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On λ-commuting operators

by

John B. Conway (Knoxville, TN) and
Gabriel Prǎjiturǎ (Brockport, NY)

Abstract. For a scalar λ, two operators T and S are said to λ-commute if TS = λST .
In this note we explore the pervasiveness of the operators that λ-commute with a compact
operator by characterizing the closure and the interior of the set of operators with this
property.

For a scalar λ, two operators T and S are said to λ-commute if TS =
λST . This notion has received attention in the past. In particular, both
[B] and [CC] examined the concept. [B] shows that if T λ-commutes with
a compact operator, then T has a non-trivial hyperinvariant subspace. In
[CC] it is shown that for an integer n, the commutants of T and T n are
different if and only if there is a non-zero operator Y and an nth root of
unity, λ 6= 1, such that TY = λY T . In [L] some additional properties and
examples of λ-commuting operators are explored. In this note we explore
the pervasiveness of the operators that λ-commute with a compact operator
by characterizing the closure and the interior of the set of operators with
this property.

Throughout we will denote by B(H) the set of all operators on the Hilbert
space H, and by B0(H) and B00(H), respectively, the set of all compact and
finite rank operators on H. For a complex number λ define the following
classes of operators:

C1(λ) = {T ∈ B(H) : there is S ∈ B00(H) \ {0} such that TS = λST},
C2(λ) = {T ∈ B(H) : there is S ∈ B0(H) \ {0} such that TS = λST},
C3(λ) = {T ∈ B(H) : there is S ∈ B(H) \ {0} such that TS = λST}.

Note that when λ = 1, these classes and their topological properties were
examined in [CP]. If the scalar λ is understood, write C1, C2, and C3.

It is clear that C1 ⊂ C2 ⊂ C3 and that all three sets are invariant under
similarities. Every operator in C1 has a finite-dimensional invariant subspace
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and, if λ 6= 0, so does its adjoint. Therefore if T is in C1, then σp(T ) 6= ∅
and, for a non-zero λ, σc(T ) 6= ∅. Here σp and σc denote the point spectrum
and the compression spectrum of the operator.

1. Example. Let T be an operator with the property that there is a
complex number α such that α ∈ σc(T ) and λα ∈ σp(T ). Let x be a norm-
one eigenvector corresponding to the eigenvalue λα of T and y a norm-one
eigenvector corresponding to the eigenvalue α of T ∗(here the bar stands for
complex conjugate). For two non-zero vectors u and v, we will use u⊗ v to
denote the rank-one operator that maps v into u. Then Tx⊗y = (Tx)⊗y =
(λαx) ⊗ y = λαx ⊗ y, while (x ⊗ y)T = x ⊗ (T ∗y) = x ⊗ (αy) = αx ⊗ y.
Thus T (x⊗ y) = λ(x⊗ y)T , so T ∈ C1(λ).

In a similar way we can construct operators that λ-commute with a
rank n operator for every n ≥ 1. The previous example, as simple as it is, is
nevertheless characteristic for the operators in C1. Next we show an example
of an operator that belongs to C2 but does not belong to C1.

2. Example. Let S be the unilateral shift with respect to the basis
{en}n≥1. For |λ| > 1, let Kλ be the operator defined by Kλen = λ−nen for
n ≥ 1. Then Kλ is a compact operator and S λ-commutes with Kλ. Thus
S belongs to C2, but, since S does not have eigenvalues, it does not belong
to C1.

Finally, we give an example of an operator that belongs to C3 but does
not belong to C2.

3. Example. Let S be the unilateral shift with respect to the basis
{en}n≥1. Let T be the operator defined by Ten = (−1)nen for n ≥ 1.
Then S (−1)-commutes with T . To see that S does not (−1)-commute with
any non-zero compact operator, notice first that SK = −KS implies that
S2K = KS2. Since S2 is unitarily equivalent to S⊕S, it does not commute
with any non-zero compact operator.

4. Example. Let M be the Bergman shift (the operator of multipli-
cation by z on L2

a of the open unit disc, D). The relation MX = λXM
means in this case zX(f) = λX(zf) or, since λ cannot be equal to 0,
X(zf) = zλ−1X(f) for every function f in the Bergman space. In par-
ticular, if g = X(1), then this implies that X(zn) = (z/λ)ng. Now zn → 0
weakly in L2

a(D), the Hilbert space of the analytic functions on D which
are square integrable with respect to the area measure; hence X(zn) → 0
weakly. But if |λ| < 1, then limn ‖(z/λ)ng‖ =∞. Thus there can be no such
operator X when |λ| < 1.

