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A bilinear version of Holsztynski’s theorem on
isometries of C(X)-spaces

by

ANTONIO MORENO GALINDO and
ANGEL RODRIGUEZ PALACIOS (Granada)

Abstract. We prove that, for a compact metric space X not reduced to a point, the
existence of a bilinear mapping ¢ : C'(X) x C(X) — C(X) satisfying || f o g|| = || f|| llg]| for
all f,g € C(X) is equivalent to the uncountability of X. This is derived from a bilinear
version of Holsztyriski’s theorem [3] on isometries of C'(X)-spaces, which is also proved in
the paper.

1. Introduction. A celebrated theorem of W. Holsztynski [3] asserts
that, if X and Z are compact Hausdorff topological spaces, and if T :
C(X) — C(Z) is a linear isometry, then there exist a closed subset Zj
of Z, a continuous surjective mapping ¢ : Zg — X, and a norm-one ele-
ment o € C(Z) satisfying |a(z)] =1 and T(f)(z) = a(2) f(p(z)) for every
(z,f) € Zyp x C(X). As a main result, we prove that, if X,Y, Z are compact
Hausdorff topological spaces, and if o : C(X) x C(Y) — C(Z) is a bilin-
car mapping satisfying |1 o gll = |f1 gl for every (f,9) € C(X) x C(Y),
then there exist a closed subset Zy of Z, a continuous surjective mapping
v :Zy — X XY, and a norm-one element o € C(Z) satisfying |a(z)] = 1
and

(fo9)(z) = alz)f(mx(p(2))g(my (¢(2))
for every (z,f,g) € Zop x C(X) x C(Y), where 7y : X xY — X and
7y : X XY — Y stand for the natural coordinate projections. We note
that Holsztynski’s original theorem follows from the new bilinear version by
taking the space Y reduced to a point.

We established the main result just stated while attempting to determine
those compact Hausdorff topological spaces X such that the Banach space
C(X) is “absolute-valuable”. That a Banach space E is absolute-valuable
means that there exists a bilinear mapping ¢ : F x E — E satisfying || ¢ x|
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= ||&]| ||x]| for all & x € E. The reader is referred to [1] for the present
status of the theory of such spaces. We derive from the main result that,
if X is a compact Hausdorff topological space such that C(X) is absolute-
valuable, then X must be either reduced to a point or not scattered. Thus we
rediscover the fact, first proved in [1], that C'(X) is not absolute-valuable
when we take X equal to the one-point compactification of any infinite
discrete space. We also deduce that, in the case when the compact space
X is metrizable and not reduced to a point, the Banach space C(X) is
absolute-valuable if and only if X is uncountable.

2. The main result. Throughout this paper K will denote the field of
real or complex numbers. The field K will remain fixed, and, for a compact
Hausdorff topological space X, C(X) will stand for the Banach space over
K of all K-valued continuous functions on X.

THEOREM 2.1. Let X,Y, Z be compact Hausdorff topological spaces, and

let o: C(X) x C(Y) — C(Z) be a bilinear mapping satisfying
1 ogll = Lf gl
for every (f,g9) € C(X) x C(Y). Then there exist a closed subset Zy of Z,
a continuous surjective mapping ¢ : Zo — X XY, and a norm-one element
a € C(Z) satisfying |a(z)| =1 and
(fo9)(z) = alz)f(mx(p(2)))g(ry(¢(2)))

for every (z,f,g9) € Zy x C(X) x C(Y). Here, rx : X xY — X and
my : X XY — Y denote the natural coordinate projections.

Proof. Given a compact Hausdorff topological space K, we denote by 15
the constant function equal to 1 on K, and, for k£ in K, we put

Sk =A{f € C(K) : |f[[=1=f(F)}.
Given compact Hausdorff topological spaces K and L, an element k of K,
and a linear isometry 7' : C(K) — C(L), we put

QF:={le L:T(Sy) C S}

We will apply several times the following result, proved by W. Holsztyni-
ski [3]:

(x)  Ifl e QL then T(f)(1) = T(1k)(1)f(k) for every f € C(K).
Now, for (z,y) € X x Y we define

Quy ={2€Z:5,08,C5.},
and organize the proof in several steps.

