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Rings of PDE-preserving operators on
nuclearly entire functions

by

Henrik Petersson (Göteborg)

Abstract. Let E,F be Banach spaces where F = E ′ or vice versa. If F has the
approximation property, then the space of nuclearly entire functions of bounded type,
HNb(E), and the space of exponential type functions, Exp(F ), form a dual pair. The set
of convolution operators on HNb(E) (i.e. the continuous operators that commute with all
translations) is formed by the transposes ϕ(D) ≡ tϕ, ϕ ∈ Exp(F ), of the multiplication
operators ϕ : ψ 7→ ϕψ on Exp(F ). A continuous operator T on HNb(E) is PDE-preserving
for a set P ⊆ Exp(F ) if it has the invariance property: T kerϕ(D) ⊆ kerϕ(D), ϕ ∈ P.
The set of PDE-preserving operators O(P) for P forms a ring and, as a starting point,
we characterize O(H) in different ways, where H = H(F ) is the set of continuous homo-
geneous polynomials on F . The elements of O(H) can, in a one-to-one way, be identified
with sequences of certain growth in Exp(F ). Further, we establish a kernel theorem: For
every continuous linear operator on HNb(E) there is a unique kernel, or symbol, and we
characterize O(H) by describing the corresponding symbol set. We obtain a sufficient con-
dition for an operator to be PDE-preserving for a set P ⊇ H. Finally, by duality we obtain
results on operators that preserve ideals in Exp(F ).

1. Introduction. The notion of “PDE-preserving” was originally in-
troduced by Calvi and Filipsson (see [4, Paper II]). They defined so-called
PDE-preserving projectors on the space of entire functions in d variables
(onto polynomial spaces). We extend the definition and the study to infinite-
dimensional holomorphy (see also [7–10]): A continuous operator T , on the
space HNb = HNb(E) of nuclearly entire functions of bounded type on a
Banach space E, is PDE-preserving for a given set of convolution operators
when the kernel set for every convolution operator in the set is invariant un-
der T (see also Definition 1, where we use the fact that we can identify the set
C = C (E) of convolution operators on HNb with the space of exponential
type functions Exp = Exp(F ) defined on the dual, or predual, F of E, in a
one-to-one way, Exp 3 ϕ 7→ ϕ(D) ∈ C , and use a slightly different terminol-
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ogy). (A convolution operator is a continuous operator that commutes with
all translations.) We note that the set of PDE-preserving operators, for a
given set, forms a ring under composition, and C is a commutative subring.
Further, HNb is a module over any ring of PDE-preserving operators.

It follows that an operator is PDE-preserving for the entire set C iff it is
itself a convolution operator (Proposition 1). A fundamental, and main, re-
sult is Theorem A where we establish a one-to-one correspondence between
the ring O of PDE-preserving operators for the set CH = CH(E) of homo-
geneous convolution operators (i.e. the differential operators P (D) where P
is a continuous homogeneous polynomial) and a set of sequences in Exp.
In fact, in total we obtain three different such one-to-one correspondences,
described in Theorems A, B and C, where Theorems B and C also yield the
following. We prove that every continuous operator on HNb can be written
as an infinite type differential operator P (·,D) with variable coefficients with
a unique symbol P (x, y) (Proposition 2), and in Theorem B we describe the
symbols for the PDE-preserving operators in O. Theorem C shows that ev-
ery operator T ∈ O can be expanded in powers of the Euler operator, which
is the analogue of the operator x1∂/∂x1 + · · ·+xd∂/∂xd when E = Cd, with
convolution operators as coefficients.

All these characterization results of O suggest a study of the set of PDE-
preserving operators for any given set in C containing the homogeneous
convolution operators (in this way we deal with rings of infinite type differ-
ential operators with variable coefficients and thus with various D-module
structures [1] on HNb). We obtain a sufficient condition on the sequence in
Exp, representing a PDE-preserving operator T for CH, in order that T is
PDE-preserving for a larger set (Theorem 1).

A central role in our study is played by the Martineau duality : HNb forms
a dual pair with the space, and ring, of exponential type functions Exp. The
orthogonal complement of the kernel of any convolution operator ϕ(D) is
the closed principal ideal Imϕ = Exp · ϕ in Exp. By duality arguments,
the operator T on HNb is PDE-preserving, for a given set of convolution
operators, if and only if the transpose tT is ideal-preserving in the sense that
every corresponding ideal Imϕ is invariant under tT . From this we deduce
that an operator is ideal-preserving for a set ⊇ CH iff it is the transpose
of some PDE-preserving operator for the same set (Theorem 2). Thus, by
our characterization of rings of PDE-preserving operators, we canonically
describe rings of ideal-preserving operators.

The article is organized as follows. In the next section we introduce some
notation and definitions. In particular, we introduce the space of nuclearly
entire functions, referring to [5, 6] for a comprehensive exposition of the
theory of this space (see also [3]). Further, as an introduction, we prove the
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elementary result that the convolution operators are the only operators that
are PDE-preserving for the entire set C . In Section 3 we prove Theorems A,
B and C, i.e. we characterize the PDE-preserving operators for CH. In Sec-
tion 4 we obtain a sufficient condition for an operator to be PDE-preserving
for a given set containing CH. In the last Section 5, we pass to duality and
show how to obtain ideal-preserving operators.

