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The topological entropy versus level sets
for interval maps (part II)

by

Jozef Bobok (Praha)

Abstract. Let f : [a, b]→ [a, b] be a continuous function of the compact real interval
such that (i) card f−1(y) ≥ 2 for every y ∈ [a, b]; (ii) for some m ∈ {∞, 2, 3, . . .} there is
a countable set L ⊂ [a, b] such that card f−1(y) ≥ m for every y ∈ [a, b] \ L. We show
that the topological entropy of f is greater than or equal to logm. This generalizes our
previous result for m = 2.

0. Introduction. The aim of this paper is to demonstrate a relationship
of two characteristics of an interval map: its topological entropy and cardi-
nalities of level sets. Our main result states that for an interval map—as
opposed to circle maps or some maps on higher dimensional manifolds
[Ma]—the cardinalities of level sets strongly determine the value of entropy.
Elaborating our approach from [B1] we focus on the case of m-preimages for
fixed m ∈ N \ {1} or m equal to infinity. In particular, Theorem 4.3 shows
that if we forbid an exceptional case of one-point level sets, the dependence
between entropy and the cardinalities of level sets is rather regular. Based
on that and several known (always) non-transitive counterexamples we con-
jecture that this should be the case for a wider variety of transitive maps on
compact topological manifolds.

Let [a, b] be a compact real interval. We denote by C([a, b]) the set of all
continuous functions which map [a, b] into itself. Any element of C([a, b]) is
called an interval map. For m ∈ {∞, 2, 3, 4, . . .} let L(m, [a, b]) be the subset
of C([a, b]) maps satisfying

(1m) ∀y ∈ [a, b]: card f−1(y) ≥ m.
From [B1] we know that the topological entropy of any f ∈ L(2, [a, b]) is
greater than or equal to log 2. In this paper we extend that result as follows.
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Let L](m, [a, b]) be the subset of L(2, [a, b]) defined by

(1]m) ∀f ∈ L](m, [a, b]) ∃L ⊂ [a, b], L countable ∀y ∈ [a, b] \ L:

card f−1(y) ≥ m.
We show the following statement.

Theorem 4.3. Let f ∈ L](m, [a, b]). Then the topological entropy of f
is greater than or equal to logm. In particular , this is true for any map from
L(m, [a, b]) ⊂ L](m, [a, b]).
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Fig. 1. f ∈ L](3, [a, b]), ent(f) ≥ log 3

Our main result is rather delicate. One can easily find an interval map
of entropy zero that does not satisfy (1∞) for exactly one point from [a, b].

In this paper we use several times the following type of “horseshoe”.

Definition 0.1. Let (X, %) be a compact metric space, f :X → X be
continuous and S0, S1, . . . , Sm−1 ⊂ X be closed. We say that the sets
S0, S1, . . . , Sm−1 form an m-horseshoe if they are pairwise disjoint and

f(S0) ∩ f(S1) ∩ · · · ∩ f(Sm−1) ⊃ S0 ∪ S1 ∪ · · · ∪ Sm−1.

As an easy consequence of the definition of topological entropy we obtain
the following [DGS].

Proposition 0.2. Let (X, %) be a compact metric space and f :X → X
be continuous. If the sets S0, S1, . . . , Sm−1 ⊂ X form an m-horseshoe then
the topological entropy of f is greater than or equal to logm.
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Fig 2. The sets S0 = [0, b], S1 = [c, 1] form a 2-horseshoe

The paper is organized as follows. In Section 1 we give some basic no-
tation, definitions and known results (Theorems 1.1 and 1.3). Section 2 is
devoted to the lemmas used throughout the paper. In Section 3 we analyze
the properties of maps from L](m, [a, b]), m ∈ {∞, 2, . . .}. In Section 4 we
prove the key Lemma 4.1, Corollary 4.2 and Theorem 4.3.

Finally, Section 5 is devoted to an application of Theorem 4.3. We show
that the entropy of a Besicovitch function (preserving the Lebesgue measure)
is infinite.

1. Definitions and known results. By N we denote the set of posi-
tive integers. We will work with topological dynamics (X,T ), where X is a
compact metric space and T : X → X is a continuous map. (X,T ) is min-
imal if {T i(x): i ∈ N} is dense in X for each x ∈ X. A subset M of X is
T -invariant if T (M) ⊂ M , and minimal (in X) if M is closed, T -invariant
and (M,T |M) is minimal.

Let % be a metric on the space X. We will use Bowen’s definition of
topological entropy [DGS]. A set E ⊂ X is (n, ε)-separated (with respect
to T ) if, whenever x, y ∈ E, x 6= y then max0≤i≤n−1 %(T i(x), T i(y)) > ε.
For a compact set K ⊂ X we denote by s(n, ε,K) the largest cardinality of
any (n, ε)-separated subset of K. Put

ent(T,K) = lim
ε→0+

lim sup
n→∞

1
n

log s(n, ε,K)

and ent(T ) = ent(T,X). The quantity ent(T ) is called the topological entropy
of T .

A topological dynamics (Y, S) is a factor of (X,T ) if there is a continuous
surjective factor map h: X → Y such that h ◦ T = S ◦ h.
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Theorem 1.1 ([Bo]). If (Y, S) is a factor of (X,T ) then

ent(S) ≤ ent(T ) ≤ ent(S) + sup
y∈Y

ent(T, h−1({y})).

