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Phenomena in rank-one Z2-actions

by

Tomasz Downarowicz and Jacek Serafin (Wrocław)

Abstract. We present an example of a rank-one partially mixing Z2-action which
possesses a non-rigid factor and for which the Weak Closure Theorem fails. This is in
sharp contrast to one-dimensional actions, which cannot display this type of behavior.

1. Introduction. The centralizer of an abelian group of measure-pre-
serving transformations (measure-preserving action, for short) has long been
an object of extensive study in ergodic theory. It is defined as the family of
all automorphisms of the underlying space, commuting with all elements of
the action.

Rank-one systems constitute an important class of measure-preserving
transformations; their behavior can be nicely expressed in terms of cutting
and stacking of one tower. A deep and fundamental result of King ([2]),
which is known as the Weak Closure Theorem, brings the above notions
together and refers to Z-actions (i.e. one-dimensional actions induced by
powers of a single automorphism): if a Z-action is rank-one, then its cen-
tralizer is the weak closure of the powers of the transformation.

We will say that the action satisfies the Weak Closure Theorem (WCT
for short) if its centralizer equals the weak closure of the elements of the
action.

A natural question arises whether WCT holds for more general actions
than Z-actions. Downarowicz and Kwiatkowski ([1]) answered this ques-
tion negatively, providing an example of a rank-one Z2-action for which
WCT fails. Their example was in the form of a Morse flow, so it was con-
structed in the absence of mixing. Subsequently, Jean-Paul Thouvenot sug-
gested that perhaps rank-one Z2-actions satisfying an additional condition
of mild mixing should obey WCT. In this note we prove that this is not
the case, even if one imposes a stronger mixing condition, called partial
mixing.
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The existence or nonexistence of factors with certain properties is an-
other issue where it turns out that the dimension of the acting group plays
a crucial role. It can be deduced from King’s theorem that if a rank-one
Z-action has a nontrivial factor, then this factor has to be rigid, and conse-
quently the action cannot be mildly mixing. We show that a Z2-action can
be rank-one, mildly mixing and can possess a nonrigid factor.

2. Preliminaries and notation. Let Z2 denote the set of 2-dimensio-
nal integers n = (nh, nv); the first (horizontal) coordinate is the column num-
ber increasing to the right, the second (vertical) is the row number, increas-
ing upward (unlike the usual notation of matrices, but as in the Cartesian co-
ordinate system); 0 = (0, 0), 1 = (1, 1). We write m ≤ n whenever mh ≤ nh

and mv ≤ nv. For m ≤ n the rectangle {i : m ≤ i ≤ n} is denoted by [m,n].
Let A be a finite set. A finite A-valued matrix B = (B(i))i∈[1,n] is called

a block of size n. For two blocks B and C of the same size n the Hamming
distance is defined as

d(B,C) =
#{i ∈ [1, n] : B(i) 6= C(i)}

#[1, n]
.

The elements of AZ2
are called arrays. For an array x = (x(n)), the block

B(i) = x(m+ i− 1) (i ∈ [1, n]) will be denoted by x[m,m+ n− 1] and we
will say that B occurs in x at position m. Similarly, a block B may occur
in another block C (larger in size). The Hamming distance between arrays
x and y is defined as the upper limit of the distances of the blocks x[−n, n]
and y[−n, n] when both coordinates of n tend to infinity.

We will consider the Z2-action of the group T = {Tn : n ∈ Z2} of shifts
on AZ2

defined by
Tnx(m) = x(m+ n).

Let (X,µ,T) be a measure preserving Z2-action of the shifts on arrays
over a finite alphabet A. We now recall what it means that (X,µ,T) is of
rank one.

If x is an array, then we say that a block B of size n ε-occurs in x at
position m if

d(B, x[m,m+ n− 1]) ≤ ε.
Suppose that B is a block of size n. We say that B ε-covers x if there exists

a subset P ⊂ Z2 with the following properties:

(1) #([m1,m1 + n− 1] ∩ [m2,m2 + n− 1]) ≤ εnhnv for all m1,m2 ∈ P,
(2) the density of P in Z2 is at least (1− ε)/nhnv,
(3) B ε-occurs in x at every position m ∈ P.

Informally, some almost disjoint ε-occurrences of B in x cover nearly all
of Z2.
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Remark 1. Classically, one requires in (1) that the rectangular regions
are disjoint. The version we propose is equivalent; the regions become dis-
joint after slightly trimming the margins of the covering block.

