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The uniqueness of invariant measures for Markov operators
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Abstract. It is shown that Markov operators with equicontinuous dual operators
which overlap supports have at most one invariant measure. In this way we extend the
well known result proved for Markov operators with the strong Feller property by R. Z.
Khas’minski.

1. Introduction. In this note we are concerned with Markov operators
on measures. Our main goal is to prove a criterion for the uniqueness of an
invariant measure. The idea of the criterion goes back to R. Z. Khas’minski
who showed that every Markov operator satisfying both the strong Feller
property and the irreducible condition admits at most one invariant mea-
sure [5]. Khas’minski’s result is a useful tool in proving the uniqueness of
an invariant measure for stochastic differential equations (see [8]). However,
the strong Feller property seems to be a restrictive condition, especially for
stochastic differential equations with a degenerate noise. We are able to omit
this assumption for Markov operators with an equicontinuous dual opera-
tor. These operators have been extensively studied by S. P. Meyn and R. L.
Tweedie in [7]. We prove that if such operators overlap supports, then they
have at most one invariant measure. Let us mention here that the over-
lapping support property is useful, and indeed essential, for the proof of
stability for a large class of Markov operators acting on densities, namely,
for Frobenius–Perron operators [1] and partially integral operators [9].

Further, we shall make use of Theorem 3.1 of [6] to show that if the
Markov operator under consideration admits a unique invariant measure,
then any Markov chain corresponding to it is almost surely dense in the
support of the invariant measure. A similar theorem holds for Markov opera-
tors which are nonexpansive with respect to the Wasserstein metric (see [6]).
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If (X, %) is compact, the conclusion is also satisfied for Feller operators. How-
ever, it can be shown that Feller operators on general Polish spaces do not
have this property (see the counterexample in [6]).

Let (X, %) be a complete and separable metric space. For x ∈ X and r > 0
we denote by B(x, r) the open ball centered at x with radius r. We denote
by B(X) the spaces of all Borel sets. Further, we denote byM =M(X) and
M1 =M1(X) the spaces of all Borel measures and of all Borel probability
measures, respectively. Let µ ∈M. We denote by suppµ the support of the
measure µ, i.e.

suppµ = {x ∈ X : µ(B(x, r)) > 0 for every r > 0}.
Let A ∈ B(X) be such that µ(A) > 0. We define µA to be µ(· ∩ A)/µ(A).
Obviously µA ∈M1.

We denote by B(X) the space of all bounded Borel measurable functions.
This space is equipped with the supremum norm ‖·‖. Let A ⊂ X and ε > 0.
We set Aε = {x ∈ X : infy∈A %(x, y) ≤ ε}. We will use the scalar product
notation:

〈f, µ〉 :=
�

X

f(x)µ(dx) for f ∈ B(X) and µ ∈M.

An operator P : M →M is called a Markov operator if it satisfies the
following conditions:

• P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0, µ1, µ2 ∈M;
• Pµ(X) = µ(X) for µ ∈M.

We say that a Markov operator P overlaps supports if for every x, y ∈ X
there exists n0 ∈ N such that

suppPn0δx ∩ suppPn0δy 6= ∅.

Let P be a Markov operator. An operator U : B(X) → B(X) is called
dual to P if

〈f, Pµ〉 = 〈Uf, µ〉 for f ∈ B(X) and µ ∈M.

If the operator U transforms the space C(X) of all bounded continuous
functions into itself, then P is called a Feller operator. Finally, if U trans-
forms the space B(X) of all bounded Borel measurable functions into C(X),
then P is called strongly Feller.

The function π : X×B(X)→ [0, 1] given by π(x,A) = Pδx(A) for x ∈ X
and A ∈ B(X) is called a transition function.

We denote by L(X) the space of all Lipschitz functions, and by Lip f
the Lipschitz constant of f ∈ L(X).

The operator U is called equicontinuous if for each f ∈ L(X) the sequence
of functions {Unf}n≥1 is equicontinuous on compact sets.
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We say that a measure µ ∈M is invariant with respect to the operator
P if Pµ = µ.

A sequence {µn}n≥1 of Borel probability measures is called tight if for
each ε > 0 there exists a compact set K ⊂ X such that µn(K) > 1 − ε for
n ∈ N.

We say that P is recurrent in D ⊂ X if for every ball B with center at
D there is α > 0 such that

(1.1) lim sup
n→∞

Pnδx(B) ≥ α for x ∈ D.

2. Invariant measures. The following proposition is crucial for our
considerations.

Proposition 2.1. Let P : M → M be a Feller operator with the
equicontinuous dual operator U . Let µ ∈ M1 be such that the sequence
{Pnµ}n≥1 is tight. Then for each x ∈ suppµ the sequence {Pnδx}n≥1 is
also tight.