Analogues of Theorems A, B and C are obtained in [10] for the finite-
dimensional case. (In general, [10] may be a nice complement to this paper
for a non-expert in infinite-dimensional holomorphy.) Theorem A can be
found in [8] and is obtained here with a different technique. The proof in [8]
is more straightforward while the one given here is more informative. Our
results in Section 4, i.e. on PDE-preserving operators for sets containing
the homogeneous convolution operators, are new even for finite-dimensional
holomorphy. When E is finite-dimensional, the topology on HNb(E) coin-
cides with the compact-open topology. Thus, in this case, HNb is reflexive
and the main result in Section 5, Theorem 2, follows by simple duality
arguments as noted in [10]. For results on PDE-preserving projectors, for
different infinite-dimensional holomorphy types, we refer to [7, 8]. (In [7] we
deal with the Hilbert–Schmidt holomorphy type and remark that most of
the results in this paper can presumably be extended to this holomorphy
type, or more generally, to any holomorphy type for which there exists a
Martineau duality (1).)

2. Notation and preliminaries. A Banach pairing is a pairing (E,F )
where E and F are (complex) Banach spaces and where F = E ′ or the other
way around. (Thus the norm topologies on E and F are the strong topologies
β(E,F ) and β(F,E) respectively.) Let (E,F ) be a fixed Banach pairing. By
P(nF ) we denote the Banach space of continuous n-homogeneous polyno-
mials on F equipped with the usual norm which we denote by ||| · |||n. The set
of continuous homogeneous polynomials,

⋃
n∈NP(nF ), is denoted by H(F ).

PN(nE) denotes the Banach space of nuclear n-homogeneous polynomials
on E, i.e. the space of all polynomials P of the form

P =

∞∑

k=1

〈·, yk〉n, (‖yk‖n) ∈ `1,

where yk are vectors in F , provided with the nuclear norm ‖·‖n. (For simplic-
ity we do not specify F in the notation PN(nE).) Thus the set of finite type
polynomials on E, i.e. the subspace of PN(nE) spanned by the polynomials
of the form 〈·, y〉n, y ∈ F , is dense in PN(nE). If F has the approximation
property, the map Fn defined by Fnλ(y) ≡ λ〈·, y〉n is a topological isomor-
phism between P ′

N(nE) and P(nF ) (see [3, 5, 6, 9]). In this way PN(nE)
and P(nF ) are in duality by 〈P,Q〉n ≡ F−1

n Q(P ) where P ∈ PN(nE) and
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Q ∈ P(nF ). In particular, 〈P, 〈x, ·〉n〉n = P (x) for all P ∈ PN(nE) and
x ∈ E and we obtain the value at y ∈ F for any Q ∈P(nF ) analogously.

If (E,F ) is a Banach pairing, HNb(E) is the space of all Gateaux holo-
morphic functions f ∈HG(E) on E such that fn ≡ Dn

(·)f(0)/n! ∈PN(nE),

n = 0, 1, . . . , and

‖f‖N:r ≡
∞∑

n=0

rn‖fn‖n <∞, r > 0,

equipped with the seminorms thus defined. Here Dn
a denotes the nth di-

rectional derivative along a. The space HNb(E), i.e. the nuclearly entire
functions of bounded type, is a Fréchet space, and f =

∑
fn in HNb(E) for

every f ∈HNb(E). Given r > 0, Expr(F ) denotes the Banach space of func-
tions ϕ ∈ HG(F ) such that, for some M > 0, |ϕ(y)| ≤ Mer‖y‖, equipped
with the norm

‖ϕ‖E:r ≡ sup
y∈F
|ϕ(y)|e−r‖y‖.

The space of exponential type functions on F , Exp(F ), is the union Exp ≡⋃
r>0 Expr provided with the corresponding inductive locally convex topol-

ogy. By Cauchy’s estimates, it is easily checked that ϕ ∈ HG(F ) belongs
to Exp(F ) if and only if ϕn ≡ Dn

(·)ϕ(0)/n! ∈ P(nF ), n = 0, 1, . . . , and

lim sup [n!|||ϕn|||n]1/n <∞. Moreover, the elements of Exp(F ) are continuous
on F . For any n ≥ 0, Hn denotes the projector Exp(F ) → P(nF ) defined
by ϕ 7→ ϕn. We use the same symbol for the corresponding projector of
HNb(E) onto PN(nE).

By the duality between PN(nE) and P(nF ), when F has the approxi-
mation property, the Fourier–Borel transform F , defined by Fλ(y) ≡ λ(ey)
where ey ≡ e〈·,y〉 ∈ HNb(E) (similarly we let ex ≡ e〈x,·〉 ∈ Exp(F ) when
x ∈ E), is an isomorphism between H ′

Nb(E) (strong topology) and Exp(F ),
and we put HNb(E) and Exp(F ) in (Martineau) duality by

〈f, ϕ〉 ≡ F−1ϕ(f) =
∞∑

n=0

n!〈fn, ϕn〉n, f ∈HNb(E), ϕ ∈ Exp(F ). (1)

It is convenient to note that if ϕ ∈ Expr(F ), then |||ϕn|||n ≤ ‖ϕ‖E:r(er)
n/n!

and thus

|〈f, ϕ〉| ≤ ‖f‖N:er‖ϕ‖E:r (2)

for all f ∈HNb(E).
From now on we let (E,F ) be a fixed Banach pairing where F has

the approximation property, and we denote by L the set, and ring (under
composition), of continuous linear operators on HNb(E).

