The Hausdorff operators on the real Hardy spaces $H^p(\mathbb{R})$

by

YUICHI KANJIN (Kanazawa)

Abstract. We prove that the Hausdorff operator generated by a function ϕ is bounded on the real Hardy space $H^p(\mathbb{R})$, $0 , if the Fourier transform <math>\hat{\phi}$ of ϕ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Cesàro operator of order α on $H^p(\mathbb{R})$, $2/(2\alpha + 1) . Our proof is based on the$ $atomic decomposition and molecular characterization of <math>H^p(\mathbb{R})$.

1. Introduction. Let $0 and <math>H^p(\mathbb{R})$ be the real Hardy space, that is, the space of the boundary distributions $f(x) = \Re F(x)$ of the real parts $\Re F(z)$ of functions F(z) in the Hardy space $H^p(\mathbb{R}^2_+) = \{F(z) : F$ is analytic in \mathbb{R}^2_+ and $\|F\|_{H^p(\mathbb{R}^2_+)} = \sup_{t>0} (\int_{-\infty}^{\infty} |F(x+it)|^p dx)^{1/p} < \infty \}$ on the upper half plane $\mathbb{R}^2_+ = \{z = x + it : t > 0\}$, with the norm $\|f\|_{H^p(\mathbb{R})} = \|F\|_{H^p(\mathbb{R}^2_+)}$. The Fourier transform of a function f(x) in \mathbb{R} is given by $[f(x)]^{\wedge}(\xi) = \widehat{f}(\xi) = (2\pi)^{-1/2} \int_{\mathbb{R}} f(x) e^{-ix\xi} dx$.

Let $\phi \in L^1(\mathbb{R})$. For a function f in \mathbb{R} , we define a function $\mathcal{H}_{\phi}f$ in \mathbb{R} so that its Fourier transform $\widehat{\mathcal{H}_{\phi}f}$ satisfies

$$\widehat{\mathcal{H}_{\phi}f}(t) = \int_{\mathbb{R}} \widehat{f}(t\xi)\phi(\xi) d\xi, \quad t \in \mathbb{R}.$$

The operator \mathcal{H}_{ϕ} is called the *Hausdorff operator* generated by ϕ . For simplicity, we also write \mathcal{H}_f instead of $\mathcal{H}_{\phi}f$.

For $\alpha = 1, 2, \ldots$, the *Cesàro operator* C_{α} of order α is given by

$$\widehat{\mathcal{C}_{\alpha}f}(t) = \begin{cases} \frac{\alpha}{t^{\alpha}} \int_{0}^{t} \widehat{f}(\xi)(t-\xi)^{\alpha-1} d\xi & (t\neq 0), \\ \widehat{f}(0) & (t=0). \end{cases}$$

We note that $C_{\alpha} = \mathcal{H}_{\phi}$ when $\phi(\xi) = \alpha(1-\xi)^{\alpha-1}\chi_{(0,1)}(\xi)$, where $\chi_{(0,1)}$ is the characteristic function of the interval (0,1).

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B38; Secondary 42B30.

Key words and phrases: Hausdorff operator, Cesàro operator, real Hardy space.

Y. Kanjin

Giang and Móricz [4] proved the following result:

THEOREM A (Giang and Móricz [4], Theorem 1). The Cesàro operator \mathcal{C}_1 of order 1 is a bounded operator on $H^1(\mathbb{R})$.

Recently, Liflyand and Móricz [8] obtained the following generalization of this result to the Hausdorff operator by using the closed graph theorem and the fact that if $f \in L^1(\mathbb{R})$ satisfies $\widehat{f}(t) = 0$ for t < 0, then $f \in H^1(\mathbb{R})$.

THEOREM B (Liflyand and Móricz [8], Theorem 2). If $\phi \in L^1(\mathbb{R})$, then the Hausdorff operator \mathcal{H}_{ϕ} is a bounded operator on $H^1(\mathbb{R})$.

The purpose of this paper is to extend this result to $H^p(\mathbb{R})$ with index p smaller than one under certain smoothness conditions on $\hat{\phi}$ and to show that the extension gives the boundedness of the Cesàro operator \mathcal{C}_{α} on $H^p(\mathbb{R}), 1 \geq p > 2/(2\alpha + 1)$. The atomic decomposition and molecular characterization of $H^p(\mathbb{R})$ will play an essential role in our proof.

