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A class of solvable non-homogeneous differential operators
on the Heisenberg group

by

Detlef Müller (Kiel) and Zhenqiu Zhang (Tainjin)

Abstract. In [8], we studied the problem of local solvability of complex coefficient
second order left-invariant differential operators on the Heisenberg group Hn, whose prin-
cipal parts are “positive combinations of generalized and degenerate generalized sub-
Laplacians”, and which are homogeneous under the Heisenberg dilations. In this note,
we shall consider the same class of operators, but in the presence of left invariant lower
order terms, and shall discuss local solvability for these operators in a complete way. Pre-
viously known methods to study such non-homogeneous operators, as in [9] or [6], do not
apply to these operators, and it is the main purpose of this article to introduce a new
method, which should be applicable also in much wider settings.

1. Basic definitions and main results. Let ω denote the symplectic
form on R2n given by

ω(z, z′) := tz′Jz, J = Jn :=
(

0 In
−In 0

)
.

The Heisenberg group Hn is R2n × R, endowed with the group law

(z, u)(z′, u) =
(
z + z′, u+ u′ − 1

2ω(z, z′)
)
.(1.1)

The left-invariant vector fields

Xj :=
∂

∂xj
− 1

2
yj
∂

∂u
, Yj :=

∂

∂yj
+

1
2
xj

∂

∂u
,

j = 1, . . . , n, and U := ∂/∂u form a natural basis for the Lie algebra hn of
Hn. The only non-trivial commutation relations among these vector fields
are [Xj, Yj] = U , j = 1, . . . , n.

Denote by sp(n,C) the symplectic Lie algebra, consisting of all complex
2n× 2n-matrices S satisfying

tSJ + JS = 0.
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Let S ∈ sp(n,C), denote by A = (ajk) the symmetric matrix A := SJ ,
and put

∆S :=
2n∑

j,k=1

ajkVjVk,(1.2)

where Vj := Xj, Vn+j := Yj , j = 1, . . . , n.
In [5], the situation where the matrix S assumes a block diagonal form

S =



γ1S(1)

. . .
γmS(m)


(1.3)

with respect to a suitable decomposition of R2n into symplectic subspaces
has been studied, under the assumptions that γj ∈ C× = C \ {0} and
S2

(j) = −I, j = 1, . . . ,m. By means of Hörmander’s criterion, it has been
shown that for “most” of these matrices S, the operators ∆S + lower order
terms are locally non-solvable.

There are only five exceptional classes of operators of the above type to
which Hörmander’s criterion does not apply and which are listed in [5]. In
all these classes, each of the elementary blocks is of size 2 × 2. Moreover,
according to the classification of normal forms in [7], after applying a suitable
symplectic change of coordinates, one may assume that S(j) is either of the
form

S(j) =
(
iεjλj λ2

j − 1
1 −iεjλj

)
, “Type 1”,(1.4)

with λj ∈ {−1} ∪ [0,∞[ and εj = 1 if |λj| ≤ 1, and εj = ±1 if λj > 1, or of
the form

S(j) =
(

0 i
i 0

)
, “Type 3”.(1.5)

Denote by σS the principal symbol of −∆S , and assume henceforth that
ReσS ≥ 0. Then ∆S belongs to one of the major exceptional classes listed
in [5]. It follows from [5] that ∆S is a positive combination of generalized
sub-Laplacians and of degenerate generalized sub-Laplacians, i.e.

∆S =
r∑

j=1

γj [(1− λ2
j )X

2
j + Y 2

j + iλj(XjYj + YjXj)](1.6)

+ i

n∑

j=r+1

γj(X2
j − Y 2

j ),

where 0 ≤ r ≤ n, |λj| ≤ 1, γj ∈ C× for j = 1, . . . , r, γj > 0 for j =
r + 1, . . . , n, and where for each j = 1, . . . , r and every ξj , ηj ∈ R,
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Re[γj[(1− λ2
j )ξ

2
j + η2

j + 2iλjξjηj ]] ≥ 0,(1.7)

provided we choose appropriate coordinates.
In this article, we deal with the operators of the form

Lα := ∆S +
n∑

j=1

(βj1Xj + βj2Yj) + αU + c,(1.8)

where the coefficients βj1, βj2, α and c are complex. We assume in addition
that

Re γj > 0 for j = 1, . . . , r(1.9)

(for a discussion of this condition, see Remark 1.2 in [8]).
Set

E± :=
{
±

r∑

j=1

γj(2lj + 1) : l1, . . . , lr ∈ N
}
.

