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The Hausdorff operators on the real Hardy spaces Hp(R)

by

Yuichi Kanjin (Kanazawa)

Abstract. We prove that the Hausdorff operator generated by a function φ is
bounded on the real Hardy space Hp(R), 0 < p ≤ 1, if the Fourier transform φ̂ of φ
satisfies certain smoothness conditions. As a special case, we obtain the boundedness of
the Cesàro operator of order α on Hp(R), 2/(2α+ 1) < p ≤ 1. Our proof is based on the
atomic decomposition and molecular characterization of Hp(R).

1. Introduction. Let 0 < p ≤ 1 and Hp(R) be the real Hardy space,
that is, the space of the boundary distributions f(x) = <F (x) of the real
parts <F (z) of functions F (z) in the Hardy space Hp(R2

+) = {F (z) : F
is analytic in R2

+ and ‖F‖Hp(R2
+) = supt>0(

� ∞
−∞ |F (x + it)|pdx)1/p < ∞}

on the upper half plane R2
+ = {z = x + it : t > 0}, with the norm

‖f‖Hp(R) = ‖F‖Hp(R2
+). The Fourier transform of a function f(x) in R is

given by [f(x)]∧(ξ) = f̂(ξ) = (2π)−1/2
�
R f(x)e−ixξ dx.

Let φ ∈ L1(R). For a function f in R, we define a function Hφf in R so
that its Fourier transform Ĥφf satisfies

Ĥφf(t) = �
R
f̂(tξ)φ(ξ) dξ, t ∈ R.

The operator Hφ is called the Hausdorff operator generated by φ. For sim-
plicity, we also write Hf instead of Hφf .

For α = 1, 2, . . . , the Cesàro operator Cα of order α is given by

Ĉαf(t) =





α

tα

t

�
0

f̂(ξ)(t− ξ)α−1 dξ (t 6= 0),

f̂(0) (t = 0).

We note that Cα = Hφ when φ(ξ) = α(1−ξ)α−1χ(0,1)(ξ), where χ(0,1) is the
characteristic function of the interval (0, 1).
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Giang and Móricz [4] proved the following result:

Theorem A (Giang and Móricz [4], Theorem 1). The Cesàro operator
C1 of order 1 is a bounded operator on H1(R).

Recently, Liflyand and Móricz [8] obtained the following generalization
of this result to the Hausdorff operator by using the closed graph theorem
and the fact that if f ∈ L1(R) satisfies f̂(t) = 0 for t < 0, then f ∈ H1(R).

Theorem B (Liflyand and Móricz [8], Theorem 2). If φ ∈ L1(R), then
the Hausdorff operator Hφ is a bounded operator on H1(R).

The purpose of this paper is to extend this result to Hp(R) with index
p smaller than one under certain smoothness conditions on φ̂ and to show
that the extension gives the boundedness of the Cesàro operator Cα on
Hp(R), 1 ≥ p > 2/(2α + 1). The atomic decomposition and molecular
characterization of Hp(R) will play an essential role in our proof.

Historically, for the periodic case, Hardy [6] proved that if
∑∞
n=0 an cosnx

is the Fourier series of a function in Lp(0, π), then so is
∑∞
n=0(Ta)n cosnx

for 1 ≤ p < ∞, where (Ta)0 = a0, (Ta)n = (a1 + . . . + an)/n, n =
1, 2, . . . , and the same is true for sine series. Kinukawa and Igari [7]
showed that if

∑∞
n=1 bn sinnx is a Fourier series, then the conjugate series∑∞

n=1(Tb)n cosnx is a Fourier series. Siskakis [9] obtained the same type of
theorem in the Hardy space H1 of the unit disc, that is, the operator C∗
defined by C∗f(z) =

∑∞
n=0{(n + 1)−1∑n

k=0 ak}zn, f(z) =
∑∞
k=0 akz

k, is
bounded on H1. For the real line case, Goldberg [5] investigated the prop-
erties of the operator Hφ on the spaces Lp(R) with 1 < p ≤ 2. Georgakis
[3] studied the Fourier analytic properties of Hφ on the space of complex
bounded regular Borel measures on R, and as a special case he showed that
if φ ∈ L1(R), then Hφ is a bounded operator on L1(R). Giang and Móricz
[4] and Liflyand and Móricz [8] followed as stated above.