Historically, for the periodic case, Hardy [6] proved that if $\sum_{n=0}^{\infty} a_n \cos nx$ is the Fourier series of a function in $L^p(0,\pi)$, then so is $\sum_{n=0}^{\infty} (Ta)_n \cos nx$ for $1 \leq p < \infty$, where $(Ta)_0 = a_0$, $(Ta)_n = (a_1 + \ldots + a_n)/n$, $n = 1, 2, \ldots$, and the same is true for sine series. Kinukawa and Igari [7] showed that if $\sum_{n=1}^{\infty} b_n \sin nx$ is a Fourier series, then the conjugate series $\sum_{n=1}^{\infty} (Tb)_n \cos nx$ is a Fourier series. Siskakis [9] obtained the same type of theorem in the Hardy space H^1 of the unit disc, that is, the operator C_* defined by $\mathcal{C}_* f(z) = \sum_{n=0}^{\infty} \{(n+1)^{-1} \sum_{k=0}^n a_k\} z^n$, $f(z) = \sum_{k=0}^{\infty} a_k z^k$, is bounded on H^1 . For the real line case, Goldberg [5] investigated the properties of the operator \mathcal{H}_{ϕ} on the spaces $L^p(\mathbb{R})$ with 1 . Georgakis $[3] studied the Fourier analytic properties of <math>\mathcal{H}_{\phi}$ on the space of complex bounded regular Borel measures on \mathbb{R} , and as a special case he showed that if $\phi \in L^1(\mathbb{R})$, then \mathcal{H}_{ϕ} is a bounded operator on $L^1(\mathbb{R})$. Giang and Móricz [4] and Liflyand and Móricz [8] followed as stated above.

2. Results. Let $0 and k be an integer, <math>k \geq 1/p - 1$. A realvalued function a(x) is called a (p, 2, k)-atom if (i) a(x) is supported in an interval [c, c + h], (ii) $||a||_2 (= \{\int_{\mathbb{R}} |a(x)|^2 dx\}^{1/2}) \leq h^{1/2-1/p}$, and (iii) $\int_{\mathbb{R}} x^j a(x) dx = 0$ for $j = 0, 1, \ldots, k$. Then the atomic decomposition says that if $f \in H^p(\mathbb{R})$, then there exist a sequence $\{a_j\}$ of (p, 2, k)-atoms and a sequence $\{\lambda_j\}$ of real numbers with $\sum_j |\lambda_j|^p \leq C ||f||_{H^p(\mathbb{R})}^p$ such that $f = \sum_j \lambda_j a_j$, the series converging to f in $H^p(\mathbb{R})$ and also in the sense of tempered distributions.

A real-valued function M(x) is called a (p, 2, b)-molecule centered at x_0 if M(x) satisfies the following conditions: (i) $N(M) = \|M\|_2^{1-\theta} \| |\cdot -x_0|^b M\|_2^{\theta}$ $< \infty$, where b > 1/p - 1/2, $\theta = (1/p - 1/2)/b$, and (ii) $\int_{\mathbb{R}} x^j M(x) = 0$, $j = 0, 1, \ldots, [1/p - 1]$, where [1/p - 1] is the greatest integer not exceeding 1/p - 1. We call N(M) the molecular norm of M(x). The molecular characterization asserts that if $f = \sum_j M_j$ with (p, 2, b)-molecules M_j as tempered distributions, and $\sum_j N(M_j)^p < \infty$, then $f \in H^p(\mathbb{R})$ and $\|f\|_{H^p(\mathbb{R})}^p \leq C \sum_j N(M_j)^p$. For the atomic decomposition and molecular characterization, we may refer to [2, Chapter III].

The following lemma gives the main estimate:

LEMMA. Let 0 and <math>r be the smallest integer such that r > 1/p - 1/2. Suppose that $\phi \in L^1(\mathbb{R})$ satisfies the following:

(i)
$$\int_{\mathbb{R}} |\xi|^{-1/2} |\phi(\xi)| d\xi < \infty$$

(ii) $\widehat{\phi} \in C^{2r}(\mathbb{R})$ with $\sup_x |x|^r |\widehat{\phi}^{(r)}(x)| < \infty$, $\sup_x |x|^r |\widehat{\phi}^{(2r)}(x)| < \infty$.

