On λ-commuting operators

by
John B. Conway (Knoxville, TN) and
Gabriel Prăjiturã (Brockport, NY)

Abstract

For a scalar λ, two operators T and S are said to λ-commute if $T S=\lambda S T$. In this note we explore the pervasiveness of the operators that λ-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

For a scalar λ, two operators T and S are said to λ-commute if $T S=$ $\lambda S T$. This notion has received attention in the past. In particular, both [B] and [CC] examined the concept. [B] shows that if $T \lambda$-commutes with a compact operator, then T has a non-trivial hyperinvariant subspace. In [CC] it is shown that for an integer n, the commutants of T and T^{n} are different if and only if there is a non-zero operator Y and an nth root of unity, $\lambda \neq 1$, such that $T Y=\lambda Y T$. In [L] some additional properties and examples of λ-commuting operators are explored. In this note we explore the pervasiveness of the operators that λ-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

Throughout we will denote by $\mathcal{B}(\mathcal{H})$ the set of all operators on the Hilbert space \mathcal{H}, and by $\mathcal{B}_{0}(\mathcal{H})$ and $\mathcal{B}_{00}(\mathcal{H})$, respectively, the set of all compact and finite rank operators on \mathcal{H}. For a complex number λ define the following classes of operators:

$$
\begin{aligned}
& \mathcal{C}_{1}(\lambda)=\left\{T \in \mathcal{B}(\mathcal{H}): \text { there is } S \in \mathcal{B}_{00}(\mathcal{H}) \backslash\{0\} \text { such that } T S=\lambda S T\right\} \\
& \mathcal{C}_{2}(\lambda)=\left\{T \in \mathcal{B}(\mathcal{H}): \text { there is } S \in \mathcal{B}_{0}(\mathcal{H}) \backslash\{0\} \text { such that } T S=\lambda S T\right\} \\
& \mathcal{C}_{3}(\lambda)=\{T \in \mathcal{B}(\mathcal{H}): \text { there is } S \in \mathcal{B}(\mathcal{H}) \backslash\{0\} \text { such that } T S=\lambda S T\}
\end{aligned}
$$

Note that when $\lambda=1$, these classes and their topological properties were examined in [CP]. If the scalar λ is understood, write $\mathcal{C}_{1}, \mathcal{C}_{2}$, and \mathcal{C}_{3}.

It is clear that $\mathcal{C}_{1} \subset \mathcal{C}_{2} \subset \mathcal{C}_{3}$ and that all three sets are invariant under similarities. Every operator in \mathcal{C}_{1} has a finite-dimensional invariant subspace

[^0]and, if $\lambda \neq 0$, so does its adjoint. Therefore if T is in \mathcal{C}_{1}, then $\sigma_{\mathrm{p}}(T) \neq \emptyset$ and, for a non-zero $\lambda, \sigma_{\mathrm{c}}(T) \neq \emptyset$. Here σ_{p} and σ_{c} denote the point spectrum and the compression spectrum of the operator.

1. Example. Let T be an operator with the property that there is a complex number α such that $\alpha \in \sigma_{\mathrm{c}}(T)$ and $\lambda \alpha \in \sigma_{\mathrm{p}}(T)$. Let x be a normone eigenvector corresponding to the eigenvalue $\lambda \alpha$ of T and y a norm-one eigenvector corresponding to the eigenvalue $\bar{\alpha}$ of T^{*} (here the bar stands for complex conjugate). For two non-zero vectors u and v, we will use $u \otimes v$ to denote the rank-one operator that maps v into u. Then $T x \otimes y=(T x) \otimes y=$ $(\lambda \alpha x) \otimes y=\lambda \alpha x \otimes y$, while $(x \otimes y) T=x \otimes\left(T^{*} y\right)=x \otimes(\bar{\alpha} y)=\alpha x \otimes y$. Thus $T(x \otimes y)=\lambda(x \otimes y) T$, so $T \in \mathcal{C}_{1}(\lambda)$.

In a similar way we can construct operators that λ-commute with a rank n operator for every $n \geq 1$. The previous example, as simple as it is, is nevertheless characteristic for the operators in \mathcal{C}_{1}. Next we show an example of an operator that belongs to \mathcal{C}_{2} but does not belong to \mathcal{C}_{1}.
2. Example. Let S be the unilateral shift with respect to the basis $\left\{e_{n}\right\}_{n \geq 1}$. For $|\lambda|>1$, let K_{λ} be the operator defined by $K_{\lambda} e_{n}=\lambda^{-n} e_{n}$ for $n \geq 1$. Then K_{λ} is a compact operator and $S \lambda$-commutes with K_{λ}. Thus S belongs to \mathcal{C}_{2}, but, since S does not have eigenvalues, it does not belong to \mathcal{C}_{1}.