As usual, the ω-limit set ωT (x) of x ∈ X consists of all the limit points
of {T i(x): i ∈ N}. A set P ⊂ X is called a periodic orbit (of period n) if
P = {x, T (x), . . . , Tn−1(x)} for some x ∈ X and n ∈ N with Tn(x) = x. A
normalized Borel measure µ on X is T -invariant if µ(T−1(E)) = µ(E) for
each Borel set E ⊂ X.

Now we list several useful properties of minimal sets. As is well known
they can be considered in any topological dynamics.

Lemma 1.2. (i) For each x ∈ X, the ω-limit set ωT (x) contains some
minimal set.

(ii) Any minimal set in X is either finite and then a periodic orbit of T ,
or infinite and then uncountable.

(iii) If (X,T ) is minimal and a measure µ on X is T -invariant then
either X is finite and then µ is atomic, or X is infinite and then µ
is nonatomic. In any case suppµ = X.

(iv) Let M ⊂ X be minimal in X. If M is infinite then for each countable
closed set C ⊂ M and x ∈ M we have limn n

−1 card{0 ≤ i ≤
n− 1: T i(x) ∈ C} = 0.

Proof. See [BC] for (i)–(iii).
Let us prove (iv). Notice that by our assumption and (ii), M is un-

countable. Suppose to the contrary there is an increasing sequence {kn}∞n=1
such that limn k

−1
n C(kn, x) = a ∈ (0, 1], where C(n, x) = card{0 ≤ i ≤

n−1: T i(x) ∈ C}. Then using the standard method [DGS, Prop. 2.7] we can
find an atomic T -invariant measure µ for which µ(C) > 0 and suppµ (M ,
a contradiction with (ii) and (iii).

We will use the symbolic dynamics [DGS]. For m ∈ N consider the set
Nm = {0, 1, . . . ,m−1} as a space with the discrete topology, and denote by
Ωm the infinite product space

∏∞
i=0 Xi, where Xi = Nm for all i. The shift

map σm: Ωm → Ωm (in what follows we write σ instead of σm) is defined
by (σ(ω))i = ωi+1 for i ∈ N ∪ {0}. Obviously, each (Ωm, σ) is a topological
dynamics.

It is known [DGS, Prop. 16.11] that for Ω ⊂ Ωm closed,

(2) ent(σ,Ω) = lim
n

1
n

log cardΩ(n),

where Ω(n) = {ω(n) = (ω0, . . . , ωn−1): ω ∈ Ω}.
The following remarkable result concerns the topological entropy of sub-

shifts in (Ωm, σ).



Topological entropy versus level sets 15

Theorem 1.3 ([G]). Let m ∈ N. For any positive ε there is a minimal
set Γ in Ωm such that ent(σ, Γ ) > −ε+ logm.

The following easy lemma is needed in the proof of Theorem 4.3. Put
Ωj,k = {ω ∈ Ωm: ω2i+j 6= k for each i ∈ N ∪ {0}} for j ∈ N2, k ∈ Nm, and

(3) Ω(M(∞)) =
⋃

(j,k)∈N2×Nm
Ωj,k.

Lemma 1.4. Let Ω = Ω(M(∞)) be as in (3).

(i) The set Ω is closed σ-invariant in Ωm and ent(σ,Ω)= 1
2 log[m(m−1)].

(ii) For each k0 ≥ 2,
1
2

log[m(m− 1)] ≤ 1
k0

log(m− 1) +
k0 − 1
k0

logm.

Proof. (i) The closedness of Ω is clear. Since σ(Ω) ⊂ Ω, we can compute
the entropy ent(σ,Ω) using (2). Obviously, for each n ∈ N and (j, k) ∈
N2×Nm we have cardΩj,k(2n) = [m(m−1)]n, hence the conclusion follows.
Property (ii) is clear.

2. Lemmas. In what follows, by [a, b], resp. (a, b) we always denote a
compact, resp. open real interval. As usual, a map f ∈ C([a, b]) has a strict
local maximum, resp. minimum at a point x ∈ [a, b] if there is an ε > 0 such
that for each y ∈ [a, b] ∩ ((x − ε, x + ε) \ {x}) we have f(y) < f(x), resp.
f(y) > f(x). In this case we say that f(x) is a locally extremal value. We
set Cextrem(f) = {y ∈ [a, b]: y is a locally extremal value} and Cinter(f) =
{y ∈ [a, b]: f−1(y) contains an interval}.

The following lemma is well known.

Lemma 2.1. Let f ∈ C([a, b]). Then the set Cinter(f) ∪ Cextrem(f) is
countable.

Proof. Obviously Cinter(f) is countable. Moreover, there is a countable
set of points in [a, b] where a map f attains its strict local extreme [Br],
hence also Cextrem(f) is countable.

Let J = {Jα}α and K = {Kβ}β be two systems of open subintervals of
(a, b). Then K is said to be finer than J if every Kβ is contained in some
Jα. In what follows by a countable set we also mean a finite one.

Lemma 2.2. (i) For any T ⊂ R the set {x ∈ T : x is a one-sided limit
point of T} is countable.

(ii) Let J = {Jα}α be a system of open subintervals of (a, b) for which
(a, b) \⋃α Jα is countable. There is a countable system K = {Kn}n
of pairwise disjoint open subintervals of (a, b) that is finer than J
and such that (a, b) \⋃nKn is countable.
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Proof. Conclusion (i) is clear.
Let us prove (ii). Since each Jα can be expressed as an increasing union

of open intervals with rational endpoints, there is a countable system L =
{Ln}n∈N of open intervals which is finer than J and such that (a, b) \⋃
n∈N Ln=(a, b) \⋃α Jα. To construct K, in the first step we put K1 =L1.