Then, for a (p, 2, r - 1)-atom a, $\mathcal{H}_{\phi}a$ is a (p, 2, r)-molecule centered at 0, and

$$N(\mathcal{H}_{\phi}a) \le C,$$

where C is independent of the atoms a.

Our theorem and its corollary are as follows:

THEOREM. Let $0 . Suppose that <math>\phi \in L^1(\mathbb{R})$ satisfies the same conditions as in the Lemma. Then the Hausdorff operator \mathcal{H}_{ϕ} is a bounded operator on $H^p(\mathbb{R})$.

COROLLARY. Let $\alpha = 1, 2, ...$ If $2/(2\alpha + 1) , then the Cesàro operator <math>C_{\alpha}$ of order α is a bounded operator on $H^p(\mathbb{R})$.

Other typical summability kernels covered by the theorem are, for example, $e^{-\xi^2}$ and $e^{-|\xi|}$. The corresponding operators \mathcal{H}_{ϕ} are bounded on $H^p(\mathbb{R})$ for every p with $0 since the functions <math>e^{-\xi^2}$ and $e^{-|\xi|}$ satisfy the conditions of the Lemma for every p with 0 .

The Lemma will be proved in the next section. A discussion on defining the values of the Hausdorff operator for $H^p(\mathbb{R})$ functions and the proof of the Theorem will be given in the fourth section by using the main estimate of the Lemma.

3. Proof of the Lemma. Let 0 and <math>r be the smallest integer such that r > 1/p - 1/2. We begin with estimating the molecular norm $N(\mathcal{H}_{\phi}a)$ for a (p, 2, r-1)-atom a. By the Plancherel theorem and the identity $[xf(x)]^{\wedge}(t) = i(d/dt)\widehat{f}(t)$, we have $\|\mathcal{H}a\|_2 = \|\widehat{\mathcal{H}a}\|_2$, and

$$||x^{r}\mathcal{H}a(x)||_{2} = ||[x^{r}\mathcal{H}a(x)]^{\wedge}(t)||_{2} = ||(d/dt)^{r}\hat{\mathcal{H}a}(t)||_{2},$$

which leads to

$$N(\mathcal{H}a) = \|\widehat{\mathcal{H}a}\|_2^{1-\theta} \|(d/dt)^r \widehat{\mathcal{H}a}(t)\|_2^{\theta},$$

where

$$\theta = (1/p - 1/2)/r = \frac{2-p}{2pr}$$

To estimate $\|\widehat{\mathcal{H}a}\|_2$, we apply the generalized Minkowski inequality. We have

$$\begin{aligned} \|\widehat{\mathcal{H}a}\|_{2} &\leq \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} |\widehat{a}(t\xi)|^{2} dt \right\}^{1/2} |\phi(\xi)| d\xi \\ &= \|\widehat{a}\|_{2} \int_{\mathbb{R}} |\xi|^{-1/2} |\phi(\xi)| d\xi = D_{0} \|a\|_{2}, \end{aligned}$$

where $D_0 = \int_{\mathbb{R}} |\xi|^{-1/2} |\phi(\xi)| d\xi$, which implies

$$N(\mathcal{H}a) \le D_0 \|a\|_2^{1-\theta} \|(d/dt)^r \widehat{\mathcal{H}a}(t)\|_2^{\theta}.$$

It is enough to show that $\|(d/dt)^r \widehat{\mathcal{H}a}(t)\|_2 \leq C \|a\|_2^{\delta}$, where

$$1 - \theta + \delta\theta = 0$$
, that is, $\delta = 1 - 1/\theta = \frac{2 - (1 + 2r)p}{2 - p}$,

and the constant C is independent of the atoms a.

