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Coefficient of orthogonal convexity of some Banach
function spaces

by

Paweł Kolwicz (Poznań) and Stefan Rolewicz (Warszawa)

Abstract. We study orthogonal uniform convexity, a geometric property connected
with property (β) of Rolewicz, P -convexity of Kottman, and the fixed point property
(see [19, [20]). We consider the coefficient of orthogonal convexity in Köthe spaces and
Köthe–Bochner spaces.

1. Introduction. Let (X, ‖·‖X) be a real Banach space andB(X), S(X)
be the closed unit ball and unit sphere of X, respectively.

As usual, N, R and R+ stand for the sets of natural, real and non-
negative real numbers, respectively. Let (T,Σ, µ) be a measure space with a
σ-finite, complete measure µ, and (N, 2N,m) be the counting measure space.
By L0 = L0(T ) we denote the set of all µ-equivalence classes of real-valued
measurable functions defined on T , and by l0 = l0(m) the linear space of all
real sequences.

Definition 1. A Banach space E = (E, ‖ · ‖E) is said to be a Köthe
space if E is a linear subspace of L0 and:

(i) if x ∈ E, y ∈ L0, and |y| ≤ |x| µ-a.e., then y ∈ E and ‖y‖E ≤ ‖x‖E ,
(ii) there exists a function x in E that is positive on the whole T (see

[17] and [23]).

Every Köthe space is a Banach lattice in the obvious order (x ≥ 0 if
x(t) ≥ 0 for µ-a.e. t ∈ T ). In particular, if µ is non-atomic, then we shall say
that E is a Köthe function space, while (T,Σ, µ) = (N, 2N,m), then E is a
Köthe sequence space. In the last case we denote by ei = (0, . . . , 0, 1, 0, . . .)
the ith unit vector.

A Köthe space E is said to be:
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• strictly monotone (E ∈ (SM)) if for every 0 ≤ y ≤ x with y 6= x we
have ‖y‖E < ‖x‖E ;
• uniformly monotone (E ∈ (UM)) if for every q ∈ (0, 1) there exists
p ∈ (0, 1) such that for all 0 ≤ y ≤ x satisfying ‖x‖E ≤ 1 and ‖y‖E ≥ q
we have ‖x− y‖E ≤ 1− p (see [4]);
• order continuous (E ∈ (OC)) if for every x ∈ E and every sequence

(xm) in E such that 0 ≤ xm ≤ |x| and xm → 0 µ-a.e. we have ‖xm‖E →
0 (see [17] and [23]).

It is known that if E ∈ (UM), then E ∈ (OC) (see [8, Proposition 2.1]).
We study a geometric property called orthogonal uniform convexity

(UC⊥). It was introduced in [19] in the study of property (β) of Rolewicz.
Although the original definition of property UC⊥ is based on the unit ball
B(E) of E (see [19]), we can equivalently use the unit sphere S(E).

The notation r ∨ s = max{r, s}, r ∧ s = min{r, s} for any r, s ∈ R and
A÷B = (A \B) ∪ (B \A) for A,B ∈ Σ will be used.

Definition 2. A Köthe space (E, ‖ · ‖E) is orthogonally uniformly con-
vex (E ∈ (UC⊥)) if for each ε > 0 there is δ = δ(ε) > 0 such that for any
x, y ∈ S(E),

‖xχAxy‖E ∨ ‖yχAxy‖E ≥ ε implies ‖(x+ y)/2‖E ≤ 1− δ,
where Axy = suppx÷ supp y.

We denote by δ⊥E (ε) the modulus of orthogonal convexity and by ε⊥0 (E)
the coefficient of orthogonal convexity of the space E, defined by

δ⊥E(ε) = inf{1− ‖(x+ y)/2‖E : x, y ∈ S(E), ‖xχAxy‖E ∨ ‖yχAxy‖E ≥ ε},
ε⊥0 (E) = sup{ε ≥ 0 : δ⊥E (ε) = 0}.

Clearly, δ⊥E maps [0, 1] into [0, 1] is nondecreasing; moreover, E ∈ (UC⊥)
if and only if ε⊥0 (E) = 0. It is also easy to see that ε⊥0 (E) = 1 for E ∈
{L1, L∞, l1, c0}.

Recall that a Banach space X is said to be uniformly convex (X ∈ (UC))
if for each ε > 0 there is δ > 0 such that for any x, y ∈ S(X) the inequality
‖x− y‖X > ε implies ‖x+ y‖X < 2(1− δ) (see [7]).

Obviously, if E ∈ (UC), then E ∈ (UC⊥). It is known that every uni-
formly convex Köthe space is uniformly monotone (see [11]). Moreover,

Lemma 1 ([19, Lemma 3]). If E ∈ (UC⊥), then E ∈ (UM).

The converse of Lemma 1 is not true as the examples of L1, l1 show.
There are numerous geometric properties lying between uniform con-

vexity and reflexivity. The P -convexity of Kottman is one of such proper-
ties (see [22]). Recall that X is said to be P -convex if P (n,X) < 1/2 for
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some positive integer n, where P (n,X) = sup{r > 0 : there exist n dis-
joint balls of radius r in B(X)} (see [22]). Although orthogonal uniform
convexity is much weaker than uniform convexity (it need not even imply
strict convexity), it is still stronger than P -convexity (see [20]). Let us also
recall that X is called B-convex provided it is uniformly non-l1n for some
n ∈ N, i.e. there exists δ > 0 such that for all x1, . . . , xn ∈ B(X) we have
‖x1±x2±· · ·±xn‖X ≤ n(1− δ) for some choice of signs (see [22]). Geomet-
rically, a uniformly non-l1n space is one which does not have n-dimensional
subspaces whose norms are arbitrarily good approximations of the l1 norm.
It is known that every B-convex and uniformly monotone Köthe space has
the fixed point property for nonexpansive self-maps on closed bounded con-
vex sets (see [1]). Note also that a P -convex Banach space is B-convex (see
[22]). Consequently, by the above arguments and Lemma 1, the fixed point
property follows from orthogonal uniform convexity.

