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The topological entropy versus level sets
for interval maps (part II)

by

Jozer BoBOK (Praha)

Abstract. Let f: [a,b] — [a,b] be a continuous function of the compact real interval
such that (i) card f 1 (y) > 2 for every y € [a, b]; (ii) for some m € {c0,2,3,...} there is
a countable set L C [a,b] such that card f~1(y) > m for every y € [a,b] \ L. We show
that the topological entropy of f is greater than or equal to logm. This generalizes our
previous result for m = 2.

0. Introduction. The aim of this paper is to demonstrate a relationship
of two characteristics of an interval map: its topological entropy and cardi-
nalities of level sets. Our main result states that for an interval map—as
opposed to circle maps or some maps on higher dimensional manifolds
[Ma]—the cardinalities of level sets strongly determine the value of entropy.
Elaborating our approach from [B1] we focus on the case of m-preimages for
fixed m € N\ {1} or m equal to infinity. In particular, Theorem 4.3 shows
that if we forbid an exceptional case of one-point level sets, the dependence
between entropy and the cardinalities of level sets is rather regular. Based
on that and several known (always) non-transitive counterexamples we con-
jecture that this should be the case for a wider variety of transitive maps on
compact topological manifolds.

Let [a, b] be a compact real interval. We denote by C([a, b]) the set of all
continuous functions which map [a, b] into itself. Any element of C(]a,b]) is
called an interval map. For m € {c0,2,3,4,...} let L(m, [a, b]) be the subset
of C([a,b]) maps satisfying

(1) Yy € [a,b]:  card f~1(y) > m.

From [B1] we know that the topological entropy of any f € L(2,]a,b]) is
greater than or equal to log 2. In this paper we extend that result as follows.
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Let L¥(m, [a, b]) be the subset of L(2, [a,b]) defined by
(1) Yf e L¥(m,[a,b]) 3L C [a,b], L countable Vy € [a,b] \ L:

card {1 (y) > m.
We show the following statement.

THEOREM 4.3. Let f € L*(m,[a,b]). Then the topological entropy of f
s greater than or equal to logm. In particular, this is true for any map from

L(m,[a,b]) C L¥(m, [a,b]).

Fig. 1. f e L¥(3,[a,b]), ent(f) > log3

Our main result is rather delicate. One can easily find an interval map
of entropy zero that does not satisfy (1) for exactly one point from [a, b].
In this paper we use several times the following type of “horseshoe”.

DEFINITION 0.1. Let (X, p) be a compact metric space, f: X — X be
continuous and Sy, S1,...,9m_1 C X be closed. We say that the sets
50,51, -+, Sm—_1 form an m-horseshoe if they are pairwise disjoint and

F(So) N F(S) NN F(Smo1) D SoUSi U+ USp_1.

As an easy consequence of the definition of topological entropy we obtain
the following [DGS].

PROPOSITION 0.2. Let (X, 0) be a compact metric space and f: X — X
be continuous. If the sets Sy, S51,...,5m—1 C X form an m-horseshoe then
the topological entropy of f is greater than or equal to logm.
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0 b c 1
Fig 2. The sets So = [0,b], S1 = [¢, 1] form a 2-horseshoe

The paper is organized as follows. In Section 1 we give some basic no-
tation, definitions and known results (Theorems 1.1 and 1.3). Section 2 is
devoted to the lemmas used throughout the paper. In Section 3 we analyze
the properties of maps from Lf(m, [a,b]), m € {c0,2,...}. In Section 4 we
prove the key Lemma 4.1, Corollary 4.2 and Theorem 4.3.

Finally, Section 5 is devoted to an application of Theorem 4.3. We show
that the entropy of a Besicovitch function (preserving the Lebesgue measure)
is infinite.

1. Definitions and known results. By N we denote the set of posi-
tive integers. We will work with topological dynamics (X,T'), where X is a
compact metric space and T: X — X is a continuous map. (X, T) is min-
imal if {T%(x): i € N} is dense in X for each z € X. A subset M of X is
T-invariant if T(M) C M, and minimal (in X) if M is closed, T-invariant
and (M, T|M) is minimal.

Let ¢ be a metric on the space X. We will use Bowen’s definition of
topological entropy [DGS]. A set E C X is (n,¢e)-separated (with respect
to T) if, whenever z,y € E, z # y then maxg<i<n—1 0(T%(z), T (y)) > .
For a compact set K C X we denote by s(n, e, K) the largest cardinality of
any (n,e)-separated subset of K. Put

ent(T, K) = lim limsupllog s(n,e, K)
e—0T nooco N
and ent(7") = ent(7, X). The quantity ent(7") is called the topological entropy
of T.