Noting that $\widehat{\mathcal{H}a}(t) = \int_{\mathbb{R}} a(x)\widehat{\phi}(tx) \, dx$, we have

$$\frac{d^r}{dt^r}\widehat{\mathcal{H}a}(t) = \int_{\mathbb{R}} a(x)x^r\widehat{\phi}^{(r)}(tx)\,dx.$$

Let μ be a positive number, which will be chosen later, and write

$$\|(d/dt)^r \widehat{\mathcal{H}a}(t)\|_2^2 = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} a(x) x^r \widehat{\phi}^{(r)}(tx) \, dx \right|^2 dt$$
$$= \left\{ \int_{|t| \le \mu} + \int_{|t| > \mu} \right\} \left| \int_{\mathbb{R}} a(x) x^r \widehat{\phi}^{(r)}(tx) \, dx \right|^2 dt$$
$$= I_{\mu} + J_{\mu}, \quad \text{say.}$$

We first treat J_{μ} . It follows that

$$J_{\mu} = \int_{|t|>\mu} \left| t^{-r} \int_{\mathbb{R}} a(x)(tx)^{r} \widehat{\phi}^{(r)}(tx) \, dx \right|^{2} dt$$

$$\leq \int_{|t|>\mu} |t|^{-2r} \, dt \, (\sup_{x} |x|^{r} |\widehat{\phi}^{(r)}(x)|)^{2} \Big(\int_{\mathbb{R}} |a(x)| \, dx \Big)^{2}$$

By Schwarz's inequality, we have

$$\int_{\mathbb{R}} |a(x)| \, dx \le \|a\|_2 h^{1/2},$$

which is bounded by $||a||_2^{2(1-p)/(2-p)}$, since the condition $||a||_2 \leq h^{1/2-1/p}$ implies $h \leq ||a||_2^{-2p/(2-p)}$, where the support interval of a is [c, c+h]. Thus,

40

we have

(1)
$$J_{\mu} \leq (2K^2/(2r-1))\mu^{-2r+1} ||a||_2^{4(1-p)/(2-p)},$$

where $K = \sup_{x} |x|^{r} |\widehat{\phi}^{(r)}(x)|.$

To estimate I_{μ} , we consider the inner integral $\int_{\mathbb{R}} a(x)x^{r}\widehat{\phi}^{(r)}(tx) dx$ of I_{μ} . Let $g_{t}(x) = x^{r}\widehat{\phi}^{(r)}(tx)$. By the Taylor expansion of g_{t} at x = c and the vanishing moment property of atoms, we have

$$\int_{\mathbb{R}} a(x)g_t(x) \, dx = \frac{1}{r!} \int_{\mathbb{R}} a(x)g_t^{(r)}(\widetilde{x})(x-c)^r \, dx, \quad c < \widetilde{x} < c+h,$$

where [c, c+h] is the support interval of a and $g_t^{(r)}$ is the rth derivative of g_t with respect to x. Since

$$g_t^{(r)}(\widetilde{x}) = \sum_{j=0}^r \binom{r}{j} \frac{r!}{j!} (t\widetilde{x})^j \widehat{\phi}^{(r+j)}(t\widetilde{x}),$$

it follows that

(2)
$$|g_t^{(r)}(\widetilde{x})| \le C \sum_{j=0}^r \sup_x |x|^j |\widehat{\phi}^{(r+j)}(x)| \le C (\sup_x |\widehat{\phi}^{(r)}(x)| + \sup_x |x|^r |\widehat{\phi}^{(2r)}(x)|) = K', \quad \text{say,}$$

where K' depends only on ϕ and r, that is, p. (We shall refer to the last inequality (2) in the Remark below.) Thus, we have

$$\left| \int_{\mathbb{R}} a(x) x^{r} \widehat{\phi}^{(r)}(tx) \, dx \right| \leq K' \int_{\mathbb{R}} |a(x)| \cdot |x-c|^{r} \, dx$$
$$\leq C \|a\|_{2} h^{r+1/2} \leq C \|a\|_{2}^{2(1-p-pr)/(2-p)},$$

where C depends only on ϕ and p. The last inequality follows from $h \leq ||a||_2^{-2p/(2-p)}$. We have