Another important geometric property lying between uniform convexity
and reflexivity is property (β) of Rolewicz. Although it was introduced in
the study of well-posed problems in optimization theory (see [25], [26]),
it has been widely investigated from the geometric point of view (see [19]
and [20] for references). It is known that in Köthe sequence spaces one
has the implications (UC)⇒(UC⊥)⇒(β) and none of them can be reversed
in general (see [20]). However, property (β) and (UC⊥) coincide in Orlicz
sequence spaces (see [20]) and more generally in symmetric Köthe sequence
spaces (see [21]). On the other hand, the implications (UC)⇒(β)⇒(UC⊥)
hold in Köthe function spaces and the last one cannot be reversed (see [19],
[20]).

In this paper we consider the coefficient ε⊥0 of orthogonal convexity in
Köthe spaces, Orlicz spaces and Köthe-Bochner spaces. Analogous investi-
gations for the classical coefficient ε0 of convexity have been carried out in
[12] and [13]. We have taken some inspirations from those papers.

2. Results

2.1. Köthe spaces. In this section we prove that a Köthe space with
ε⊥0 (E) < 1 must be superreflexive. First we need to recall the notion of
upper and lower p-estimates.

Let 1 < p <∞. A Köthe space E is said to satisfy an upper, respectively
lower, p-estimate (for disjoint elements) if there exists a constant M < ∞
such that, for every choice of pairwise disjoint elements {xi}ni=1 in E, we
have
∥∥∥

n∑

i=1

xi

∥∥∥
E
≤M

( n∑

i=1

‖xi‖pE
)1/p

, resp.,
∥∥∥

n∑

i=1

xi

∥∥∥
E
≥M−1

( n∑

i=1

‖xi‖pE
)1/p

(see [23]).
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Theorem 1. Let E be a Köthe space. If ε⊥0 (E) < 1, then E is super-
reflexive.

Proof. Suppose that E is not superreflexive. Then either E satisfies an
upper p-estimate for no p > 1, or E satisfies a lower q-estimate for no q <∞.
Indeed, otherwise, by [23, Theorem 1.f.7], E satisfies an upper p0-estimate
and a lower q0-estimate for some 1 < p0 < 2 < q0 (see also the diagram in
[23, p. 101]) and consequently [23, Theorem 1.f.10] shows that E can be given
an equivalent uniformly convex norm, contrary to James’s characterization
of superreflexivity [9, Theorem 5.1].

Now, by [23, Theorem 1.f.12], either for every ε > 0 there are disjoint
elements x1, x2 in E such that

(1− ε)(|a1|+ |a2|) ≤ ‖a1x1 + a2x2‖E ≤ |a1|+ |a2|(1)

for all scalars a1, a2, or for every ε > 0 there are disjoint y1, y2 in E such
that

|a1| ∨ |a2| ≤ ‖a1y1 + a2y2‖E ≤ (1 + ε)(|a1| ∨ |a2|)(2)

for all scalars a1, a2. We assume that (2) holds, because in the case of (1)
the proof is analogous and simpler (it is enough to take x = x1 and y = x2

from the proof below). Set

x =
y1 + y2

‖y1 + y2‖E
, y =

y2

‖y2‖E
.

Putting a1 = ‖y2‖E , a2 = ‖y2‖E + ‖y1 + y2‖E and applying (2) we have
∥∥∥∥
x+ y

2

∥∥∥∥
E

=
1
2

∥∥∥∥
y1 + y2

‖y1 + y2‖E
+

y2

‖y2‖E

∥∥∥∥
E

=
1

2‖y1 + y2‖E‖y2‖E
[a1y1 + a2y2]E

≥ 1
2‖y1 + y2‖E‖y2‖E

max{a1, a2} =
1
2

(
1

‖y1 + y2‖E
+

1
‖y2‖E

)

≥ 1
‖y1 + y2‖E

≥ 1
1 + ε

.

Moreover

‖xχA‖E =
‖y1‖E

‖y1 + y2‖E
≥ 1

1 + ε
, where A = suppx÷ supp y.

Hence δ⊥E (1/(1 + ε)) ≤ 1 − 1/(1 + ε) ≤ ε. Now, given γ < 1, we have
δ⊥E (γ) ≤ δ⊥E(1/(1 + ε)) ≤ ε for each ε ∈ (0, 1/γ − 1). Hence δ⊥E (γ) = 0. This
means that ε⊥0 (E) = 1.

Remark 1. The converse of Theorem 1 is not true. The simplest ex-
ample of a superreflexive Köthe space E with ε⊥0 (E) = 1 is l∞2 or l12 (a
two-dimensional l∞ or l1). We will also give an analogous example of an
infinite-dimensional Köthe space (see Corollary 1 below).
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Remark 2. Note that ε⊥0 (E) ∈ [0, 1] and for the classical coefficient of
convexity ε0(X) of a Banach space X we have ε0(X) ∈ [0, 2] (see [9], [13] and
[23]). Recall that X is called uniformly non-square if ε0(X) < 2 (see [15]).
Combining the results of James and Enflo we conclude that a Banach space
X is superreflexive iff X has an equivalent uniformly non-square norm (see
[9, Theorem 5.1]). Then Theorem 1 is, in a sense, analogous to the James
and Enflo theorem.

2.2. Orlicz spaces. In this section we estimate the coefficient ε⊥0 of or-
thogonal convexity of Orlicz spaces. As a corollary we conclude that the
converse of Theorem 1 is not true in general. First we need to recall some
terminology.

We say that Φ : R→ [0,∞] is an Orlicz function if Φ(0) = 0, Φ is convex,
even, left continuous on [0,∞), and not identically zero or infinity.

For every Orlicz function Φ we define the complementary function Φ∗ by
the formula Φ∗(v) = supu>0{u|v| − Φ(u)} for every v ∈ R.

By the Orlicz function space LΦ(µ) we mean

LΦ(µ) =
{
x ∈ L0 : IΦ(cx) =

�

T

Φ(cx(t)) dµ <∞ for some c > 0
}
.

Similarly we define the Orlicz sequence space lΦ by

lΦ =
{
x ∈ l0 : IΦ(cx) =

∞∑

i=1

Φ(cx(i)) <∞ for some c > 0
}
.

We equip LΦ(µ) and lΦ with the Nakano–Luxemburg norm defined by

‖x‖Φ = inf{ε > 0 : IΦ(x/ε) ≤ 1}.
We say that an Orlicz function Φ satisfies the ∆2-condition for all u (for

large u) [for small u] if there is a constant k > 2 (there are u0 > 0 with
Φ(u0) <∞ and k > 2) [there are u0 > 0 with Φ(u0) > 0 and k > 2] such that

Φ(2u) ≤ kΦ(u)

for every u ∈ R (for every |u| ≥ u0) [for every |u| ≤ u0], respectively. We
shall write Φ ∈ ∆a

2, Φ ∈ ∆l
2, Φ ∈ δ2 if Φ satisfies the ∆2-condition for all u,

for large u, for small u, respectively.
For more details we refer to [6] and [24].