Every multiplication operator ϕ : ψ 7→ ϕψ, ϕ ∈ Exp(F ), is weakly
continuous on Exp(F ) for the duality between HNb(E) and Exp(F ). The set
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of convolution operators on HNb(E), C = C (E), is formed by the operators
ϕ(D) ≡ tϕ : HNb(E)→HNb(E), ϕ ∈ Exp(F ).

Definition 1. A continuous linear operator T : HNb(E)→HNb(E) is
PDE-preserving for a set P ⊆ Exp(F ) if T kerϕ(D) ⊆ kerϕ(D) (i.e. kerϕ(D)
is invariant under T ) for all ϕ ∈ P. The set of PDE-preserving operators for
P is denoted by O(P).

O(P) is a ring under composition, and since any two convolution opera-
tors commute, C forms a commutative subring for any set P. In particular,
when P = Exp(F ) we have:

Proposition 1. O(Exp(F )) = C (E).

Proof. Let T ∈ O(Exp(F )). We only have to prove that T commutes
with all translations τa, a ∈ E, where τaf(x) ≡ f(x+ a). Thus let a ∈ E be
arbitrary. By totality it suffices to prove that τaTeb = Tτaeb, i.e., τaTeb =
e〈a,b〉Teb for any b ∈ F . Now, Dn

x − 〈x, b〉n ∈ C and eb ∈ ker[Dn
x − 〈x, b〉n]

for all x ∈ E and n ≥ 0. Hence, by assumption, Dn
xTeb = 〈x, b〉nTeb for

all x and n. This gives Teb =
∑
Dn

(·)Teb(0)/n! = ebTeb(0). Thus τaTeb =

τaebTeb(0) = e〈a,b〉ebTeb(0) = e〈a,b〉Teb.

Note also that, for any set P, HNb(E) is a module over O(P), and
kerϕ(D) forms a submodule for every ϕ ∈ P.

3. The ring O(H). In this section we characterize O(H), i.e. the ring
of PDE-preserving operators for the set H = H(F ) of homogeneous polyno-
mials, in different ways.

Lemma 1. An operator T : HNb(E) → HNb(E) is continuous if and
only if it has the following form: Tf =

∑∞
n=0 Tnf , where Tn : HNb(E) →

PN(nE) and for every r > 0, ‖Tnf‖n ≤ Nrn‖f‖N:R for some N = Nr and
R = Rr. The sequence (Tn) is unique and we write T =

∑
Tn.

Proof. We prove that every operator of the described form is contin-
uous. Let r > 0 be arbitrary. Then, for any f ∈ HNb(E), ‖Tf‖N:r ≤∑
rn‖Tnf‖n ≤ ‖f‖N:RN

∑
δn for some R,N > 0 and δ < 1 (depending

on r).
Conversely, let T be continuous and put Tn ≡ HnT : HNb(E) →

PN(nE). Then Tf =
∑
Tnf and, for any s > 0, we have Tnf =�

|z|=s[f(z(·))/zn+1] dz/2πi for all f ∈ HNb. Thus, for any s > 0, ‖Tnf‖n =

‖Tnf‖N:1 ≤ ‖f‖N:s/s
n. This gives the required estimate for (Tn); the unique-

ness of the sequence is obvious.

Lemma 2. Assume T =
∑
Tm : HNb(E)→HNb(E) is PDE-preserving

for the set P(nF ). Then there is a unique ϕ ∈ Exp(F ) such that Tn =
Hn ◦ ϕ(D).
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Proof. For given x ∈ E we define Tn:x ∈H ′
Nb by Tn:x(f) ≡ HnTf(x) =

Tnf(x). We prove that there are ϕn:x ∈ Exp, x ∈ E, such that

Hnϕn:x(D)f(x) = Tn:x(f). (3)

If n = 0, then ϕ0 ≡ F(δ0 ◦T ) (δ0f ≡ f(0)) solves (3) for all x. Next, assume
n ≥ 1 and let x 6= 0. We show that FTn:x ∈ Im〈x, ·〉n = (kerDn

x)⊥. Let
f ∈ kerDn

x be arbitrary. Since T is PDE-preserving for P(nF ), we have
Dn
xTf = 0 and hence Tn:x(f) = Dn

xTf(0)/n! = 0. Thus there is a unique
ϕn:x ∈ Exp such that 〈x, ·〉nϕn:x = n!FTn:x and hence Hnϕn:x(D)f(x) =
Tn:x(f). We prove that the solutions ϕn:x, x 6= 0, are independent of x.
Multiplication by 〈x, ·〉n, x 6= 0, is one-to-one on Exp, thus it suffices to
prove that

〈x, ·〉nϕn:x = 〈x, ·〉nϕn:x′ , x, x′ 6= 0. (4)

For y ∈ F we define u(y) ≡ 〈·, y〉n ∈PN(nE) and

v(y) ≡ 〈·, y〉nϕn:(·)(y) = n!HnTey ∈PN(nE).