The system (X,µ,T) is rank-one if for every ε > 0 there exists a block
Bε such that µ-almost every x ∈ X can be ε-covered by Bε, and both
dimensions of the covering blocks tend to infinity as ε→ 0.

The centralizer C(X,µ,T) of (X,µ,T) is the set of all automorphisms of
the Borel measure space (X,µ) which commute with every element of the
acting group T. Obviously, T ⊂ C(X,µ,T). If C(X,µ,T) is equipped with
the weak topology defined as follows:

Sn → S ⇔ for every Borel set F ⊂ X,
µ(Sn(F )4 S(F ))→ 0 and µ(S−1

n (F )4S−1(F ))→ 0,

then it becomes a complete metric topological group. The closure of T in
C(X,µ,T) in the weak topology is denoted by Wcl(T). Clearly, if the central-
izer of T equals Wcl(T), then all the elements of C(X,µ,T) can be weakly
approximated by elements of the group acting on X.

We recall that a transformation T is mildly mixing if there are no non-
trivial rigid functions, i.e. if f ∈ L2(X) and there exists a sequence nk →∞
such that Tnkf → f in L2(X) then f is a constant function.

Another useful concept is partial mixing. A transformation T is called
partially mixing if there exists a positive constant α such that for every pair
of measurable sets A,B of positive measure,

lim inf µ(A ∩ TnB) ≥ αµ(A)µ(B).

We close this section by mentioning that partial mixing implies mild mixing,
and mild mixing implies weak mixing.

3. Main result. Our goal is to prove the following theorem:

Theorem 1. There exists an ergodic, rank-one, measure-preserving Z2-
action (Y, ν,T) with the following properties: it is partially mixing , has a
nonrigid factor , and does not obey WCT.

Remark 2.

1. Mildly mixing, rank-one Z-actions have no nontrivial factors ([2]) (and
obey WCT).

2. Our construction is a modification of that in [1]. The Z2-action is a
finite group extension of a rank-one base system. The structure of the
base system is very similar to that in [1], but by introducing a random
fluctuation of positioning of some blocks we ensure that the system
is partially mixing.
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3. It is worth noticing that Ryzhikov [3] proved that our example is
optimal in the following sense: if a rank-one Zd-action has a nonrigid
factor then it is a finite extension of this factor (a finite extension is
always a group extension).

In the course of the proof we shall need a general statement concerning
the existence of long one-dimensional blocks with good randomness proper-
ties, the entries of the block taking values in a finite group.

Lemma 1 (see [1] for a similar argument). Fix a finite group G and let
m denote its order. For every ε > 0 there exists q ∈ N such that if n ≥ q
then there exists a vector V = [v1, . . . , vn] of length n over G such that for
every 0 < k ≤ n/2 and g ∈ G,∣∣∣∣#{1 ≤ i ≤ n− k : vi = g}

n− k
− 1
m

∣∣∣∣ < ε

and ∣∣∣∣#{1 ≤ i ≤ n− k : vi+kv
−1
i = g}

n− k
− 1
m

∣∣∣∣ < ε.

Proof. Consider an i.i.d. sequence X1, X2, . . . of random variables tak-
ing values in G with the uniform distribution (1/m, 1/m, . . . , 1/m). Note
that for any positive integer k the sequence Xi+kX

−1
i (i = 1, 2, . . .) is also

i.i.d. Fix g ∈ G and let Yi = 1 whenever Xi = g, and Yi = 0 otherwise.
Similarly, let Y ′i = 1 whenever Xi+kX

−1
i = g, and zero otherwise. Now,

(Yi) and (Y ′i ) are both i.i.d. sequences of Bernoulli trials with probabil-
ity of success 1/m. Applying the central limit theorem we easily estimate
that

P
(∣∣∣∣ 1
n− k

n−k∑
i=1

Yi −
1
m

∣∣∣∣ > ε

)
≤ 2e−Cε

√
n−k

(and the same for Y ′i ), where Cε is a positive constant (depending only
on ε). Thus, summing over k = 0, 1, . . . , n/2, we see that the probabil-
ity that for at least one such k the above absolute value involving Yi or
the one involving Y ′i exceeds ε, is estimated by 4(n + 2)e−Cε

√
n/2, which,

for n sufficiently large (larger than some q), is smaller than 1. Thus the
set of G-valued vectors V of length n satisfying the required conditions is
nonempty.