Remark 3. Note that if Φ ∈ δ2, then Φ(u0) < ∞. Moreover, in the
definition of the ∆2-condition for small u we cannot omit the assumption
that Φ(u0) > 0, because without it the ∆2-condition would not guarantee
that lΦ is order continuous, as it should be. Indeed, if Φ(u0) = 0, then
lΦ = l∞ as sets and they are isomorphic. Consequently, since l∞ is not
(OC), neither is lΦ. On the other hand, we have Φ(2u) = kΦ(u) = 0 for
every u ∈ [0, u0/2].
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Similarly, if Φ ∈ ∆l
2, then Φ(u0) > 0, and in the definition of the ∆2-

condition for large u the assumption that Φ(u0) <∞ cannot be omitted.

We shall use the following constants:

aΦ = sup{u ≥ 0 : Φ(u) = 0}, bΦ = sup{u ≥ 0 : Φ(u) <∞},(3)

αΦ = sup{u ≥ 0 : Φ is linear in [0, u]}.(4)

Notice that if Φ ∈ ∆a
2, then aΦ = 0 and bΦ = ∞. If Φ ∈ ∆l

2, then bΦ = ∞.
If Φ ∈ δ2, then aΦ = 0.

To prove our main results we shall need some auxiliary lemmas. The
next lemma can be easily deduced from [2, Lemma 2].

Lemma 2. If Φ∗ ∈ ∆l
2, then for every w > αΦ there exists γ = γ(w) ∈

(0, 1) such that Φ(u/2) ≤ (1− γ)Φ(u)/2 for all u ≥ w satisfying Φ(u) <∞.
Lemma 3 ([18, Lemma 3]). If Φ∗ ∈ δ2, then for every w > 0 with 0 <

Φ(w) <∞ there exists γ = γ(w) ∈ (0, 1) such that Φ(u/2) ≤ (1− γ)Φ(u)/2
for all u ≤ w.

The next lemma was proved in [10] in the general case.

Lemma 4. Let Φ ∈ ∆l
2 and LΦ(µ) be the Orlicz function space over a

finite measure space. Then:

(a) For every sequence (xn) in LΦ(µ) the equivalence ‖xn‖Φ → 0 ⇔
IΦ(xn)→ 0 holds if and only if Φ vanishes only at zero.

(b) For every p ∈ (0, 1) there exists q ∈ (0, 1) such that for any x ∈
LΦ(µ) the inequality IΦ(x) ≤ 1− p implies ‖x‖Φ ≤ 1− q.

Lemma 5. Let Φ ∈ δ2 and let bΦ be as defined in (3). Then:

(a) For every sequence (xn) in lΦ we have ‖xn‖Φ → 0 if and only if
IΦ(xn)→ 0.

(b) Suppose that Φ(bΦ) < 1. Then for every σ, p ∈ (0, 1) there exists
q = q(σ, p) ∈ (0, 1) such that for any x ∈ A with IΦ(x) ≤ 1 − p we
have ‖x‖Φ ≤ 1−q, where A = {x ∈ lΦ : |x(i)| < (1−σ)bΦ for each i}.

Proof. (a) It is known that ‖xn‖Φ → 0 if and only if IΦ(ηxn) → 0 for
any η > 0. Since Φ ∈ δ2, this completes the proof.

(b) This was proved in [16] in the general case, but with the assumption
that bΦ = ∞. We point out only the necessary changes to that proof. Let
p, σ ∈ (0, 1). Take δ = σ/(1 − σ) > 0. Then the inequality u ≤ (1 − σ)bΦ
implies (1 + δ)u ≤ bΦ. Consequently, since Φ ∈ δ2, there exists k0 > 0 such
that Φ((1 + δ)u) ≤ k0Φ(u) for every |u| ≤ bΦ/(1 + δ). Then the proof can be
finished as in [16, Lemma 9].

Note that the case Φ(bΦ) ≥ 1 was handled in [20, Lemma 4c].
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Given an Orlicz function Φ with aΦ = 0 we define

fΦ(u) = sup
v>0

Φ(uv)
Φ(v)

.

Applying [14, Lemma 1(i)] we immediately obtain

Lemma 6. Assume that Φ ∈ ∆a
2. Then for any a ∈ (0, 1) and x ∈ LΦ(µ)

we have the implication

‖x‖Φ ≥ a ⇒ IΦ(x) ≥ 1/fΦ(1/a).

Theorem 2. (I) Suppose that µ is non-atomic and infinite. Then:

1. ε⊥0 (LΦ(µ)) = 1 whenever Φ 6∈ ∆a
2 or Φ∗ 6∈ ∆a

2.
2. If Φ ∈ ∆a

2 and Φ∗ ∈ ∆a
2, then ε⊥0 (LΦ(µ)) = 0.

(II) Assume that µ is non-atomic and finite. Let aΦ and αΦ be as defined
in (3) and (4), respectively.

1. ε⊥0 (LΦ(µ)) = 1 if Φ 6∈ ∆l
2 or Φ∗ 6∈ ∆l

2.
2. Suppose Φ ∈ ∆l

2, Φ
∗ ∈ ∆l

2 and aΦ = 0. Then:

(a) If αΦ = 0, then ε⊥0 (LΦ(µ)) = 0.
(b) If αΦ > 0, then ε⊥0 (LΦ(µ)) ≥ min{1, Φ(αΦ)µ(T )/2}. In par-

ticular , if Φ(αΦ)µ(T ) ≥ 2, then ε⊥0 (LΦ(µ)) = 1.
(c) If αΦ>0 and Φ(αΦ)µ(T )<1, then

ε⊥0 (LΦ(µ)) ∈ [Φ(αΦ)µ(T )/2, u1],

where u1 = 1/f−1
Φ (1/Φ(αΦ)µ(T )).