Suppose we have already defined open intervals K1, . . . ,Kl in m− 1 steps;
then the new open intervals from K given by the mth step are the nonempty

connected components of Lm \
⋃l
i=1 Ki. Now the reader can verify that the

resulting countable system K satisfies (ii).

As usual, for y ∈ [a, b] by a left neighbourhood of y in the relative
topology we mean any set containing an interval (y− δ, y]∩ [a, b] with some
δ positive; right and two-sided neighbourhoods are defined analogously.

Definition. Let f ∈ C([a, b]). We say that x ∈ [a, b] is left regular if for
each two-sided neighbourhood U(x) of x the set f(U(x)) is a left neighbour-
hood of f(x); a right regular , resp. regular point is defined analogously. We
denote the corresponding sets of regular points by Rlreg(f), Rrreg(f), Rreg(f)
respectively. Obviously, Rreg(f) = Rlreg(f) ∩Rrreg(f).

For f ∈ C([a, b]) we define the following sets (see Lemma 2.1):

Creg(f) = {y ∈ (a, b): card(f−1(y) ∩Rreg(f)) ≥ m},
Crreg(f) = {y ∈ (a, b): y 6∈ Creg ∪ Cextrem ∪ Cinter

& card(f−1(y) ∩Rrreg(f)) ≥ m},
Clreg(f) = {y ∈ (a, b): y 6∈ Crreg ∪ Creg ∪ Cextrem ∪ Cinter

& card(f−1(y) ∩Rlreg(f)) ≥ m}.

For y ∈ [a, b] we put T (y) = {(t0, . . . , tm−1): t0 < · · · < tm−1 & ti ∈
f−1(y)} ⊂ [a, b]m and fix a map φ: Clreg(f) ∪ Crreg(f) ∪ Creg(f) → [a, b]m

satisfying

(∗) φ(y) = (t0, . . . , tm−1) ∈ T (y), ti ∈ f−1(y) ∩Rj(f) if y ∈ Cj(f),

j ∈ {lreg, rreg, reg}.

The next lemma will be important when proving our main result. We
use the notation C = Clreg(f)∪Crreg(f)∪Creg(f), Nm = {0, 1, . . . ,m− 1};
for t ∈ Rm we put ‖t‖ = min0≤i≤m−2 |ti+1− ti|, and for a map f , y ∈ R and
ε > 0,

J(ε, y) =





(y − ε, y), y ∈ Clreg(f),

(y, y + ε), y ∈ Crreg(f),

(y − ε, y + ε), y ∈ Creg(f).
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Lemma 2.3. Let f ∈ C([a, b]).

(i) If y ∈ [a, b] and y 6∈ Cinter(f) then f−1(y) ⊂ Rlreg(f) ∪Rrreg(f).
(ii) For any y′ ∈ C there is an ε(y′) > 0 such that J(ε(y′), y′) ⊂ (a, b)

and

∀y ∈ J(ε(y′), y′) ∃t ∈ T (y) ∀i ∈ Nm: ti ∈ (φ(y′)i − δ, φ(y′)i + δ),

where δ = ‖φ(y′)‖/100 (see (?)).

In statements (iii)–(iv) we assume that the set (a, b) \ C is countable.

(iii) There exists a countable system {Kn}n of pairwise disjoint open
subintervals of (a, b) that is finer than {J(ε(y), y)}y∈C (see (ii)) and
such that [a, b] \⋃nKn is countable. Moreover , there exists a map
Ψ : N→ C such that Kn ⊂ J(ε(Ψ(n)), Ψ(n)) for each n ∈ N.

(iv) There is a map ψ:
⋃
nKn → [a, b]m such that if Kn ⊂ J(ε(y′), y′)

where Ψ(n) = y′ then for each y ∈ Kn we have ψ(y) = t ∈ T (y) and

∀i ∈ Nm: ti ∈ (φ(y′)i − δ, φ(y′)i + δ).

Proof. (i) The reader can easily verify that a point x ∈ [a, b] is not (left,
right) regular if and only if f is constant on some neighbourhood of x.

Let us prove (ii) when y′ ∈ Clreg(f) (the other cases are similar). Since
y′ ∈ Clreg(f), for φ(y′) ∈ T (y′) and δ defined above the set f((φ(y′)i − δ,
φ(y′)i+δ)) is a left neighbourhood of y′ for each i ∈ Nm. Now we can choose
ε(y′) sufficiently small to satisfy

J(ε(y′), y′) ⊂
m−1⋂

i=0

f((φ(y′)i − δ, φ(y′)i + δ)),

which proves (ii) for y′ ∈ Clreg(f).
Let us show (iii). Notice that if (a, b) \ C is countable then so is A =

(a, b)\⋃y∈C J(ε(y), y). Indeed,A ⊂ (A∩C)∪([a, b]\C) and A∩C is countable
by Lemma 2.2(i). Now (iii) is a consequence of Lemma 2.2(ii). The existence
of Ψ comes from the fact that {Kn}n is finer than {J(ε(y), y)}y∈C .

Property (iv) is an easy consequence of (ii) and (iii).