A topological dynamics (Y, 5) is a factor of (X, T) if there is a continuous
surjective factor map h: X — Y such that hoT = S o h.
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THEOREM 1.1 ([Bo]). If (Y,S) is a factor of (X,T) then
ent(S) < ent(T) < ent(S) + sup ent(T, h~* ({y})).
yey

As usual, the w-limit set wr(x) of x € X consists of all the limit points
of {T%(x): i € N}. A set P C X is called a periodic orbit (of period n) if
P ={z,T(z),..., 7" 1(x)} for some z € X and n € N with T"(x) = z. A
normalized Borel measure p on X is T-invariant if u(T~*(E)) = u(E) for
each Borel set £ C X.

Now we list several useful properties of minimal sets. As is well known
they can be considered in any topological dynamics.

LEMMA 1.2. (i) For each x € X, the w-limit set wp(x) contains some
menimal set.

(i1) Any minimal set in X is either finite and then a periodic orbit of T,
or infinite and then uncountable.

(iii) If (X,T) is minimal and a measure p on X is T-invariant then
either X is finite and then p is atomic, or X is infinite and then p
is nonatomic. In any case supp u = X.

(iv) Let M C X be minimal in X. If M is infinite then for each countable
closed set C C M and © € M we have lim, n~! card{0 < i <
n—1: TY(z) e C} =0.

Proof. See [BC] for (i)—(iii).

Let us prove (iv). Notice that by our assumption and (i), M is un-
countable. Suppose to the contrary there is an increasing sequence {k,, }5° ;
such that lim, k,*C(k,,z) = a € (0,1], where C(n,x) = card{0 < i <
n—1: T*(z) € C}. Then using the standard method [DGS, Prop. 2.7] we can
find an atomic T-invariant measure u for which p(C) > 0 and suppu € M,
a contradiction with (ii) and (iii). m

We will use the symbolic dynamics [DGS]. For m € N consider the set
N, ={0,1,...,m—1} as a space with the discrete topology, and denote by
2., the infinite product space [];~, X;, where X; = Ny, for all 7. The shift
map o, 2, — 2, (in what follows we write o instead of o,,) is defined
by (0(w)); = wit1 for i € NU{0}. Obviously, each ({2,,,,0) is a topological
dynamics.

It is known [DGS, Prop. 16.11] that for 2 C §2,,, closed,

1
(2) ent(o, £2) = lim — log card £2(n),
non

where 2(n) = {w(n) = (wo,...,wn-1): w € 2}.
The following remarkable result concerns the topological entropy of sub-
shifts in (£2,,,0).
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THEOREM 1.3 ([G]). Let m € N. For any positive € there is a minimal
set I' in 2, such that ent(o,I") > —e + logm.

The following easy lemma is needed in the proof of Theorem 4.3. Put
Q21 ={w € 2 waiy; # k for each i € NU{0}} for j € Na, k € Ny, and
(3) QM) = U 2w

(j7k)eN2><N'rn

LEMMA 1.4. Let £2 = 2(M(c0)) be as in (3).
1

(i) The set §2is closed o-invariant in £2,, and ent(o,§2) = 5 log[m(m—1)].
(ii) For each ko > 2,

ko—1

1 1
> log[m(m — 1)] < —log(m — 1) + log m.
2 ko 0
Proof. (i) The closedness of (2 is clear. Since o ({2) C {2, we can compute
the entropy ent(o, {2) using (2). Obviously, for each n € N and (j,k) €
Ny x N, we have card £2; ,(2n) = [m(m—1)]", hence the conclusion follows.

Property (ii) is clear. m

2. Lemmas. In what follows, by [a, b], resp. (a,b) we always denote a
compact, resp. open real interval. As usual, a map f € C([a,b]) has a strict
local maximum, resp. minimum at a point x € [a, b] if there is an € > 0 such
that for each y € [a,b] N ((z —e,2 4+ ¢) \ {z}) we have f(y) < f(z), resp.
f(y) > f(z). In this case we say that f(z) is a locally extremal value. We
set Cextrem (f) = {y € [a,b]: y is a locally extremal value} and Ciyter(f) =
{y € [a,b]: f~1(y) contains an interval}.

The following lemma is well known.

LEMMA 2.1. Let f € C([a,b]). Then the set Cipter(f) U Coxtrem (f) s
countable.

Proof. Obviously Cinter(f) is countable. Moreover, there is a countable
set of points in [a,b] where a map f attains its strict local extreme [Br],
hence also Cextrem(f) is countable. m

Let J = {Ja}a and K = {K3}s be two systems of open subintervals of
(a,b). Then K is said to be finer than J if every Kz is contained in some
Jo. In what follows by a countable set we also mean a finite one.

LEMMA 2.2. (i) For any T C R the set {x € T x is a one-sided limit
point of T} is countable.