3. Assume that Φ ∈ ∆l
2, Φ

∗ ∈ ∆l
2 and aΦ > 0. Then ε⊥0 (LΦ(µ)) ≥ u2,

where u2 = ‖aΦχT ‖Φ.
Proof. (I.1) If Φ 6∈ ∆a

2 or Φ∗ 6∈ ∆a
2, then LΦ(µ) is not reflexive, hence, by

Theorem 1, we get ε⊥0 (LΦ(µ)) = 1.
(I.2) Since Φ ∈ ∆a

2 and Φ∗ ∈ ∆a
2, [20, Theorem 4a] yields LΦ(µ) ∈ (UC⊥),

hence ε⊥0 (LΦ(µ)) = 0.
(II.1) If Φ 6∈ ∆l

2 or Φ∗ 6∈ ∆l
2, then LΦ(µ) is not reflexive, and so

ε⊥0 (LΦ(µ)) = 1 by Theorem 1.
(II.2a) If αΦ = 0, then, by [20, Theorem 4b], LΦ(µ) ∈ (UC⊥), hence

ε⊥0 (LΦ(µ)) = 0.
(II.2b) We consider two cases.
A. Suppose that Φ(αΦ)µ(T ) ≥ 2. Then there exist measurable dis-

joint sets T1, T2 with µ(T1) = µ(T2) and a number u0 ≤ αΦ such that
Φ(u0)µ(T1) = 1. Define

x = u0χT1 , y = u0χT2 .

Then IΦ(x) = IΦ(y) = 1. Hence ‖x‖Φ = ‖y‖Φ = 1. Similarly, ‖xχA‖Φ = 1,
where A = suppx÷ supp y, and ‖(x+ y)/2‖Φ = 1. Thus ε⊥0 (LΦ(µ)) = 1.
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B. Assume that Φ(αΦ)µ(T ) < 2. Let ε > 0. Take disjoint T1, T2 ∈ Σ such
that µ(T1) = µ(T2) and (µ(T )−ε)/2 < µ(T1) < µ(T )/2. Let T3 ⊂ T\(T1∪T2)
with µ(T3) > 0. Since Φ ∈ ∆l

2, we have bΦ = ∞. Thus there is β > 0 with
Φ(αΦ)µ(T1) + Φ(β)µ(T3) = 1. Define

x = αΦχT1 + βχT3 , y = αΦχT2 + βχT3 .

Then ‖x‖Φ = ‖y‖Φ = 1 = ‖(x + y)/2‖Φ. Moreover, since Φ(αΦ)µ(T1) < 1,
setting A = suppx÷ supp y, we get

IΦ

(
xχA

Φ(αΦ)µ(T1)

)
≥ 1.

Hence
‖xχA‖Φ ≥ Φ(αΦ)µ(T1) > Φ(αΦ)(µ(T )− ε)/2.

Then δ⊥LΦ(µ)(Φ(αΦ)(µ(T )−ε)/2) = 0, so ε⊥0 (LΦ(µ)) ≥ Φ(αΦ)µ(T )/2, because
ε > 0 is arbitrary.

(II.2c) Since Φ ∈ ∆l
2 and aΦ = 0 and αΦ > 0, we have Φ ∈ ∆a

2. Thus fΦ
is finite-valued. Applying case (II.2.b) we get ε⊥0 (LΦ(µ)) ≥ Φ(αΦ)µ(T )/2.
First we note that Φ(αΦ)µ(T )/2 < u1 < 1. Indeed, since fΦ is convex,
f−1
Φ is concave, and consequently f−1

Φ (u) ≤ u for any u ≥ 1. Then u1 >

Φ(αΦ)µ(T )/2. Moreover, f−1
Φ (1) = 1 and fΦ is strictly increasing on R+.

Hence u1 < 1.
Let a > u1. Then there are η > 0 and α1 > αΦ such that u1 < u0 < a,

where u0 = 1/f−1
Φ (1/(1 + η)Φ(α1)µ(T )), because Φ and f−1

Φ are continuous
and strictly increasing. Let x, y ∈ S(LΦ(µ)) be such that ‖xχA‖Φ∨‖yχA‖Φ ≥
a, where A = suppx ÷ supp y. Without loss of generality we may assume
that ‖xχA‖Φ ≥ a. Lemma 6 implies IΦ(xχA) ≥ (1+η)Φ(α1)µ(T ) > 0. Define

A1 = {t ∈ A : |x(t)| ≥ α1}.
Then

IΦ(xχA1) = IΦ(xχA)− IΦ(xχA\A1)

≥ (1 + η)Φ(α1)µ(T )− Φ(α1)µ(A \A1)

> ηΦ(αΦ)µ(T ).

Applying Lemma 2 with w = α1 we get

IΦ((x+ y)/2) ≤ 1− γ

2
IΦ(xχA1) ≤ 1− γηΦ(αΦ)µ(T )/2.

Consequently, Lemma 4(b) yields ‖(x + y)/2‖Φ ≤ 1 − q for some q =
q(γηΦ(αΦ)µ(T )/2) > 0. Therefore δ⊥LΦ(µ)(a) ≥ q > 0, so ε⊥0 (LΦ(µ)) ≤ u1.

(II.3) First note that u2 < 1. Indeed, setting z = aΦχT , we get IΦ(z) = 0
and IΦ(z/λ) ≤ 1 for some λ < 1, because Φ ∈ ∆l

2 and consequently bΦ =∞.
Hence ‖z‖Φ ≤ λ < 1.

We show that ε⊥0 (LΦ(µ)) ≥ u2. Let ε > 0 and take T0 ⊂ T, T0 ∈ Σ such
that µ(T )−ε < µ(T0) < µ(T ). By assumption Φ ∈ ∆l

2, hence bΦ =∞. Then
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there exists b > 0 such that Φ(b)µ(T \ T0) = 1. Define

x = aΦχT0 + bχT\T0 , y = bχT\T0.

Then ‖x‖Φ = ‖y‖Φ = ‖(x + y)/2‖Φ = 1. Hence δ⊥LΦ(µ)(a0) = 0, where

a0 = ‖aΦχT0‖Φ. Since ε > 0 is arbitrary, we conclude that ε⊥0 (LΦ(µ)) ≥ u2.

