. Also, let $M_- = \bigoplus_{j=1}^p M_j$. Since $\sigma_p(M_j) = \emptyset$ for each j, for $1 \leq j, k \leq p$ there is no non-zero finite rank operator Fsuch that $M_jF = \lambda FM_k$. Consequently, M_- does not λ -commute with any non-zero finite rank operator.

Let V_1, \ldots, V_l be the components of $P_+(T_3)$. For every $1 \leq j \leq l$, let N_j be the adjoint of the Bergman operator on $L^2_a(V_j)$ and $N_+ = \bigoplus_{j=1}^p N_j$. As before, $\sigma_c(N_j) = \emptyset$, and, for $1 \leq j, k \leq l$, there is no non-zero finite rank operator F such that $N_j F = \lambda F N_k$. Consequently, N_+ does not λ -commute with any non-zero finite rank operator.

For $1 \leq j \leq m$, let Δ_j be a disc included in D_j , R_j the operator of multiplication by z on $L^2(\Delta_j)$ (with respect to the area measure), and $R = \bigoplus_{j=1}^m R_j$. The same argument used for M_- implies that R does not λ -commute with any non-zero finite rank operator.

The Similarity Orbit Theorem (Theorem 9.1 in [AFHV]) implies that there is a sequence of operators similar to $T_4 = M_- \oplus M_+ \oplus R \oplus C$ converging to T_3 and since T_3 is in the interior of $C_1(\lambda)$, so is T_4 . Thus there is a non-zero finite rank operator F such that $T_4F = \lambda FT_4$. Let $F = (F_{ij})_{i,j=1}^4$ be the decomposition of F with respect to the same subspaces used in the definition of T_4 . By construction, $F_{ii} = 0$ for every $1 \le i \le 4$. Also, since $M_-F_{1j} =$ $\lambda F_{1j}X_j$ $(X_j \text{ stands for the } j\text{th diagonal entry of } T_4)$ and $\sigma_p(M_-) = \emptyset$, we have $F_{1j} = 0$ for $1 \leq j \leq 4$. A similar argument gives $F_{3j} = 0$ for $1 \leq j \leq 4$. Because $X_iF_{i2} = \lambda F_{i2}M_+$ and $\sigma_c(M_+) = \emptyset$, we infer that $F_{i2} = 0$ for $1 \leq i \leq 4$. With a similar argument, the same is true for F_{i4} . Therefore the only possible non-zero entries of F are F_{21} , F_{24} and F_{41} .

But $M_+F_{21} = \lambda F_{21}M_-$, $\sigma(M_+) \subset P_+(T)$, $\sigma(M_-) \subset P_-(T)$ and $\lambda P_-(T) \cap P_+(T) = \emptyset$ imply that $F_{21} = 0$. Also, $M_+F_{24} = \lambda F_{24}C$ and, by the construction of C, $\sigma(M_+) \cap \sigma(\lambda C) = \emptyset$; this gives $F_{24} = 0$. Finally, a similar argument implies that $F_{41} = 0$, and hence F = 0, which is a contradiction.

For $\lambda = 0$ the interior is easier to describe.

13. THEOREM. For an operator T the following are equivalent:

(a) $T \in \operatorname{int} \mathcal{C}_1(0);$ (b) $T \in \operatorname{int} \mathcal{C}_2(0);$ (c) $T \in \operatorname{int} \mathcal{C}_3(0);$ (d) $0 \in P_+(T).$

Proof. It is clear that $(a) \Rightarrow (b) \Rightarrow (c)$.

(c) \Rightarrow (d). For every operator A in $C_3(0)$ we have $0 \in \sigma_p(A)$. Suppose that $T \in \operatorname{int} C_3(0)$ and $0 \notin P_+(T)$. If $0 \in \sigma_{\operatorname{lre}}(T) \cup \sigma_p^0(T)$ or 0 belongs to a component of the semi-Fredholm domain with index 0 that is included in $\sigma(T)$, then, by using Apostol–Morrel simple models [AM], for every $\varepsilon > 0$ we can find an operator S_{ε} such that $||T - S_{\varepsilon}|| < \varepsilon$ and $0 \notin \sigma(S_{\varepsilon})$. This contradicts the fact that $T \in \operatorname{int} C_3(0)$. If $0 \in P_-(T)$, then, by again using the Apostol–Morrel simple models, for every $\varepsilon > 0$ we can find an operator S_{ε} such that $||T - S_{\varepsilon}|| < \varepsilon$ and $0 \notin \sigma_p(S_{\varepsilon})$. As in the previous case this leads to a contradiction.

 $(d) \Rightarrow (a)$. It is easy to see that the set of all operators T such that $0 \in P_+(T)$ is open. For such an operator, if x is an eigenvector corresponding to 0 and F is the orthogonal projection onto the one-dimensional subspace generated by x, then TF = 0 = 0FT. Hence $T \in \mathcal{C}_1(0)$.

References

- [AFHV] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert Space Operators. II, Pitman, Boston, 1984.
- [AFV] C. Apostol, C. Foiaş and D. Voiculescu, Some results on nonquasitriangular operators, IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487–514.
- [AM] C. Apostol and B. B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. 26 (1977), 427–442.
- [B] S. Brown, Connections between an operator and a compact operator that yield hyperinvariant subspaces, J. Operator Theory 1 (1979), 117–122.

- [C] J. B. Conway, A Course in Functional Analysis, Springer, New York, 2nd ed., 1990.
- [CP] J. B. Conway and G. T. Prăjitură, Singly generated algebras containing a compact operator, in: Recent Advances in Operator Theory and Related Topics (Szeged, 1999), Oper. Theory Adv. Appl. 127, Birkhäuser, Basel, 2001, 163– 170.
- [CC] C. Cowen, Commutants and the operator equation $AX = \lambda XA$, Pacific J. Math. 80 (1979), 337–340.
- [DR] C. Davis and P. Rosenthal, Solving linear operator equations, Canad. J. Math. 26 (1974), 1384–1389.
- [H] D. A. Herrero, Approximation of Hilbert Space Operators. I, Pitman, Boston, 1982.
- [L] V. Lauric, Operators α -commuting with a compact operator, Proc. Amer. Math. Soc. 125 (1997), 2379–2384.

University of Tennessee Knoxville, TN 37996-1300, U.S.A. E-mail: conway@math.utk.edu State University of New York Brockport, NY 14420, U.S.A. E-mail: gprajitu@brockport.edu

Received September 3, 2002 Revised version August 18, 2004

(5028)