(ii) Let J = {Ja}a be a system of open subintervals of (a,b) for which
(a,b) \ U, Ja is countable. There is a countable system K = {Kp}n
of pairwise disjoint open subintervals of (a,b) that is finer than J
and such that (a,b) \ U,, Ky is countable.
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Proof. Conclusion (i) is clear.

Let us prove (ii). Since each J, can be expressed as an increasing union
of open intervals with rational endpoints, there is a countable system £ =
{L,}nen of open intervals which is finer than J and such that (a,b) \
Unen Ln=(a,b) \ U, Ja. To construct K, in the first step we put K;=1L;.
Suppose we have already defined open intervals Kq,..., K; in m — 1 steps;
then the new open intervals from IC given by the mth step are the nonempty

connected components of L., \ Uizl K;. Now the reader can verify that the
resulting countable system KC satisfies (ii). m

As usual, for y € [a,b] by a left neighbourhood of y in the relative
topology we mean any set containing an interval (y — d, y] N [a, b] with some
¢ positive; right and two-sided neighbourhoods are defined analogously.

DEFINITION. Let f € C([a,b]). We say that x € [a, b] is left regular if for
each two-sided neighbourhood U(x) of = the set f(U(x)) is a left neighbour-
hood of f(z); a right regular, resp. reqular point is defined analogously. We
denote the corresponding sets of regular points by Riveg(f), Riveg(f), Rreg(f)
respectively. Obviously, Rrieg(f) = Rireg(f) N Rireg(f)-

For f € C([a,b]) we define the following sets (see Lemma 2.1):

Creg(f) = {y € (a,b): card(f ' (y) N Rueg(f)) = m},
Crreg(f) = {y € (a7 b) Yy € Creg U Cextrem U Cinter
& card(f~(y) N Rueg(f)) = m},
Clreg(f) = {y € (aa b) Yy € Crreg U Creg U C’extrem U C’inter
&card(f 1 (y) N Rieg(f)) > m}.

For y € [a,b] we put T(y) = {(to,.. - tm-1)ito < -+ < tm—1 & t; €
f_l(y>} C [a7b]m and fix a map ¢: Clreg(f) U Crreg(f) U Creg(f) - [aa b]m
satisfying
(*) oY) = (to,- - tm—1) €T(y), ti € [T (y) NR;(f) ify € C5(f),

J € {lreg, rreg, reg}.

The next lemma will be important when proving our main result. We
use the notation C' = Ciyeg(f) U Crreg(f) U Creg(f), N = {0,1,...,m —1};

for t € R™ we put ||t|| = minp<i<m—2 |ti+1 —ti|, and for amap f, y € R and
e >0,

(y_gvy)v yeclreg(f)a
J(e,y) =4 W y+e), Y € Crreg(f),
(y_67y+6)7 yecreg(f)'
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LEMMA 2.3. Let f € C([a,b]).

(i) Ify € [a,b] and y & Cinter(f) then f71(y) C Rireg(f) U Ryreg(f)-
(ii) For any y' € C there is an e(y") > 0 such that J(¢(y'),y") C (a,b)
and

Yy € J(e(y).y) 3t € T(y) Vi€ N ti € (9(y'); — 0, 0(y")i +9),
where § = ||¢(y')||/100 (see (*)).
In statements (iii)—(iv) we assume that the set (a,b) \ C is countable.

(iii) There exists a countable system {K,}, of pairwise disjoint open
subintervals of (a,b) that is finer than {J(e(y),y) }yec (see (ii)) and
such that [a,b] \ U,, Ky is countable. Moreover, there exists a map
U: N — C such that K,, C J(e(¥(n)),¥(n)) for each n € N.

(iv) There is a map ¢: U, Kn — [a,b]™ such that if K, C J(e(¥'),y')
where ¥(n) =y’ then for each y € K,, we have p(y) =t € T(y) and

Vi € Npy: t; € (qb(y’)l -4, <Z>(y’)z + 5)

Proof. (i) The reader can easily verify that a point x € [a, b] is not (left,
right) regular if and only if f is constant on some neighbourhood of z.

Let us prove (ii) when y" € Ciyeg(f) (the other cases are similar). Since
Yy € Creg(f), for ¢(y') € T'(y') and ¢ defined above the set f((¢(y'); — 0,
#(y')i+0)) is a left neighbourhood of 3’ for each i € N,,,. Now we can choose
e(y’) sufficiently small to satisfy

JeWw) ) () FBW): — 6,60 +0)),
1=0

which proves (ii) for ¥’ € Cireg(f).