It follows from Lemmas 4(a) and 5(a) that, under the corresponding
assumptions, for every a > 0 there is σ(a) > 0 such that for any x ∈ LΦ(µ)
(or x ∈ lΦ),

‖x‖Φ ≥ a ⇒ IΦ(x) ≥ σ(a).(5)

Hence, defining

σ(a) = inf{IΦ(x) : ‖x‖Φ ≥ a}(6)

we get σ(a) > 0 for each a > 0. Moreover, the implications ‖u‖Φ ≤ 1 ⇒
IΦ(u) ≤ ‖u‖Φ and ‖u‖Φ > 1⇒ IΦ(u) > ‖u‖Φ yield

σ(a) ≤ a for any a ∈ (0, 1], σ(a) ≥ a for any a > 1.(7)

Remark 4. The upper estimate of ε⊥0 (LΦ(µ)) in Theorem 2(II.2c) is, in
some sense, optimal. Note that Theorem 2(II.2c) can be proved similarly for
uσ1 = sup{u ≥ 0 : σ(u) ≤ Φ(αΦ)µ(T )} in place of u1, where σ(·) is from (6).
On the other hand, the implication (5) is satisfied with σ0(u) = 1/fΦ(1/u)
(Lemma 6). Furthermore, by the definition of fΦ, σ0(·) is the greatest pos-
sible function satisfying (5). Hence uσ0

1 = sup{u ≥ 0 : σ0(u) ≤ Φ(αΦ)µ(T )}
= 1/f−1

Φ (1/Φ(αΦ)µ(T )) is an optimal upper estimate for ε⊥0 (LΦ(µ)).

Remark 5. It follows from Theorem 2 (case (II.2b)) that ε⊥0 (LΦ(µ)) ∈
[Φ(αΦ)µ(T )/2, 1] whenever Φ(αΦ)µ(T ) ∈ [1, 2). Furthermore, in the class
of Orlicz spaces LΦ(µ) generated by Φ ∈ ∆l

2 with Φ(αΦ)µ(T ) ∈ [1, 2) the
upper estimate of ε⊥0 (LΦ(µ)) cannot be improved. Indeed, let us show that
for each ε > 0 there exists an Orlicz function Φε with Φε(αΦε)µ(T ) ∈ [1, 2)
and ε⊥0 (LΦε(µ)) ≥ 1 − ε. Let ε > 0 and let an Orlicz function Φ satisfy
Φ(αΦ)µ(T ) ∈ [1, 2). Take T ε1 ∈ Σ with Φ(αΦ)µ(T ε1 ) = 1−ε. Since Φ ∈ ∆l

2, we
have bΦ =∞. Hence there exists a set T ε2 ∈ Σ with T ε2 ⊂ T \T ε1 and a number
aε > αΦ such that Φ(aε)µ(T ε2 ) = ε. Take bε > 0 with Φ(bε)µ(T ε2 ) = 1. Define

Φε(u) =




Φ(u) if u ≤ aε or u ≥ bε,
Φ(bε)− Φ(aε)

bε − aε
u+

bεΦ(aε)− aεΦ(bε)
bε − aε

if u ∈ (aε, bε).

Clearly, Φε(αΦε)µ(T ) ∈ [1, 2). It is also easy to see that ε⊥0 (LΦε(µ)) ≥ 1− ε
by taking x = αΦεχT ε1 + aεχT ε2 and y = bεχT ε2 .

Theorem 3. Let bΦ and σ(·) be as in (3) and (6), respectively. Then:

(i) ε⊥0 (lΦ) = 1 whenever Φ 6∈ δ2 or Φ∗ 6∈ δ2 or Φ(bΦ) ≤ 1/2.
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(ii) ε⊥0 (lΦ) ∈ [1 − Φ(bΦ), u1] if Φ(bΦ) ∈ (1/2, 1), Φ ∈ δ2, Φ
∗ ∈ δ2, where

u1 = sup{u ≥ 0 : σ(u) ≤ 1− Φ(bΦ)}.
(iii) ε⊥0 (lΦ) = 0 whenever Φ ∈ δ2, Φ

∗ ∈ δ2 and Φ(bΦ) ≥ 1.

Proof. (i) If Φ 6∈ δ2 or Φ∗ 6∈ δ2, then lΦ is not reflexive, and Theorem 1
yields ε⊥0 (lΦ) = 1. Suppose that Φ(bΦ) ≤ 1/2. Let x = bΦe1 + bΦe2 and y =
bΦe1. Then IΦ(x) ≤ 1 and IΦ(x/λ) =∞ for every 0 < λ < 1. Thus ‖x‖Φ = 1.
Similarly ‖y‖Φ = 1 = ‖(x+ y)/2‖Φ = ‖xχA‖Φ, where A = suppx ÷ supp y,
which finishes the proof.

(ii) Suppose that Φ ∈ δ2, Φ
∗ ∈ δ2 and Φ(bΦ) ∈ (1/2, 1). Note that

1− Φ(bΦ) ≤ u1 ≤ 1. Indeed, suppose that u1 < 1− Φ(bΦ), and take u0 with
u1 < u0 < 1 − Φ(bΦ). Then σ(u0) > 1 − Φ(bΦ), and consequently, by (7),
we get a contradiction 1 − Φ(bΦ) < σ(u0) ≤ u0 < 1 − Φ(bΦ). Assume that
u1 > 1. Then there are δ > 0 and uδ > 1 + δ with σ(uδ) ≤ 1−Φ(bΦ). Hence,
by (7), we get a contradiction 1 + δ < uδ ≤ σ(uδ) ≤ 1− Φ(bΦ).

We now prove the lower bound. Since Φ(bΦ) > 1/2, we have 1−Φ(bΦ) <
1/2, and consequently there is c > 0 such that Φ(c) = 1− Φ(bΦ). Let

x = bΦe1 + ce2, y = bΦe1.

Then ‖x‖Φ = ‖y‖Φ = 1 = ‖(x + y)/2‖Φ. Moreover, setting A = suppx ÷
supp y, we get IΦ(xχA/Φ(c)) ≥ 1, hence ‖xχA‖Φ ≥ Φ(c) = 1− Φ(bΦ). Thus
δ⊥lΦ(1− Φ(bΦ)) = 0.