(3)
$$I_{\mu} \le C\mu \|a\|_2^{4(1-p-pr)/(2-p)}$$

Therefore,

$$\begin{aligned} \| (d/dt)^r \widehat{\mathcal{H}a}(t) \|_2 &\leq I_{\mu}^{1/2} + J_{\mu}^{1/2} \\ &\leq C(\mu^{1/2} \|a\|_2^{2(1-p-pr)/(2-p)} + \mu^{-r+1/2} \|a\|_2^{2(1-p)/(2-p)}) \\ &\leq C(\mu^{1/2} \|a\|_2^{2(1-p-pr)/(2-p)-\delta} \\ &\quad + \mu^{-r+1/2} \|a\|_2^{2(1-p)/(2-p)-\delta}) \|a\|_2^{\delta}, \end{aligned}$$

where C depends only on p and ϕ . It follows that

$$\mu^{1/2} \|a\|_2^{2(1-p-pr)/(2-p)-\delta} = (\mu \|a\|_2^{4(1-p-pr)/(2-p)-2\delta})^{1/2},$$

$$\mu^{-r+1/2} \|a\|_2^{2(1-p)/(2-p)-\delta} = (\mu \|a\|_2^{(2(1-p)/(2-p)-\delta)/(-r+1/2)})^{-r+1/2}.$$

and

$$\frac{4(1-p-pr)}{2-p} - 2\delta = \frac{2(1-p)/(2-p) - \delta}{-r+1/2} = \frac{-2p}{2-p}$$

Therefore, choosing $\mu = ||a||_2^{2p/(2-p)}$, we get

(4)
$$\|(d/dt)^r \widehat{\mathcal{H}a}(t)\|_2 \le C \|a\|_2^{\delta},$$

which leads to the desired inequality

$$N(\mathcal{H}a) \le C,$$

where C depends only on p and ϕ .

We turn to the moment condition. It follows that

$$\int_{\mathbb{R}} x^{j} \mathcal{H}a(x) \, dx = [x^{j} \mathcal{H}a(x)]^{\wedge}(0) = i^{j} \frac{d^{j} \mathcal{H}a}{dt^{j}}(0)$$
$$= i^{j} \int_{\mathbb{R}} \widehat{a}^{(j)}(t\xi) \xi^{j} \phi(\xi) \, d\xi \Big|_{t=0}.$$

It follows from the moment condition for a (p, 2, r-1)-atom a that $\hat{a}^{(j)}(0) = (-i)^j \int_{\mathbb{R}} x^j a(x) dx = 0, j = 0, 1, \ldots, r-1$. Since $L \leq r-1$, the moment condition for $\mathcal{H}a$ follows. The proof of the Lemma is complete.

REMARK. Let r = 1, 2, ... The following inequalities hold:

(5)
$$\sup_{x} |x|^{j} |f^{(j)}(x)| \le C(\sup_{x} |f(x)| + \sup_{x} |x|^{r} |f^{(r)}(x)|), \quad j = 1, \dots, r-1,$$

where C depends only on r. These inequalities yield (2) by taking $f = \hat{\phi}^{(r)}$. We get (5) by following the proof of the known inequalities (cf. [1, Ch. 2, Theorem 5.6])

(6)
$$u^{j} \sup_{x} |f^{(j)}(x)| \le C(\sup_{x} |f(x)| + u^{r} \sup_{x} |f^{(r)}(x)|), \quad j = 1, \dots, r-1,$$

where u > 0 is arbitrary and C depends only on r. For the reader's convenience, we give a proof of (5). Let $1 = \lambda_1 < \ldots < \lambda_{r-1} = 2$. It follows from the Taylor formula that

$$f(x+\lambda_l x) = \sum_{j=0}^{r-1} \frac{(\lambda_l x)^j}{j!} f^{(j)}(x) + \int_0^{\lambda_l x} \frac{(\lambda_l x-t)^{r-1}}{(r-1)!} f^{(r)}(x+t) dt$$

for l = 1, ..., r - 1. We denote the remainder term by $R_r(x, l)$. We have a

linear system

$$\sum_{j=1}^{r-1} \lambda_l^j \frac{x^j}{j!} f^{(j)}(x) = f(x+\lambda_l x) - f(x) - R_r(x,l), \quad l = 1, \dots, r-1.$$

Since the Vandermonde determinant is nonzero, this system can be solved for $x^j f^{(j)}(x)/j!$. Further, the remainder term $R_r(x, l)$ is estimated as follows:

$$|R_r(x,l)| \le C(\sup_x |x|^r |f^{(r)}(x)|) \int_0^{\lambda_l} \frac{(\lambda_l - u)^{r-1}}{(1+u)^r} \, du$$

for l = 1, ..., r - 1, where C depends only on r, which leads to (5).