Let us show (iii). Notice that if (a,b) \ C is countable then so is A =
(a,b)\Uyec J(e(y),y). Indeed, A C (ANC)U([a, b]\C) and ANC is countable
by Lemma 2.2(i). Now (iii) is a consequence of Lemma 2.2(ii). The existence
of ¥ comes from the fact that {K,}, is finer than {J(e(y), y)}yec-

Property (iv) is an easy consequence of (ii) and (iii). m

3. Properties of maps from Lf(m, [a,b]), m € {c0,2,3,...}. In what
follows for f € C([a,b]) we use the notation

Bi(f)={x€la,b]: f(y)>f(x), Vy€la,x] & f(x) > f(y), Vy €[z, 0]},
Bo(f)={z€la,b]: f(y) <f(x), Yy€la, 2] & f(x) < f(y), Yy €, b]},

and B(f) = B1(f)UBa(f). If there is no ambiguity we often write B;, resp.
B instead of B;(f), resp. B(f).

>
<
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X Xo
Fig 3. f € L(2,[a,b]) and z1,z2 € B1(f)
For f € L(m, [a,b]) and y € [a, b] we put m, = my(f) = min f~!(y) and

M, = M,(f) = max f~!(y). The closed sets Sop = So(f), Sm—1 = Sm—1(f),
S0,m—1) = S0,m—1)(f) are defined as

So = {my: y € [a,b]},

(4)

Sm—1=1{My:y € [a,b]}, Swm-1)=5S0NSm-1.
Since for every m € {0,2,3,4,...}
L(m,[a,b]) C L*(m, [a,b]) C L(2,]a,b])
we can apply the results developed in [B1] for maps from L(2, [a, b]).
LEMMA 3.1 ([B1]). Let f € L(2,[a,b]) and Sqom—1) # 0.

(i) FEither By or By is empty, hence B € {B1, Ba}.

(i) Som1) C B\ {a,b}.
(iii) The closed set B can be expressed as a union (n > 1)

{bn}nexc U | by, 0],
n<Ll
where b, < bl for each cardinal n, 1 < n < L; in the topology
of la,b], the points a,b are not limit points of the set {by}n<x U
Un<cibn bt} and no point by, € {bp}n<k is a two-sided limit
point of that set, hence K, L are at most countable cardinals.
(iv) If wy C By is an w-limit set then either wy = {p} and p € Fix(f),
or wy 15 a periodic orbit of period 2.
(v) If wy C By is an w-limit set then wy = {p} and p € Fix(f).
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(vi) a € By (a € By), resp. b € By (b € Bs) if and only if f(a) =
(f(a) = a), resp. f(b) = a (f(b) =0).
(vii) card(B; NFix(f)) < 1.

LEMMA 3.2. Let f € L(2,[a,b]).
(i) If Bi(f) = Ba (f) =0 then So.m-1) = 0.

(ii) If Bi(f) # 0 # Ba(f) then for some a < a1 < by < b either
f([aval]) = {a} f([blv ]) = {a}v BQ(f) = [a7a1]v Bl(f) = [blab’ or
f(la,a1]) = {b}, f([b1,0]) = {b}, Bi(f) = [a, a1], B2(f) = [b1,b]. In

any case S m-1) = 0.

Proof. Property (i) is a consequence of Lemma 3.1(ii). For (ii) see [B,
Cor. L.2.1]. m

We have seen that for f € L*(m, [a,b]) if wf(x) C B then wy(z) has a
simple structure. In fact it is a periodic orbit and cardw¢(z) < 2. However,
the number of different w-limit sets that are subsets of B can be infinite.
Fortunately, for each such f one can consider a simplified version g of f
(more precisely, a factor ([a,b], g) of ([a,b], f)) which is in L#(m, [a, b]) again
and has a very poor structure of w-limit sets in B(g). The precise statement
is given in Lemma 3.3.

Now we introduce some useful notation. For intervals J = [a, 5] C [a, b]
and K = [v,4] C [a,b], where a < o < v < 6 < 8 < b, the symbol h(J, K)
denotes a continuous nondecreasing piecewise affine map from [a,b] onto
[a, b] that is constant on [a,«], K and [, b].

LEMMA 3.3. Let f € L¥(m,|a,b]) and assume that O # B(f) € {B1(f),
Bo(f)}. There is a map g € L*(m,[a,b]) such that ([a,b],g) is a factor of
([a,b], f) and one of the following possibilities holds.

(i) B2(g) = 0 and if wg(x) C Bi(g) then either wy(x) = {a,b} or
wy(x) = {p} for some p € Fix(g) N Bi(g).

(i) Bi(g) = 0 and if wy(x) C Ba(g) then wy(x) = {p} for some p €
Fix(g) N {a,b}.