Finally, we give an example of an operator that belongs to \mathcal{C}_{3} but does not belong to \mathcal{C}_{2}.
3. Example. Let S be the unilateral shift with respect to the basis $\left\{e_{n}\right\}_{n \geq 1}$. Let T be the operator defined by $T e_{n}=(-1)^{n} e_{n}$ for $n \geq 1$. Then $S(-1)$-commutes with T. To see that S does not (-1)-commute with any non-zero compact operator, notice first that $S K=-K S$ implies that $S^{2} K=K S^{2}$. Since S^{2} is unitarily equivalent to $S \oplus S$, it does not commute with any non-zero compact operator.
4. Example. Let M be the Bergman shift (the operator of multiplication by z on L_{a}^{2} of the open unit disc, $\left.\mathbb{D}\right)$. The relation $M X=\lambda X M$ means in this case $z X(f)=\lambda X(z f)$ or, since λ cannot be equal to 0 , $X(z f)=z \lambda^{-1} X(f)$ for every function f in the Bergman space. In particular, if $g=X(1)$, then this implies that $X\left(z^{n}\right)=(z / \lambda)^{n} g$. Now $z^{n} \rightarrow 0$ weakly in $L_{\mathrm{a}}^{2}(\mathbb{D})$, the Hilbert space of the analytic functions on \mathbb{D} which are square integrable with respect to the area measure; hence $X\left(z^{n}\right) \rightarrow 0$ weakly. But if $|\lambda|<1$, then $\lim _{n}\left\|(z / \lambda)^{n} g\right\|=\infty$. Thus there can be no such operator X when $|\lambda|<1$.

If $|\lambda| \geq 1$, then the above equation gives

$$
\begin{equation*}
X(f)=g f(z / \lambda) \tag{5}
\end{equation*}
$$

when f is a polynomial. By taking limits of polynomials we deduce that (5) holds for every function f in the Bergman space.

If $|\lambda|=1$, let U_{λ} be the unitary operator defined by $\left(U_{\lambda} f\right)(z)=f(\lambda z)$. Then $X U_{\lambda} f=g f$ and therefore g must be a bounded analytic function. In this case no such compact operator X, other than 0 , can exist.

Recall that if a sequence in $L_{\mathrm{a}}^{2}(\mathbb{D})$ converges weakly, then it converges uniformly on compact subsets of \mathbb{D}. Therefore if $|\lambda|>1, g$ can be any function in the Bergman space and all operators X of this type are compact.

For a normal operator we can characterize the operators that λ-commute with it. We start with a more general result that does not seem to be readily accessible in the literature, though it is surely known.
6. Theorem. For $j=1,2$ let N_{j} be a normal operator on \mathcal{H}_{j} with scalar-valued spectral measure μ_{j}. There is a non-trivial bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $T N_{1}=N_{2} T$ if and only if there is a Borel set Δ with $\mu_{1}(\Delta)>0$ and $\mu_{1}\left|\Delta \ll \mu_{2}\right| \Delta$.

Proof. Assume that such a Borel set Δ exists. By passing to a subset of Δ we may assume that $\left[\mu_{1} \mid \Delta\right]=\left[\mu_{2} \mid \Delta\right]$. That is, $\mu_{1} \mid \Delta$ and $\mu_{2} \mid \Delta$ have the same sets of zero measure. If $N_{j}=\int z d E_{j}(z)$ is the spectral decomposition of N_{j}, there is a separating vector e_{j} for $W^{*}\left(N_{j}\right)$ such that $\mu_{j}(S)=\left\langle E_{j}(S) e_{j}, e_{j}\right\rangle$ for all Borel sets S [C, Corollary IX.7.9]. Thus we can identify the reducing subspace $\mathcal{K}_{j}=\operatorname{cl}\left[W^{*}\left(N_{j}\right) e_{j}\right]$ with $L^{2}\left(\mu_{j}\right)$ in such a way that the action of N_{j} on \mathcal{K}_{j} is identified with multiplication by z on $L^{2}\left(\mu_{j}\right)$. If we can find a nontrivial bounded operator $T_{0}: L^{2}\left(\mu_{1}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ such that $T_{0} M_{z}=M_{z} T_{0}$, then this can be extended to a bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ by letting $T=0$ on $\mathcal{H}_{e_{1}}^{\perp}$, completing the proof of this half of the theorem.