If |λ| ≥ 1, then the above equation gives

(5) X(f) = gf(z/λ),
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when f is a polynomial. By taking limits of polynomials we deduce that (5)
holds for every function f in the Bergman space.

If |λ| = 1, let Uλ be the unitary operator defined by (Uλf)(z) = f(λz).
Then XUλf = gf and therefore g must be a bounded analytic function. In
this case no such compact operator X, other than 0, can exist.

Recall that if a sequence in L2
a(D) converges weakly, then it converges

uniformly on compact subsets of D. Therefore if |λ| > 1, g can be any
function in the Bergman space and all operators X of this type are compact.

For a normal operator we can characterize the operators that λ-commute
with it. We start with a more general result that does not seem to be readily
accessible in the literature, though it is surely known.

6. Theorem. For j = 1, 2 let Nj be a normal operator on Hj with
scalar-valued spectral measure µj. There is a non-trivial bounded operator
T : H1 → H2 such that TN1 = N2T if and only if there is a Borel set ∆
with µ1(∆) > 0 and µ1|∆� µ2|∆.

Proof. Assume that such a Borel set∆ exists. By passing to a subset of∆
we may assume that [µ1|∆] = [µ2|∆]. That is, µ1|∆ and µ2|∆ have the same
sets of zero measure. If Nj =

�
z dEj(z) is the spectral decomposition of Nj ,

there is a separating vector ej for W ∗(Nj) such that µj(S) = 〈Ej(S)ej , ej〉
for all Borel sets S [C, Corollary IX.7.9]. Thus we can identify the reducing
subspace Kj = cl[W ∗(Nj)ej ] with L2(µj) in such a way that the action of Nj
on Kj is identified with multiplication by z on L2(µj). If we can find a non-
trivial bounded operator T0 : L2(µ1) → L2(µ2) such that T0Mz = MzT0,
then this can be extended to a bounded operator T : H1 → H2 by letting
T = 0 on H⊥e1 , completing the proof of this half of the theorem.

Let d(µ2|∆)/d(µ1|∆) = h2, h a positive function in L2(µ1|∆). Choose
a positive scalar c such that ∆c = {z ∈ ∆ : h(z) ≤ c} has µ1(∆c) > 0. If
f ∈ L2(µ|∆c), then�

|f |2 dµ2(z) =

�

∆c

|f |2h2 dµ1 ≤ c2
�
|f |2 dµ1.

Thus if T0 : L2(µ1|∆c)→ L2(µ2) is defined by (T0f)(z) = f(z), then T0 is a
bounded operator. Also (T0N1f)(z) = (T0(zf))(z) = zf(z) = (N2T0f)(z).
If we set T0 = 0 on L2(µ1)	 L2(µ1|∆c), we have the desired operator that
intertwines N1 and N2.

For the converse, assume that there is a non-trivial bounded operator T :
H1 → H2 such that TN1 = N2T . According to Proposition IX.6.10 of [C],
K2 = cl[ranT ] reduces N2, K1 = (kerT )⊥ reduces N1, and M1 = N1|K1

is unitarily equivalent to M2 = N2|K2. If νj is the scalar-valued spectral
measure for Mj , then ν1 and ν2 are equivalent. But there is a Borel set ∆
such that [ν1|∆] = [µ1|∆]. Thus µ2|∆� µ1|∆.
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For any compactly supported measure µ on C and scalar λ 6= 0, define
the measure µλ by µλ(S) = µ(λ−1S). If µ is a scalar-valued spectral measure
for the normal operator N and λ is a non-zero scalar, then a scalar-valued
spectral measure for the normal operator λN is µλ. Also note that for any
function f in L1(µλ),

�
f dµλ =

�
f(λz) dµ(z). The next result is immediate

from the preceding theorem.

7. Corollary. If N is a normal operator on H with scalar-valued spec-
tral measure µ and λ 6= 0, then N ∈ C3(λ) if and only if there is a Borel set
∆ with µ(∆) > 0 such that µ|∆� µλ|∆.

8. Corollary. If N is a normal operator with scalar-valued spectral
measure µ and λ 6= 0, then the following statements are equivalent :

(a) N ∈ C1(λ).
(b) N ∈ C2(λ).
(c) µ has an atom at some a0 such that λ−1a0 is also an atom.