2. Results. Let 0 < p ≤ 1 and k be an integer, k ≥ 1/p − 1. A real-
valued function a(x) is called a (p, 2, k)-atom if (i) a(x) is supported in
an interval [c, c + h], (ii) ‖a‖2 (= {

�
R |a(x)|2 dx}1/2) ≤ h1/2−1/p, and (iii)�

R x
ja(x) dx = 0 for j = 0, 1, . . . , k. Then the atomic decomposition says

that if f ∈ Hp(R), then there exist a sequence {aj} of (p, 2, k)-atoms and
a sequence {λj} of real numbers with

∑
j |λj |p ≤ C‖f‖pHp(R) such that

f =
∑
j λjaj , the series converging to f in Hp(R) and also in the sense of

tempered distributions.
A real-valued function M(x) is called a (p, 2, b)-molecule centered at x0 if

M(x) satisfies the following conditions: (i) N(M) = ‖M‖1−θ2

∥∥| · −x0|bM
∥∥θ

2
< ∞, where b > 1/p − 1/2, θ = (1/p − 1/2)/b, and (ii)

�
R x

jM(x) = 0,
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j = 0, 1, . . . , [1/p − 1], where [1/p − 1] is the greatest integer not exceed-
ing 1/p − 1. We call N(M) the molecular norm of M(x). The molecu-
lar characterization asserts that if f =

∑
jMj with (p, 2, b)-molecules Mj

as tempered distributions, and
∑
j N(Mj)p < ∞, then f ∈ Hp(R) and

‖f‖pHp(R) ≤ C
∑
j N(Mj)p. For the atomic decomposition and molecular

characterization, we may refer to [2, Chapter III].
The following lemma gives the main estimate:

Lemma. Let 0 < p ≤ 1 and r be the smallest integer such that r >
1/p− 1/2. Suppose that φ ∈ L1(R) satisfies the following :

(i)
�
R |ξ|−1/2|φ(ξ)| dξ <∞,

(ii) φ̂ ∈ C2r(R) with supx |x|r|φ̂(r)(x)| <∞, supx |x|r|φ̂(2r)(x)| <∞.

Then, for a (p, 2, r − 1)-atom a, Hφa is a (p, 2, r)-molecule centered at 0,
and

N(Hφa) ≤ C,
where C is independent of the atoms a.

Our theorem and its corollary are as follows:

Theorem. Let 0 < p ≤ 1. Suppose that φ ∈ L1(R) satisfies the same
conditions as in the Lemma. Then the Hausdorff operator Hφ is a bounded
operator on Hp(R).

Corollary. Let α = 1, 2, . . . If 2/(2α + 1) < p ≤ 1, then the Cesàro
operator Cα of order α is a bounded operator on Hp(R).

Other typical summability kernels covered by the theorem are, for ex-
ample, e−ξ

2
and e−|ξ|. The corresponding operators Hφ are bounded on

Hp(R) for every p with 0 < p ≤ 1 since the functions e−ξ
2

and e−|ξ| satisfy
the conditions of the Lemma for every p with 0 < p ≤ 1.

The Lemma will be proved in the next section. A discussion on defining
the values of the Hausdorff operator for Hp(R) functions and the proof of
the Theorem will be given in the fourth section by using the main estimate
of the Lemma.

3. Proof of the Lemma. Let 0 < p ≤ 1 and r be the smallest integer
such that r > 1/p − 1/2. We begin with estimating the molecular norm
N(Hφa) for a (p, 2, r−1)-atom a. By the Plancherel theorem and the identity
[xf(x)]∧(t) = i(d/dt)f̂(t), we have ‖Ha‖2 = ‖Ĥa‖2, and

‖xrHa(x)‖2 = ‖[xrHa(x)]∧(t)‖2 = ‖(d/dt)rĤa(t)‖2,
which leads to

N(Ha) = ‖Ĥa‖1−θ2 ‖(d/dt)rĤa(t)‖θ2,
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where
θ = (1/p− 1/2)/r =

2− p
2pr

.