Let $d\left(\mu_{2} \mid \Delta\right) / d\left(\mu_{1} \mid \Delta\right)=h^{2}, h$ a positive function in $L^{2}\left(\mu_{1} \mid \Delta\right)$. Choose a positive scalar c such that $\Delta_{c}=\{z \in \Delta: h(z) \leq c\}$ has $\mu_{1}\left(\Delta_{c}\right)>0$. If $f \in L^{2}\left(\mu \mid \Delta_{c}\right)$, then

$$
\int|f|^{2} d \mu_{2}(z)=\int_{\Delta_{c}}|f|^{2} h^{2} d \mu_{1} \leq c^{2} \int|f|^{2} d \mu_{1}
$$

Thus if $T_{0}: L^{2}\left(\mu_{1} \mid \Delta_{c}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ is defined by $\left(T_{0} f\right)(z)=f(z)$, then T_{0} is a bounded operator. Also $\left(T_{0} N_{1} f\right)(z)=\left(T_{0}(z f)\right)(z)=z f(z)=\left(N_{2} T_{0} f\right)(z)$. If we set $T_{0}=0$ on $L^{2}\left(\mu_{1}\right) \ominus L^{2}\left(\mu_{1} \mid \Delta_{c}\right)$, we have the desired operator that intertwines N_{1} and N_{2}.

For the converse, assume that there is a non-trivial bounded operator T : $\mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $T N_{1}=N_{2} T$. According to Proposition IX. 6.10 of [C], $\mathcal{K}_{2}=\operatorname{cl}[\operatorname{ran} T]$ reduces $N_{2}, \mathcal{K}_{1}=(\operatorname{ker} T)^{\perp}$ reduces N_{1}, and $M_{1}=N_{1} \mid \mathcal{K}_{1}$ is unitarily equivalent to $M_{2}=N_{2} \mid \mathcal{K}_{2}$. If ν_{j} is the scalar-valued spectral measure for M_{j}, then ν_{1} and ν_{2} are equivalent. But there is a Borel set Δ such that $\left[\nu_{1} \mid \Delta\right]=\left[\mu_{1} \mid \Delta\right]$. Thus $\mu_{2}\left|\Delta \ll \mu_{1}\right| \Delta$.

For any compactly supported measure μ on \mathbb{C} and scalar $\lambda \neq 0$, define the measure μ^{λ} by $\mu^{\lambda}(S)=\mu\left(\lambda^{-1} S\right)$. If μ is a scalar-valued spectral measure for the normal operator N and λ is a non-zero scalar, then a scalar-valued spectral measure for the normal operator λN is μ^{λ}. Also note that for any function f in $L^{1}\left(\mu^{\lambda}\right), \int f d \mu^{\lambda}=\int f(\lambda z) d \mu(z)$. The next result is immediate from the preceding theorem.
7. Corollary. If N is a normal operator on \mathcal{H} with scalar-valued spectral measure μ and $\lambda \neq 0$, then $N \in \mathcal{C}_{3}(\lambda)$ if and only if there is a Borel set Δ with $\mu(\Delta)>0$ such that $\mu\left|\Delta \ll \mu^{\lambda}\right| \Delta$.
8. Corollary. If N is a normal operator with scalar-valued spectral measure μ and $\lambda \neq 0$, then the following statements are equivalent:
(a) $N \in \mathcal{C}_{1}(\lambda)$.
(b) $N \in \mathcal{C}_{2}(\lambda)$.
(c) μ has an atom at some a_{0} such that $\lambda^{-1} a_{0}$ is also an atom.

Proof. Assume that T is a compact operator such that $T N=\lambda N T$. Again Proposition IX. 6.10 of [C] implies that $\mathcal{K}_{1}=(\operatorname{ker} T)^{\perp}$ and $\mathcal{K}_{2}=$ $\operatorname{cl}[\operatorname{ran} T]$ reduce N and $N \mid \mathcal{K}_{1}$ is unitarily equivalent to $\lambda N \mid \mathcal{K}_{2}$. By the Fuglede-Putnam Theorem $T^{*} N=\lambda N T^{*}$ and it follows that $T^{*} T$ commutes with N. But ker $T=\operatorname{ker} T^{*} T$. Since $T^{*} T$ is a non-zero, positive compact operator, this implies there is a finite-dimensional reducing subspace for N contained in \mathcal{K}_{1}. Thus there is an eigenvalue a_{0} for N with an eigenvector contained in \mathcal{K}_{1}. Since $N\left|\mathcal{K}_{1} \cong \lambda N\right| \mathcal{K}_{2}$, this implies that $\lambda^{-1} a_{0} \in \sigma_{\mathrm{p}}(N)$, proving (c).