Moreover, denote by n1, n+
2 and n−2 the number of “Type 1” blocks S(j) in

S with |λj | < 1, λj = 1 and λj = −1, respectively, and by n3 the number
of “Type 3” blocks.

Since S2
(j) = −I and γj 6= 0, S is invertible, and so is the coefficient

matrix A. We choose coordinates z := (z1, . . . , zn), with zj := (xj , yj), cor-
responding to the block form (1.3) of S. With respect to these coordinates,
the matrix A also assumes a block form

A =



A(1)

. . .
A(n)


 .

Thus, arguing as in [5], we see that it is possible to eliminate the first order
terms in the Xj’s and Yj’s, by conjugating Lα by a multiplication operator.
In fact

(1.10) Lα(e−(1/2) tzA−1βf)

= e−(1/2) tzA−1β

(
∆S + iαU + c− 1

4

n∑

j=1

tβjA
−1
(j)βj

)
f,

where tβj := (βj1, βj2) and tβ := ( tβ1, . . . ,
tβn). Combining this observa-

tion with the results in [8], we obtain

Theorem 1.1. Suppose Lα, given by (1.6) and (1.8), satisfies (1.7) and
(1.9), and assume that c = 1

4

∑n
j=1

tβjA
−1
(j)βj. Then the following hold :

(I) If α 6∈ E+ ∪ E−, then Lα is locally solvable.
(II) If α ∈ E−, then Lα is locally solvable if and only if n+

2 + n3 > 0.
(III) If α ∈ E+, then Lα is locally solvable if and only if n−2 + n3 > 0.
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This theorem discusses local solvability of those operators which can be
reduced to homogeneous ones. For the remaining cases, we shall prove the
following positive result.

Theorem 1.2. Suppose Lα, given by (1.6) and (1.8), satisfies (1.7) and
(1.9), and that c 6= 1

4

∑n
j=1

tβjA
−1
(j)βj. Then Lα is locally solvable.

Remark 1.3. In Theorem 3.3 of [5], second order left-invariant differen-
tial operators on the Heisenberg group H1 were studied in a rather complete
way. Following the notation of Theorem 3.3 in [5], the only case which was
left open was the case where ∆S is of type (a.2) and c 6= (β2

1 − 2iεβ1β2)/4.
Our main result shows that in this case the operator L is locally solvable.

2. Proof of Theorem 1.2. We apply the usual convention that C is a
constant whose value may change from line to line.

In view of (1.10), we may assume that β = 0, i.e. that Lα = ∆S+iαU+c,
where c 6= 0. Denote by fµ the partial Fourier transform of f along the center
of Hn, i.e.

fµ(z) :=
�

R
f(z, u)e−iµu du, µ ∈ R×.

Moreover, for suitable functions or distributions ϕ,ψ on R2n, define the
µ-twisted convolution of ϕ and ψ by

ϕ×µ ψ(z) :=
�

R2n

ϕ(z − z′)ψ(z′)ei(µ/2)ω(z−z′,z′) dz′.

Then one easily verifies that, for suitable distributions f, g on Hn,

(f ∗ g)µ = fµ ×µ gµ.
Denote by u(hn) the universal enveloping algebra of hn. Then u(hn) can
be identified with the associative algebra of all left-invariant differential
operators on Hn. If D ∈ u(hn), we define the partial Fourier transform of D
as the partial differential operator Dµ on R2n which is given by the formula

Dµfµ = (Df)µ, f ∈ S(Hn),

where S(Hn) denotes the Schwartz space on Hn. In particular, we then have
Lµα = ∆µ

S − αµ+ c.
Let f ∈ S(Hn). We intend to solve the equation

Lαv = f.

Proceeding formally as in [5], [8], we put

Γµt,S(z) :=
|µ|n

(4π)n
∏n
j=1 sinh(γjt)

e−(|µ|/4)
∑n
j=1 coth(γjt) tzjJ1S(j)zj , µ ∈ R×.



Non-homogeneous differential operators 91

From [5], we have

|µ| d
dt

(ϕ×µ Γµt,S) = ∆µ
S(ϕ×µ Γµt,S)

for every ϕ ∈ S(R2n). Therefore

(2.1) |µ| d
dt

[e−α(sgnµ)t+(c/|µ|)t(ϕ×µ Γµt,S)]

= Lµα[e−α(sgnµ)t+(c/|µ|)t(ϕ×µ Γµt,S)].