3. Properties of maps from L](m, [a, b]), m ∈ {∞, 2, 3, . . .}. In what
follows for f ∈ C([a, b]) we use the notation

B1(f)={x∈ [a, b]: f(y)≥f(x), ∀y∈ [a, x] & f(x)≥f(y), ∀y∈ [x, b]},
B2(f)={x∈ [a, b]: f(y)≤f(x), ∀y∈ [a, x] & f(x)≤f(y), ∀y∈ [x, b]},

and B(f) = B1(f)∪B2(f). If there is no ambiguity we often write Bi, resp.
B instead of Bi(f), resp. B(f).
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Fig 3. f ∈ L(2, [a, b]) and x1, x2 ∈ B1(f)

For f ∈ L(m, [a, b]) and y ∈ [a, b] we put my = my(f) = min f−1(y) and
My = My(f) = max f−1(y). The closed sets S0 = S0(f), Sm−1 = Sm−1(f),
S(0,m−1) = S(0,m−1)(f) are defined as

S0 = {my: y ∈ [a, b]},
(4)

Sm−1 = {My: y ∈ [a, b]}, S(0,m−1) = S0 ∩ Sm−1.

Since for every m ∈ {∞, 2, 3, 4, . . .}
L(m, [a, b]) ⊂ L](m, [a, b]) ⊂ L(2, [a, b])

we can apply the results developed in [B1] for maps from L(2, [a, b]).

Lemma 3.1 ([B1]). Let f ∈ L(2, [a, b]) and S(0,m−1) 6= ∅.
(i) Either B1 or B2 is empty , hence B ∈ {B1, B2}.
(ii) S(0,m−1) ⊂ B \ {a, b}.

(iii) The closed set B can be expressed as a union (n ≥ 1)

{bn}n<K ∪
⋃

n<L
[b−n , b

+
n ],

where b−n < b+n for each cardinal n, 1 ≤ n < L; in the topology
of [a, b], the points a, b are not limit points of the set {bn}n<K ∪⋃
n<L{b−n , b+n } and no point bm ∈ {bn}n<K is a two-sided limit

point of that set , hence K, L are at most countable cardinals.
(iv) If ωf ⊂ B1 is an ω-limit set then either ωf = {p} and p ∈ Fix(f),

or ωf is a periodic orbit of period 2.
(v) If ωf ⊂ B2 is an ω-limit set then ωf = {p} and p ∈ Fix(f).
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(vi) a ∈ B1 (a ∈ B2), resp. b ∈ B1 (b ∈ B2) if and only if f(a) = b
(f(a) = a), resp. f(b) = a (f(b) = b).

(vii) card(B1 ∩ Fix(f)) ≤ 1.

Lemma 3.2. Let f ∈ L(2, [a, b]).

(i) If B1(f) = B2(f) = ∅ then S(0,m−1) = ∅.
(ii) If B1(f) 6= ∅ 6= B2(f) then for some a ≤ a1 < b1 ≤ b either

f([a, a1]) = {a}, f([b1, b]) = {a}, B2(f) = [a, a1], B1(f) = [b1, b], or
f([a, a1]) = {b}, f([b1, b]) = {b}, B1(f) = [a, a1], B2(f) = [b1, b]. In
any case S(0,m−1) = ∅.

Proof. Property (i) is a consequence of Lemma 3.1(ii). For (ii) see [B,
Cor. L.2.1].

We have seen that for f ∈ L](m, [a, b]) if ωf (x) ⊂ B then ωf (x) has a
simple structure. In fact it is a periodic orbit and cardωf (x) ≤ 2. However,
the number of different ω-limit sets that are subsets of B can be infinite.
Fortunately, for each such f one can consider a simplified version g of f
(more precisely, a factor ([a, b], g) of ([a, b], f)) which is in L](m, [a, b]) again
and has a very poor structure of ω-limit sets in B(g). The precise statement
is given in Lemma 3.3.

Now we introduce some useful notation. For intervals J = [α, β] ⊂ [a, b]
and K = [γ, δ] ⊂ [a, b], where a ≤ α < γ ≤ δ < β ≤ b, the symbol h(J,K)
denotes a continuous nondecreasing piecewise affine map from [a, b] onto
[a, b] that is constant on [a, α], K and [β, b].

Lemma 3.3. Let f ∈ L](m, [a, b]) and assume that ∅ 6= B(f) ∈ {B1(f),
B2(f)}. There is a map g ∈ L](m, [a, b]) such that ([a, b], g) is a factor of
([a, b], f) and one of the following possibilities holds.

(i) B2(g) = ∅ and if ωg(x) ⊂ B1(g) then either ωg(x) = {a, b} or
ωg(x) = {p} for some p ∈ Fix(g) ∩B1(g).

(ii) B1(g) = ∅ and if ωg(x) ⊂ B2(g) then ωg(x) = {p} for some p ∈
Fix(g) ∩ {a, b}.

Proof. Without loss of generality we can assume that B1(f) 6= ∅ and
B2(f) = ∅. We show that (i) holds in this case. Set

D = {(x, f(x)) ∈ B1 ×B1: f2(x) = x < f(x)} ∪ {(a, b)}.
By Lemma 3.1(vii),(iv) there is nothing to prove if D = {(a, b)}. In this case
we put g = f .

