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A class of solvable non-homogeneous differential operators
on the Heisenberg group

by

DETLEF MULLER (Kiel) and ZHENQIU ZHANG (Tainjin)

Abstract. In [8], we studied the problem of local solvability of complex coefficient
second order left-invariant differential operators on the Heisenberg group H,,, whose prin-
cipal parts are “positive combinations of generalized and degenerate generalized sub-
Laplacians”, and which are homogeneous under the Heisenberg dilations. In this note,
we shall consider the same class of operators, but in the presence of left invariant lower
order terms, and shall discuss local solvability for these operators in a complete way. Pre-
viously known methods to study such non-homogeneous operators, as in [9] or [6], do not
apply to these operators, and it is the main purpose of this article to introduce a new
method, which should be applicable also in much wider settings.

1. Basic definitions and main results. Let w denote the symplectic
form on R?" given by

w(z,2) =Tz, J=J,:= (_(} Ig) .

The Heisenberg group H, is R?>" x R, endowed with the group law
(1.1) (z,u) (¢ u) = (z+ 2, u+u — Jw(z,2)).

The left-invariant vector fields
S I
0z 2% ow Ty 277 ou’
j=1,...,n,and U := 9/0u form a natural basis for the Lie algebra b,, of
H,,. The only non-trivial commutation relations among these vector fields
are [X;,Y;]=U,j=1,...,n.

Denote by sp(n,C) the symplectic Lie algebra, consisting of all complex
2n x 2n-matrices S satisfying

Xj =

ST+ JS = 0.
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Let S € sp(n,C), denote by A = (aj)) the symmetric matrix A := SJ,
and put
2n

(1.2) Ag = Z a;ViVi,
k=1
where V; := X, V1 ; =Y, 7=1,...,n
In [5], the situation where the matrix S assumes a block diagonal form

Y15(1)
(1.3) S =

YmS(m)

with respect to a suitable decomposition of R?" into symplectic subspaces
has been studied, under the assumptions that v; € C* = C\ {0} and
S(Qj) = —1I,j =1,...,m. By means of Hérmander’s criterion, it has been
shown that for “most” of these matrices S, the operators Ag + lower order
terms are locally non-solvable.

There are only five exceptional classes of operators of the above type to
which Hérmander’s criterion does not apply and which are listed in [5]. In
all these classes, each of the elementary blocks is of size 2 x 2. Moreover,
according to the classification of normal forms in [7], after applying a suitable
symplectic change of coordinates, one may assume that ;) is either of the
form ,

ieiN; A7 —1
(1.4) S(]) = < ‘71 J —]igj)\j> s “Type 1”,
with A\; € {=1} U[0,00[ and ¢; = 1 if |A\;| <1, and ¢; = £1 if A\; > 1, or of
the form

0 Z « ”
(1.5) S(]) = (2 0) y Type 3.

Denote by og the principal symbol of —Ag, and assume henceforth that
Reog > 0. Then Ag belongs to one of the major exceptional classes listed
in [5]. It follows from [5] that Ag is a positive combination of generalized
sub-Laplacians and of degenerate generalized sub-Laplacians, i.e.

(1.6) AS_Z% — AN)X7 + Y7 +id(X;Y + VX))

i Y G-,

j=r+1

where 0 < r < mn, || <1, € C*for j =1,...,r,9 > 0 for j =
r+1,...,n, and where for each j = 1,...,r and every ;,n; € R,
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(1.7) Re[;[(1 = A2)EF + 7 + 2iX\;&m;]] > 0,

provided we choose appropriate coordinates.
In this article, we deal with the operators of the form

n
(1.8) Lo = As+ Y (BnX; + Bj2Y;) +al +c,
j=1
where the coefficients 3;1, B2, @ and c are complex. We assume in addition
that
(1.9) Revy; >0 forj=1,...,r
(for a discussion of this condition, see Remark 1.2 in [8]).
Set

Ei = {i;’yj(Ql]—i—l) o PR MRS N}

Moreover, denote by nq, n; and n, the number of “Type 1”7 blocks S(;) in
S with [Aj| <1, A; =1 and \; = —1, respectively, and by n3 the number
of “Type 3” blocks.