STEP (i): If (z,y) € X xY and (f,g9) € C(X) x C(Y) are such that
f(z) =0 or g(y) = 0, then we have (f ¢ g)(z) = 0 for every z € Qg . Let
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us fix (z,9,9) in X x Y x C(Y) with g € S, consider the linear isometry
T : C(X) — C(Z) defined by T(h) := ho g, and note that Q,, C QI.
Assume that f € C(X) satisfies f(x) = 0. Then, by (x), we have

(fog)(z) =(T(f)(z) =0
for every z € QI and in particular (f ¢ g)(z) = 0 for every z € Q. Now,
the restriction that g lies in Sy can be removed by keeping in mind that,
since SyS, C Sy, the linear hull of S, in C(Y') is a subalgebra of C'(Y") which
is self-adjoint, contains the constants, and separates the points of Y, so that
the Stone—Weierstrass theorem applies.

STEP (ii): If (x,y) and (2',y") are in X XY with (x,y) # (2',y'), then
Quy N Qry = 0. Let z,2" € X and y,y’ € Y be such that x # 2/, and
assume that there exists z € Qg y N Qqu . Then, taking (f,g) € S, x S,
with f(z') = 0, we have |[(f ¢ g)(z)| = 1 (by the definition of @Q,,) and
(fog)(z) =0 (by Step (i)), a contradiction.

STEP (iii): For every (z,y) € X x Y we have Q4 # 0. Let (x,y) be in
XxY,andlet fq,..., fpand g1,...,9, bein S; and S, respectively. Putting

Fo= 30 fi(x)fi and G := 371, i(y)gi, we have |F(z)] = n = |F|,
|G(y)| = n = ||G]|, and hence ||F o G|| = n?. Therefore there exists z € Z
satisfying

n? = |(FoG))| = | Y F@gw)(fio9)(2)|

ij=1
This implies |(f; ¢ g;)(2)] = 1 for all 4,5 = 1,...,n. In this way we have
shown that, denoting by T the unit sphere of K, the family
{(fog) ™ (T): (f,g) € Su x Sy}
has the finite intersection property. By the compactness of Z, we have in

fact Qzy = N(.g9)esxs, o g)~H(T) # 0.

Now, we consider the norm-one element « of C'(Z) defined by
a(z) == (1x o ly)(z).
STEP (iv): For (x,y,2) in X XY X Z with z € Qy,, we have

(fog)(2) = al2)f(x)g(y)
for every (f,g) € C(X) x C(Y), and |a(z)| = 1. Since (1x,1y) belongs to
Sz x Sy whenever (z,y) is in X x Y, it follows from the definitions of a
and Qg that |a(z)] = 1 whenever z is in Q. Now, let us fix (z,v, f,9)
in X xY x C(X) x C(Y) with g € Sy, and consider the linear isometries
T:C(X)— C(Z)and R : C(Y) — C(Z) defined by T'(h) := h o g and
R(h) := 1xoh, respectively. Keeping in mind the inclusion @, C QgﬂQyR,
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and applying (%), for z € Q.4 we derive

(feg)(z) =T(f)(2) =T(1x)(2)f(z) = (1x 0 g9)(2) f(z) = R(g)(2) f(x)
= R(1y)(2)9(y) f(z) = (1x o 1y)(2) f(z)g(y) = a(z) f(x)g(y).

The restriction that g lies in S, can be removed by arguing as in the con-
clusion of the proof of Step (i).

Now, we define Zy := U(x’y)GXXY Qzy- In view of Step (ii), for ev-
ery z € Zy there exists a unique p(z) € X x Y such that z belongs to
Qrx (p(2)),my (0(2)) - Moreover, by Step (iii), the mapping ¢ : Zo — X XY de-
fined in this way is surjective. On the other hand, by Step (iv), the norm-one
element o € C(Z) satisfies |a(z)| = 1 whenever z lies in Zy, and the equality

(2.1) (fog)(2) = a2) f(mx(#(2))g(my (#(2)))

holds for every (z, f,g) € Zy x C(X) x C(Y'). Thus, to conclude the proof
of the theorem it is enough to establish the following.