To estimate ‖Ĥa‖2, we apply the generalized Minkowski inequality. We
have

‖Ĥa‖2 ≤ �
R

{ �
R
|â(tξ)|2 dt

}1/2
|φ(ξ)| dξ

= ‖â‖2 �
R
|ξ|−1/2|φ(ξ)| dξ = D0‖a‖2,

where D0 =
�
R |ξ|−1/2|φ(ξ)| dξ, which implies

N(Ha) ≤ D0‖a‖1−θ2 ‖(d/dt)rĤa(t)‖θ2.
It is enough to show that ‖(d/dt)rĤa(t)‖2 ≤ C‖a‖δ2, where

1− θ + δθ = 0, that is, δ = 1− 1/θ =
2− (1 + 2r)p

2− p ,

and the constant C is independent of the atoms a.
Noting that Ĥa(t) =

�
R a(x)φ̂(tx) dx, we have

dr

dtr
Ĥa(t) = �

R
a(x)xrφ̂(r)(tx) dx.

Let µ be a positive number, which will be chosen later, and write

‖(d/dt)rĤa(t)‖22 = �
R

∣∣∣ �
R
a(x)xrφ̂(r)(tx) dx

∣∣∣
2
dt

=
{ �
|t|≤µ

+ �
|t|>µ

}∣∣∣ �
R
a(x)xrφ̂(r)(tx) dx

∣∣∣
2
dt

= Iµ + Jµ, say.

We first treat Jµ. It follows that

Jµ = �
|t|>µ

∣∣∣t−r �
R
a(x)(tx)rφ̂(r)(tx) dx

∣∣∣
2
dt

≤ �
|t|>µ

|t|−2r dt (sup
x
|x|r|φ̂(r)(x)|)2

( �
R
|a(x)| dx

)2
.

By Schwarz’s inequality, we have

�
R
|a(x)| dx ≤ ‖a‖2h1/2,

which is bounded by ‖a‖2(1−p)/(2−p)
2 , since the condition ‖a‖2 ≤ h1/2−1/p

implies h ≤ ‖a‖−2p/(2−p)
2 , where the support interval of a is [c, c+ h]. Thus,
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we have

(1) Jµ ≤ (2K2/(2r − 1))µ−2r+1‖a‖4(1−p)/(2−p)
2 ,

where K = supx |x|r|φ̂(r)(x)|.
To estimate Iµ, we consider the inner integral

�
R a(x)xrφ̂(r)(tx) dx of Iµ.

Let gt(x) = xrφ̂(r)(tx). By the Taylor expansion of gt at x = c and the
vanishing moment property of atoms, we have

�
R
a(x)gt(x) dx =

1
r!

�
R
a(x)g(r)

t (x̃)(x− c)r dx, c < x̃ < c+ h,

where [c, c+ h] is the support interval of a and g
(r)
t is the rth derivative of

gt with respect to x. Since

g
(r)
t (x̃) =

r∑

j=0

(
r

j

)
r!
j!

(tx̃)jφ̂(r+j)(tx̃),

it follows that

|g(r)
t (x̃)| ≤ C

r∑

j=0

sup
x
|x|j|φ̂(r+j)(x)|(2)

≤ C(sup
x
|φ̂(r)(x)|+ sup

x
|x|r|φ̂(2r)(x)|) = K ′, say,

where K ′ depends only on φ and r, that is, p. (We shall refer to the last
inequality (2) in the Remark below.) Thus, we have

∣∣∣ �
R
a(x)xrφ̂(r)(tx) dx

∣∣∣ ≤ K ′ �
R
|a(x)| · |x− c|r dx

≤ C‖a‖2hr+1/2 ≤ C‖a‖2(1−p−pr)/(2−p)
2 ,

where C depends only on φ and p. The last inequality follows from h ≤
‖a‖−2p/(2−p)

2 . We have

(3) Iµ ≤ Cµ‖a‖4(1−p−pr)/(2−p)
2 .