To prove the upper bound suppose that a > u1. Then σ(a) > 1 −
Φ(bΦ). Let x, y ∈ S(lΦ) be such that ‖xχA‖Φ ∨ ‖yχA‖Φ ≥ a, where A =
suppx÷ supp y. Without loss of generality we may assume that ‖xχA1‖Φ =
‖xχA‖Φ ≥ a, where A1 = suppx \ supp y. Take σ1 > 0 such that σ(a) > 1−
Φ((1−σ1)bΦ). The definition (6) implies IΦ(xχA1) ≥ σ(a) > 1−Φ((1−σ1)bΦ).
Then Lemma 3 applied with w = bΦ yields

IΦ((x+ y)/2) ≤ 1− γ

2
IΦ(xχA1) ≤ 1− γ

2
(1− Φ(bΦ)).(8)

Moreover, |x(i)| ≤ (1 − σ1)bΦ for each i ∈ N \ A1, since otherwise 1 ≥
IΦ(xχA1) + IΦ(xχN\A1) > 1. Consequently, x+y

2 (i) ≤ bΦ/2 for i ∈ A1 and
x+y

2 (i) ≤ (2 − σ1)bΦ/2 for i ∈ N \ A1. Taking σ2 = min{1/2, σ1/2}, and
applying Lemma 5(b) with q = q(σ2,

γ
2 (1 − Φ(bΦ))) and inequality (8), we

conclude that ‖(x + y)/2‖Φ ≤ 1 − q. Thus δ⊥lΦ(a) ≥ q. Since a > u1 was
arbitrary, we conclude that ε⊥0 (lΦ) ≤ u1.

(iii) By the assumptions and [20, Theorem 3], we get lΦ ∈ (UC⊥), hence
ε⊥0 (lΦ) = 0.

Note that we cannot find constructively the best possible function σ(·)
in Theorem 3.2 as we do in Theorem 2(II.2.c) (see also Remark 4). If we
take f0

Φ(u) = sup0<v≤bΦ Φ(uv)/Φ(v), then f0
Φ(·) is not finite-valued even in
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the case when Φ ∈ δ2. Consequently, the result analogous to Lemma 6 is not
valid in the sequence case when bΦ <∞.

Applying Theorem 2(II.2.b) or Theorem 3(i) and criteria for superreflex-
ivity of Orlicz spaces we conclude immediately that the converse of Theo-
rem 1 is not true in general.

Corollary 1. There exists an infinite-dimensional superreflexive Köthe
space E with ε⊥0 (E) = 1.

Remark 6. Recall that any Banach space with ε0(X) < 2 is super-
reflexive (see Remark 2). Similarly to Corollary 1, there is a superreflexive
Banach space X with ε0(X) = 2. It is enough to take X = LΦ(µ) satisfy-
ing the assumptions of Theorem 2(II.2.b). To show that ε0(LΦ(µ)) = 2 it
is enough to consider elements x and y as in the relevant proof (case A).
Combining this with Remark 2 in Section 2.1 we see that ε⊥0 (E) plays the
same role with regard to superreflexivity in Köthe spaces as does ε0(X) for
superreflexivity in Banach spaces.

2.3. Köthe–Bochner spaces. Let us define the type of spaces to be con-
sidered hereafter. For a real Banach space (X, ‖ · ‖X), denote by M(T,X),
or just by M(X), the family of strongly measurable functions f : T → X,
where functions which are equal µ-almost everywhere are identified. Given
a Köthe space E (see Definition 1) define

x̃(·) = ‖x(·)‖X , E(X) = {x ∈M(X) : x̃ ∈ E}.
Then E(X) equipped with the norm

‖x‖E(X) = ‖x̃‖E
becomes a Banach space and it is called a Köthe–Bochner space.

We shall consider Köthe–Bochner space E(X), where E = E(T,Σ1, µ1)
and X = X(S,Σ2, µ2) are Köthe spaces over the measure spaces (T,Σ1, µ1)
and (S,Σ2, µ2). Then we may view an element x ∈ E(X) as a function
x : T × S → R such that x(t, ·) ∈ X for each t ∈ T and the function t 7→
‖x(t, ·)‖X is an element of E. Clearly, suppx = {(t, s) ∈ T ×S : x(t, s) 6= 0}.

In order to study orthogonal uniform convexity in the spaces E(X) we
notice that this property can be considered not only in Köthe spaces but
more generally in normed function spaces which have the so-called semi-
Köthe property.

Definition 3. A normed function space E ⊂ L0 is a semi-Köthe space
(E ∈ (sK)) if for any x, y ∈ E we have xχAxy ∈ E, where Axy = suppx ÷
supp y.

Remark 7. Clearly, if E is a Köthe space, then E ∈ (sK). Note also
that the converse is not true. Let (E, ‖ · ‖E) be a Köthe space and E1 ⊂ E
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be the set of all simple functions. Then E1 ∈ (sK) and E1 is not a Köthe
space, since given x ∈ E1 it is easy to find y ∈ L0 such that |y| ≤ |x| and y
is not a simple function. Note that E1 is not complete. However, there is
also an example of a Banach (complete) function space E with E ∈ (sK)
which is not a Köthe space. Indeed, if a Köthe space E is not reflexive,
then it contains a subspace X which is isomorphic to c0 or to l1. By the
construction of X we conclude that there exists a sequence (un)∞n=1 ⊂ E
with pairwise disjoint supports such that for every x ∈ X there exists a
sequence (txn)∞n=1 ⊂ l∞ such that x =

∑∞
n=1 t

x
nun (see [3, Theorem 4], [23,

Theorem 1.c.5] and [27, Theorem 5.16]). Hence X is a semi-Köthe space.
Moreover, it is complete. On the other hand, X does not satisfy condition
(i) from the definition of the Köthe space.

The following question arises:

Question. Let E be a semi-Köthe space over the measure space
(T,Σ, µ). Does there exist a subalgebra Σ0 ⊂ Σ such that each x ∈ E is Σ0-
measurable and the space E0 defined to be E considered over (T,Σ0, µ/Σ0)
is a Köthe space?

The answer is negative in general. It is enough to take the space E1 from
Remark 7. Indeed, the only subalgebra Σ0 ⊂ Σ such that each x ∈ E1 is
Σ0-measurable is the whole Σ.

Similarly, a negative answer can be deduced if we consider the space
X from Remark 7. Then the smallest subalgebra Σ0 ⊂ Σ such that each
x ∈ X is Σ0-measurable, is defined by Σ0 = {S ∈ Σ : S =

⋃
n∈A T

a
n ,

A ⊂ N, a ∈ R}, where Tn = suppun and T an = {t ∈ Tn : |un(t)| < a} for
each a ∈ R. Clearly, X0 = X considered over (T,Σ0, µ/Σ0) is not a Köthe
space, because X0 does not satisfy condition (i) from the definition of the
Köthe space.