Proof. Assume that T is a compact operator such that TN = λNT .
Again Proposition IX.6.10 of [C] implies that K1 = (kerT )⊥ and K2 =
cl[ranT ] reduce N and N |K1 is unitarily equivalent to λN |K2. By the
Fuglede–Putnam Theorem T ∗N = λNT ∗ and it follows that T ∗T commutes
with N . But kerT = kerT ∗T . Since T ∗T is a non-zero, positive compact
operator, this implies there is a finite-dimensional reducing subspace for N
contained in K1. Thus there is an eigenvalue a0 for N with an eigenvector
contained in K1. Since N |K1

∼= λN |K2, this implies that λ−1a0 ∈ σp(N),
proving (c).

Now assume that (c) holds. So b0 = λ−1a0 ∈ σp(N) and λb0 = a0 ∈
σp(N) ⊆ σc(N). By Example 1, N ∈ C1.

With a bit more work using standard tools from operator theory, the op-
erators that λ-commute with a cyclic normal operator can be characterized.
As in the characterization of the normal operators in C2(λ) it is easier to
start with a more general result, which, again, is probably known but does
not seem to have a reference.

9. Proposition. For j = 1, 2 let µj be a compactly supported measure
on the plane and let Nj be the normal operator defined on L2(µj) as multi-
plication by the independent variable. If T : L2(µ1) → L2(µ2) is a bounded
operator such that TN1 = N2T , then there is a Borel set ∆, a positive func-
tion u in L∞(µ1|∆), and a function ψ in L2(µ2|∆) such that T = 0 on
L2(µ1|C\∆) and for f in L2(µ1|∆),

Tf = uψf.

Conversely , if ∆, u, and ψ are as described and Tf = uψf defines a bounded
operator on L2(µ1|∆), then TN1 = N2T .



λ-commuting operators 5

Proof. Let T : L2(µ1)→ L2(µ2) be a bounded operator such that TN1 =
N2T . By the Fuglede–Putnam Theorem, N1T

∗ = T ∗N2. Thus T ∗T ∈ {N1}′.
So there is a positive function u in L∞(µ1) such that T ∗T = u(N1)2 = Mu2

on L2(µ1) ([C, Theorem IX.6.6]). It follows that there are Borel sets ∆j such
that

(kerT )⊥ = L2(µ1|∆1), cl[ranT ] = L2(µ2|∆2).

If T = VMu is the polar decomposition of T , then V : L2(µ1|∆1) →
L2(µ2|∆2) is an isomorphism that intertwines multiplication by the inde-
pendent variable. By Proposition IX.6.10 of [C], if ψ = V (χ∆1), then

(a) V f = fψ for all f in L2(µ1|∆1),
(b) [µ1|∆1] = [µ2|∆2],
(c) µ1|∆1 = |ψ|2µ2|∆2.

Because of (b), µj(∆1\∆2) = µj(∆2\∆1) = 0. Thus we can assume that
∆1 = ∆2 = ∆, a Borel set. If f ∈ L2(µ1|∆), then Tf = VMuf = ψuf , as
desired.

The converse is clear.

As before the next result is immediate from the preceding one since λN
is unitarily equivalent to Mz on L2(µλ) when N is Mz on L2(µ).

10. Corollary. If λ 6= 0, N is multiplication by the independent vari-
able on L2(µ), and T λ-commutes with N , then there is a Borel set ∆,
there is a function u in L∞(µ|∆) with u ≥ 0, and there is a function ψ in
L2(µλ|∆) such that T = 0 on L2(µ|C\∆) and for f in L2(µ|∆),

(Tf)(z) = u(λz)ψ(λz)f(λz).

Conversely , if T is so defined and bounded , then TN = λNT .

The next result shows that all classes considered have the same closure
and gives a spectral description of this closure. Let σr(T ) and σl(T ) denote
the right and the left spectrum of the operator T .

11. Theorem. For an operator T the following are equivalent.

(a) T ∈ cl C1(λ).
(b) T ∈ cl C2(λ).
(c) T ∈ cl C3(λ).
(d) σr(T ) ∩ σl(λT ) 6= ∅.
Proof. It is clear that (a)⇒(b)⇒(c).
(c)⇒(d). Let C(λ) be the set of all operators with the property in (d).

Recall from [DR] that if σr(A)∩σl(B) = ∅, then the operator S → AS−BS
defined on B(H) is bounded below. In particular it is one-to-one. This implies
that C3(λ) ⊂ C(λ). The conclusion follows because C(λ) is a closed set.
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(d)⇒(a). Let T be an operator such that σr(T )∩σl(λT ) 6= ∅. Thus there
is µ ∈ σl(T ) such that λµ ∈ σr(T ). We have µ ∈ σlre(T ) ∪ σ0

p(T ) ∪ %sF(T ),
where σlre(T ) denotes the intersection of left and right essential spectrum
of the operator, σ0

p(T ) is the set of isolated eigenvalues of finite multiplicity,
and %sF(T ) is the semi-Fredholm domain. Since %sF(T )∩ σr(T ) ⊂ σc(T ), we
conclude that, in fact, µ ∈ σlre(T ) ∪ σc(T ). In a similar way it follows that
λµ ∈ σlre(T ) ∪ σp(T ).