Since S(Qj) = —I and v; # 0, S is invertible, and so is the coefficient
matrix A. We choose coordinates z := (z1,..., z,), with z; := (x;,y;), cor-
responding to the block form (1.3) of S. With respect to these coordinates,
the matrix A also assumes a block form

Aq)
A =
An)
Thus, arguing as in [5], we see that it is possible to eliminate the first order

terms in the X;’s and Yj’s, by conjugating L, by a multiplication operator.
In fact

(1.10)  Lo(e (/22475 p)
_ tzA71 . 1 n _
=~ (1/DT2ATS <As +iol +c— 5 z; tﬁjA(ﬁﬁj)f,
J:

where °8; := (Bj1,0j2) and *8 := (*B1,..., *B,). Combining this observa-
tion with the results in [8], we obtain

THEOREM 1.1. Suppose Lo, given by (1.6) and (1.8), satisfies (1.7) and
(1.9), and assume that ¢ = iZ;‘:l tﬁjA(_j;ﬂj. Then the following hold:

(I) Ifa € ET UE~, then Lq is locally solvable.
(IT) If « € E~, then Ly is locally solvable if and only if ng + n3 > 0.
(IIT) If « € ET, then Lq is locally solvable if and only if ny + ng > 0.
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This theorem discusses local solvability of those operators which can be
reduced to homogeneous ones. For the remaining cases, we shall prove the
following positive result.

THEOREM 1.2. Suppose L, given by (1.6) and (1.8), satisfies (1.7) and
(1.9), and that c # iZ;‘:l tﬁjA(_j;ﬂj. Then Ly, is locally solvable.

REMARK 1.3. In Theorem 3.3 of [5], second order left-invariant differen-
tial operators on the Heisenberg group H; were studied in a rather complete
way. Following the notation of Theorem 3.3 in [5], the only case which was
left open was the case where Ag is of type (a.2) and ¢ # (87 — 2ig3152) /4.
Our main result shows that in this case the operator L is locally solvable.

2. Proof of Theorem 1.2. We apply the usual convention that C' is a
constant whose value may change from line to line.

In view of (1.10), we may assume that 5 = 0, i.e. that L, = Ag+ialU+c,
where ¢ # 0. Denote by f* the partial Fourier transform of f along the center
of H,,, i.e.

fH(z) = Sf(z,u)e_i“” du, peR*.
R

Moreover, for suitable functions or distributions ¢, on R?", define the
p-twisted convolution of ¢ and ¥ by

© X, w(z) — S (,O(Z _ Z/)w(zl)ei(p/2)w(zfz/7z/) ds.
R2n

Then one easily verifies that, for suitable distributions f, g on H,,,

(f*g)t = " xug"

Denote by u(h,) the universal enveloping algebra of b,. Then u(h,) can
be identified with the associative algebra of all left-invariant differential
operators on H,,. If D € u(h,,), we define the partial Fourier transform of D
as the partial differential operator D* on R?" which is given by the formula

Drfrt = (D",  feSH,),
where S(H,,) denotes the Schwartz space on H,,. In particular, we then have
Lo = A —ap+ec.
Let f € S(H,). We intend to solve the equation

Lov=f.
Proceeding formally as in [5], [8], we put
Its(z) == |1l e~ (ul/4) X5, COth('th)thJIS(j)Zj’ pe R,

(4m)" [T}=, sinh(v;t)
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From [5], we have

d
|M|£(90 Xp Ftlfs) = A’é(%’ X Fﬁs)

for every ¢ € S(R?"). Therefore

d —Q(sgn C
(2.1) ‘“'%[e (sgn p)t+( /I#I)t(@ X Ftlfs)]
— Lg[e—a(sgnu)ﬂr(C/lul)t((p %, TP,

So a fundamental solution for L, = Ag + ialU + ¢ can be formally defined
by

LT 1 (e mtt e/t o (i G
(2.2)  Fa(z,u) = | {e Ifg(z)e™ = dt.

2 0 B ]

On a formal level, this suggests that a solution to the equation L,v = f is
given by
(2.3) w(z,u) = f*Fy(z,u)
oo
— L et e, i ()i gy

2 0 B~ ’M‘

However, the integral (2.3) will in general not be convergent. A main and
principal obstacle is the exponential growth of the factor e(¢/IDt ag uw— 0,
in the case where Rec > 0.

On the other hand, in order to prove local solvability, we do not really
have to construct a fundamental solution, and are even allowed to ignore
“low frequencies” (compare also [1]), as the following auxiliary result shows.

Fix a cut-off function x € C$°(R?) such that 0 < x < 1, x(x) = 1 for
|z] <1 and x(z) = 0 for |z| > 2, and write xp(z) := x(z/B) if B > 0. We
introduce Fourier multiplier operators @z and Pg on L?(R%) by

(2.4) Qpf:=xsf, Psf=I—-Qp)f, fecL*RY.