Assume P ∈ P(nF ) and that P ∈ {u(y)}⊥ with respect to the duality
〈·, ·〉n between PN(nE) and P(nF ). Then P (y) = 〈u(y), P 〉n = 0 and hence
P (D)ey = P (y)ey = 0. Since T is PDE-preserving for P(nF ), we have
P (D)Tey = 0, from which we deduce that 〈v(y), P 〉n = 0. Thus {u(y)}⊥ ⊆
{v(y)}⊥ and consequently v(y) = c(y)u(y), i.e.

〈x, y〉nϕn:x(y) = c(y)〈x, y〉n, x ∈ E, (5)

for some constant c = c(y) (independent of x). If y0 6= 0 we deduce from (5)
that c(y) = ϕn:x0(y) in a neighbourhood of y0 for some x0 ∈ E. Thus we
have a continuous map F \ {0} 3 y 7→ c(y). Let x, x′ 6= 0. If 〈x, y〉 = 0, both
sides in (4) vanish, so assume 〈x, y〉 6= 0. Then ϕn:x(y) = c(y), and since
y 6= 0, there is a sequence (yj) in F such that yj → y and 〈x′, yj〉 6= 0 for
all j. Hence, by (5) and continuity,

ϕn:x′(y) = lim c(yj) = c(y) = ϕn:x(y).

Thus ϕn = ϕn:x for all x 6= 0 for some ϕn ∈ Exp.
If x = 0 and n ≥ 1, both sides in (3) vanish for every function in

Exp, hence for every n ≥ 0 we have obtained a ϕ = ϕn ∈ Exp such that
Hnϕn(D) = HnT .

We denote by Σ = Σ(F ) the set of all sequences (ϕ0, ϕ1, . . . ) in Exp(F ).
Let S = S(F ) denote the set of all Φ = (ϕn) ∈ Σ such that, for some
r,M,N > 0, |ϕn(y)| ≤ NMner‖y‖ for all n ≥ 0 and y ∈ F .

Theorem A. The ring O(H) consists of the operators of the form Φ(D)f
≡∑Hnϕn(D)f where Φ = (ϕn) ∈ S(F ) and is unique.

Proof. Assume T =
∑
Tn ∈ O(H). By Lemma 2, Tn = Hnϕn(D),

n = 0, 1, . . . , for some unique Φ = (ϕn) ∈ Σ. We have to prove that
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Φ ∈ S. From the identity 〈x, y〉nϕn(y) = Dn
xTey(y) we deduce, by iden-

tifying homogeneous parts, 〈x, y〉nϕnm(y) = 〈T 〈·, y〉n+m, 〈x, ·〉n〉/(n + m)!,
ϕnm ≡ Hm(ϕn) ∈P(mF ). If ‖x‖ = 1 we obtain, by continuity and (2),

|〈T 〈·, y〉n+m, 〈x, ·〉n〉| ≤ ‖T 〈·, y〉n+m‖N:e‖〈x, ·〉n‖E:1(6)

≤ C‖〈·, y〉n+m‖N:R n! ≤ Cn!Rn+m‖y‖n+m,

for some R = R(T ) and C = C(T ). If P and Q belong to P(nF ) and P(mF )
respectively, the estimate in [2, p. 72] implies

|||P |||n|||Q|||m ≤ (2e)n+m|||PQ|||n+m. (7)
Thus,

|||ϕnm|||m = |||〈x, ·〉n|||n|||ϕnm|||m ≤ (2e)n+mCn!Rn+m/(n+m)!

≤ C(2eR)n+m/m!,

and hence Φ ∈ S.
Conversely, assume (ϕn) ∈ S and put Tn ≡ Hnϕn(D). We claim that

Tn satisfies the growth condition in Lemma 1 and hence that Φ(D) is a
well defined continuous operator. This is easily checked in view of Tnf(x) =
〈f, ϕn〈x, 〉n/n!〉 and (2). It remains to prove that T = Φ(D) is PDE-pre-
serving for the set of homogeneous polynomials. Thus assume P ∈ P(mF )
for some m. Now, P (D)Hn = Hn−mP (D) if n ≥ m, and P (D)Hn = 0
otherwise. Further, P (D) commutes with ϕn(D) for all n. From this we
deduce that P (D)T = T (m)P (D) where T (m) ≡ Φ(m)(D) and Φ(m) ≡
(ϕm, ϕm+1, . . . ) ∈ S. Hence T ∈ O(H).

We denote by S = S (E,F ) the set of functions P ∈ HG(E × F ) with
the following property: P (·, y) ∈ HNb(E) for every fixed y ∈ F , and for
every given r > 0, there are constants M = Mr, R = Rr > 0 such that
‖P (·, y)‖N:r ≤MeR‖y‖. Thus P (x, ·) ∈ Exp(F ) for every fixed x ∈ E.