Proof. Without loss of generality we can assume that Bi(f) # 0 and
By(f) = 0. We show that (i) holds in this case. Set

D = {(z, f(z)) € B1 x Bi: f*(z) =2 < f(2)} U{(a,0)}.
By Lemma 3.1(vii),(iv) there is nothing to prove if D = {(a,b)}. In this case
we put g = f.
For (u,v) € D we can consider a uniquely determined factor ([a,b], fu)
of ([a,b], f) with a factor map h(J, K), where « = u, 3 = v and v = §. Now,

y := max{u: (u,v) € D& f, € L*(m, [a,b])}
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exists, since otherwise f ¢ L#(m, [a, ]). Define

Dy ={z:z>y& (z, f(z)) € D}.
If D1 = (), we can put g = f,. Otherwise z := min D; exists, z > y and for
(y,9), (2, f(2)) € D there is a factor ([a, b], g) of ([a,b], f) with a factor map
h(J,K), wherea =y <y=2<d=f(z) < f=7.

Summarizing, at least one of the following possibilities holds: (i) g = f,
(ii) g(a) = b, g(b) = a, (iii) g(c) = ¢, where ¢ = h(J, K)(7y) € (a,b). This
implies that Ba(g) = 0.

Obviously, g € L¥(m,[a,b]) and from Lemma 3.1(iv) and our choice of y
and z satisfying D1 N (y, 2) = () property (i) follows.

If Bo(f) # 0 and By(f) = 0 then the existence of g satisfying (ii) can be

shown similarly. m

For g € L¥(m]a, b]) consider the following four properties (A)-(D):
A) Bi(g) = Bs(g) = 0

B) Bilg) £ 0 # Balg);

C) g satisfies the conclusion of Lemma 3.3(i);

D) g satisfies the conclusion of Lemma 3.3(ii).

(
(
(®) (
(

We set
L*(m, [a,b]) = {g € L*(m,[a,b]): g has some of properties (A)—~(D)}.

LEMMA 3.4. Let g € L*(m,[a,b]). There is a positive integer ko = ko(g)
> 2 such that for any x € B(g) we have

g"(x) € ([a,b] \ B(g)) U (Fix(9) N B(g)) U{a,b}  for some k < ko.

Proof. The statement is true for ¢ satisfying (A). For (B), use Lemma
3.2(ii). Now, suppose (C) holds. By Lemma 3.1(iii) the endpoints a,b are
not limit points of {b,, }n<x UUn<£{bn ,b}. By the same lemma, if le( n
Bi(g) # 0 then no point in this set is a two-sided limit point of Bl( ). Since
by our assumption Bj(g) contains no other w-limit set (a 2-cycle), there is
a ko > 2 such that B(g) \ ((Fix(g) N B(g)) U {a,b}) contains at most kg
consecutive iterates of any point of B(g). The case when g satisfies (D) can
be verified similarly. m

The next lemma uses the notation introduced in Section 2 before Lem-
ma 2.3.

LEMMA 3.5. Let g € L*(m,[a,b]). Then (a,b) \ (Cireg(f) U Crreg(f) U
Creg(f)) is countable.

Proof. Lemma 2.1 implies that it is sufficient to show

((I, b) \ (Clreg(f) U Orreg(f) U Oreg(f)) - Cinter(f) ) Cextrem(f) U L7
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where L is the countable set given in (1%,) of the introduction. Take y €
(a,0) \ (Cireg(f) U Crreg(f) U Creg(f)) and suppose that y & Cinger(f) U L.
Then card f~!(y) > m and Lemma 2.3(i) shows that card f~!(y) is finite.
Since y & Creg(f) there exists an z € f~!(y) which is not regular. Since z
is an isolated point of f~!(y) we have f(2) =y € Cextrem(f). ®

Let g € L*(m,[a,b]). We define closed sets So = Sp(g), S1 = S1(9), .- .,
Sm—1 = Sm—1(g) as follows: Sy, S;,—1 are as in (4). By Lemma 3.5 we can
use the pairwise disjoint countable system { K}, and the map ¢: | J,, K,, —
[a,b]™ from Lemma 2.3(iii),(iv). For each i € {1,...,m — 2} we put

S = 5:(9) = {v)i:y e UK}

Also we put
(5) ﬂg SoUSl 'USm_l).

The reader can verify that since g € L*(m, [a, b]), by Lemmas 3.5 and 2.3 the
sets S;, i € Ny, satisty [a,b] = ﬂ?:olg( 5 D Uik, ' S;. There are a finite
number of nontrivial intersections of elements of H = {Sp, S1,...,Sm-1},

i.e., of sets

S(i(l),...,i(q)) = ﬂ Si(j), 0<i(l)<--<i(q) <k—1&2<q<k.
j=1
We define the kernel of H by KerH = Ui(l)#(z) S(i(1),i(2)), and the center
of H by CenH = ﬂ?:ol S;. Clearly, both Ker’H and CenH are closed.

LEMMA 3.6. Let g € L*(m,[a,b]), H = {S0,51,...,Sm-1}, and Ker'H
be as above. Then g(Ker H) is countable.