So a fundamental solution for Lα = ∆S + iαU + c can be formally defined
by

Fα(z, u) := − 1
2π

∞�

0

�

R×
e−α(sgnµ)t+(c/|µ|)tΓµt,S(z)eiµu

dµ

|µ| dt.(2.2)

On a formal level, this suggests that a solution to the equation Lαv = f is
given by

v(z, u) = f ∗ Fα(z, u)(2.3)

= − 1
2π

∞�

0

�

R×
e−a(sgnµ)t+(c/|µ|)tfµ ×µ Γµt,S(z)eiµu

dµ

|µ| dt.

However, the integral (2.3) will in general not be convergent. A main and
principal obstacle is the exponential growth of the factor e(c/|µ|)t as µ→ 0,
in the case where Re c > 0.

On the other hand, in order to prove local solvability, we do not really
have to construct a fundamental solution, and are even allowed to ignore
“low frequencies” (compare also [1]), as the following auxiliary result shows.

Fix a cut-off function χ ∈ C∞0 (Rd) such that 0 ≤ χ ≤ 1, χ(x) = 1 for
|x| ≤ 1 and χ(x) = 0 for |x| > 2, and write χB(x) := χ(x/B) if B > 0. We
introduce Fourier multiplier operators QB and PB on L2(Rd) by

Q̂Bf := χB f̂ , PBf = (I −QB)f, f ∈ L2(Rd).(2.4)

Proposition 2.1. There exists a constant K > 1, depending only on
the dimension d, such that the following holds: If r and B are positive num-
bers such that r < 1/(KB), then for every function f ∈ L2(Rd) which is
supported in the ball Br(0) := {x ∈ Rd : |x| < r}, we have

‖f‖2 ≤ 2‖χ2r(PBf)‖2.

Proof. Denote by ηB the inverse Fourier transform of χB. Then for every
N > 0 we find a constant C = CN > 0 such that

|ηB(x)| ≤ CBd(1 + |Bx|)−N .
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Assume that f ∈ L2(Rd) and supp f ⊂ Br(0). If |x| ≥ 2r, then

|(PBf)(x)| = |f(x)− ηB ∗ f(x)| = |ηB ∗ f(x)| =
∣∣∣

�

|y|≤r
f(y)ηB(x− y) dy

∣∣∣

≤ CBd‖f‖2
( �

|y|≤r
(1 +B|x− y|)−2N dy

)1/2

≤ CBdrd/2‖f‖2(1 +B|x|)−N .
Thus, if r < 1/(KB), and if we choose N such that d > N > d/2, we obtain

( �

|x|≥2r

|(PBf)(x)|2 dx
)1/2

≤ CBdrd/2‖f‖2
( �

|x|≥2r

|Bx|−2N dx
)1/2

= CBd−Nrd−N‖f‖2 ≤ CK−(d−N)‖f‖2.
On the other hand, since f = χrf, we have

|f̂(ξ)| = |χ̂r ∗ f̂(ξ)| ≤ ‖f̂‖2 · ‖χ̂r‖2 ≤ Crd/2‖f‖2
for every ξ ∈ Rd. Therefore, by Plancherel’s formula,

‖QBf‖2 ≤
( �

|ξ|≤2B

|f̂(ξ)|2 dξ
)1/2

≤ CBd/2rd/2‖f‖2 ≤ CK−d/2‖f‖2.

Choosing K sufficiently large, we thus obtain

‖f‖2 ≤ ‖QBf‖2 + ‖PBf‖2 ≤
1
2
‖f‖2 + ‖χ2r(PBf)‖2.

This implies Proposition 2.1.

We shall apply the proposition above to the central variable u on the
Heisenberg group. To this end, we define for B > 0 the operator PB on
L2(Hn) by means of the formula

(PBf)µ := [1− χB(µ)]fµ, µ ∈ R×, f ∈ S(Hn).

Because of the blow-up of the integrated function that appears in (2.3),
we shall try to solve the equation Lαv = PBf instead of Lαv = f . Consider
the distribution Hα, which is formally defined by

(2.5) 〈Hα, ϕ〉 :=
−1
2π

∞�

0

�
(1− χB(µ))e−α(sgnµ)t+(c/|µ|)t〈Γµt,S , ϕ−µ〉

dµ

|µ| dt,

ϕ ∈ S(Hn).