5. Proof of the Theorem. We first discuss defining the value $\mathcal{H}_{\phi}f$ for $f \in H^p(\mathbb{R}), 0 . We use the fact that a function of the Lipschitz space <math>\Lambda_{1/p-1}(\mathbb{R})$ defines a continuous linear functional on $H^p(\mathbb{R})$ (cf. [2, III.5]). Let 0 and <math>r be the smallest integer such that r > 1/p-1/2. Suppose that ϕ satisfies the same conditions as in the Lemma.

We put $(\widehat{\phi})_t(x) = \widehat{\phi}(xt)$. Then we have $|(d/dx)^j(\widehat{\phi})_t(x)| \leq A_j |t|^j$, $j = 0, 1, \ldots, r$, where $A_j = \sup_x |\widehat{\phi}^{(j)}(x)|$. The constants A_j are finite, which follows from (6). Hence

(7)
$$\|(\widehat{\phi})_t\|_{\Lambda_{1/p-1}(\mathbb{R})} \le C(1+|t|^r).$$

This implies $(\widehat{\phi})_t \in \Lambda_{1/p-1}(\mathbb{R})$, that is, for every $t \in \mathbb{R}$ the function $(\widehat{\phi})_t$ defines a continuous linear functional of $H^p(\mathbb{R})$ and

$$|\langle f, (\widehat{\phi})_t \rangle| \le C(1+|t|^r) ||f||_{H^p(\mathbb{R})} \quad \text{for } f \in H^p(\mathbb{R}),$$

where $\langle \cdot, \cdot \rangle$ is the duality paring between $H^p(\mathbb{R})$ and $\Lambda_{1/p-1}(\mathbb{R})$, and C is independent of f and t. We define $\mathcal{H}_{\phi}f$ for $f \in H^p(\mathbb{R})$ as the inverse Fourier transform of the tempered function $\langle f, (\hat{\phi})_t \rangle$ with respect to the variable t, that is, $\widehat{\mathcal{H}_{\phi}f}(t) = \langle f, (\hat{\phi})_t \rangle$. This coincides with the original definition when $f, \phi \in L^1(\mathbb{R})$ since

$$\widehat{\mathcal{H}_{\phi}f}(t) = \int_{\mathbb{R}} \widehat{f}(t\xi)\phi(\xi) \, d\xi = \int_{\mathbb{R}} f(x)\widehat{\phi}(tx) \, dx.$$

We turn to the proof of the Theorem. Let 0 and <math>r be the smallest integer such that r > 1/p - 1/2. Let $f \in H^p(\mathbb{R})$. We have an atomic decomposition $f = \sum_{j=0}^{\infty} \lambda_j a_j$, where $\sum_{j=0}^{\infty} |\lambda_j|^p \leq C ||f||_{H^p(\mathbb{R})}^p$ and a_j is a (p, 2, r - 1)-atom. By the Lemma, we have

$$\sum_{j=0}^{\infty} N(\lambda_j \mathcal{H}_{\phi} a_j)^p = \sum_{j=0}^{\infty} |\lambda_j|^p N(\mathcal{H}_{\phi} a_j)^p \le C \sum_{j=0}^{\infty} |\lambda_j|^p \le C ||f||_{H^p(\mathbb{R})}^p.$$