4. The base process. The base of the skew product will act on ar-
rays over the alphabet A = {0, 1}. We construct inductively an ascending
sequence {Bt}t≥0 of square blocks, consisting of 0’s and 1’s; those blocks
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define the base of our skew product transformation. We also introduce an
auxiliary sequence of blocks {Ct}.

For a block B, let Bk×l denote the concatenation of k · l copies of B,
arranged in a block matrix with k columns and l rows of copies of B. Fix
also a summable sequence of positive numbers εt. Finally, let r ≥ 2 be a
fixed positive integer.

As the inductive procedure refers to two preceding steps, steps 0 and 1
will be the initial steps: put n−1 = 0, n0 = 1 and let B0 be the 1× 1 matrix
with entry 1. Let C0 = Br×r

0 , i.e., the square block of size rn0 × rn0 filled
entirely with the symbols 1. Pick some q1 > 1 and let B1 = C6q1×6q1

0 . Note
that the size of B1 is n1 × n1, where n1 = 6q1rn0.

Suppose that Bt is already defined and has size nt×nt and that nt−1 ≥ 1
is known and much smaller than nt. We set Ct = Br×r

t . Now we apply
Lemma 1 with G = Zrnt−1 × Zrnt−1 and ε = εt to obtain a number q and
two “random” vectors, denoted by H = {hi} and V = {vi}, of lengths 2q
and q, respectively. We set qt+1 = q and

nt+1 = 6qt+1rnt.

We need to define Bt+1 of size nt+1 × nt+1. We begin by dividing the (tem-
porarily empty) nt+1 × nt+1 square region in Z2 into some “windows”, as
follows: the left half of this square is divided into 2qt+1 horizontal win-
dows (denoted Hi, i = 1, . . . , 2qt+1) of size 3qt+1rnt × 3rnt. The right half
is divided into qt+1 vertical windows (denoted Vi, i = 1, . . . , qt+1) of size
3rnt × 6qt+1rnt (see Figure 1).

Fig. 1. Windows in the square region
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Recall now that Ct is a square of size rnt, so a concatenation C3qt+1×3
t is

a block, which we call a horizontal bar, of size 3qt+1rnt × 3rnt, which is the
exact size of the horizontal window. We put this horizontal bar inside every
horizontal window Hi, for i = 1, . . . , 2qt+1. Next we shove the bar placed
inside the window Hi by the “random” vector hi (this is the ith entry of H
and it is an element of Zrnt−1 × Zrnt−1) regarded as a nonnegative element
of Z2. This operation brings a small (relative to the size of the bar) portion
of the horizontal bars (at most rnt−1 of the top rows and rnt−1 of the
rightmost columns of the bar) outside the windows Hi. We trim this part
of the bar. At the bottom and in the left side of the window, empty spaces
will appear, which we fill with zeros.

Similarly, we define a vertical bar as a concatenation C
3×6qt+1

t , and we
place this bar inside every vertical window of the right half of the square
region. Then, for each i = 1, . . . , qt+1, we shove by vi the bar inside the
window Vi (and trim the result). As before, we fill the empty spaces with
zeros.

This completes the definition of our block Bt+1 (see Figure 2; the empty
spaces filled with zeros are marked black).

The base system is now defined as a measure-preserving Z2-action
(X,µ,T); if B is a block, then µ(B) is the limiting frequency of occur-
rences of B in the blocks Bt; this limit exists as a simple consequence of the
covering property of the blocks Bt.

5. The finite extension. Let Zr denote the cyclic group of order r.
We now define a new system (Y, ν,T), which is an ergodic Zr-extension of
the base process (X,µ,T), described in the preceding section. We need to
define a cocycle Φ : Z2 ×X → Zr so that

Φ(n+m,x) = Φ(n, x) + Φ(m,Tnx).

Then the skew product is defined classically by

Tn(x, g) = (Tn(x), g + Φ(n, x)).

In order to define the cocycle, with each block Bt we associate some
Zr-valued array Gt of the same size as Bt in such a way that whenever Bt

(perhaps slightly trimmed) occurs somewhere in Bt+1 then Gt+1, restricted
to the corresponding region, equals Gt +z (trimmed appropriately) for some
z ∈ Zr (z is added to each entry of Gt). Once this is done, for x ∈ X and
n ∈ Z2 we find t large enough so that the positions 0 and n in x are covered
by the same copy of the block Bt (such t can be found except for points x
in a set of measure zero). Then the formula

Φ(n, x) = Gt(m+ n)−Gt(m),(1)
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Fig. 2. The block Bt+1 for r = 4, qt+1 = 4. The smallest squares represent the blocks Bt.
The larger squares are Ct. The “shoving vectors” should be much smaller than the size of
Bt (in the figure the shoving is oversized to make it visible).

where m,m+n are the relative coordinates in Bt of 0 and n in x, respectively,
is clearly a consistent definition of a measurable cocycle on X.