If µ ∈ σc(T ) and λµ ∈ σp(T ), then, from Example 1, we deduce that
T ∈ C1(λ). If µ ∈ σc(T ) and λµ ∈ σlre(T ), then let x be a non-zero vector
in ker(µ − T )∗ and let M be the one-dimensional subspace spanned by x.
Since M⊥ is invariant for T , we obtain

T =
[
T1 A
0 µ

]

with respect to the decompositionH =M⊥⊕M. SinceM has dimension 1,
λµ ∈ σlre(T1). By Theorem 2.2 of [AFV], for every ε > 0, there is a compact
operator Kε such that ‖Kε‖ < ε and λµ ∈ σp(T1 −Kε). Let

Tε =
[
T1 −Kε A

0 µ

]
.

Then ‖T − Tε‖ < ε and as µ ∈ σc(Tε) and λµ ∈ σp(Tε), we conclude that
T ∈ cl C1(λ).

If µ ∈ σlre(T ) and λµ ∈ σp(T ), an argument similar to the previous one
will lead to the same conclusion.

If µ ∈ σlre(T ) and λµ ∈ σlre(T ), then, by Corollary 3.50 in [H], for every
ε > 0, there is an operator Lε such that ‖T − Lε‖ < ε, µ ∈ σc(Lε), and
λµ ∈ σp(Lε). Therefore T belongs to cl C1(λ).

We will give next a spectral description of the interior of the first class.
But first we need to introduce some notation. If T is an operator, then use
P+(T ) and P−(T ) to denote the semi-Fredholm domain of T where the index
is positive and negative, respectively.

12. Theorem. If T is an operator and λ 6= 0, then T ∈ int C1(λ) if and
only if one of the following three conditions holds:

(a) λP−(T ) ∩ P+(T ) 6= ∅;
(b) λσ0

p(T ) ∩ P+(T ) 6= ∅;
(c) λP−(T ) ∩ σ0

p(T ) 6= ∅.
Proof. It is easy to see that the set of all operators satisfying the above

conditions is open and included in C1(λ). Therefore the conditions are suf-
ficient.

For necessity, suppose that there is an operator T in int C1(λ) such that
λP−(T ) ∩ P+(T ) = ∅, λσ0

p(T ) ∩ P+(T ) = ∅, and λP−(T ) ∩ σ0
p(T ) = ∅. Let



λ-commuting operators 7

ε > 0 such that ‖T − S‖ < ε implies that S belongs to int C1(λ). By Propo-
sition 2.1 in [AM], there is an operator T1 with the following properties:
‖T − T1‖ < ε; σlre(T1) is the closure of a finite number of Cauchy domains,
{Dj}mj=1, with σlre(T ) ⊂ ⋃m

j=1 Dj ; σ(T1) = σ(T ) ∪ ⋃mj=1 clDj ; σ0
p(T1) ⊂

σ0
p(T ) and is finite; cl(%sF(T1)∩σ(T1)) ⊂ %sF(T )∩σ(T ); %sF(T1)∩σ(T1) has a

finite number of components; ind(λ−T1) = ind(λ−T ) and dim ker(λ−T1) =
dim ker(λ− T ) for every λ in %sF(T1) ∩ σ(T1).

Let σ0
p(T1) = {λ1, . . . , λr}. There are operators A and B1, . . . , Br such

that T1 is similar to T2 = A⊕⊕r
j=1 Bj , where σ(Bj) = {λj}, each Bj is in

the Jordan form, and σ(A) = σ(T1) \ σ0
p(T1). Since C1(λ) is invariant under

similarities, so is the interior of C1(λ). Thus T2 is in the interior of C1(λ).
Hence there is a δ1 > 0 such that ‖T2−S‖ < δ1 implies that S belongs to the
interior of C1(λ). By assumption, for 1 ≤ j ≤ r, λλj /∈ clP+(T2) and λj /∈
λ clP−(T2). Therefore there is a δ2 > 0 such that λDδ2(λj) ∩ clP+(T2) = ∅
and Dδ2(λj) ∩ λ clP−(T2) = ∅ for 1 ≤ j ≤ r. (Here Dδ(α) denotes the disk
of radius δ centered at α.) Let δ = min{δ1, δ2} and let {β1, . . . , βr} be such
that |βj −λj | < δ and λβj 6= βk for 1 ≤ j, k ≤ r. Let Cj = Bj + (βj −λj)Ij ,
C =

⊕r
j=1 Cj and T3 = A⊕ C. Since ‖T2 − T3‖ < δ, T3 is in the interior of

C1(λ). For 1 ≤ j, k ≤ r, σ(Cj)∩σ(λCk) = ∅. So there is no non-zero operator
F such that CjF = λFCk. This implies that C does not λ-commute with
any non-zero operator.