Proposition 2. Every P ∈ S defines a continuous operator P (·,D) :
HNb(E) → HNb(E) by P (·,D)f(x) ≡ 〈f, P (x, ·)ex〉. Conversely , for ev-
ery continuous operator T ∈ L on HNb(E) there is a unique symbol
P ∈ S such that T = P (·,D), in fact , P (x, y) = e−〈x,y〉Tey(x). (Thus,
P (·,D)Q(·,D) = R(·,D) where R(x, y) = e−〈x,y〉〈Q(·, y)ey, P (x, ·)ex〉.)

Proof. We prove that P (·,D), P ∈S , defines a continuous operator on
HNb. Let f =

∑
fn ∈ HNb, where fn =

∑
k〈·, ynk〉n ∈ PN(nE), be ar-

bitrary. We note that 〈fn, P (x, ·)ex〉 = n!
∑

kHn(P (x, ·)ex)(ynk), and thus,
pointwise,

P (·,D)f =
∑

n

∑

k

∑

i+j=n

n!Pj(·, ynk)〈·, ynk〉i/i! (8)

where Pn(x, y) ≡ Dn
yP (x, ·)(0)/n!. Now Pj(·, ynk)〈·, ynk〉i ∈ HNb, and thus,

to prove that x 7→ 〈f, P (x, ·)ex〉 ∈ HNb, we only have to prove that the
series (8) converges absolutely in HNb. If ‖P (·, y)‖N:r ≤ Mre

Rr‖y‖, r > 0,



224 H. Petersson

we deduce from Cauchy’s formula that ‖Pn(·, y)‖N:r ≤ MrR
n
r e
n‖y‖n/n! for

all n. Thus, by the binomial formula,

Tnk ≡
∑

i+j=n

‖n!Pj(·, ynk)〈·, ynk〉i/i!‖N:r ≤ ‖ynk‖nCrNn
r

for some constants Cr, Nr > 0 (independent of f). Hence
∑

n

∑
kTnk ≤

Cr‖f‖N:Nr , and f 7→ P (·,D)f is continuous.

We note that P (x, y) = e−〈x,y〉P (·,D)ey(x) if P ∈ S and prove that
Q(x, y) ≡ Tey(x) ∈ S for any continuous operator T . Clearly, Q(·, y) ∈
HNb, and since Q(x, y) = tTex(y), we have Q(x, ·) ∈ Exp. Next, by the
continuity of T and the fact that ‖ey‖N:r ≤ er‖y‖, our claim follows. Hence,
Q ∈ S and consequently, P (x, y) ≡ e−〈x,y〉Q(x, y) ∈ S and P (·,D)ey = Tey
for all y ∈ F . Thus, by totality, T = P (·,D).

Remark 1. Assume that E and F are finite-dimensional, i.e. E = F =
Cd for some d, and let P (x, y) =

∑
α,β∈Nd Pαβx

αyβ ∈ S . Then P (·,D)

is the infinite type differential operator f 7→ ∑
Pαβx

αDβf(x). Thus, for
arbitrary E and F , we may consider any element P (·,D) as an infinite type
differential operator with variable coefficients, and Proposition 2 shows that
every element of L is of this type.

Thus C (E) is the subring of L formed by the operators with symbols
that do not depend on the first variable, and in view of Remark 1, we may
consider any element of C (E) as an infinite type differential operator with
constant coefficients.

We note that Φ(D)ey(x) =
∑〈x, y〉nϕn(y)/n! for any Φ = (ϕn) ∈ S,

hence the symbol for Φ(D) is given by e−〈x,y〉
∑〈x, y〉nϕn(y)/n!. Next we

describe how to obtain these types of symbols, and thus O(H), in another
way. For any n ≥ 0 we let 〈〉n ∈ S where 〈〉n(x, y) ≡ 〈x, y〉n.

Theorem B. The ring O(H) is the subring of L formed by the operators
Φ(·,D) =

∑
(〈〉n(·,D)/n!)φn(D), i.e. Φ(x, y) ≡ ∑

φn(y)〈x, y〉n/n! ∈ S ,
where Φ = (φn) ∈ S and is unique. Further , Φ(D) =

∑
(〈〉n(·,D)/n!)φn(D),

Φ = (ϕn) ∈ S, where

ϕn =
n∑

k=0

(
n

k

)
φk, φn =

n∑

k=0

(
n

k

)
(−1)n−kϕk. (9)

Proof. Assume (φn) ∈ S and define ϕn by (9). Then it is easily checked
that Φ = (ϕn) ∈ S and Φ(x, y) ≡ ∑φn(y)〈x, y〉n/n! ∈ S . We prove that
Φ(D) = Φ(·,D). We note that Hm〈〉n(·,D)/n! =

(m
n

)
Hm if n ≤ m, and

Hm〈〉n(·,D) = 0 otherwise. Hence

HmΦ(·,D) =

∞∑

n=0

Hm
〈〉n(·,D)

n!
φn(D) =

m∑

n=0

(
m

n

)
Hmφn(D)
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for all m ≥ 0. Thus, for any m ≥ 0,

HmΦ(D) = Hmϕm(D) = Hm

m∑

n=0

(
m

n

)
φn(D) = HmΦ(·,D),

hence Φ(D) = Φ(·,D). Conversely, let Φ(D) ∈ O(H), Φ = (ϕn) ∈ S, be
arbitrary. If φn is defined by the right hand equality in (9), then (φn) ∈ S.
The inversion formula on the left hand side in (9) holds true. Indeed,

n∑

k=0

k∑

m=0

(
n

k

)(
k

m

)
(−1)k−mϕm =

n∑

k=0

∞∑

m=0

(
n

k

)
ϕm
m!

dm

dzm
zk
∣∣∣∣
z=−1

=
∞∑

m=0

ϕm
m!

dm

dzm
(z + 1)n

∣∣∣∣
z=−1

= ϕn.