Remark 3. It is well known that the finite extension can also be viewed
as a shift system over the alphabet Zr. Almost every element of the system
is a limit of the blocks Gt + z expanding in all four directions around the
origin as t grows.

So, here is how we define Gt. First G1 is the 1 × 1 matrix with entry
0 ∈ Zr. Suppose that Gt is already defined for some t ∈ N. Recall that Bt

occurs in Bt+1 organized in blocks Ct. With Ct we associate a matrix Dt over
the alphabet Zr of the same size as Ct: we concatenate the matrices Gt + z
starting with z = 0 for the bottom-left copy and advancing z by 1 each step
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to the right or upwards (now a “step” means a jump by nt coordinates). Note
that in the bottom-right and top-left “corners” of Dt (meaning a copy of
Gt+z occupying a corner), the parameter z equals r−1, so if we concatenate
another copy of Dt above or on the right, the progression of the parameter
z will be maintained. Next we create horizontal and vertical bars as in the
construction of Bt+1, but this time we concatenate copies of Dt rather than
Ct (see Figure 3). Notice that for each z ∈ Zr, if we ignore a few columns
on the left and on the right, the remaining part of the horizontal bar is
a concatenation of copies of Dt + z (an analogous statement holds for the
vertical bar with a few rows ignored).

Fig. 3. The structure of the horizontal bar, component of Gt+1

With the Zr-valued bars ready, we can define Gt+1 by replacing in Bt+1

each horizontal and vertical bar by its Zr-valued counterpart, shoved and
trimmed appropriately (just as we did in the process of defining Bt+1).
At all remaining positions we put zeros. This concludes the definition
of Gt+1.

One needs to realize that, in the symbolic representation, (almost) every
element of the extension is covered, with high accuracy (for every t), by the
blocks Gt+1 + z with z ranging over Zr. Moreover, each z occurs in this role
with equal frequency. Thus the coordinatewise addition of a fixed element
z of Zr is an automorphism of this system.
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It remains to prove that the extension is rank-one and partially mixing.
Either property implies ergodicity of the extension, whereas the partial mix-
ing property will prevent the aforementioned automorphism (addition of z)
from being weakly approximated by the elements Tn. This way we will have
checked all the properties for which the system has been built.

We hence proceed to proving rank-one. As already noticed, almost each
element is nearly covered by the blocks Gt+1 + z, but it will be more conve-
nient for us to consider Gt+1 − z instead. So, it suffices to show that every
such block is almost covered by the copies of the same block Dt already
without adding z to it. But this follows from the former observation that
the horizontal and vertical bars (which cover Gt+1 with high accuracy),
after appropriate truncation, become concatenations of copies of Dt + z.
Clearly, the truncation influences the accuracy of the covering very little.
Thus Gt+1 − z is well covered by copies Dt, as required, and the system is
rank-one.

The remaining part is devoted to proving that (Y, ν,T) is partially mix-
ing. Since for rank-one transformations the cylinders corresponding to the
covering blocks (and their shifted images) generate, to prove partial mixing
it suffices to show that for any t ≥ 1, whenever n is sufficiently distant from
0 then

µ([Dt−1]|Tn[Dt−1]) > Cµ([Dt−1]),(2)

where C is a positive constant (we use the notation [B] = {x : x[1,m] = B}
for the cylinder corresponding to a block B of size m). We assume that both
coordinates of n are nonnegative, the other three cases being symmetric. In
order to prove that (2) holds for all large enough n, we begin by showing
that it is true for a large but fixed t with the additional assumption that
n = (nh, nv) satisfies the condition

nt − nt−1 ≤ max(nh, nv) < nt+1 − nt.(3)

For a general sufficiently large n we then apply the following argument:
Clearly, n satisfies, for some s ≥ t,

ns − ns−1 ≤ max(nh, nv) < ns+1 − ns.(4)

The block Ds−1 is (nearly) covered by copies of Dt−1, say Dt−1 occurs in
relative coordinates in Ds−1 at positions k, with both coordinates between
0 and rns−1. The corresponding cylinder [Dt−1] is thus a disjoint union
of the cylinders [Ds−1] shifted by all the vectors k. Thus the intersection
[Dt−1] ∩ Tn[Dt−1] can be written as the disjoint union of intersections of
the form T k[Ds−1]∩Tn+k′ [Ds−1], which (when calculating the measure) can
be replaced by [Ds−1] ∩ Tn+k′−k[Ds−1]. It is now easy to see (by symme-
try of the distribution of k′ − k) that at least a quarter of the exponents
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satisfy (4) (see Figure 4). It will follow that the inequality (2) holds for Dt−1

with a constant C replaced by C/4.