PROPOSITION 2.1. There exists a constant K > 1, depending only on
the dimension d, such that the following holds: If r and B are positive num-
bers such that r < 1/(KB), then for every function f € L?*(R%) which is
supported in the ball B,(0) := {x € R : |z| < r}, we have

1fll2 < 2lxar (PBS)l[2-

Proof. Denote by np the inverse Fourier transform of x 5. Then for every
N > 0 we find a constant C = Cy > 0 such that

n5(x)] < CBY(1 + |Bx|)™.
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Assume that f € L?(RY) and supp f C B,.(0). If |#| > 2r, then
(P @) = £ (@) s« f(@)] = Inp + @) = | § fns@—y)dy

ly|<r

<oBifla( § @Bl -y ay)

lyl<r
< OB || f|l2(1 + Blz|) V.
Thus, if r < 1/(K B), and if we choose N such that d > N > d/2, we obtain
1/2 1/2
(§ 1@n@Pde)” <l | 1Bel > )
|z[>2r |z|>2r
= CB"Nr N £l < CKTEV £
On the other hand, since f = x,.f, we have
FE] = 1% % FEI < IFll2 - IRrll2 < Cr¥2| fl2
for every ¢ € R?. Therefore, by Plancherel’s formula,
~ 1/2 _
lQsfllz < ( § IF©Pdg) " < CBY*2 fll < CK=2||f o,
|€|<2B

Choosing K sufficiently large, we thus obtain

1
171l < 1Qpfllz + 1 P5fll2 < Sl fllz + lxer (BB f)ll2:
This implies Proposition 2.1. =

We shall apply the proposition above to the central variable v on the
Heisenberg group. To this end, we define for B > 0 the operator P on
L?(H,,) by means of the formula

(Pef)F =1 —xpw]f", neR* feS(H,).
Because of the blow-up of the integrated function that appears in (2.3),

we shall try to solve the equation L,v = Ppf instead of L,v = f. Consider
the distribution H,, which is formally defined by

17 _ . du
2. H,, @) = — 1— a(sgnp)t+(c/|p)t Ol 1
(2.5)  (Ha,9) 277(8)8( xB(1))e (Ifs ¢ >W ,

¢ € S(H,).

PROPOSITION 2.2. Let A := 7, Rew;. If [Rea|+ |Rec|/B < A, then
H, is a well-defined tempered distribution on H,,, satisfying
(2.6) L.(f*H,)=Ppf forevery f € S(Hy).

Moreover, if A > |Rec|/B, then {Ha}Rea|<A—[Rec|/B 95 an analytic family
of tempered distributions.
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Proof. We closely follow [5], §§7.3, 7.4. If we put §(z) := g(—=z), then

1
Iy, o) =
< tﬁ'?‘p > (271’)"

<FtljS: ¢_#>7
where I'/'s is given by

— 1
FtlfS(C) — %6 ‘M‘It(o

with

= H cosh(;t)

Ztanh YOI = N)E +nf + 20\ my] +1i Z tanh(vy;t) (&5 — n3)
j=r+1

= Z tanh(v;t)q;(¢5)
j=1
if ¢; = (&;,7;). Since Reg; > 0 (see [5]), we thus have

|e—ex(sen wt+(e/ ul)t @(Cﬂ < Ce(~Real=[Recl/|ul+A)t

and consequently, for |u| > B,

—alsgn )+ /It TI (Y| dt < C "
€
§)| t,s( ) dt < (A —|Rea|)|u| — |Rec]|

for every ¢ € R*,

This shows that the integral defining (H,, ) is absolutely convergent,
and that

ERA(
[(Ha, )| < C d¢ dp < l¢lls
¢ | ) §n (A= [Real)|u| = [Rec|
u>BR
for some Schwartz norm || - ||s. Moreover, the mapping « +— (Hy,,p) is

analytic for |Rea| < A — |Rec|/B. Finally, from (2.1) we obtain

La(f  Ha)(z,u) = % 11 = xB(0) ()™ dyy = P (2, u). m

Fix now B such that by := A — |Rec|/B > 0, and put v = > ;7;,
a := min; Rev; and by, := by + 2ma, m € N, so that b,, — oo as m — oo.
In particular, the domains X, := {a € C : |Rea| < by}, m € N, cover the
complex plane.