For (u, v) ∈ D we can consider a uniquely determined factor ([a, b], fu)
of ([a, b], f) with a factor map h(J,K), where α = u, β = v and γ = δ. Now,

y := max{u: (u, v) ∈ D & fu ∈ L](m, [a, b])}
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exists, since otherwise f 6∈ L](m, [a, b]). Define

D1 = {x: x > y & (x, f(x)) ∈ D}.
If D1 = ∅, we can put g = fy. Otherwise z := minD1 exists, z > y and for
(y, ỹ), (z, f(z)) ∈ D there is a factor ([a, b], g) of ([a, b], f) with a factor map
h(J,K), where α = y < γ = z < δ = f(z) < β = ỹ.

Summarizing, at least one of the following possibilities holds: (i) g = f ,
(ii) g(a) = b, g(b) = a, (iii) g(c) = c, where c = h(J,K)(γ) ∈ (a, b). This
implies that B2(g) = ∅.

Obviously, g ∈ L](m, [a, b]) and from Lemma 3.1(iv) and our choice of y
and z satisfying D1 ∩ (y, z) = ∅ property (i) follows.

If B2(f) 6= ∅ and B1(f) = ∅ then the existence of g satisfying (ii) can be
shown similarly.

For g ∈ L](m[a, b]) consider the following four properties (A)–(D):

(♠)





(A) B1(g) = B2(g) = ∅;
(B) B1(g) 6= ∅ 6= B2(g);

(C) g satisfies the conclusion of Lemma 3.3(i);

(D) g satisfies the conclusion of Lemma 3.3(ii).

We set

L?(m, [a, b]) = {g ∈ L](m, [a, b]): g has some of properties (A)–(D)}.
Lemma 3.4. Let g ∈ L?(m, [a, b]). There is a positive integer k0 = k0(g)

≥ 2 such that for any x ∈ B(g) we have

gk(x) ∈ ([a, b] \B(g)) ∪ (Fix(g) ∩B(g)) ∪ {a, b} for some k < k0.

Proof. The statement is true for g satisfying (A). For (B), use Lemma
3.2(ii). Now, suppose (C) holds. By Lemma 3.1(iii) the endpoints a, b are
not limit points of {bn}n<K∪

⋃
n<L{b−n , b+n }. By the same lemma, if Fix(g)∩

B1(g) 6= ∅ then no point in this set is a two-sided limit point of B1(g). Since
by our assumption B1(g) contains no other ω-limit set (a 2-cycle), there is
a k0 ≥ 2 such that B(g) \ ((Fix(g) ∩ B(g)) ∪ {a, b}) contains at most k0

consecutive iterates of any point of B(g). The case when g satisfies (D) can
be verified similarly.

The next lemma uses the notation introduced in Section 2 before Lem-
ma 2.3.

Lemma 3.5. Let g ∈ L?(m, [a, b]). Then (a, b) \ (Clreg(f) ∪ Crreg(f) ∪
Creg(f)) is countable.

Proof. Lemma 2.1 implies that it is sufficient to show

(a, b) \ (Clreg(f) ∪ Crreg(f) ∪ Creg(f)) ⊂ Cinter(f) ∪ Cextrem(f) ∪ L,
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where L is the countable set given in (1]m) of the introduction. Take y ∈
(a, b) \ (Clreg(f) ∪ Crreg(f) ∪ Creg(f)) and suppose that y 6∈ Cinter(f) ∪ L.
Then card f−1(y) ≥ m and Lemma 2.3(i) shows that card f−1(y) is finite.
Since y 6∈ Creg(f) there exists an x ∈ f−1(y) which is not regular. Since x
is an isolated point of f−1(y) we have f(x) = y ∈ Cextrem(f).

Let g ∈ L?(m, [a, b]). We define closed sets S0 = S0(g), S1 = S1(g), . . . ,
Sm−1 = Sm−1(g) as follows: S0, Sm−1 are as in (4). By Lemma 3.5 we can
use the pairwise disjoint countable system {Kn}n and the map ψ:

⋃
nKn →

[a, b]m from Lemma 2.3(iii),(iv). For each i ∈ {1, . . . ,m− 2} we put

Si = Si(g) =
{
ψ(y)i: y ∈

⋃

n

Kn

}
.

Also we put

(5) S = S(g) =
∞⋂

i=0

g−i(S0 ∪ S1 ∪ · · · ∪ Sm−1).

The reader can verify that since g ∈ L?(m, [a, b]), by Lemmas 3.5 and 2.3 the
sets Si, i ∈ Nm, satisfy [a, b] =

⋂m−1
i=0 g(Si) ⊃

⋃m−1
i=0 Si. There are a finite

number of nontrivial intersections of elements of H = {S0, S1, . . . , Sm−1},
i.e., of sets

S(i(1),...,i(q)) =
q⋂

j=1

Si(j), 0 ≤ i(1) < · · · < i(q) ≤ k − 1 & 2 ≤ q ≤ k.

We define the kernel of H by KerH =
⋃
i(1) 6=i(2) S(i(1),i(2)), and the center

of H by CenH =
⋂m−1
i=0 Si. Clearly, both KerH and CenH are closed.

Lemma 3.6. Let g ∈ L?(m, [a, b]), H = {S0, S1, . . . , Sm−1}, and KerH
be as above. Then g(KerH) is countable.

Proof. By our construction of S0, . . . , Sm−1, if x ∈ S(i,j) for i 6= j then
g(x) ∈ [a, b] \⋃nKn, which is a countable set by Lemma 2.3(iii).