Now assume that (c) holds. So $b_{0}=\lambda^{-1} a_{0} \in \sigma_{\mathrm{p}}(N)$ and $\lambda b_{0}=a_{0} \in$ $\sigma_{\mathrm{p}}(N) \subseteq \sigma_{\mathrm{c}}(N)$. By Example $1, N \in \mathcal{C}_{1}$.

With a bit more work using standard tools from operator theory, the operators that λ-commute with a cyclic normal operator can be characterized. As in the characterization of the normal operators in $\mathcal{C}_{2}(\lambda)$ it is easier to start with a more general result, which, again, is probably known but does not seem to have a reference.
9. Proposition. For $j=1,2$ let μ_{j} be a compactly supported measure on the plane and let N_{j} be the normal operator defined on $L^{2}\left(\mu_{j}\right)$ as multiplication by the independent variable. If $T: L^{2}\left(\mu_{1}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ is a bounded operator such that $T N_{1}=N_{2} T$, then there is a Borel set Δ, a positive function u in $L^{\infty}\left(\mu_{1} \mid \Delta\right)$, and a function ψ in $L^{2}\left(\mu_{2} \mid \Delta\right)$ such that $T=0$ on $L^{2}\left(\mu_{1} \mid \mathbb{C} \backslash \Delta\right)$ and for f in $L^{2}\left(\mu_{1} \mid \Delta\right)$,

$$
T f=u \psi f
$$

Conversely, if Δ, u, and ψ are as described and $T f=u \psi f$ defines a bounded operator on $L^{2}\left(\mu_{1} \mid \Delta\right)$, then $T N_{1}=N_{2} T$.

Proof. Let $T: L^{2}\left(\mu_{1}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ be a bounded operator such that $T N_{1}=$ $N_{2} T$. By the Fuglede-Putnam Theorem, $N_{1} T^{*}=T^{*} N_{2}$. Thus $T^{*} T \in\left\{N_{1}\right\}^{\prime}$. So there is a positive function u in $L^{\infty}\left(\mu_{1}\right)$ such that $T^{*} T=u\left(N_{1}\right)^{2}=M_{u^{2}}$ on $L^{2}\left(\mu_{1}\right)$ ([C, Theorem IX.6.6]). It follows that there are Borel sets Δ_{j} such that

$$
(\operatorname{ker} T)^{\perp}=L^{2}\left(\mu_{1} \mid \Delta_{1}\right), \quad \operatorname{cl}[\operatorname{ran} T]=L^{2}\left(\mu_{2} \mid \Delta_{2}\right)
$$

If $T=V M_{u}$ is the polar decomposition of T, then $V: L^{2}\left(\mu_{1} \mid \Delta_{1}\right) \rightarrow$ $L^{2}\left(\mu_{2} \mid \Delta_{2}\right)$ is an isomorphism that intertwines multiplication by the independent variable. By Proposition IX.6.10 of [C], if $\psi=V\left(\chi_{\Delta_{1}}\right)$, then
(a) $V f=f \psi$ for all f in $L^{2}\left(\mu_{1} \mid \Delta_{1}\right)$,
(b) $\left[\mu_{1} \mid \Delta_{1}\right]=\left[\mu_{2} \mid \Delta_{2}\right]$,
(c) $\mu_{1}\left|\Delta_{1}=|\psi|^{2} \mu_{2}\right| \Delta_{2}$.

Because of (b), $\mu_{j}\left(\Delta_{1} \backslash \Delta_{2}\right)=\mu_{j}\left(\Delta_{2} \backslash \Delta_{1}\right)=0$. Thus we can assume that $\Delta_{1}=\Delta_{2}=\Delta$, a Borel set. If $f \in L^{2}\left(\mu_{1} \mid \Delta\right)$, then $T f=V M_{u} f=\psi u f$, as desired.

The converse is clear.
As before the next result is immediate from the preceding one since λN is unitarily equivalent to M_{z} on $L^{2}\left(\mu^{\lambda}\right)$ when N is M_{z} on $L^{2}(\mu)$.
10. Corollary. If $\lambda \neq 0, N$ is multiplication by the independent variable on $L^{2}(\mu)$, and $T \lambda$-commutes with N, then there is a Borel set Δ, there is a function u in $L^{\infty}(\mu \mid \Delta)$ with $u \geq 0$, and there is a function ψ in $L^{2}\left(\mu^{\lambda} \mid \Delta\right)$ such that $T=0$ on $L^{2}(\mu \mid \mathbb{C} \backslash \Delta)$ and for f in $L^{2}(\mu \mid \Delta)$,