Therefore,

‖(d/dt)rĤa(t)‖2 ≤ I1/2
µ + J1/2

µ

≤ C(µ1/2‖a‖2(1−p−pr)/(2−p)
2 + µ−r+1/2‖a‖2(1−p)/(2−p)

2 )

≤ C(µ1/2‖a‖2(1−p−pr)/(2−p)−δ
2

+ µ−r+1/2‖a‖2(1−p)/(2−p)−δ
2 )‖a‖δ2,
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where C depends only on p and φ. It follows that

µ1/2‖a‖2(1−p−pr)/(2−p)−δ
2 = (µ‖a‖4(1−p−pr)/(2−p)−2δ

2 )1/2,

µ−r+1/2‖a‖2(1−p)/(2−p)−δ
2 = (µ‖a‖(2(1−p)/(2−p)−δ)/(−r+1/2)

2 )−r+1/2,

and
4(1− p− pr)

2− p − 2δ =
2(1− p)/(2− p)− δ

−r + 1/2
=
−2p
2− p .

Therefore, choosing µ = ‖a‖2p/(2−p)2 , we get

(4) ‖(d/dt)rĤa(t)‖2 ≤ C‖a‖δ2,
which leads to the desired inequality

N(Ha) ≤ C,
where C depends only on p and φ.

We turn to the moment condition. It follows that

�
R
xjHa(x) dx = [xjHa(x)]∧(0) = ij

djĤa
dtj

(0)

= ij �
R
â(j)(tξ)ξjφ(ξ) dξ

∣∣∣
t=0

.

It follows from the moment condition for a (p, 2, r−1)-atom a that â(j)(0) =
(−i)j

�
R x

ja(x) dx = 0, j = 0, 1, . . . , r − 1. Since L ≤ r − 1, the moment
condition for Ha follows. The proof of the Lemma is complete.

Remark. Let r = 1, 2, . . . The following inequalities hold:

(5) sup
x
|x|j|f (j)(x)| ≤ C(sup

x
|f(x)|+ sup

x
|x|r|f (r)(x)|), j = 1, . . . , r− 1,

where C depends only on r. These inequalities yield (2) by taking f = φ̂(r).
We get (5) by following the proof of the known inequalities (cf. [1, Ch. 2,
Theorem 5.6])

(6) uj sup
x
|f (j)(x)| ≤ C(sup

x
|f(x)|+ ur sup

x
|f (r)(x)|), j = 1, . . . , r − 1,

where u > 0 is arbitrary and C depends only on r. For the reader’s conve-
nience, we give a proof of (5). Let 1 = λ1 < . . . < λr−1 = 2. It follows from
the Taylor formula that

f(x+ λlx) =
r−1∑

j=0

(λlx)j

j!
f (j)(x) +

λlx�
0

(λlx− t)r−1

(r − 1)!
f (r)(x+ t) dt

for l = 1, . . . , r − 1. We denote the remainder term by Rr(x, l). We have a
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linear system
r−1∑

j=1

λjl
xj

j!
f (j)(x) = f(x+ λlx)− f(x)−Rr(x, l), l = 1, . . . , r − 1.

Since the Vandermonde determinant is nonzero, this system can be solved
for xjf (j)(x)/j!. Further, the remainder term Rr(x, l) is estimated as follows:

|Rr(x, l)| ≤ C(sup
x
|x|r|f (r)(x)|)

λl�
0

(λl − u)r−1

(1 + u)r
du

for l = 1, . . . , r − 1, where C depends only on r, which leads to (5).

5. Proof of the Theorem. We first discuss defining the value Hφf for
f ∈ Hp(R), 0 < p < 1. We use the fact that a function of the Lipschitz space
Λ1/p−1(R) defines a continuous linear functional on Hp(R) (cf. [2, III.5]).
Let 0 < p < 1 and r be the smallest integer such that r > 1/p−1/2. Suppose
that φ satisfies the same conditions as in the Lemma.