Hence, by the first part of the proof, Φ(D) = Φ(·,D), where Φ(x, y) ≡∑
φn(y)〈x, y〉n/n! ∈ S . Finally, the uniqueness follows from the uniqueness

in Theorem A and the arguments above.

From the results above it follows that P ∈ S is a symbol for an operator
in O(H) if and only if e〈x,y〉P (or e−〈x,y〉P ) is such a symbol.

We shall see that the operators in O(H) can also be expanded in powers
of the Euler operator 〈·,D〉 ≡ 〈〉(·,D). We set

Enm ≡ Dn(ez − 1)m(0)/n! =
m∑

i=0

(
m

i

)
(−1)m−iin/n!, E ≡ (Enm)

(note that Enm = 0 if n < m). Given n ≤ m, Snm denotes the set of
all increasing sequences s = {k0 = n, k1, . . . , kl = m}, ki < ki+1 and
s(E) ≡ (−1)lEklkl−1

· · ·Ek2k1Ek1k0 . Let Σnm(E) ≡∑s∈Snm s(E) and hence,
in particular, Σnn(E) ≡ 1. If n > m we put Σnm(E) ≡ 0. The elements
Σnm, m ≥ n, are uniquely determined by

∑r
n=0EnmΣnr = δmr .

Theorem C. O(H) consists of the operators
∑

(〈·,D〉n/n!)φn(D) where
(φn) ∈ S and is unique. Further , Φ(D) =

∑
(〈·,D〉n/n!)φn(D), Φ = (ϕn)

∈ S, where

ϕn =
∞∑

k=0

nk

k!
φk, φn =

∞∑

k=0

∞∑

m=k

(
m

k

)
(−1)m−kΣnm(E)ϕk. (10)

Proof. It is easily checked that 〈·,D〉n = Ψn(D) where Ψn = (ψk ≡ kn)
∈ S, and hence that f 7→ ∑

(〈·,D〉n/n!)φn(D)f defines a continuous oper-
ator T on HNb for any (φn) ∈ S. Every term (〈·,D〉n/n!)φn(D) is in O(H)
and hence, since O(H) is closed in L for the topology of pointwise con-
vergence, T ∈ O(H). By Theorem A, T = Φ(D) for some Φ = (ϕn) ∈ S.
Now, n!HnΦ(D)ey = 〈·, y〉nϕn(y) and from 〈·,D〉n = Ψn(D) we deduce
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n!HnTey = 〈·, y〉n∑∞k=0 φk(y)nk/k!. Thus the left hand formula of (10)
holds.

Next, let T =
∑
Hnϕn(D) =

∑
(〈〉n(·,D)/n!)ψn(D) be an arbitrary

operator in O(H). We claim: For every r > 0 there are constants R,C > 0
such that |Σnm| ≤ CRnrm. Indeed, by Cauchy’s formula, we have |Enm| ≤
(er−1)m/rn for any r > 0. Thus, for any s ∈ Snm, where n ≤ m, and r > 0,

|s(E)| ≤ (er1 − 1)n

rml

(
erl − 1

rl−1

)kl−1

· · ·
(
er2 − 1

r1

)k1

≤ (er1 − 1)n
(
r

2

)m

if we choose rl ≥ 2/r and then rl−1 ≥ erl−1, rl−2 ≥ erl−1−1, . . . . Now, Snm
consists of 2m−n−1 elements if m > n and hence our claim.

Thus for φn ≡
∑

mΣnmψm we have (φn) ∈ S and, by Theorem B, φn
is given by the right hand formula in (10). By the first part of the proof,∑

(〈·,D〉n/n!)φn(D) defines an operator S in O(H). We now prove that
T = S. It suffices to prove that their symbols in S coincide. The symbol
for T is given by

∑
ψm(y)〈x, y〉m/m! (Theorem B) and we deduce that∑

m(
∑

nEnmφn(y))〈x, y〉m/m! is the symbol for S. Thus, we only have to
prove that ψm =

∑
nEnmφn. By our estimates for |Enm| and |Σnm|,∑

n

Enmφn =
∑

n

∑

r

EnmΣnrψr =
∑

r

∑

n

EnmΣnrψr =
∑

r

δmr ψr = ψm.

The uniqueness is a consequence of Theorem A and the above arguments.