$$
(T f)(z)=u(\lambda z) \psi(\lambda z) f(\lambda z)
$$

Conversely, if T is so defined and bounded, then $T N=\lambda N T$.
The next result shows that all classes considered have the same closure and gives a spectral description of this closure. Let $\sigma_{\mathrm{r}}(T)$ and $\sigma_{1}(T)$ denote the right and the left spectrum of the operator T.
11. Theorem. For an operator T the following are equivalent.
(a) $T \in \operatorname{cl} \mathcal{C}_{1}(\lambda)$.
(b) $T \in \operatorname{cl} \mathcal{C}_{2}(\lambda)$.
(c) $T \in \operatorname{cl} \mathcal{C}_{3}(\lambda)$.
(d) $\sigma_{\mathrm{r}}(T) \cap \sigma_{\mathrm{l}}(\lambda T) \neq \emptyset$.

Proof. It is clear that $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$. Let $\mathcal{C}(\lambda)$ be the set of all operators with the property in (d). Recall from [DR] that if $\sigma_{\mathrm{r}}(A) \cap \sigma_{\mathrm{l}}(B)=\emptyset$, then the operator $S \rightarrow A S-B S$ defined on $\mathcal{B}(\mathcal{H})$ is bounded below. In particular it is one-to-one. This implies that $\mathcal{C}_{3}(\lambda) \subset \mathcal{C}(\lambda)$. The conclusion follows because $\mathcal{C}(\lambda)$ is a closed set.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. Let T be an operator such that $\sigma_{\mathrm{r}}(T) \cap \sigma_{\mathrm{l}}(\lambda T) \neq \emptyset$. Thus there is $\mu \in \sigma_{\mathrm{l}}(T)$ such that $\lambda \mu \in \sigma_{\mathrm{r}}(T)$. We have $\mu \in \sigma_{\mathrm{lre}}(T) \cup \sigma_{\mathrm{p}}^{0}(T) \cup \varrho_{\mathrm{sF}}(T)$, where $\sigma_{\text {lre }}(T)$ denotes the intersection of left and right essential spectrum of the operator, $\sigma_{\mathrm{p}}^{0}(T)$ is the set of isolated eigenvalues of finite multiplicity, and $\varrho_{\mathrm{sF}}(T)$ is the semi-Fredholm domain. Since $\varrho_{\mathrm{sF}}(T) \cap \sigma_{\mathrm{r}}(T) \subset \sigma_{\mathrm{c}}(T)$, we conclude that, in fact, $\mu \in \sigma_{\operatorname{lre}}(T) \cup \sigma_{\mathrm{c}}(T)$. In a similar way it follows that $\lambda \mu \in \sigma_{\mathrm{lre}}(T) \cup \sigma_{\mathrm{p}}(T)$.

If $\mu \in \sigma_{\mathrm{c}}(T)$ and $\lambda \mu \in \sigma_{\mathrm{p}}(T)$, then, from Example 1, we deduce that $T \in \mathcal{C}_{1}(\lambda)$. If $\mu \in \sigma_{\mathrm{c}}(T)$ and $\lambda \mu \in \sigma_{\operatorname{lre}}(T)$, then let x be a non-zero vector in $\operatorname{ker}(\mu-T)^{*}$ and let \mathcal{M} be the one-dimensional subspace spanned by x. Since \mathcal{M}^{\perp} is invariant for T, we obtain

$$
T=\left[\begin{array}{cc}
T_{1} & A \\
0 & \mu
\end{array}\right]
$$

with respect to the decomposition $\mathcal{H}=\mathcal{M}^{\perp} \oplus \mathcal{M}$. Since \mathcal{M} has dimension 1, $\lambda \mu \in \sigma_{\mathrm{lre}}\left(T_{1}\right)$. By Theorem 2.2 of [AFV], for every $\varepsilon>0$, there is a compact operator K_{ε} such that $\left\|K_{\varepsilon}\right\|<\varepsilon$ and $\lambda \mu \in \sigma_{\mathrm{p}}\left(T_{1}-K_{\varepsilon}\right)$. Let

$$
T_{\varepsilon}=\left[\begin{array}{cc}
T_{1}-K_{\varepsilon} & A \\
0 & \mu
\end{array}\right]
$$

Then $\left\|T-T_{\varepsilon}\right\|<\varepsilon$ and as $\mu \in \sigma_{\mathrm{c}}\left(T_{\varepsilon}\right)$ and $\lambda \mu \in \sigma_{\mathrm{p}}\left(T_{\varepsilon}\right)$, we conclude that $T \in \operatorname{cl} \mathcal{C}_{1}(\lambda)$.