STEP (v): Zy is closed in Z, and the mapping ¢ : Zy — X XY is
continuous. Let A be a closed subset of X x Y, let 29 be in Z \ p~1(4),
and let a = (x,y) be in A. Since ¢ 1(A) = Uzy)ca Qay, there exists
(fas9ga) € Sz x Sy such that 4 := (1 —|(fa©9a)(20)])/2 > 0. Now, we
consider the open subset U, of X x Y given by

Uo = {(2",y) € X x Y : [fa(2")ga(y')] > 1 — €0},
and the disjoint open subsets V, and G, of Z defined by

Vaim {2 € 2 (faoga)(2)| > 1 — e},

Go ={2€Z:|(faoga)(2)| <1—c4}.
We claim that ¢~ 1(U,) C V,. Indeed, if z is in Zy with ¢(z) = (2/,y') € U,,
then, by the statement containing equality (2.1), and the definition of U,,
we have

[(fa© ga)(2)] = [fa(z)ga(¥)] > 1 — €4,

which means that z lies in V, as claimed. On the other hand, since clearly
a lies in U,, we can vary a in A, and apply the compactness of A to find
ai,...,an € A such that A C (J;"; Ug,. Then, invoking the claim, we derive
¢ Y(A) C UL, Vi, and hence

(Yeu) et e ((Y6) o (Une) =0

In this way (), G4, becomes a neighbourhood of zp in Z contained in
Z\ ¢~ (A). Since 2 is an arbitrary element of Z \ ¢p~1(A), we realize that
¢ 1(A) is closed in Z. Finally, since A is an arbitrary closed subset of X x Y’



A bilinear version of Holsztyriski’s theorem 87

we conclude that Zj is closed in Z (by noticing that Zy = ¢~ 1(X x Y)) and
that ¢ is continuous. =

Taking in Theorem 2.1 the space Y reduced to a point, we immediately
get the following.

COROLLARY 2.2 ([3]). Let X, Z be compact Hausdorff topological spaces,
and let T : C(X) — C(Z) be a linear isometry. Then there exist a closed
subset Zy of Z, a continuous surjective mapping ¢ : Zg — X, and a norm-
one element o € C(Z) satisfying |a(2)] =1 and

T(f)(z) = a(2)f(#(2))
for every (z, f) € Zy x C(X).

COROLLARY 2.3. For compact Hausdorff topological spaces X, Z, con-
sider the following conditions:

(1) There exists a continuous surjective mapping from Z to X.
(2) C(X) is linearly isometric to a subspace of C(Z).
(3) There ezists a continuous surjective mapping from some closed sub-

set of Z to X.
Then (1)=(2)=(3). Moreover, if Z is metrizable, then (2)<(3).

Proof. (1)=(2). If there is a continuous surjective mapping 6 : Z — X,
then the mapping h — h o6 from C(X) to C(Z) is a linear isometry.

(2)=-(3). By Corollary 2.2.

If Zy is any metrizable closed subset of Z, then C(Zp) is linearly iso-
metric to a subspace of C'(Z) (indeed, by the Borsuk—Kakutani theorem [2,
Theorem 1.21], there is in fact a norm-one linear operator S : C(Zy) — C(Z)
satisfying S(f)|z, = f for every f € C(Zp)). Now, assume that Z is metriz-
able, and that there exists a continuous surjective mapping from a closed
subset Zp of Z to X. Then, since C'(X) is linearly isometric to a subspace of
C(Zy) (by (1)=(2)), it follows that C(X) is linearly isometric to a subspace
of C(Z). m

REMARK 2.4. (a) Even if Z is metrizable, the implication (1)=-(2) in
Corollary 2.3 above is not reversible. Many counterexamples can be exhib-
ited by keeping in mind the Banach-Mazur theorem that C(X) is linearly
isometric to C(Z) whenever the compact spaces X and Z are metrizable
and Z is uncountable. Thus, with X :={0,1} and Z := [0, 1], condition (2)
in Corollary 2.3 is satisfied, whereas clearly condition (1) does not hold. In
this case, an elementary embedding C'(X) — C(Z) is the one assigning to
each function from {0, 1} to K its unique affine extension to [0, 1].

(b) If Z is not metrizable, the implication (2)=-(3) in Corollary 2.3 is not
reversible either. Indeed, take Z := B(N) (the Stone-Cech compactification
of the integers) and X := 3(N)\N; then condition (3) is satisfied in an obvi-
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ous way, but condition (2) does not hold. Indeed, the norm of C'(Z7) is deter-
mined by the family of all point evaluations on the set N, whereas the norm
of C'(X) cannot be determined by any countable subset of the closed unit
ball of its dual (see the second paragraph after Proposition I1.4.16 in [4]).