Note that E(X) ∈ (sK). Indeed, given x, y ∈ E(X) and setting F =
suppx \ supp y and G(t) = suppx(t) \ supp y(t) ⊂ S, we have xχF (t) =
x(t)χG(t) ∈ X for each t ∈ T, since x(t), y(t) ∈ X and X ∈ (sK). Further-
more, |x(t)χG(t)| ≤ |x(t)| µ2-a.e. in S for each t ∈ T, hence ‖x(t)χG(t)‖X ≤
‖x(t)‖X for each t ∈ T. Then the function t 7→ ‖x(t)χG(t)‖X is an element
of E. Consequently, ‖xχF ‖E(X) =

∥∥‖x(·)χG(·)‖X
∥∥
E

and the orthogonal uni-
form convexity is well defined in the space E(X). However, the natural
question arises.

Question. Given Köthe spaces E=E(T,Σ1, µ1) and X=X(S,Σ2, µ2),
can the space E(X) be considered as another Köthe space?

The answer was given by Bukhvalov in [5] in a more general case.
Denote by (P,Σ, µ) the product measure space (T ×S,Σ1⊗Σ2, µ1×µ2).

Let E[X] be the space all µ-measurable functions K(t, s) (t ∈ T, s ∈ S) such
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that for each K ∈ E[X] we have

(i) K(t, ·) ∈ X for µ1-a.e. t ∈ T.
Then we define ωK(t) = ‖K(t, ·)‖X for µ1-a.e. t ∈ T. If we suppose addi-
tionally that (X, ‖ · ‖X) is monotone complete, X ∈ (MC), that is, 0 ≤ xn ↑
x ∈ X implies limn→∞ ‖xn‖X = ‖x‖X , then ωK(·) is Σ1-measurable ([5,
Theorem 1.1]). It is known that to get Σ1-measurability of ωK(·) we cannot
drop the assumption of monotone completeness of X. Then, if X ∈ (MC),
we may additionally assume in the definition of the space E[X] that

(ii) the function ωK(t) = ‖K(t, ·)‖X is an element of E.

Consequently, if we endow E[X] with the norm ‖K‖E[X] = ‖ωK(·)‖E, then
(E[X], ‖ · ‖E[X]) satisfies conditions (i) and (ii) in the definition of a Köthe
space. Since E and X are Banach spaces, so is E[X] ([5, Theorem 1.5]).
Moreover, we have

Theorem 4 ([5, Theorem 2.2]). The spaces (E[X], ‖·‖E[X]) and (E(X),
‖ · ‖E(X)) are isomorphically isometric if and only if either X is order con-
tinuous or the measure µ1 is purely atomic.

We want to thank Professor M. Mastyło for pointing out Bukhvalov’s
result.

For any x ∈ E \ {0} set x̂ = x /‖x‖E . We shall need two lemmas.

Lemma 7. Let x, y ∈ E \ {0}. If ‖x̂χA‖E ∨ ‖ŷχA‖E ≥ ε, where A =
suppx÷ supp y, and ‖x‖E ∧ ‖y‖E ≥ η(‖x‖E ∨ ‖y‖E), then

‖x+ y‖E ≤ (1− ηδ⊥E(ε))(‖x‖E + ‖y‖E).

The proof can be done the same way as in [13, Lemma 1.4].

Lemma 8 ([11, Theorem 7]). E ∈ (UM) if and only if for any ε ∈ (0, 1)
there is η(ε) > 0 such that ‖xχT\A‖E ≤ 1− η(ε) for any x ∈ E with x ≥ 0,
‖x‖E = 1 and for any A ∈ Σ such that ‖xχA‖E ≥ ε.

Theorem 5. Let E and X be Köthe spaces. Assume that E is uniformly
monotone. Then:

(i) ε⊥0 (X) ∨ ε⊥0 (E) ≤ ε⊥0 (E(X)) ≤ ε⊥0 (X) + ε⊥0 (E)− ε⊥0 (X)ε⊥0 (E).
(ii) Both inequalities in (i) are equalities if and only if either ε⊥0 (X) or

ε⊥0 (E) is in {0, 1}. In particular :

(a) E(X) is orthogonally uniformly convex if and only if both E and
X are orthogonally uniformly convex.

(b) ε⊥0 (E(X)) = ε⊥0 (E) whenever X is orthogonally uniformly con-
vex.

(c) ε⊥0 (E(X)) = ε⊥0 (X) if E is orthogonally uniformly convex.
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(iii) For any α, η ∈ (0, 1) and ε ∈ (α∨ η, α+ η− αη) there exists a two-
dimensional Köthe space E such that ε⊥0 (E) = η and ε⊥0 (E(X)) = ε
whenever ε⊥0 (X) = α.

We shall apply some techniques and methods from the proof of [13, The-
orem 1]. For any x ∈ E(X) we write ‖x‖ instead of ‖x‖E(X) for simplicity.

Proof. (i) The lower bound is obvious. We prove the upper bound. Let
E = E(T,Σ1, µ1) and X = X(S,Σ2, µ2). Set α = ε⊥0 (X), η = ε⊥0 (E) and
ε = ε⊥0 (E(X)). Take sequences {xn}, {yn} in S(E(X)) with ‖xn + yn‖ → 2
and ‖xnχFn‖∨‖ynχFn‖ → ε, where Fn = suppxn÷supp yn. Then ‖xnχFn‖ =∥∥‖xn(·)χGn(·)‖X

∥∥
E

and Gn(t) = suppxn(t) \ supp yn(t) ⊂ S (see the intro-
duction in Section 2.3). Let

sn(·) = ‖(xn + yn)(·)‖X , Sn(·) = ‖xn(·)‖X + ‖yn(·)‖X .
We have 2← ‖sn‖E ≤ ‖Sn‖E ≤ 2. Take ηn ↓ 0 and εn ↓ α such that

‖Sn‖E − ‖sn‖E
γn

→ 0,(9)

where γn = ηnδ
⊥
X(εn). Define

An(ηn) = {t ∈ T : ‖xn(t)‖X ∧ ‖yn(t)‖X ≥ ηn(‖xn(t)‖X ∨ ‖yn(t)‖X)},
A≥n = {t ∈ An(ηn) : ‖x̂n(t)χGn(t)‖X ∨ ‖ŷn(t)χGn(t)‖X ≥ εn},
A<n = An(ηn) \ A≥n ,

where x̂n(t) = xn(t)/‖xn(t)‖X . Applying Lemma 7 we get sn(·)χ
A≥n
≤

(1− γn)Sn(·)χ
A≥n

. Clearly, sn(·) ≤ Sn(·). Then

‖sn‖E ≤ ‖Sn − γnSnχA≥n ‖E = ‖Sn − γn(Sn − SnχT\A≥n )‖E
≤ (1− γn)‖Sn‖E + γn‖SnχT\A≥n ‖E .