Proposition 2.2. Let A :=
∑

j Re γj. If |Reα| + |Re c|/B < A, then
Hα is a well-defined tempered distribution on Hn, satisfying

Lα(f ∗Hα) = PBf for every f ∈ S(Hn).(2.6)

Moreover , if A > |Re c|/B, then {Hα}|Reα|<A−|Re c|/B is an analytic family
of tempered distributions.
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Proof. We closely follow [5], §§7.3, 7.4. If we put ǧ(z) := g(−z), then

〈Γµt,S, ϕ−µ〉 =
1

(2π)n
〈Γ̂µt,S, ̂̌ϕ−µ〉,

where Γ̂µt,S is given by

Γ̂µt,S(ζ) =
1
σ(t)

e
− 1
|µ| qt(ζ),

with

σ(t) :=
n∏

j=1

cosh(γjt),

qt(ζ) :=
r∑

j=1

tanh(γjt)[(1− λ2
j )ξ

2
j + η2

j + 2iλjξjηj ]+ i

n∑

j=r+1

tanh(γjt)(ξ2
j − η2

j )

=:
n∑

j=1

tanh(γjt)qj(ζj)

if ζj = (ξj, ηj). Since Re qt ≥ 0 (see [5]), we thus have

|e−α(sgnµ)t+(c/|µ|)t Γ̂µt,S(ζ)| ≤ Ce−(−|Reα|−|Re c|/|µ|+A)t,

and consequently, for |µ| ≥ B,
∞�

0

|e−α(sgnµ)t+(c/|µ|)t Γ̂µt,S(ζ)| dt ≤ C |µ|
(A− |Reα|)|µ| − |Re c|

for every ζ ∈ R2n.

This shows that the integral defining 〈Hα, ϕ〉 is absolutely convergent,
and that

|〈Hα, ϕ〉| ≤ C
�

|µ|≥B

�

R2n

∣∣∣∣
̂̌ϕ−µ(ζ)

(A− |Reα|)|µ| − |Re c|

∣∣∣∣ dζ dµ ≤ ‖ϕ‖S

for some Schwartz norm ‖ · ‖S . Moreover, the mapping α 7→ 〈Hα, ϕ〉 is
analytic for |Reα| < A− |Re c|/B. Finally, from (2.1) we obtain

Lα(f ∗Hα)(z, u) =
1

2π

�
(1− χB(µ))fµ(z)eiµu dµ = PBf(z, u).

Fix now B such that b0 := A − |Re c|/B > 0, and put γ :=
∑

j γj ,
a := minj Re γj and bm := b0 + 2ma, m ∈ N, so that bm → ∞ as m → ∞.
In particular, the domains Σm := {α ∈ C : |Reα| < bm}, m ∈ N, cover the
complex plane.

The analytic family of distributions Hα will in general not extend from
Σ0 to a larger strip Σm. However, arguing as in [5], by means of integrations
by parts in the t-variable, we can prove the following
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Proposition 2.3. Let m ∈ N. Then there exist an analytic family of
tempered distributions {Hm

α }α∈Σm on Hn and a family of non-trivial differ-
ential operators Qα =

∑
k ak(α)Uk whose coefficients ak(α) depend polyno-

mially on α, such that

Lα(f ∗Hm
α ) = QαPBf for f ∈ S(Hn), α ∈ Σm.(2.7)

Proof. First re-write Hα for α ∈ Σ0. Let ε(µ) := sgnµ. If J = (j1, . . .
. . . , jm) is a multi-index of length `(J) = m in {1, . . . , n}m, we set

%J(µ) :=
m∏

k=0

(
ε(µ)α+ γ +

∑

l≤k
2γjl −

c

|µ|

)

(the factor with k = 0 is taken to be (ε(µ)α+ γ − c/|µ|)). Put Mj := γjqj ,
and

MJ := Mj1 . . .Mjm

(where M∅ := 1, with `(∅) = 0). Then, after m integrations by parts fol-
lowing the lines in [5], we find that there are functions βJ on {−1,+1} for
`(J) < m, and functions Kµ,J (t) for `(J) = m, such that

〈Hα, f〉 =
∑

`(J)<m

� βJ(ε(µ))
%J̃(µ)

MJ(0)f−µ(0)
1− χB(µ)
|µ|`(J)+1

dµ(2.8)

+
∑

`(J)=m

∞�

0

�
Kµ,J (t)〈e−qt/|µ|,MJ

̂̌f−µ〉1− χB(µ)
|µ|m+1 dµ dt,

and
Kµ,J (t) ∼ cJ

%J̃(µ)
e−(ε(µ)α+γ+

∑m
l=1 2γjl−c/|µ|)t,(2.9)

where J̃ is obtained from J by deleting the last index jm.
In order to extend the definition of Hα by means of (2.8) and (2.9) to

α ∈ Σm, we have to “remove” the zeros of the functions %J̃ . To this end,
put

hα,J(µ) :=
m∏

k=0

[((
α+ γ +

∑

l≤k
2γjl

)
µ− c

)((
α− γ −

∑

l≤k
2γjl

)
µ− c)

]

and
Qα(iµ) :=

∏

`(J)≤m
hα,J̃(µ).