COROLLARY 2.5. For compact Hausdorff topological spaces X,Y, Z, con-
sider the following conditions:

(1) There exists a continuous surjective mapping from Z to X x Y.

(2) C(X xY) is linearly isometric to a subspace of C(Z).

(3) There exists a bilinear mapping ¢ : C(X) x C(Y) — C(Z) satisfying
1f o gll = 1 lgl for every (f,g) € C(X) x C(Y).

(4) There exists a continuous surjective mapping from some closed sub-
set of Z to X xY.

Then (1)=(2)=(3)=(4). Moreover, if Z is metrizable, then in fact we have
(2)=B3)=(4).

Proof. (1)=(2). By Corollary 2.3.
(2)=(3). For (f,g9) € C(X) x C(Y), we define f ® g € C(X xY) by
(f®@9)(z,y) = f(x )g(y). If there exists a linear isometry

p:C(XxY)—C(2),

then the mapping ¢ : C(X) x C(Y) — C(Z) defined by fog:= ¢(f ® g) is
bilinear and satisfies ||f ¢ g|| = || f]| ||g]| for every (f,g) € C(X) x C(Y).
(3)=(4). By Theorem 2.1.
In the case that Z is metrizable, the implication (4)=-(2) follows from
Corollary 2.3. =

REMARK 2.6. We note that, when in Corollary 2.5 above we take Y
reduced to a point, then conditions (2) and (3) assert the same, and Corol-
lary 2.5 becomes Corollary 2.3. Therefore, by Remark 2.4, neither of the
implications (1)=-(2) (even if Z is metrizable) and (3)=(4) in Corollary 2.5
is reversible.

A more illuminating example that (4) does not imply (3) is the following.
Take Z := B(N) x B(N) and X =Y := B(N) \ N. Then, since X x Y is a
closed subset of Z, condition (4) is satisfied in an obvious way. However, if
condition (3) were satisfied, then, fixing a norm-one element g of C(Y’), the
mapping f — fog from C(X) to C(Z) would be a linear isometry. But,
since the norm of C(Z) is determined by the countable family of all point
evaluations on the set N x N (because the inclusion N x N — g(N) x g(N)
extends to a continuous surjective mapping from (N x N) to (N) x B(N)),
the existence of such an isometry is impossible (see Remark 2.4(b)).

Without the assumption of metrizability of Z, we do not know if the
implication (2)=-(3) in Corollary 2.5 is reversible.
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3. Absolute-valuable C(X)-spaces. A Banach space F is said to be
absolute-valuable if there exists a bilinear mapping ¢ : F x E — E satisfying
l€ o x|l = lI€]l [|x]| for all £, x € E. Let X be a metrizable compact space.
It follows from Corollary 2.5 that C(X) is absolute-valuable if and only if
there exists a continuous surjective mapping from some closed subset of X to
X x X. In this section we will prove that in fact the absolute valuableness
of C(X) can be settled in terms of the cardinality of X. To this end, we
need some elementary lemmas of pure topology. We feel that such lemmas
are well known, but we give their proofs for the sake of completeness. As
usual, for every topological space X, we define the derived set X' of X as
the set of all accumulation points of X.

LEMMA 3.1. Let X and Y be topological spaces, and let p : X — Y be
a continuous surjective mapping. Assume that X is compact and that Y is
Hausdorff. Then Y' C p(X').

Proof. For every point z in a topological space, we denote by V(z) the
set of all neighbourhoods of z. Let y be in Y. Then, since ¢ is surjective, for
every V € V(y) there exists zy € X such that p(zy) € V'\ {y}. Considering
in V(y) the order given by the inverse inclusion, the compactness of X
provides us with a cluster point z € X of the net {zy }yey(y). Since ¢ is
continuous, ¢(z) is a cluster point of the net {p(zv )}y ey(y). Since clearly
{o(zv) ey converges to y, and Y is Hausdorff, it follows that ¢(x) = y.
Since z is different from xy for every V' € V(y), and is a cluster point of the
net {Ty }yey(y), it lies in X' =

LEMMA 3.2. Let X and Y be topological spaces, let p : X — Y be a
continuous mapping, and let {X)}xca be a decreasing net of closed subsets
of X. Assume that X is compact and that Y is Hausdorff. Then we have

Maea P(Xn) = @(Maea X2)-

Proof. Let y be in (¢4 ©(X)). Then for A € A there exists z) € X
with ¢(z)) = y. Taking a cluster point x of the net {z)}rea in X, and
keeping in mind that {X)}\ca is a decreasing net of closed subsets of X,
we deduce that 2 belongs to (¢, X». Since ¢(z) = y, it follows that y lies
in o((Nres Xn)- =

Given a topological space X and an ordinal «, we apply transfinite in-
duction to define the a-derived set X(®) of X: we put X(© = X, X(ot) .—
(X(@) and X(®) .= Ns<a X®) when o is a limit ordinal.