4. The ring O(H(P)). We have seen that the elements in O(H) can be
identified with sequences of exponential type functions. This motivates the
study of conditions on the sequence Φ, for a given operator Φ(D) ∈ O(H),
in order that Φ(D) ∈ O(H(P)) where H(P) ≡ H ∪ P and P ⊆ Exp. Since
O(H(P)) =

⋂
ϕ∈PO(H(ϕ)), it suffices to study O(H(ϕ)).

We let Z(ϕ) ≡ {a ∈ F : ϕ(a) = 0} denote the zero-set for ϕ ∈ Exp(F ). If
a ∈ Z(ϕ) and 0 6= b ∈ F , we say that a is a zero of order Ma(b) in direction b
if Ma(b) is the smallest integer m ≥ 0 for which Dm

b ϕ(a) 6= 0. That is, the
one-variable function ϕa:b(z) ≡ ϕ(a+zb) has a zero at z = 0 of order Ma(b).
Note that Ma(b) = ∞ if and only if ϕ vanishes identically on the complex
line {a+ zb : z ∈ C}. If Ma(b) is finite we put ma(b) ≡Ma(b)− 1.

It is well known that, for any ϕ ∈ Exp(F ), the exponential polynomials
Qea, where a ∈ Z(ϕ) and Q ∈PN(mE) for some m ≥ 0, in kerϕ(D) form a
total set in kerϕ(D) (see [5]). In particular, 〈·, b〉mea ∈ kerϕ(D) if a ∈ Z(ϕ),
b ∈ F and m < Ma(b), and it follows that, to obtain totality, it suffices to
choose such exponential polynomials.

Lemma 3. Let φ ∈ Exp(F ). Then the set of exponential polynomials of
the form 〈·, b〉mea, where a ∈ Z(φ), 0 6= b ∈ F , Ma(b) <∞ and m ≤ ma(b),
is total in kerφ(D).



PDE-preserving operators 227

Proof. Assume ϕ ∈ Exp is orthogonal to every such exponential poly-
nomial. Now 〈〈·, b〉mea, ϕ〉 = Dm

b ϕ(a), hence, for given a ∈ Z(φ) and b
with Ma(b) < ∞, ϕ has a zero at a of order ≥ Ma(b) in direction b. From
this, and the arguments in the proof of Proposition 14 in [5], we deduce
that ϕ = ψφ for some exponential type function ψ. Thus if f ∈ kerφ(D),
then 〈f, ϕ〉 = 〈φ(D)f, ψ〉 = 0. Hence the lemma follows by virtue of the
Hahn–Banach theorem.

We recall, from the proof of Theorem A, that if m ≥ 0 and T = Φ(D) ∈
O(H) with Φ = (ϕn) ∈ S, then T (m) ≡ Φ(m)(D) ∈ O(H) where Φ(m) ≡
(ϕm, ϕm+1, . . . ) ∈ S. Further, for any a ∈ F and m we write Dm

a Φ ≡
(Dm

a ϕn) ∈ S and Φ(a) is the sequence (ϕn(a)) in C.

Theorem 1. Let φ =
∑
φn, φn ∈ P(nF ), be an exponential type func-

tion. An operator T = Φ(D), Φ = (ϕn) ∈ S, is PDE-preserving for the set
H(φ) if the following holds true: For all 0 6= a ∈ Z(φ), 0 6= b ∈ F with
Ma(b) <∞ and m ≤ ma(b),

Dm
b (Φ(i) − Φ(j))(a) = 0

for all i, j such that φi, φj 6= 0, i.e., ϕn+i − ϕn+j has a zero at a of order
≥Ma(b) in direction b for all n.

Proof. By Lemma 3 we only have to prove that φ(D)Tf = 0 where
f ≡ 〈·, b〉mea ∈ kerφ(D). Here a ∈ Z(φ), 0 6= b ∈ F and m ≤ ma(b).
For any ϕ ∈ Exp, we have ϕ(D)f = ea

∑m
i=0

(
m
i

)
〈·, b〉iDm−i

b ϕ(a). Hence,
if a = 0, then Tf is spanned by 〈·, b〉j, j ≤ m, and thus Tf ∈ kerφ(D).
On the other hand, if a 6= 0, then by assumption, ϕn+i(D)f = ϕn+j(D)f
for all n and i, j such that φi, φj 6= 0. Thus, for any such i and j, using
P (D)Hn = Hn−mP (D) for n ≥ m and P ∈P(mF ), we obtain

φi(D)Tf =
∑

n≥i
φi(D)Hnϕn(D)f =

∑

n≥i
Hn−iφi(D)ϕn(D)f

=
∑

n≥0

Hnφi(D)ϕn+i(D)f =
∑

n≥0

Hnφi(D)ϕn+j(D)f

=
∑

n≥0

Hnϕn+j(D)φi(D)f = T (j)φi(D)f.

Hence, if φj 6= 0, then φ(D)Tf = T (j)φ(D)f = 0.