Proof. By our construction of So,...,Sn_1, if z € S(; ;) for i # j then
g(z) € [a,b] \ U,, Kn, which is a countable set by Lemma 2.3(iii). =

4. The proof of the main result. As before, for ¢ € L*(m,[a,b])
we consider the closed sets Sy(g),...,Sm—1(g) and also the set S = S(9)
given by (5). If x € S then by its itinerary with respect to Sp, S1,..., Sm-1
we mean any w € 2, such that ¢’(z) € S,, for i € NU{0}. For M C S
we denote by 2(M) the least closed o-invariant subset of 2, that con-
tains all possible itineraries of points of M with respect to Sg, S1,. .., Sm—1-
In particular, if M = Fix(f) N CenH # 0 then 2(M) = (2,,, hence
ent(o, 2(M)) = log m.

For g € L*(m,[a,b]) we fix the value kg = ko(g) > 2 given by Lemma
3.4. Here is the key lemma:
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LEMMA 4.1. Let g € L*(m,[a,b]). If M C S is minimal and M #
Fix(g) N CenH then

1 ko —1
(6)  ent(o,2(M)) < max (ent(g, M), = log(m — 1) + Ok log m)

0 0

Proof. Put X = {(z,w): x € M & g'(z) € S, for each i € NU {0}}.
The map G = g x o defined by G(z,w) = (¢g(x),o(w)) is continuous on the
compact metric space X (with respect to the product metric). Moreover,
the dynamical system (M, g), resp. (2(M),o) is a factor of (X, G) given
by the (factor map) projection II1: X — M, resp. IIy: X — §2(M). Using
Theorem 1.1 we see that
(7)  ent(o, 2(M)) < ent(G) < ent(g, M) + sup ent(G, IT; *({x})).
xeM

Moreover, A, = ITy(IT; *({x})) is a closed subset of §2,, whenever x € M.
By (2) we have

(8) ent(G, IT; 1 ({z})) = hrn logcard/l (n).

Concerning the relationship of the sets M, CenH, Ker H we consider
several possibilities (see Lemma 1.2).

CASE I: M is a cycle. Then ent(g, M) = 0 and to prove (6) we need to
verify that

ent(o, 2(M)) < 1 log(m — 1) +

ko 0

CasgeI(a): MNCenH = (. This is true if g satisfies (A) or (B) of (#) (see

Lemma 3.2). Our assumption implies that for each € M and positive inte-

ger n we have card A, (n) < (m — 1)", hence (8) yields ent(G, IT; ' ({z})) <

log(m—1). Now the property (6) is a consequence of (7) and of the inequality
log(m —1) < % log(m — 1) + k‘;c—gl logm.

Caskg I(b): MNCenH # 0. Then g satisfies (C) or (D) of (#). Moreover,
0 # Cen™ C Sio,m—1) C B\ {a,b} by Lemma 3.1(ii). Since M # Fix(g) N
CenH, using Lemma 3.3 we obtain M \ B # (). By Lemma 3.4, for each
n €N,

logm.

card 2(M)(n) < card M - (m — 1)/ ko pr—n/ko.
hence ent (o, 2(M)) < % log(m — 1) 4+ k%—;l logm by (2). Thus, (6) is true

in this case.

CASE II: M is infinite. In this case we show that ent(G, IT; *({z})) =
for each x € M. Then from (7) we will obtain ent(c, 2(M)) < e (g,M),
proving (6).
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Fix x € M, put C = M N KerH and C=M N g(KerH), and set, as in
the proof of Lemma 1.2(iv), C(n,z) = card{0 <i < n — 1: g’(x) € C} and
C(n,z) = card{0 < i < n—1: gi(x) € C}. Clearly C(n,z) < C(n+1,z) for
each n. If s(n,e) = s(n, e, II; *({2})) denotes the maximal cardinality of an
(n, ¢)-separated subset of IT; '({z}) (with respect to G), by the definition
of Ker H we have s(n,e) < m@(?) for any sufficiently small . It follows

from Lemmas 3.6 and 1.2(iv) that

1 1 1 A
limsup — log s(n,e) < lim —logm®™® < lim = logm®™+h®) = g,

n—oo N n—oo N, n—oo N,
hence ent(G, IT; *({z})) = 0. =

COROLLARY 4.2. Under the assumptions of Lemma 4.1,

1 -1
T log(m —1) + kok:o log m)

Proof. By the definition, ent(g, M) < ent(g). Now apply Lemma 4.1. m

ent(o, 2(M)) < max <ent(g)7

As before, we use the notation N,,, = {0,1,...,m — 1}.

DEFINITION. Let 2 C (2, and j,k € N, j < k. We say that w(k) € 2(k)
contains w = (wy,...,w;j—1) € Nj, if for some I € {0,...,k — j} and each
ie€{0,...,5—1},

W(k)lJri = W;.