LEMMA 3.3. Let X and Y be topological spaces, let p : X — Y be a

continuous surjective mapping, and let o be an ordinal. Assume that X is
compact and that Y is Hausdorff. Then Y(®) C (X (@),

Proof. We argue by transfinite induction on a. The case o = 0 is clear.
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Assume that the inclusion Y (® C p(X(®) is true for some ordinal c.
Then, putting Z := ¢~ {(Y@)NX(® and 1) := ¢|z : Z — Y (¥ we can apply
Lemma 3.1, with (Z,Y(a),zp) instead of (X,Y, ), to derive that yletl)
©(Z"). Since Z C X(@ we obtain Y (@t C p(x(+D),

Now assume that « is a limit ordinal, and that the inclusion Y#) C
©(X ) holds for every ordinal # < a. Applying Lemma 3.2 we have Y (®) =

NscaY? € Npea o(XP) = 0(Nge0 XP) = (X (). u

LEMMA 3.4. Let X and Y be topological spaces, and let o be an ordinal.
Then X x Y C (X x Y)@),

Proof. Straightforward by transfinite induction on a. =

We recall that a topological space X is said to be scattered if for every
nonempty closed subset Y of X we have Y \ Y’ # 0.

THEOREM 3.5. For a compact Hausdorff topological space X, consider
the following conditions:

(1) There exists a continuous surjective mapping from X to X x X.
(2) C(X x X) is linearly isometric to a subspace of C'(X).

(3) C(X) is absolute-valuable.

(4) There ezists a continuous surjective mapping from some closed sub-
set of X to X x X.

(5) X is either reduced to a point or nonscattered.

(6) X is either reduced to a point or uncountable.

Then (1)=(2)=(3)=(4)=(5)=(6). Moreover, if X is metrizable, then (2)<
B)=(4)=(5)=(6).

Proof. (1)=(2)=(3)=(4). By Corollary 2.5.

(4)=-(5). Assume that X is scattered, and that there exist a closed sub-
set Xg of X and a continuous surjective mapping ¢ : Xg — X x X. Since
X is scattered and compact, there is an ordinal o such that X (® is finite
and nonempty (see for example [5, 8.6.8]). Denote by n and m the cardi-
nal numbers of X(®) and X, respectively. Since X(® x X C ¢(Xj x/le )) (by
Lemmas 3.3 and 3.4), we have nm < n. This implies m = 1.

(5)=-(6). This is because countable compact Hausdorff spaces are scat-
tered.

If X is uncountable and metrizable, then, by the Banach—-Mazur theorem
(see Remark 2.4(a)), C'(X x X) is linearly isometric to a subspace of C(X). m

REMARK 3.6. Even if X is metrizable, the implication (1)=-(2) in Theo-
rem 3.5 is not reversible. Indeed, for X = [0, 1]U{2}, condition (2) is satisfied
(by the Banach—Mazur theorem), whereas a connectedness argument shows
that condition (1) does not hold.
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Without the assumption of metrizability of X, the implication (5)=(6)
is not reversible either. Indeed, if X denotes the one-point compactification
of an uncountable discrete space, then X is scattered.

Without the assumption of metrizability of X, we do not know about
the reversibility of any of the implications (2)=(3)=(4)=-(5).

Given an infinite set I', we denote by c¢(I") the vector space over K of
all functions from I' to K having a limit along the filter of all co-finite
subsets of I', endowed with the sup norm. Since ¢(I) is linearly isometric
to the space of all K-valued continuous functions on the scattered compact
Hausdorff topological space which is the one-point compactification of the
discrete space I', we derive from Theorem 3.5 the following.

COROLLARY 3.7 ([1]). Let I' be an infinite set. Then c¢(I") is not abso-
lute-valuable.
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