We put (φ̂)t(x) = φ̂(xt). Then we have |(d/dx)j(φ̂)t(x)| ≤ Aj |t|j, j =
0, 1, . . . , r, where Aj = supx |φ̂(j)(x)|. The constants Aj are finite, which
follows from (6). Hence

(7) ‖(φ̂)t‖Λ1/p−1(R) ≤ C(1 + |t|r).

This implies (φ̂)t ∈ Λ1/p−1(R), that is, for every t ∈ R the function (φ̂)t
defines a continuous linear functional of Hp(R) and

|〈f, (φ̂)t〉| ≤ C(1 + |t|r)‖f‖Hp(R) for f ∈ Hp(R),

where 〈·, ·〉 is the duality paring between Hp(R) and Λ1/p−1(R), and C is
independent of f and t. We define Hφf for f ∈ Hp(R) as the inverse Fourier
transform of the tempered function 〈f, (φ̂)t〉 with respect to the variable t,
that is, Ĥφf(t) = 〈f, (φ̂)t〉. This coincides with the original definition when
f, φ ∈ L1(R) since

Ĥφf(t) = �
R
f̂(tξ)φ(ξ) dξ = �

R
f(x)φ̂(tx) dx.

We turn to the proof of the Theorem. Let 0 < p ≤ 1 and r be the
smallest integer such that r > 1/p − 1/2. Let f ∈ Hp(R). We have an
atomic decomposition f =

∑∞
j=0 λjaj , where

∑∞
j=0 |λj |p ≤ C‖f‖pHp(R) and

aj is a (p, 2, r − 1)-atom. By the Lemma, we have
∞∑

j=0

N(λjHφaj)p =
∞∑

j=0

|λj |pN(Hφaj)p ≤ C
∞∑

j=0

|λj |p ≤ C‖f‖pHp(R).
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Thus, the series
∑∞
j=0 λjHφaj converges to a tempered distribution g in S ′

and ‖g‖Hp(R) ≤ C‖f‖Hp(R), where S is the Schwartz space. It is enough to
show that g = Hφf in S ′. Let ψ ∈ S. It follows that

(g, ψ̂) =
∞∑

j=0

λj(Hφaj , ψ̂) =
∞∑

j=0

λj(Ĥφaj , ψ)

=
∞∑

j=0

λj �
R
Ĥφaj(t)ψ(t) dt =

∞∑

j=0

λj �
R
〈aj , (φ̂)t〉ψ(t) dt,

where (·, ·) is the duality pairing between S ′ and S. By the fact that
|〈aj , (φ̂)t〉| ≤ C‖(φ̂)t‖Λ1/p−1(R) and by (7), we can change the order of the
sum and integral in the last term. It follows that

(g, ψ̂) = �
R

∞∑

j=0

λj〈aj , (φ̂)t〉ψ(t) dt = �
R
〈f, (φ̂)t〉ψ(t) dt

= (Ĥφf, ψ) = (Hφf, ψ̂).

Therefore, we have g = Hφf in S ′, which completes the proof of the Theo-
rem.

Finally, we prove the Corollary. We put φα(ξ) = α(1 − ξ)α−1χ(0,1)(ξ).
Then Cα = Hφα . Trivially, φα ∈ L1(R) and

�
R |ξ|−1/2|φα(ξ)| dξ < ∞. We

check condition (ii) of the Lemma for φ̂α. We have

φ̂α(x) = α!(−ix)−α
(
e−ix −

α−1∑

j=0

(−ix)j

j!

)
.

We easily see that φ̂α ∈ C∞(R) and

sup
x
|x|α|φ̂(α)

α (x)| <∞, sup
x
|x|α|φ̂(2α)

α (x)| <∞

for α = 1, 2, . . . Therefore, the Theorem yields the Corollary.
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[9] A. G. Siskakis, The Cesàro operator is bounded on H1, ibid. 110 (1990), 461–462.

Department of Mathematics
General Education Hall
Kanazawa University
Kanazawa 920-1192, Japan
E-mail: kanjin@kenroku.kanazawa-u.ac.jp

Received December 20, 2000
Revised version May 21, 2001 (4657)