DEFINITION. Let g € L*(m, [a,b]). We will say that w = (wp,...,w;_1)
€ Nj, is a j-itinerary of x € [a,b] if ¢*(z) € S,,(g) for i € {0,...,5 —1}.
We say that a j-itinerary of x does not exist if {x,..., ¢ *(z)} € So(g) U
Sl(g) U---u Sm—l(g)'

Combining Lemma 4.1 and Corollary 4.2 with the results of Sections 1
and 2 we now obtain the main result of this paper.

THEOREM 4.3. Let f € L*(m,|a,b]). Then the topological entropy of f

is greater than or equal to logm. In particular, this is true for any map from
L(m, [a,b]) C L(m, [a,b]).

Proof. Let f € L*(m, [a,b]). There is nothing to prove if Ker H = (). In
this case So(f), S1(f),...,Sm—1(f)} form an m-horseshoe and so ent(f) >
logm by Proposition 0.2.

Now, suppose Ker H # (). By Lemmas 3.3 and 3.4, instead of f we can
consider the map g € L*(m, [a,b]) such that ent(f) > ent(g). Obviously it
is sufficient to prove ent(g) > logm.

In what follows all sets are taken with respect to g. The inequality
ent(g) >logm is clear if Ker H = () since in this case the sets So, S1, ..., Sm_1
form an m-horseshoe.
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Suppose to the contrary that Ker H # () and ent(g) < logm. Let ko > 2
be as in Lemma 3.4. Using Theorem 1.3 we can consider a minimal set I" in
{2, such that

9) ent(o, I') > max (ent(g) 1 log(m — 1) + Fo — 1 logm).

" ko ko

Lemma 1.2(i) shows that for each x € Ker H there is a minimal set M (z)
in [a, b] such that M(z) C wy(z).

Put Bs = {x € SNKerH: M(z) # Fix(g) N CenH} (see (5) for S).
We deduce from Lemma 4.1 that (6) is true for M(z) and ent(o, 2(M(x)))
when x € Bg. Hence by the minimality of I", Lemma 1.4 and (9) (for x = oo
see (3)),

Vo € BsU{oo}: Q(M(z))nI =10.

Since I' is o-invariant we even see that for each © € Bg U {00} there is
n(z) € N such that

(10) no v € I'(m) contains w(n(x))

whenever m > n(z) and w(n(x)) € 2(M(x)(n(z)).
Now we define an open cover {U(z)},ecker of Ker H in three steps:

(i) If z € (KerH) \ S and ¢g™®)(z) ¢ SoUS1 U---US,,_ 1, choose U(x)
in such a way that ¢ (U(2)) N (SoUS1U---US,,_1) = 0.

(ii) If z € Bg then we can consider m(z) € N such that for any itinerary
w of z, w(m(z)) contains some element of 2(M (z))(n(x)); now, using the
continuity of g, choose a neighbourhood U (z) of = such that for any y € U(z)
either the m(x)-itinerary of y does not exist or for any itinerary w of y,
w(m(x)) contains some element of 2(M (z))(n(x)).

(iii) Let x € SNKerH be such that M (z) = Fix(g)NCenH = {p}. Since
CenH C S(9,m—1), from Lemmas 3.1(ii) and 3.3(i) we get p € B1N(a,b). We
know that card g=!(p) > 2. Let z € g~!(p) \ {p}. Using the definition (4) of
S0, Sm—1 the reader can verify that if z < p, resp. z > p then for some small
positive n we have Sy N (p—n,p) = 0, resp. Sp_1 N (p,p+n) = 0. Therefore
we can consider m(z) € N and U(x) such that for any y € U(x) either
g'(y) = p for some i < m(x), or the m(z)-itinerary of y does not exist, or
for any itinerary w of y, w(m(z)) contains some element of 2(M (00))(n(o0)).

Obviously we have found the pairs U(z), m(z), where {U ()} cker 7 1S
an open cover of the compact set Ker H; let {U(z1),...,U(xk)} be its finite
subcover, and put

k* = max{m(x1),...,m(z)}.
To finish the proof we define
R; = S;\ (Fix(g)NCenH), i€ Ny,.
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Since /"5 g(Ri) D U™y Ri, for each | € N and € I'(l) there is = =
x(y) € UZ”;OI R; such that for each i € N; we have

(11) gl(‘r) € R'Yi? gz(x) ¢ FIX(Q) N Cen M.
It is clear that the sets T; = R; \ Ule U(xj), i € Np, are closed. Moreover,
d = min{dist(7;,T}): i # j} > 0.