Consequently, by (9),

2 ≥ ‖SnχT\A≥n ‖E ≥ ‖Sn‖E −
1
γn
{‖Sn‖E − ‖sn‖E} → 2.

In particular
∥∥‖xn(·)‖XχT\A≥n

∥∥
E
→ 1. Consequently,

∥∥‖xn(·)‖XχA≥n
∥∥
E
→ 0,(10)

because otherwise applying uniform monotonicity of E and Lemma 8 we
would get a contradiction. Since T \A<n = [T \ An(ηn)] ∪ A≥n , we get

‖xnχFn‖ =
∥∥‖xn(·)χGn(·)‖X

∥∥
E

=
∥∥‖xn(·)χGn(·)‖XχA<n + (εn + 1− εn)‖xn(·)χGn(·)‖XχT\A<n

∥∥
E
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≤
∥∥εn(‖xn(·)‖XχA<n + ‖xn(·)χGn(·)‖XχT\A<n )

+ (1− εn)‖xn(·)χGn(·)‖XχT\A<n
∥∥
E

≤ εn‖xn‖+ (1− εn)
(∥∥‖xn(·)χGn(·)‖XχT\An(ηn)

∥∥
E

+
∥∥‖xn(·)χGn(·)‖XχA≥n

∥∥
E

)

≤ εn + (1− εn)
∥∥‖xn(·)χGn(·)‖XχT\An(ηn)

∥∥
E

+
∥∥‖xn(·)‖XχA≥n

∥∥
E
.

Without loss of generality we may assume that ‖xnχFn‖ = ‖xnχFn‖ ∨
‖ynχFn‖ for any n ∈ N. Hence, by (10) we get

∥∥‖xn(·)χGn(·)‖XχT\An(ηn)
∥∥
E
≥
‖xnχFn‖ − εn −

∥∥‖xn(·)‖XχA≥n
∥∥
E

1− εn
(11)

→ ε− α
1− α.

Let T \An(ηn) = Bn ∪ Cn, where

Bn = {t ∈ T \An(ηn) : ‖xn(t)‖X = ‖xn(t)‖X ∧ ‖yn(t)‖X},
Cn = (T \An(ηn)) \Bn.

Set
un = ‖xn(·)‖X , vn = ‖yn(·)‖XχT\Cn.

We have
∥∥‖yn(·)‖XχCn

∥∥
E
→ 0, and consequently, as ‖Sn‖E → 2,

‖un + vn‖E → 2.(12)

Since
∥∥‖xn(·)χGn(·)‖XχBn

∥∥
E
→ 0, from (11) it follows that

lim inf
∥∥‖xn(·)χGn(·)‖XχCn

∥∥
E
≥ ε− α

1− α.

Hence, by (12), setting Dn = suppun÷ supp vn, we get

η ≥ lim inf ‖unχDn‖E = lim inf
∥∥‖xn(·)‖XχCn

∥∥
E
≥ ε− α

1− α.

(ii) follows immediately from (i).
(iii) Let α, η ∈ (0, 1) and ε ∈ (α ∨ η, α + η − αη). Let E = R2. We can

(and do) define the norm ‖ · ‖E in E such that the positive part of the unit
sphere S(E)+ will be the set (see Figure 1):

S(E)+ = (0, 1)− (1, 1) _
(

1
ε
,
α

ε

)
_

(
1
η
, 0
)
,

where the symbols λ − µ and λ _ µ denote a straight line and a strictly
rotund part of S(E) for any λ, µ in the unit sphere of E. Indeed, given a
convex, absorbing and balanced set A, the Minkowski functional KA of A
defined by KA(x) = inf{α > 0 : x/α ∈ A}, x ∈ E, defines a norm in E by
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Fig. 1

the formula ‖x‖E = KA(x). Moreover, since dimE < ∞, the boundary of
A is equal to the unit sphere (S(E), ‖ · ‖E).

Clearly, ε⊥0 (E) = ‖(1, 0)‖E = 1
1/η = η. Suppose that ε⊥0 (X) = α.

Then we find un, vn ∈ X with ‖un‖X = ‖vn‖X = 1, ‖un + vn‖X → 2
and ‖unχAn‖X ∨ ‖vnχAn‖X → α, where An = suppun ÷ supp vn. We
may assume that ‖unχAn‖X = ‖unχAn‖X ∨ ‖vnχAn‖X for any n ∈ N.
Let xn = (vn, un) and yn = (0, vn). Then ‖xn‖ = ‖yn‖ = 1. Moreover,
setting Fn = suppxn ÷ supp yn, we get ‖xnχFn‖ → ‖(1, α)‖E = ε. On
the other hand, ‖xn + yn‖ = ‖(‖vn‖X , ‖un + vn‖X)‖E → ‖(1, 2)‖E = 2.
Hence ε⊥0 (E(X)) ≥ ε. Suppose now that there are xn, yn ∈ E(X) with
‖xn‖ = ‖yn‖ = 1 ← ‖(xn + yn)/2‖ and ‖xnχFn‖ ∨ ‖ynχFn‖ → ε′. Then,
without loss of generality, xn = (un, vn), yn = (wn, zn) with

‖un‖X → u, ‖vn‖X → v, ‖wn‖X → w, ‖zn‖X → z,

‖(un + wn)/2‖X → r, ‖unχAn‖X ∨ ‖wnχAn‖X → p,

‖(vn + zn)/2‖X → s, ‖vnχBn‖X ∨ ‖znχBn‖X → q,

where An = suppun ÷ suppwn and Bn = supp vn ÷ supp zn, so that

‖(u, v)‖E = 1 = ‖(w, z)‖E, ‖(p, q)‖E = ε′

and

1 = ‖(r, s)‖E ≤
∥∥∥∥

1
2

(u, v) +
1
2

(w, z)

∥∥∥∥
E

≤ 1.

Consequently, (u, v), (w, z) ∈ (0, 1) − (1, 1), hence v = z = 1 = s and
u,w ≤ 1. Then q ≤ α and p ≤ 1, which gives

ε′ = ‖(p, q)‖E ≤ ‖(1, α)‖E = ε.
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