4. The proof of the main result. As before, for g ∈ L?(m, [a, b])
we consider the closed sets S0(g), . . . , Sm−1(g) and also the set S = S(g)
given by (5). If x ∈ S then by its itinerary with respect to S0, S1, . . . , Sm−1

we mean any ω ∈ Ωm such that gi(x) ∈ Sωi for i ∈ N ∪ {0}. For M ⊂ S
we denote by Ω(M) the least closed σ-invariant subset of Ωm that con-
tains all possible itineraries of points of M with respect to S0, S1, . . . , Sm−1.
In particular, if M = Fix(f) ∩ CenH 6= ∅ then Ω(M) = Ωm, hence
ent(σ,Ω(M)) = logm.

For g ∈ L?(m, [a, b]) we fix the value k0 = k0(g) ≥ 2 given by Lemma
3.4. Here is the key lemma:
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Lemma 4.1. Let g ∈ L?(m, [a, b]). If M ⊂ S is minimal and M 6=
Fix(g) ∩ CenH then

(6) ent(σ,Ω(M)) ≤ max
(

ent(g,M),
1
k0

log(m− 1) +
k0 − 1
k0

logm
)
.

Proof. Put X = {(x, ω): x ∈ M & gi(x) ∈ Sωi for each i ∈ N ∪ {0}}.
The map G = g × σ defined by G(x, ω) = (g(x), σ(ω)) is continuous on the
compact metric space X (with respect to the product metric). Moreover,
the dynamical system (M,g), resp. (Ω(M), σ) is a factor of (X,G) given
by the (factor map) projection Π1: X → M , resp. Π2: X → Ω(M). Using
Theorem 1.1 we see that

(7) ent(σ,Ω(M)) ≤ ent(G) ≤ ent(g,M) + sup
x∈M

ent(G,Π−1
1 ({x})).

Moreover, Λx = Π2(Π−1
1 ({x})) is a closed subset of Ωm whenever x ∈ M .

By (2) we have

(8) ent(G,Π−1
1 ({x})) = lim

n

1
n

log cardΛx(n).

Concerning the relationship of the sets M , CenH, KerH we consider
several possibilities (see Lemma 1.2).

Case I: M is a cycle. Then ent(g,M) = 0 and to prove (6) we need to
verify that

ent(σ,Ω(M)) ≤ 1
k0

log(m− 1) +
k0 − 1
k0

logm.

Case I(a):M∩CenH = ∅. This is true if g satisfies (A) or (B) of (♠) (see
Lemma 3.2). Our assumption implies that for each x ∈M and positive inte-
ger n we have cardΛx(n) ≤ (m− 1)n, hence (8) yields ent(G,Π−1

1 ({x})) ≤
log(m−1). Now the property (6) is a consequence of (7) and of the inequality
log(m− 1) ≤ 1

k0
log(m− 1) + k0−1

k0
logm.

Case I(b): M ∩CenH 6= ∅. Then g satisfies (C) or (D) of (♠). Moreover,
∅ 6= CenH ⊂ S(0,m−1) ⊂ B \ {a, b} by Lemma 3.1(ii). Since M 6= Fix(g) ∩
CenH, using Lemma 3.3 we obtain M \ B 6= ∅. By Lemma 3.4, for each
n ∈ N,

cardΩ(M)(n) ≤ cardM · (m− 1)n/k0 mn−n/k0 ,

hence ent(σ,Ω(M)) ≤ 1
k0

log(m− 1) + k0−1
k0

logm by (2). Thus, (6) is true
in this case.

Case II: M is infinite. In this case we show that ent(G,Π−1
1 ({x})) = 0

for each x ∈ M . Then from (7) we will obtain ent(σ,Ω(M)) ≤ ent(g,M),
proving (6).
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Fix x ∈ M , put C = M ∩ KerH and C̃ = M ∩ g(KerH), and set, as in
the proof of Lemma 1.2(iv), C(n, x) = card{0 ≤ i ≤ n− 1: gi(x) ∈ C} and
C̃(n, x) = card{0 ≤ i ≤ n− 1: gi(x) ∈ C̃}. Clearly C(n, x) ≤ C̃(n+ 1, x) for
each n. If s(n, ε) = s(n, ε,Π−1

1 ({x})) denotes the maximal cardinality of an
(n, ε)-separated subset of Π−1

1 ({x}) (with respect to G), by the definition
of KerH we have s(n, ε) ≤ mC(n,x) for any sufficiently small ε. It follows
from Lemmas 3.6 and 1.2(iv) that

lim sup
n→∞

1
n

log s(n, ε) ≤ lim
n→∞

1
n

logmC(n,x) ≤ lim
n→∞

1
n

logmC̃(n+1,x) = 0,

hence ent(G,Π−1
1 ({x})) = 0.

Corollary 4.2. Under the assumptions of Lemma 4.1,

ent(σ,Ω(M)) ≤ max
(

ent(g),
1
k0

log(m− 1) +
k0 − 1
k0

logm
)
.

Proof. By the definition, ent(g,M) ≤ ent(g). Now apply Lemma 4.1.

As before, we use the notation Nm = {0, 1, . . . ,m− 1}.
Definition. Let Ω ⊂ Ωm and j, k ∈ N, j ≤ k. We say that ω(k) ∈ Ω(k)

contains ω = (ω0, . . . , ωj−1) ∈ N j
m if for some l ∈ {0, . . . , k − j} and each

i ∈ {0, . . . , j − 1},
ω(k)l+i = ωi.