If $\mu \in \sigma_{\text {lre }}(T)$ and $\lambda \mu \in \sigma_{\mathrm{p}}(T)$, an argument similar to the previous one will lead to the same conclusion.

If $\mu \in \sigma_{\operatorname{lre}}(T)$ and $\lambda \mu \in \sigma_{\operatorname{lre}}(T)$, then, by Corollary 3.50 in [H], for every $\varepsilon>0$, there is an operator L_{ε} such that $\left\|T-L_{\varepsilon}\right\|<\varepsilon, \mu \in \sigma_{\mathrm{c}}\left(L_{\varepsilon}\right)$, and $\lambda \mu \in \sigma_{\mathrm{p}}\left(L_{\varepsilon}\right)$. Therefore T belongs to $\operatorname{cl} \mathcal{C}_{1}(\lambda)$.

We will give next a spectral description of the interior of the first class. But first we need to introduce some notation. If T is an operator, then use $P_{+}(T)$ and $P_{-}(T)$ to denote the semi-Fredholm domain of T where the index is positive and negative, respectively.
12. Theorem. If T is an operator and $\lambda \neq 0$, then $T \in \operatorname{int} \mathcal{C}_{1}(\lambda)$ if and only if one of the following three conditions holds:
(a) $\lambda P_{-}(T) \cap P_{+}(T) \neq \emptyset$;
(b) $\lambda \sigma_{\mathrm{p}}^{0}(T) \cap P_{+}(T) \neq \emptyset$;
(c) $\lambda P_{-}(T) \cap \sigma_{\mathrm{p}}^{0}(T) \neq \emptyset$.

Proof. It is easy to see that the set of all operators satisfying the above conditions is open and included in $\mathcal{C}_{1}(\lambda)$. Therefore the conditions are sufficient.

For necessity, suppose that there is an operator T in $\operatorname{int} \mathcal{C}_{1}(\lambda)$ such that $\lambda P_{-}(T) \cap P_{+}(T)=\emptyset, \lambda \sigma_{\mathrm{p}}^{0}(T) \cap P_{+}(T)=\emptyset$, and $\lambda P_{-}(T) \cap \sigma_{\mathrm{p}}^{0}(T)=\emptyset$. Let
$\varepsilon>0$ such that $\|T-S\|<\varepsilon$ implies that S belongs to $\operatorname{int} \mathcal{C}_{1}(\lambda)$. By Proposition 2.1 in [AM], there is an operator T_{1} with the following properties: $\left\|T-T_{1}\right\|<\varepsilon ; \sigma_{\operatorname{lre}}\left(T_{1}\right)$ is the closure of a finite number of Cauchy domains, $\left\{D_{j}\right\}_{j=1}^{m}$, with $\sigma_{\operatorname{lre}}(T) \subset \bigcup_{j=1}^{m} D_{j} ; \sigma\left(T_{1}\right)=\sigma(T) \cup \bigcup_{j=1}^{m} \operatorname{cl} D_{j} ; \sigma_{\mathrm{p}}^{0}\left(T_{1}\right) \subset$ $\sigma_{\mathrm{p}}^{0}(T)$ and is finite; $\operatorname{cl}\left(\varrho_{\mathrm{sF}}\left(T_{1}\right) \cap \sigma\left(T_{1}\right)\right) \subset \varrho_{\mathrm{sF}}(T) \cap \sigma(T) ; \varrho_{\mathrm{sF}}\left(T_{1}\right) \cap \sigma\left(T_{1}\right)$ has a finite number of components; ind $\left(\lambda-T_{1}\right)=\operatorname{ind}(\lambda-T)$ and dim $\operatorname{ker}\left(\lambda-T_{1}\right)=$ $\operatorname{dim} \operatorname{ker}(\lambda-T)$ for every λ in $\varrho_{\mathrm{SF}}\left(T_{1}\right) \cap \sigma\left(T_{1}\right)$.