The analytic family of distributions H, will in general not extend from
X to a larger strip X,,,. However, arguing as in [5], by means of integrations
by parts in the t-variable, we can prove the following
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PROPOSITION 2.3. Let m € N. Then there exist an analytic family of
tempered distributions {H'}nex,, on H, and a family of non-trivial differ-
ential operators Qo = >, ax()U* whose coefficients ay() depend polyno-
mially on «, such that

(2.7) Lo(f x HY') = QaPpf  for f € S(Hn), a € T

Proof. First re-write H, for a € Xy. Let e(p) := sgnp. If J = (j1,. ..
..y Jm) is a multi-index of length ¢(J) = m in {1,...,n}™, we set

os(w) =[] (e(u)a YD 2% - ,—;O

k=0 1<k

(the factor with k = 0 is taken to be (e(u)a + v — ¢/|ul)). Put M; := ~,q;,
and

My =M, ..M,
(where My := 1, with £(0) = 0). Then, after m integrations by parts fol-

lowing the lines in [5], we find that there are functions 5y on {—1,+1} for
¢(J) < m, and functions K, j(t) for £(J) = m, such that

28) (Haf)= S (2L ) pong) = Xxnli) g,

«Tem 05(1) [+
+ Z §S (e=au/ll g >%’i(1>d "
and ) m
(2:9) K, (t) ~ QJ{N)e_(E(#)C“r“Herzl2“fj~l—c/\#|)1t7

where J is obtained from .J by deleting the last index jy,.

In order to extend the definition of H, by means of (2.8) and (2.9) to
a € Y, we have to “remove” the zeros of the functions ;. To this end,
put

m

hau(m) =] [((a ++ 22%‘1)# - C> <(a —y - 22%)# - 0)}
k=0 <k <k
and
= ]I hasw:
o(J)<m

Then @, is a non-trivial polynomial, since ¢ # 0. Moreover, Qa(ix)/05()
is a smooth function away from g = 0 which grows at most polynomially.
We therefore define a tempered distribution H]' by the formula



Non-homogeneous differential operators 95

o0

m L -1 —a(sgn p)t+(c t
(210)  (HZ'\ ) = o §§(1_XB(N))6 (sgn w)t-+(c/ )

X (If'g, ") Qalip) , N|J dt, ¢ € S(Hy).

Replacing H, by H] in the preceding argument, we obtain
alt £ _ 1-—
i) p = Y LIy ) ) X8l g,

ot e
+ Z S SQO‘ (i) K g (t )<€_qt/|u|’MJﬁ>1|‘X7i(l)d dt.
=m 0

From (2.9), one ﬁnds that the right-hand side of (2.11) converges abso-
lutely even for o € X,,, and that it defines an analytic family of tempered
distributions H]' for o € X,,. Moreover, if a € X, we may argue as in the
proof of Proposition 2.2 in order to verify (2.7). Finally, since both sides of
(2.7) are analytic in o € X),, we see that, by analytic continuation, (2.7)
remains valid for every a € X,. =

Now, in order to prove Theorem 1.2, if a« € C we choose m € N such
that a € X, and then HJ' € S'(H,) and the bi-invariant differential @,
according to Proposition 2.3. Let H,f := f « H for f € S(H,,).

If we denote by *L, "H, and *Pp the formal transposes of L, H, and
Pp on S(H,,), respectively, then by (2.7),

(2.12) "Ho'Lof = Pp'Qaf, [ € S(Hy),

since "Pp = Pg.

Denote by B, the set of all (z,u) € H),, such that |z| < r, |u| < r. Applying
Proposition 2.1 to the central variable u, keeping z fixed, we see that there
is an r > 0 such that

lellz < Clixa,, (Pae) |2

for every ¢ € C§°(H,,) supported in B,. Replacing ¢ by ‘Qa¢, and applying
(2.12), we get

I'Qa¢ll2 < Clixp., (P5 ' Qaw)ll2 = IXB2, ("Ha ' Law) 2.

Consequently,
I*Qawllz < C sup |(*Ha(Lap))(2)]

€ By
=C sup | | HI()("Lag)(xy) dy| < C sup || "Lasp(z-)l|x)
€ Ba, H,, xr€Bo,

for some Sobolev norm || - [| (). But, since for z € B,, all functions "L (z )
are supported in a fixed compact subset, we may find an elliptic, left-



96 D. Miiller and Z. Q. Zhang

invariant differential operator D such that
I*Law(z gy < D[ Lap(z)]ll2 = (D La)e(z )2 = | D Lapll2,
hence

H tQaQOHQ < CHDtLa(p”27
whenever supp ¢ C B,.

The operator '@, is a constant coefficient operator acting on the variable
u only, and thus has a fundamental solution. So, arguing as before we see

that there exists a bi-invariant differential operator R such that

el < CIIR* Qapll2
if supp ¢ C B,.. But, R commutes with D and 'Q,, and so we obtain

lellz < CIIRD " Lagpll2 < || "Lasell )

for a suitable Sobolev norm || - [|;). This implies that L, is locally solvable

(see e.g. [3]).
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