Fig. 4. The range of n satisfying (4) is marked gray. For every n in this range at least a
quarter of the range of n + k′ − k (the small square) falls in the gray area. Two extreme
cases are shown.

Let us now begin the proof of (2) (assuming (3)) by considering an x ∈ Y
and y = Tnx. We need to estimate the density of the bottom-left corners of
the copies of Dt−1 (we will call them SW-corners, for short) in x matching
SW-corners in y. Because almost all of x is covered by copies of the blocks
Dt+1, we will restrict the count to one such copy. In the density count below
we will ignore all small fractions resulting from the covering inaccuracies.
These converge to zero as t → ∞, and hence do not contribute to the rate
of mixing.

Recall that Dt+1 in x decomposes into jointly r2 copies of Gt+1 +z (with
varying z). Because both nv and nh are between zero and nt+1 (the size
of Gt+1), as many as (r− 1)2 of these copies fall completely inside the Dt+1

in y (we will call them “good”). Every such good copy overlaps in y with four
or two (if nh = 0 or nv = 0) adjacent (with no spaces between them) copies
of Gt+1 + z′, namely its bottom-left subrectangle overlaps with Gt+1 + z,
the bottom-right and top-left subrectangles overlap with Gt+1 + z + 1, and
the top-right subrectangle overlaps with Gt+1 + z + 2 (see Figure 5).

We multiply the rate of partial mixing by a constant (r − 1)2/r2 and we
restrict our search to one “good” copy of Gt+1 + z.

The positions of the four (or two) above mentioned copies of Gt+1+z′ in y
differ from the position of the fixed “good” copy of Gt+1 +z in x by (nh, nv),
(nh−nt+1, nv), (nh, nv−nt+1), and (nh−nt+1, nv−nt+1), respectively. For
at least one of them, both coordinates have absolute values not larger than
nt+1/2 and at least one coordinate has absolute value larger than nt−nt−1.
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Fig. 5. The (r − 1)2 “good” copies of Gt+1 + z in x are marked gray

Again, we will analyze the case where this is true for (nh, nv); the other
three cases are analogous.

There are now three further (not disjoint) cases (see Figure 6):

Fig. 6. The blocks Gt+1 + z in x (upper square) and Gt+1 + z′ in y (lower square)

(a) nt+1/4 < nh. Then the overlap area of the left half of the copy of
Gt+1 + z in x with the right half of Gt+1 + z′ in y occupies at least 1/8 of
the total area of Gt+1 + z. Contributing this fraction to the rate of mix-
ing, for the rest of case (a) we restrict our attention to this area. Here the
horizontal bars of x meet the vertical bars of y. Choose one such horizon-
tal bar in x, where the “shoving vector” hi is zero. Within this bar, mark
all SW-corners (bottom-left corners of copies of Dt−1) in y which fall in-
side copies of Dt−1 of x. We first need to estimate the percentage of the
marked SW-corners among all SW-corners in y within the selected bar.
Because we are down one step in the hierarchy, we must admit copies of
Dt−1 organized in y in (truncated) bars which meet either orthogonal or
parallel (truncated) bars in x (truncation is necessary because we consider
blocks Gt+1 + z and Gt+1 + z′, not just Gt+1). In both cases the fraction is
(nearly) 2/3, because if we consider a square portion of a vertical or hori-
zontal bar in form of D3×3

t−1 then, in the majority of such squares, at most
three copies of Dt−1 (one row or one column) have their SW-corners in the
gaps between the bars in x. This contributes 2/3 to the rate of mixing.
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Now advance up and down by the vertical step 3rnt. The positions of the
marked SW-corners in y repeat periodically, because in y we are moving
along a vertical bar, which is vertically 3rnt-periodic. We mark all these
repetitions too. The positioning of the horizontal bars in x is only approx-
imately vertically periodic; the copies of Dt−1 in x fluctuate from their
periodic positions by the nonnegative displacements hi with i ranging from
1 to a number larger than half the length of the vector H. By the proper-
ties of H, the values hi are (nearly) equidistributed over the size of Dt−1,
hence among the marked SW-corners in y the fraction of nearly 1/(rnt−1)2

meet an SW-corner in x. For large t the last fraction nearly equals µ(Dt−1).
Thus, in case (a) we have obtained µ([Dt−1]|Tn[Dt−1]) ≥ Cµ([Dt−1]), as
needed.