Definition. Let g ∈ L?(m, [a, b]). We will say that ω = (ω0, . . . , ωj−1)
∈ N j

m is a j-itinerary of x ∈ [a, b] if gi(x) ∈ Sωi(g) for i ∈ {0, . . . , j − 1}.
We say that a j-itinerary of x does not exist if {x, . . . , gj−1(x)} * S0(g) ∪
S1(g) ∪ · · · ∪ Sm−1(g).

Combining Lemma 4.1 and Corollary 4.2 with the results of Sections 1
and 2 we now obtain the main result of this paper.

Theorem 4.3. Let f ∈ L](m, [a, b]). Then the topological entropy of f
is greater than or equal to logm. In particular , this is true for any map from
L(m, [a, b]) ⊂ L](m, [a, b]).

Proof. Let f ∈ L](m, [a, b]). There is nothing to prove if KerH = ∅. In
this case S0(f), S1(f), . . . , Sm−1(f)} form an m-horseshoe and so ent(f) ≥
logm by Proposition 0.2.

Now, suppose KerH 6= ∅. By Lemmas 3.3 and 3.4, instead of f we can
consider the map g ∈ L?(m, [a, b]) such that ent(f) ≥ ent(g). Obviously it
is sufficient to prove ent(g) ≥ logm.

In what follows all sets are taken with respect to g. The inequality
ent(g)≥ logm is clear if KerH = ∅ since in this case the sets S0, S1, . . . , Sm−1

form an m-horseshoe.
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Suppose to the contrary that KerH 6= ∅ and ent(g) < logm. Let k0 ≥ 2
be as in Lemma 3.4. Using Theorem 1.3 we can consider a minimal set Γ in
Ωm such that

(9) ent(σ, Γ ) > max
(

ent(g),
1
k0

log(m− 1) +
k0 − 1
k0

logm
)
.

Lemma 1.2(i) shows that for each x ∈ KerH there is a minimal set M(x)
in [a, b] such that M(x) ⊂ ωg(x).

Put BS = {x ∈ S ∩ KerH: M(x) 6= Fix(g) ∩ CenH} (see (5) for S).
We deduce from Lemma 4.1 that (6) is true for M(x) and ent(σ,Ω(M(x)))
when x ∈ BS . Hence by the minimality of Γ , Lemma 1.4 and (9) (for x =∞
see (3)),

∀x ∈ BS ∪ {∞}: Ω(M(x)) ∩ Γ = ∅.
Since Γ is σ-invariant we even see that for each x ∈ BS ∪ {∞} there is
n(x) ∈ N such that

(10) no γ ∈ Γ (m) contains ω(n(x))

whenever m ≥ n(x) and ω(n(x)) ∈ Ω(M(x)(n(x)).
Now we define an open cover {U(x)}x∈KerH of KerH in three steps:

(i) If x ∈ (KerH) \ S and gm(x)(x) /∈ S0 ∪ S1 ∪ · · · ∪ Sm−1, choose U(x)
in such a way that gm(x)(U(x)) ∩ (S0 ∪ S1 ∪ · · · ∪ Sm−1) = ∅.

(ii) If x ∈ BS then we can consider m(x) ∈ N such that for any itinerary
ω of x, ω(m(x)) contains some element of Ω(M(x))(n(x)); now, using the
continuity of g, choose a neighbourhood U(x) of x such that for any y ∈ U(x)
either the m(x)-itinerary of y does not exist or for any itinerary ω of y,
ω(m(x)) contains some element of Ω(M(x))(n(x)).

(iii) Let x ∈ S∩KerH be such that M(x) = Fix(g)∩CenH = {p}. Since
CenH ⊂ S(0,m−1), from Lemmas 3.1(ii) and 3.3(i) we get p ∈ B1∩(a, b). We
know that card g−1(p) ≥ 2. Let z ∈ g−1(p) \ {p}. Using the definition (4) of
S0, Sm−1 the reader can verify that if z < p, resp. z > p then for some small
positive η we have S0 ∩ (p− η, p) = ∅, resp. Sm−1 ∩ (p, p+ η) = ∅. Therefore
we can consider m(x) ∈ N and U(x) such that for any y ∈ U(x) either
gi(y) = p for some i ≤ m(x), or the m(x)-itinerary of y does not exist, or
for any itinerary ω of y, ω(m(x)) contains some element ofΩ(M(∞))(n(∞)).

Obviously we have found the pairs U(x),m(x), where {U(x)}x∈KerH is
an open cover of the compact set KerH; let {U(x1), . . . , U(xk)} be its finite
subcover, and put

k? = max{m(x1), . . . ,m(xk)}.
To finish the proof we define

Ri = Si \ (Fix(g) ∩ CenH), i ∈ Nm.
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Since
⋂m−1
i=0 g(Ri) ⊃

⋃m−1
i=0 Ri, for each l ∈ N and γ ∈ Γ (l) there is x =

x(γ) ∈ ⋃m−1
i=0 Ri such that for each i ∈ Nl we have

(11) gi(x) ∈ Rγi , gi(x) /∈ Fix(g) ∩ CenH.
It is clear that the sets Ti = Ri \

⋃k
j=1 U(xj), i ∈ Nm, are closed. Moreover,

δ = min{dist(Ti, Tj): i 6= j} > 0.