Let $\sigma_{\mathrm{p}}^{0}\left(T_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. There are operators A and B_{1}, \ldots, B_{r} such that T_{1} is similar to $T_{2}=A \oplus \bigoplus_{j=1}^{r} B_{j}$, where $\sigma\left(B_{j}\right)=\left\{\lambda_{j}\right\}$, each B_{j} is in the Jordan form, and $\sigma(A)=\sigma\left(T_{1}\right) \backslash \sigma_{\mathrm{p}}^{0}\left(T_{1}\right)$. Since $\mathcal{C}_{1}(\lambda)$ is invariant under similarities, so is the interior of $\mathcal{C}_{1}(\lambda)$. Thus T_{2} is in the interior of $\mathcal{C}_{1}(\lambda)$. Hence there is a $\delta_{1}>0$ such that $\left\|T_{2}-S\right\|<\delta_{1}$ implies that S belongs to the interior of $\mathcal{C}_{1}(\lambda)$. By assumption, for $1 \leq j \leq r, \lambda \lambda_{j} \notin \operatorname{cl} P_{+}\left(T_{2}\right)$ and $\lambda_{j} \notin$ $\lambda \operatorname{cl} P_{-}\left(T_{2}\right)$. Therefore there is a $\delta_{2}>0$ such that $\lambda D_{\delta_{2}}\left(\lambda_{j}\right) \cap \operatorname{cl} P_{+}\left(T_{2}\right)=\emptyset$ and $D_{\delta_{2}}\left(\lambda_{j}\right) \cap \lambda \operatorname{cl} P_{-}\left(T_{2}\right)=\emptyset$ for $1 \leq j \leq r$. (Here $D_{\delta}(\alpha)$ denotes the disk of radius δ centered at α.) Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and let $\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ be such that $\left|\beta_{j}-\lambda_{j}\right|<\delta$ and $\lambda \beta_{j} \neq \beta_{k}$ for $1 \leq j, k \leq r$. Let $C_{j}=B_{j}+\left(\beta_{j}-\lambda_{j}\right) I_{j}$, $C=\bigoplus_{j=1}^{r} C_{j}$ and $T_{3}=A \oplus C$. Since $\left\|T_{2}-T_{3}\right\|<\delta, T_{3}$ is in the interior of $\mathcal{C}_{1}(\lambda)$. For $1 \leq j, k \leq r, \sigma\left(C_{j}\right) \cap \sigma\left(\lambda C_{k}\right)=\emptyset$. So there is no non-zero operator F such that $C_{j} F=\lambda F C_{k}$. This implies that C does not λ-commute with any non-zero operator.

Let U_{1}, \ldots, U_{p} be the components of $P_{-}\left(T_{3}\right)$. For $1 \leq j \leq p$, let M_{j} be the Bergman operator on $L_{\mathrm{a}}^{2}\left(U_{j}\right)$. Also, let $M_{-}=\bigoplus_{j=1}^{p} M_{j}$. Since $\sigma_{\mathrm{p}}\left(M_{j}\right)=\emptyset$ for each j, for $1 \leq j, k \leq p$ there is no non-zero finite rank operator F such that $M_{j} F=\lambda F M_{k}$. Consequently, M_{-}does not λ-commute with any non-zero finite rank operator.

Let V_{1}, \ldots, V_{l} be the components of $P_{+}\left(T_{3}\right)$. For every $1 \leq j \leq l$, let N_{j} be the adjoint of the Bergman operator on $L_{\mathrm{a}}^{2}\left(V_{j}\right)$ and $N_{+}=\bigoplus_{j=1}^{p} N_{j}$. As before, $\sigma_{\mathrm{c}}\left(N_{j}\right)=\emptyset$, and, for $1 \leq j, k \leq l$, there is no non-zero finite rank operator F such that $N_{j} F=\lambda F N_{k}$. Consequently, N_{+}does not λ-commute with any non-zero finite rank operator.

For $1 \leq j \leq m$, let Δ_{j} be a disc included in D_{j}, R_{j} the operator of multiplication by z on $L^{2}\left(\Delta_{j}\right)$ (with respect to the area measure), and $R=$ $\bigoplus_{j=1}^{m} R_{j}$. The same argument used for M_{-}implies that R does not λ commute with any non-zero finite rank operator.

The Similarity Orbit Theorem (Theorem 9.1 in [AFHV]) implies that there is a sequence of operators similar to $T_{4}=M_{-} \oplus M_{+} \oplus R \oplus C$ converging to T_{3} and since T_{3} is in the interior of $\mathcal{C}_{1}(\lambda)$, so is T_{4}. Thus there is a non-zero finite rank operator F such that $T_{4} F=\lambda F T_{4}$. Let $F=\left(F_{i j}\right)_{i, j=1}^{4}$ be the decomposition of F with respect to the same subspaces used in the definition of T_{4}. By construction, $F_{i i}=0$ for every $1 \leq i \leq 4$. Also, since $M_{-} F_{1 j}=$
$\lambda F_{1 j} X_{j}\left(X_{j}\right.$ stands for the j th diagonal entry of $\left.T_{4}\right)$ and $\sigma_{\mathrm{p}}\left(M_{-}\right)=\emptyset$, we have $F_{1 j}=0$ for $1 \leq j \leq 4$. A similar argument gives $F_{3 j}=0$ for $1 \leq j \leq 4$. Because $X_{i} F_{i 2}=\lambda F_{i 2} M_{+}$and $\sigma_{\mathrm{c}}\left(M_{+}\right)=\emptyset$, we infer that $F_{i 2}=0$ for $1 \leq i \leq 4$. With a similar argument, the same is true for $F_{i 4}$. Therefore the only possible non-zero entries of F are F_{21}, F_{24} and F_{41}.