Let U1, . . . , Up be the components of P−(T3). For 1 ≤ j ≤ p, letMj be the
Bergman operator on L2

a(Uj). Also, let M− =
⊕p

j=1 Mj . Since σp(Mj) = ∅
for each j, for 1 ≤ j, k ≤ p there is no non-zero finite rank operator F
such that MjF = λFMk. Consequently, M− does not λ-commute with any
non-zero finite rank operator.

Let V1, . . . , Vl be the components of P+(T3). For every 1 ≤ j ≤ l, let Nj
be the adjoint of the Bergman operator on L2

a(Vj) and N+ =
⊕p

j=1 Nj . As
before, σc(Nj) = ∅, and, for 1 ≤ j, k ≤ l, there is no non-zero finite rank
operator F such that NjF = λFNk. Consequently, N+ does not λ-commute
with any non-zero finite rank operator.

For 1 ≤ j ≤ m, let ∆j be a disc included in Dj , Rj the operator of
multiplication by z on L2(∆j) (with respect to the area measure), and R =⊕m

j=1 Rj . The same argument used for M− implies that R does not λ-
commute with any non-zero finite rank operator.

The Similarity Orbit Theorem (Theorem 9.1 in [AFHV]) implies that
there is a sequence of operators similar to T4 = M−⊕M+⊕R⊕C converging
to T3 and since T3 is in the interior of C1(λ), so is T4. Thus there is a non-zero
finite rank operator F such that T4F = λFT4. Let F = (Fij)4

i,j=1 be the
decomposition of F with respect to the same subspaces used in the definition
of T4. By construction, Fii = 0 for every 1 ≤ i ≤ 4. Also, since M−F1j =
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λF1jXj (Xj stands for the jth diagonal entry of T4) and σp(M−) = ∅, we
have F1j = 0 for 1 ≤ j ≤ 4. A similar argument gives F3j = 0 for 1 ≤ j ≤ 4.
Because XiFi2 = λFi2M+ and σc(M+) = ∅, we infer that Fi2 = 0 for
1 ≤ i ≤ 4. With a similar argument, the same is true for Fi4. Therefore the
only possible non-zero entries of F are F21, F24 and F41.

But M+F21 = λF21M−, σ(M+) ⊂ P+(T ), σ(M−) ⊂ P−(T ) and λP−(T )
∩ P+(T ) = ∅ imply that F21 = 0. Also, M+F24 = λF24C and, by the
construction of C, σ(M+)∩σ(λC) = ∅; this gives F24 = 0. Finally, a similar
argument implies that F41 = 0, and hence F = 0, which is a contradiction.

For λ = 0 the interior is easier to describe.

13. Theorem. For an operator T the following are equivalent :

(a) T ∈ int C1(0);
(b) T ∈ int C2(0);
(c) T ∈ int C3(0);
(d) 0 ∈ P+(T ).

Proof. It is clear that (a)⇒(b)⇒(c).
(c)⇒(d). For every operator A in C3(0) we have 0 ∈ σp(A). Suppose

that T ∈ int C3(0) and 0 /∈ P+(T ). If 0 ∈ σlre(T ) ∪ σ0
p(T ) or 0 belongs to a

component of the semi-Fredholm domain with index 0 that is included in
σ(T ), then, by using Apostol–Morrel simple models [AM], for every ε > 0
we can find an operator Sε such that ‖T − Sε‖ < ε and 0 /∈ σ(Sε). This
contradicts the fact that T ∈ int C3(0). If 0 ∈ P−(T ), then, by again using
the Apostol–Morrel simple models, for every ε > 0 we can find an operator
Sε such that ‖T −Sε‖ < ε and 0 /∈ σp(Sε). As in the previous case this leads
to a contradiction.

(d)⇒(a). It is easy to see that the set of all operators T such that 0 ∈
P+(T ) is open. For such an operator, if x is an eigenvector corresponding
to 0 and F is the orthogonal projection onto the one-dimensional subspace
generated by x, then TF = 0 = 0FT . Hence T ∈ C1(0).
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