Then Qα is a non-trivial polynomial, since c 6= 0. Moreover, Qα(iµ)/%J̃(µ)
is a smooth function away from µ = 0 which grows at most polynomially.
We therefore define a tempered distribution Hm

α by the formula
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(2.10) 〈Hm
α , ϕ〉 :=

−1
2π

∞�

0

�
(1− χB(µ))e−α(sgnµ)t+(c/|µ|)t

× 〈Γµt,S , ϕ−µ〉Qα(iµ)
dµ

|µ| dt, ϕ ∈ S(Hn).

Replacing Hα by Hm
α in the preceding argument, we obtain

(2.11) 〈Hm
α , f〉 =

∑

`(J)<m

� Qα(iµ)βJ(ε(µ))
%J̃(µ)

MJ(0)f−µ(0)
1− χB(µ)
|µ|`(J)+1

dµ

+
∑

`(J)=m

∞�

0

�
Qα(iµ)Kµ,J(t)〈e−qt/|µ|,MJ

̂̌f−µ〉1− χB(µ)
|µ|m+1 dµ dt.

From (2.9), one finds that the right-hand side of (2.11) converges abso-
lutely even for α ∈ Σm, and that it defines an analytic family of tempered
distributions Hm

α for α ∈ Σm. Moreover, if α ∈ Σ0, we may argue as in the
proof of Proposition 2.2 in order to verify (2.7). Finally, since both sides of
(2.7) are analytic in α ∈ Σm, we see that, by analytic continuation, (2.7)
remains valid for every α ∈ Σm.

Now, in order to prove Theorem 1.2, if α ∈ C we choose m ∈ N such
that α ∈ Σm, and then Hm

α ∈ S ′(Hn) and the bi-invariant differential Qα

according to Proposition 2.3. Let Hαf := f ∗Hm
α for f ∈ S(Hn).

If we denote by tLα, tHα and tPB the formal transposes of Lα, Hα and
PB on S(Hn), respectively, then by (2.7),

tHα tLαf = PB tQαf, f ∈ S(Hn),(2.12)

since tPB = PB .
Denote byBr the set of all (z, u) ∈ Hn such that |z| ≤ r, |u| ≤ r. Applying

Proposition 2.1 to the central variable u, keeping z fixed, we see that there
is an r > 0 such that

‖ϕ‖2 ≤ C‖χB2r(PBϕ)‖2
for every ϕ ∈ C∞0 (Hn) supported in Br. Replacing ϕ by tQαϕ, and applying
(2.12), we get

‖ tQαϕ‖2 ≤ C‖χB2r(PB tQαϕ)‖2 = ‖χB2r(
tHα tLαϕ)‖2.

Consequently,

‖ tQαϕ‖2 ≤ C sup
x∈B2r

|( tHα( tLαϕ))(x)|

= C sup
x∈B2r

∣∣∣
�

Hn
Hm
α (y)( tLαϕ)(xy) dy

∣∣∣ ≤ C sup
x∈B2r

‖ tLαϕ(x ·)‖(k)

for some Sobolev norm ‖ ·‖(k). But, since for x ∈ Br, all functions tLαϕ(x ·)
are supported in a fixed compact subset, we may find an elliptic, left-
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invariant differential operator D such that

‖ tLαϕ(x ·)‖(k) ≤ ‖D[ tLαϕ(x ·)]‖2 = ‖(D tLα)ϕ(x ·)‖2 = ‖D tLαϕ‖2,
hence

‖ tQαϕ‖2 ≤ C‖D tLαϕ‖2,
whenever suppϕ ⊂ Br.

The operator tQα is a constant coefficient operator acting on the variable
u only, and thus has a fundamental solution. So, arguing as before we see
that there exists a bi-invariant differential operator R such that

‖ϕ‖2 ≤ C‖R tQαϕ‖2
if suppϕ ⊂ Br. But, R commutes with D and tQα, and so we obtain

‖ϕ‖2 ≤ C‖RD tLαϕ‖2 ≤ ‖ tLαϕ‖(l)
for a suitable Sobolev norm ‖ · ‖(l). This implies that Lα is locally solvable
(see e.g. [3]).
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