(b) nt − nt−1 < nh ≤ nt+1/4. In this case the right half of the copy of
Gt+1 + z in x overlaps with the right half of Gt+1 + z′ in y on at least 1/8 of
the total area. Here, vertical bars of x meet vertical bars of y. The “worst
case” arises when the horizontal shift nh is close to its lower bound, as then
each vertical bar of x overlaps mostly with the same (meaning with the
same index i) vertical bar in y. Nevertheless, each bar of x overlaps slightly
with the following bar in y. The overlap is at least nt minus nt−1 minus the
maximal width of the gap between the bars. All the negative part is at most
(r+ 1)nt−1, which is negligible in comparison with nt. The overlap is hence
approximately 1/3r of the width of the bar. In all other cases, bar number i
of x overlaps even more with bar number i+ k for some k ∈ [1, qt+1/2), the
same for every i. This contributes 1/3r to the rate of mixing and we now
restrict the search to such overlap areas. Recall that we need to count the
fraction of SW-corners (of Dt−1) in y matching those in x.

The situation is slightly more complex than in case (a), as we will need to
use the random vectors vi+k−vi which are no longer nonnegative, moreover,
we control their distribution only when regarded modulo rnt−1 (see second
part of Lemma 1). This is why we need to start with SW-corners in y which
fall into “special” copies of Dt−1 of x with the property that all four corners
are SW-corners (of some copies of Dt−1). It is easy to see that about 2/3 of
all copies of Dt−1 in x have this property. We find an overlap area for which
vi+k − vi = 0 and we mark the SW-corners of y which fall inside the special
copies of Dt−1 in x. The fraction of marked corners (among all corners in y
in the considered overlap area) is at least (slightly less than) 1/3, because,
as before, in the majority of squares of the form D3×3

t−1 in y, three SW-corners
may fall outside the bars of x, three more may be inside the bars but not in
the special copies of Dt−1 (see Figure 7).

This contributes 1/3 to the rate of mixing. Consider one fixed marked
SW-corner in y. The differences between this SW-corner and all four corners
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Fig. 7. The block Gt in x with its copies of Dt−1 (the picture for Gt + z differs insignif-
icantly; the bars are truncated at both ends). The “special” copies are shaded gray. One
horizontal bar of y is shown, the SW-corners falling into the special copies are marked by
dots.

of the background copy of Dt−1 are all equal modulo rnt−1, i.e., represent
the same point v0 in Zrnt−1 × Zrnt−1 . Now advance left and right by the
horizontal step 3rnt. The positions of the marked SW-corner fluctuate in y
by vi+k, while the “background” copies of Dt−1 in x fluctuate by vi. By the
properties of the random vector V , vi+k−vi = v0 (mod rnt−1) approximately
with frequency 1/(rnt−1)2 among all the observed corners. In all such cases
the SW-corner in y matches an SW-corner in x. As in the previous case,
this implies µ([Dt−1]|Tn[Dt−1]) ≥ Cµ([Dt−1]), as desired.

(c) nh ≤ nt−nt−1 and nv > nt−nt−1. This case is fully analogous to the
previous one. We now examine the overlap between the left halves (which is
nearly 1/4 of the whole area) where the horizontal windows meet horizontal
windows.

The smallest mixing rate in all above three cases is the valid mixing rate
for the transformation. The proof of partial mixing is complete.
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draft of this paper was written.

This research was supported by grant MENII 1 P03A 021 29, Poland.

References

[1] T. Downarowicz and J. Kwiatkowski, Weak Closure Theorem fails for Z2-actions,
Studia Math. 153 (2002), 115–125.

[2] J. King, Commutant is the weak closure of the powers, for rank-one transformations,
Ergodic Theory Dynam. Systems 6 (1986), 363–384.

[3] V. Ryzhikov, Rank, rigidity of factors, and weak closure of measure-preserving Zn-
actions, Moscow Univ. Math. Bull. 63 (2008), 135–137.

Institute of Mathematics and Computer Science
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
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