Example 1. Consider a continuous polynomial P = 1+P2, P2 ∈P(2F ).
Assume T = Φ(D) satisfies the condition in Theorem 1 and let 0 6= a ∈
Z(P ). (Note that −a ∈ Z(P ), hence cosh〈·, a〉, sinh〈·, a〉 ∈ kerP (D).) Then
Φ(a) = (A,B,A,B, . . . ) and Tea = A cosh〈·, a〉+ B sinh〈·, a〉. If 2 ≤ Ma(b)
<∞, then DbΦ(a) = (Dbϕn(a)) = (α, β, α, β, . . . ). We deduce that T 〈·, b〉ea
= (A〈·, b〉+ α) cosh〈·, a〉+ (B〈·, b〉+ β) sinh〈·, a〉.
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5. Ideal-preserving operators. We note that if T ∈ O(P), then tT is
ideal-preserving for the set P in the following sense:

Definition 2. A continuous linear operator S : Exp → Exp is ideal-
preserving for a set P ⊆ Exp if S Imϕ ⊆ Imϕ for every ideal Imϕ = Exp ·ϕ,
ϕ ∈ P.

(Note that the set of ideal-preserving operators for a given set forms a
ring.) Now, every ideal Imϕ is closed [3, 5, 6] and hence

(i) Imϕ = kerϕ(D)⊥,

(ii) [T kerϕ(D)]⊥ = tT−1 Imϕ,

and thus T ∈ O(P) implies tT is ideal-preserving for P. Conversely, if S
is ideal-preserving for P and if we assume that S is the transpose of a
continuous operator T on HNb, i.e. S is weakly continuous for the duality
(1), then by (i) and (ii), T ∈ O(P). Thus if E = F = Cd for some d,
then HNb is reflexive and consequently every continuous operator on Exp
is the transpose of a continuous operator on HNb; hence an operator is
ideal-preserving for P if and only if it is the transpose of some T ∈ O(P).
With somewhat different arguments we extend this result to arbitrary E
and F in the case when P ⊇ H. (See also the proofs of Lemma 2 and
Theorem A.)

Theorem 2. An operator S : Exp → Exp is ideal-preserving for a set
P ⊇ H if and only if it is the transpose of some PDE-preserving operator
T ∈ O(P).

Proof. In view of the discussion above, we only have to prove that if S
is ideal-preserving, then S = tT for some T ∈ L . By assumption, for every
x 6= 0 and n ≥ 0 there is a unique ϕn:x ∈ Exp such that [S〈x, ·〉n/n!](y) =
ϕn:x(y)〈x, y〉n/n!, y ∈ F . Now, the left hand side is an n-homogeneous poly-
nomial in x, and by homogeneity, we deduce that ϕn:x does not depend on
x 6= 0. Hence, for any x ∈ E, Sex =

∑
S〈x, ·〉n/n! =

∑
ϕn〈x, ·〉n/n! for

some sequence Φ ≡ (ϕn) in Exp. As in the proof of Theorem A, we deduce
that Φ ≡ (ϕn) ∈ S and note that [Sex](y) = [Φ(D)ey](x) = [tΦ(D)ex](y),
i.e. by totality, S = tT , T = Φ(D) ∈ L .

Thus, by Theorem 1 we obtain a sufficient condition for an operator to
be ideal-preserving and are motivated to find the transposes of the oper-
ators in O(H). First, note that the transpose of any Φ(D) ∈ O(H) is the
operator

∑
ϕnHn, i.e., ϕ 7→ ∑

ϕnHn(ϕ) (see also [8, 10]). Thus, in partic-
ular, an operator on Exp is ideal-preserving for H iff it has this form. Next,
we show how to obtain the transpose when T ∈ O(H) is in the form of
Theorem B. Note that the transpose of any P (·,D) ∈ L , P ∈ S , is the
operator P (D, ·) defined by ϕ 7→ 〈P (·, y)ey, ϕ〉. Hence, the transpose of any
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Φ(·,D) =
∑

(〈〉n(·,D)/n!)ϕn(D) ∈ O(H) is the operator
∑
ϕn〈〉n(D, ·)/n!

and, in particular, we obtain all ideal-preserving operators for H in this way.
In the proof of Theorem A we noted that if P ∈P(mF ), then P (D)T =

T (m)P (D) for all T ∈ O(H). Thus, if S is ideal-preserving for H and P ∈
P(mF ), then SP = PS[m] where S[m] ≡ tT (m) and S = tT .

Since HNb is Fréchet, an operator on HNb is surjective iff its transpose is
one-to-one and has a closed range for the duality (1). Further, every non-zero
convolution operator on HNb is surjective (Malgrange theorem) [3, 5, 6]. The
analogue of the following result, when E is finite-dimensional, is obtained
in [10], and for a proof we refer to the arguments there. The statement
gives examples of surjective operators in O(H) \ C , and thus (Theorem 2)
of injective closed-range ideal-preserving operators for H.

Proposition 3. Let Φ = (ϕn) be a sequence of homogeneous polynomi-
als ϕn ∈P(nF ). Then Φ ∈ S and Φ(D)HNb = HNb iff there are constants
M,N,R, r > 0 such that

Nrn/n! ≤ |||ϕn|||n ≤MRn/n!. (11)

(Thus if ϕ ∈ Exp, ϕn ≡ Hn(ϕ) 6= 0 for all n and lim inf (‖ϕn‖nn!)1/n 6= 0,
then Φ(D)H = H .)
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