Suppose that for some l > k?, γ ∈ Γ (l), x(γ) and i∈{0, . . . , l − 1− k?}
we have gi(x(γ)) ∈ U(xj). Then by definition of {U(x)}x∈KerH either
the k?-itinerary of gi(x(γ)) does not exist, or γ contains some element of
Ω(M(xj))(n(xj)), which is impossible by (11) and (10). This implies that
for any l > k?, γ ∈ Γ (l) and x(γ) we have

{gi(x(γ))}l−1−k?
i=0 ⊂ T0 ∪ T1 ∪ · · · ∪ Tm−1.

Now, estimating the topological entropy of g we have, for some ε < δ
and each l > k?,

s(l − 1− k?, ε, [a, b]) ≥ cardΓ (l)/mk? ,

hence by (9) and (2), ent(g) ≥ ent(σ, Γ ) > ent(g)—a contradiction. The
proof of our theorem is finished.

5. The topological entropy of a Besicovitch function. For the
Lebesgue measure λ we define

C(λ) = {f ∈ C([0, 1]): ∀ Borel A ⊂ [0, 1]: λ(A) = λ(f−1(A))}.
By a Besicovitch function we mean a function which has a unilateral

derivative (finite or infinite) at no point. In [B2], [B3] we have constructed
Besicovitch functions in C(λ). Now we show that such maps have an infinite
topological entropy. First, let us repeat the construction from [B2]. Also we
correct an inaccuracy there (compare the definition of φ).

Construction. Let k > 4. Set

D = [0, 1/2] \ L, where L =
∞⋃

m=1

2m−1⋃

p=1

rm,p,

and the open intervals rm,p = (am,p, bm,p) are constructed as follows:

(α) d1,1 = [0, 1/2], r1,1 ⊂ d1,1, λ(r1,1) = 1/2k, b1,1 is the centre of d1,1;

(β) if dn,1, . . . , dn,2n−1 are the intervals of [0, 1/2] \ ⋃n−1
q=1

⋃2q−1

p=1 rq,p for
n > 1 (from left to right), then rn,p ⊂ dn,p, bn,p is the centre of dn,p
and λ(rn,p) = 1/2kn.

Obviously, λ(L) = 1/2(k − 2) and λ(D) = (k − 3)/2(k − 2).
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Let φ: [0, 1/2]→ [0, 1] be a nondecreasing continuous function such that
φ(0) = 0, φ(1/2) = 1, φ is constant on every interval rm,p, and φ(rm,p) =
{(2p− 1)/2m}. Define a function p: [0, 1]→ [0, 1] by

p(x) =
{
φ(x), x ∈ [0, 1/2],

φ(1− x), x ∈ [1/2, 1].

The function p and the interval [0, 1] form the well-known step triangle [P].
The above procedure will be called the construction of a step triangle

with base [0, 1], height 1 and parameter k.
We have seen that the base [0, 1] lies below the vertex (1/2, 1)—in

such a case we say that the step triangle is positively oriented. The set
{(x, p(x)): x ∈ [0, 1/2]}, resp. {(x, p(x)): x ∈ [1/2, 1]} is the left, resp. right
side of triangle. Further, put uy = {(x, y): x ∈ [0, 1]} and let g(f) be the
graph of the function f .

Now, we can construct a function f as follows:

(c0) construct a positively oriented step triangle with base [0, 1], height 1
and parameter k; the sides of the step triangle define a function f0;

(cn) for n > 0, construct step triangles (positively or negatively oriented)

whose bases are intervals of the set
⋃2n−1

p=1 u2p−1/2n∩g(fn−1), height
1/2n and parameter k; the constructed triangles are placed inside
the bigger triangle, with bases on its sides; the union of sides of all
triangles constructed so far defines a function fn.

Finally, put f = limn→∞ fn (obviously %(fn−1, fn) = 1/2n).

Theorem 5.1 ([B2], [B3]). f ∈ C(λ) and f is a Besicovitch function.

In order to illustrate how our Theorem 4.3 can be used we will prove
that ent(f) =∞. Since ent(fn) = n ent(f) for each n ∈ N, by Theorem 4.3
it is sufficient to show that

Theorem 5.2. f2 ∈ L](∞, [0, 1]).

Proof. Since f(0) = f(1) = 0 and f(1/2) = 1 we have f 2 ∈ L(2, [0, 1]).
Put M = {p/2n: n ∈ N ∪ {0}, p ∈ {0, 1, . . . , 2n}} and suppose that y ∈
[0, 1] \M . We will show that card f−1(y) = ∞. Otherwise there would be
the smallest step triangle T such that uy has a nonempty intersection with its
sides. Without loss of generality we can assume that this step triangle T has
a positive orientation, it is of height 1/2n and has its base in u(2p−1)/2n . Since
y /∈ M there is a unique positive integer m such that for L =

∑m
i=1 1/2n+i

we have

y ∈
(

2p− 1
2n

+ L− 1
2n+m ,

2p− 1
2n

+ L

)
.

Then from our construction it follows that uy has a nonempty intersection
with sides of a negatively oriented step triangle (placed inside T and with
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base on a side of T ) of height 1/2n+m and with base in u(2p−1)/2n+L. This
is a contradiction.

Now, from (f2)−1 = f−1(f−1) we obtain

card(f2)−1(y)
{≥ 2, y ∈M,

=∞, y 6∈M.

Since M is countable the conclusion f 2 ∈ L](∞, [0, 1]) follows.
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