But $M_{+} F_{21}=\lambda F_{21} M_{-}, \sigma\left(M_{+}\right) \subset P_{+}(T), \sigma\left(M_{-}\right) \subset P_{-}(T)$ and $\lambda P_{-}(T)$ $\cap P_{+}(T)=\emptyset$ imply that $F_{21}=0$. Also, $M_{+} F_{24}=\lambda F_{24} C$ and, by the construction of $C, \sigma\left(M_{+}\right) \cap \sigma(\lambda C)=\emptyset$; this gives $F_{24}=0$. Finally, a similar argument implies that $F_{41}=0$, and hence $F=0$, which is a contradiction.

For $\lambda=0$ the interior is easier to describe.
13. Theorem. For an operator T the following are equivalent:
(a) $T \in \operatorname{int} \mathcal{C}_{1}(0)$;
(b) $T \in \operatorname{int} \mathcal{C}_{2}(0)$;
(c) $T \in \operatorname{int} \mathcal{C}_{3}(0)$;
(d) $0 \in P_{+}(T)$.

Proof. It is clear that $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$. For every operator A in $\mathcal{C}_{3}(0)$ we have $0 \in \sigma_{\mathrm{p}}(A)$. Suppose that $T \in \operatorname{int} \mathcal{C}_{3}(0)$ and $0 \notin P_{+}(T)$. If $0 \in \sigma_{\text {lee }}(T) \cup \sigma_{\mathrm{p}}^{0}(T)$ or 0 belongs to a component of the semi-Fredholm domain with index 0 that is included in $\sigma(T)$, then, by using Apostol-Morrel simple models [AM], for every $\varepsilon>0$ we can find an operator S_{ε} such that $\left\|T-S_{\varepsilon}\right\|<\varepsilon$ and $0 \notin \sigma\left(S_{\varepsilon}\right)$. This contradicts the fact that $T \in \operatorname{int} \mathcal{C}_{3}(0)$. If $0 \in P_{-}(T)$, then, by again using the Apostol-Morrel simple models, for every $\varepsilon>0$ we can find an operator S_{ε} such that $\left\|T-S_{\varepsilon}\right\|<\varepsilon$ and $0 \notin \sigma_{\mathrm{p}}\left(S_{\varepsilon}\right)$. As in the previous case this leads to a contradiction.
(d) \Rightarrow (a). It is easy to see that the set of all operators T such that $0 \in$ $P_{+}(T)$ is open. For such an operator, if x is an eigenvector corresponding to 0 and F is the orthogonal projection onto the one-dimensional subspace generated by x, then $T F=0=0 F T$. Hence $T \in \mathcal{C}_{1}(0)$.

References

[AFHV] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert Space Operators. II, Pitman, Boston, 1984.
[AFV] C. Apostol, C. Foiaş and D. Voiculescu, Some results on nonquasitriangular operators, IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
[AM] C. Apostol and B. B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. 26 (1977), 427-442.
[B] S. Brown, Connections between an operator and a compact operator that yield hyperinvariant subspaces, J. Operator Theory 1 (1979), 117-122.
[C] J. B. Conway, A Course in Functional Analysis, Springer, New York, 2nd ed., 1990.
[CP] J. B. Conway and G. T. Prǎjiturǎ, Singly generated algebras containing a compact operator, in: Recent Advances in Operator Theory and Related Topics (Szeged, 1999), Oper. Theory Adv. Appl. 127, Birkhäuser, Basel, 2001, 163170.
[CC] C. Cowen, Commutants and the operator equation $A X=\lambda X A$, Pacific J. Math. 80 (1979), 337-340.
[DR] C. Davis and P. Rosenthal, Solving linear operator equations, Canad. J. Math. 26 (1974), 1384-1389.
[H] D. A. Herrero, Approximation of Hilbert Space Operators. I, Pitman, Boston, 1982.
[L] V. Lauric, Operators α-commuting with a compact operator, Proc. Amer. Math. Soc. 125 (1997), 2379-2384.

University of Tennessee
Knoxville, TN 37996-1300, U.S.A.
E-mail: conway@math.utk.edu

State University of New York
Brockport, NY 14420, U.S.A.
E-mail: gprajitu@brockport.edu

[^0]: 2000 Mathematics Subject Classification: Primary 47B07, 47A58.