Y. Kanjin

Thus, the series $\sum_{j=0}^{\infty} \lambda_j \mathcal{H}_{\phi} a_j$ converges to a tempered distribution g in \mathcal{S}' and $\|g\|_{H^p(\mathbb{R})} \leq C \|f\|_{H^p(\mathbb{R})}$, where \mathcal{S} is the Schwartz space. It is enough to show that $g = \mathcal{H}_{\phi} f$ in \mathcal{S}' . Let $\psi \in \mathcal{S}$. It follows that

$$(g,\widehat{\psi}) = \sum_{j=0}^{\infty} \lambda_j (\mathcal{H}_{\phi} a_j, \widehat{\psi}) = \sum_{j=0}^{\infty} \lambda_j (\widehat{\mathcal{H}_{\phi} a_j}, \psi)$$
$$= \sum_{j=0}^{\infty} \lambda_j \int_{\mathbb{R}} \widehat{\mathcal{H}_{\phi} a_j}(t) \psi(t) \, dt = \sum_{j=0}^{\infty} \lambda_j \int_{\mathbb{R}} \langle a_j, (\widehat{\phi})_t \rangle \psi(t) \, dt,$$

where (\cdot, \cdot) is the duality pairing between \mathcal{S}' and \mathcal{S} . By the fact that $|\langle a_j, (\hat{\phi})_t \rangle| \leq C ||(\hat{\phi})_t||_{A_{1/p-1}(\mathbb{R})}$ and by (7), we can change the order of the sum and integral in the last term. It follows that

$$(g,\widehat{\psi}) = \int_{\mathbb{R}} \sum_{j=0}^{\infty} \lambda_j \langle a_j, (\widehat{\phi})_t \rangle \psi(t) \, dt = \int_{\mathbb{R}} \langle f, (\widehat{\phi})_t \rangle \psi(t) \, dt$$
$$= (\widehat{\mathcal{H}_{\phi}f}, \psi) = (\mathcal{H}_{\phi}f, \widehat{\psi}).$$

Therefore, we have $g = \mathcal{H}_{\phi} f$ in \mathcal{S}' , which completes the proof of the Theorem.

Finally, we prove the Corollary. We put $\phi_{\alpha}(\xi) = \alpha(1-\xi)^{\alpha-1}\chi_{(0,1)}(\xi)$. Then $\mathcal{C}_{\alpha} = \mathcal{H}_{\phi_{\alpha}}$. Trivially, $\phi_{\alpha} \in L^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} |\xi|^{-1/2} |\phi_{\alpha}(\xi)| d\xi < \infty$. We check condition (ii) of the Lemma for $\hat{\phi}_{\alpha}$. We have

$$\widehat{\phi}_{\alpha}(x) = \alpha! (-ix)^{-\alpha} \left(e^{-ix} - \sum_{j=0}^{\alpha-1} \frac{(-ix)^j}{j!} \right).$$

We easily see that $\widehat{\phi}_{\alpha} \in C^{\infty}(\mathbb{R})$ and

$$\sup_{x} |x|^{\alpha} |\widehat{\phi}_{\alpha}^{(\alpha)}(x)| < \infty, \quad \sup_{x} |x|^{\alpha} |\widehat{\phi}_{\alpha}^{(2\alpha)}(x)| < \infty$$

for $\alpha = 1, 2, \ldots$ Therefore, the Theorem yields the Corollary.

References

- R. A. DeVore and G. G. Lorentz, *Constructive Approximation*, Grundlehren Math. Wiss. 303, Springer, Berlin, 1993.
- [2] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- C. Georgakis, The Hausdorff mean of a Fourier-Stieltjes transform, Proc. Amer. Math. Soc. 116 (1992), 465–471.
- [4] D. V. Giang and F. Móricz, The Cesàro operator is bounded on the Hardy space H¹, Acta Sci. Math. (Szeged) 61 (1995), 535–544.

- [5] R. R. Goldberg, Convolutions and general transforms on L^p, Duke Math. J. 27 (1960), 251–259.
- G. H. Hardy, Notes on some points in the integral calculus, Messenger Math. 58 (1929), 50-52.
- M. Kinukawa and S. Igari, *Transformations of conjugate functions*, Tôhoku Math. J. (2) 13 (1961), 274–280.
- [8] E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb{R})$, Proc. Amer. Math. Soc. 128 (2000), 1391–1396.
- [9] A. G. Siskakis, The Cesàro operator is bounded on H^1 , ibid. 110 (1990), 461–462.

Department of Mathematics General Education Hall Kanazawa University Kanazawa 920-1192, Japan E-mail: kanjin@kenroku.kanazawa-u.ac.jp

> Received December 20, 2000 Revised version May 21, 2001 (4657)