Suppose that for some | > k*, vy e I'(l), x(y) and i€{0,...,l —1—k*}
we have g'(z(y)) € U(z;). Then by definition of {U(z)}sekern either
the k*-itinerary of g'(z()) does not exist, or 7 contains some element of
2(M(x;))(n(x;)), which is impossible by (11) and (10). This implies that
for any [ > k*, v € I'(l) and z(y) we have

()} cTyoUT U U Ty .

Now, estimating the topological entropy of g we have, for some ¢ < §
and each [ > k*,

s(l—1—k* e [a,b]) > card I'(1)/m"",

hence by (9) and (2), ent(g) > ent(o,I") > ent(g)—a contradiction. The
proof of our theorem is finished. m

5. The topological entropy of a Besicovitch function. For the
Lebesgue measure A we define

C(\) = {f € C([0,1]): V Borel A C [0,1]: A\(4) = A(f1(A)}.

By a Besicovitch function we mean a function which has a unilateral
derivative (finite or infinite) at no point. In [B2], [B3] we have constructed
Besicovitch functions in C'(A). Now we show that such maps have an infinite
topological entropy. First, let us repeat the construction from [B2]. Also we
correct an inaccuracy there (compare the definition of ¢).

Construction. Let k > 4. Set
) 2m—1

D=10,1/2]\ L, where L = U U Tm,p;

m=1 p=1
and the open intervals 7, , = (am,p, bm,p) are constructed as follows:
(Oé) d171 = [0, 1/2], r1,1 C d171, )\(7"171) = 1/2]€, b171 is the centre of d171;

(B) if dn1,...,dy on—1 are the intervals of [0,1/2]\ Uz;ll Uiq:_ll Tq.p for
n > 1 (from left to right), then r, , C d;, p, by p is the centre of d,,
and A(rpp) = 1/2k™.

Obviously, A(L) = 1/2(k — 2) and A(D) = (k — 3)/2(k — 2).
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Let ¢: [0,1/2] — [0, 1] be a nondecreasing continuous function such that
#(0) =0, ¢(1/2) = 1, ¢ is constant on every interval r,, ,, and ¢(rp, ) =
{(2p — 1)/2™}. Define a function p: [0, 1] — [0, 1] by

(), z €[0,1/2],
(@)=
o(l—=z), zell/2,1].
The function p and the interval [0, 1] form the well-known step triangle [P].

The above procedure will be called the construction of a step triangle
with base [0, 1], height 1 and parameter k.

We have seen that the base [0,1] lies below the vertex (1/2,1)—in
such a case we say that the step triangle is positively oriented. The set
{(z,p(x)): © € [0,1/2]}, resp. {(z,p(x)): x € [1/2,1]} is the left, resp. right
side of triangle. Further, put u, = {(z,y): x € [0,1]} and let g(f) be the
graph of the function f.

Now, we can construct a function f as follows:

(co) construct a positively oriented step triangle with base [0, 1], height 1
and parameter k; the sides of the step triangle define a function fo;
(¢p,) forn > 0, construct step triangles (positively or negatively oriented)

. on—1 .
whose bases are intervals of the set Up:1 Ugp—1/2nNG(frn—1), height
1/2™ and parameter k; the constructed triangles are placed inside
the bigger triangle, with bases on its sides; the union of sides of all

triangles constructed so far defines a function f,,.

Finally, put f = lim,,_,~ f» (obviously o(fn—1, fn) = 1/27).
THEOREM 5.1 ([B2], [B3]). f € C(\) and f is a Besicovitch function.
In order to illustrate how our Theorem 4.3 can be used we will prove

that ent(f) = oo. Since ent(f™) = nent(f) for each n € N, by Theorem 4.3
it is sufficient to show that

THEOREM 5.2. f2 € L¥(00,[0,1]).

Proof. Since f(0) = f(1) = 0 and f(1/2) = 1 we have f? € L(2,[0,1]).
Put M = {p/2":n € NU{0}, p € {0,1,...,2"}} and suppose that y €
[0,1] \ M. We will show that card f~1(y) = co. Otherwise there would be
the smallest step triangle 7" such that u, has a nonempty intersection with its
sides. Without loss of generality we can assume that this step triangle 7" has
a positive orientation, it is of height 1/2" and has its base in u(g,_1) /2 . Since
y ¢ M there is a unique positive integer m such that for L = >~ 1/27+

we have ) . L9 .
P — D —

L—— —+ L.

ye( on + 2n+m’ an + )

Then from our construction it follows that u, has a nonempty intersection
with sides of a negatively oriented step triangle (placed inside T' and with
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base on a side of T') of height 1/2"*™ and with base in U(2p—1)/2n4 - This
is a contradiction.

Now, from (f?)~! = f=1(f~1) we obtain

>2, yeM,

() {20 VS

Since M is countable the conclusion f? € Lf(oo,[0,1]) follows. m
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