Proof. Let µ ∈ M1 be such that the sequence {Pnµ}n≥1 is tight. Fix
x ∈ suppµ and assume, contrary to our claim, that the sequence {Pnδx}n≥1

is not tight. Then there exist an ε > 0, a sequence {Ki}i≥1 of compact sets
and a sequence {ni}i≥1 of positive integers such that

(2.1) Pniδx(Ki) ≥ ε

and

(2.2) min{%(x, y) : x ∈ Ki, y ∈ Kj} > ε for i 6= j,

by Ulam’s lemma ([3], see also the proof of Proposition 2.1 in [11]). We
will now define by induction a sequence {f̃n}n≥1 of Lipschitz functions, a
sequence {νn}n≥1 of probability measures with supp νn ⊂ B(x, 1/n), and an
increasing sequence {mn}n≥0 of positive integers with m0 = 1 such that

(2.3) f̃n|Kmn
= 1, 0 ≤ f̃n ≤ 1

K
ε/4
mn
, Lip f̃n ≤ 4/ε,

(2.4) P kδx

( ∞⋃
i=mn

K
ε/4
i

)
≤ ε/8 for k = 1, . . . , nmn−1 ,

(2.5) P kνn

( ∞⋃
i=mn

K
ε/4
i

)
≤ ε/8 for k ∈ N

and

(2.6) |Ukfn(x)− Ukfn(y) ≤ ε/4 for y ∈ supp νn, fn =
n−1∑
i=1

f̃i and k ∈ N.
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Let n = 1. Set A = B(x, 1). Since x ∈ suppµ, we have µ(A) > 0. Let
ν1 = µA. Since µ ≥ µ(A)ν1 and {Pnµ}n≥1 is tight, we easily check that
{Pnν1}n≥1 is also tight. Thus there exists m1 ∈ N such that (2.3) and (2.4)
hold, by (2.2) and the Ulam lemma. Finally, let f̃1 be an arbitrary continuous
function satisfying (2.3) with mn = m1.

If n ≥ 1 is fixed and f̃1, . . . , f̃n−1, ν1, . . . , νn−1,m1, . . . ,mn−1 are given,
we choose δ < 1/n such that (2.6) holds for every measure νn supported on
B(x, δ) (apply the fact that {Umfn}m≥1 is equicontinuous at x). Now set
A = B(x, δ). Let νn = µA and let mn > mn−1 be such that (2.4) and (2.5)
are satisfied, by the tightness of {Pmνn}m≥1 and {P kδx : k = 1, . . . , nmn−1}.
Finally, let f̃n be an arbitrary Lipschitz function satisfying (2.3).

Next, let f =
∑∞

i=1 f̃i. From (2.2) and (2.3) it follows that f is Lip-
schitzean and ‖f‖ ≤ 1. Since {Unf}n≥1 is equicontinuous at x, we have

|Unmnf(x)− 〈Unmnf, νn〉| → 0

as n → ∞, by the fact that supp νn ⊂ B(x, 1/n). On the other hand, from
(2.1) and (2.3)–(2.5) it follows that

|Unmnf(x)− 〈Unmnf, νn〉| ≥ |Unmn f̃n(x)− 〈Unmn f̃n, νn〉|

−
∣∣∣Unmn

( n∑
i=1

f̃i

)
(x)−

〈
Unmn

( n∑
i=1

f̃i

)
, νn

〉∣∣∣− ∣∣∣Unmn

( ∞∑
i=n+1

f̃i

)
(x)
∣∣∣

−
∣∣∣〈Unmn

( ∞∑
i=n+1

f̃i

)
, νn

〉∣∣∣ ≥ ε− ε/8− ε/4− ε/8− ε/8 = 3ε/8,

which is impossible.

Theorem 2.1. Let P : M→M be a Feller operator with the equicon-
tinuous dual operator U . If P overlaps supports, then it admits at most one
invariant measure.

Proof. We break up the proof into three steps.

Step I. Set

T = {x ∈ X : {Pnδx}n≥1 is tight}.

To finish the proof it is enough to show that

(2.8) lim
n→∞

|Unf(x)− Unf(y)| = 0 for each f ∈ L(X) and x, y ∈ T.

Indeed, suppose, contrary to our claim, that there exist two different mea-
sures µ1, µ2 ∈M1 invariant with respect to the operator P . Proposition 1.1
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gives suppµ1, suppµ2 ⊂ T. Fix z ∈ T and f ∈ L(X). Then

|〈f, µ1〉 − 〈f, µ2〉| = |〈f, Pnµ1〉 − 〈f, Pnµ2〉| = |〈Unf, µ1〉 − 〈Unf, µ2〉|
≤ |〈Unf − Unf(z), µ1〉|+ |〈Unf − Unf(z), µ2〉|

≤
�

suppµ1

|Unf(x)− Unf(z)|µ1(dx)

+
�

suppµ2

|Unf(x)− Unf(z)|µ2(dx) for n ∈ N.

From this and condition (2.8) it follows that 〈f, µ1〉 = 〈f, µ2〉. Since f ∈
L(X) was arbitrary, we conclude that µ1 ≡ µ2.

Step II. Fix x, y ∈ T and f ∈ L(X). Fix also ε > 0. For α > 0, set

(T×T)εα = {(x1, x2) ∈ T×T : ∃n0∈N ∃µ1,µ2∈M1 P
n0δxi ≥ αµi, i = 1, 2,

and |〈f, Pnµ1〉 − 〈f, Pnµ2〉| < ε for all n ∈ N}.
Set

(2.9) θ := sup{α ≥ 0 : (x, y) ∈ (T×T)εα}.
We claim that θ = 1. Suppose, contrary to our claim, that θ < 1, and let
{αk}k≥1 be such that αk ↑ θ. Let nk ∈ N and µk1, µ

k
2 ∈ M1, k ∈ N, be such

that

(2.10) Pnkδx ≥ αkµk1 and Pnkδy ≥ αkµk2.
Moreover,

(2.11) |〈f, Pnµk1〉 − 〈f, Pnµk2〉| < ε for n ∈ N.

Set
µ̃k1 = Pnkδx − αkµk1 and µ̃k2 = Pnkδy − αkµk2.

and observe that the family {µ̃ki : k ∈ N, i = 1, 2} is tight, since (x, y) ∈
T×T. From this and the Prokhorov theorem (see [3]), there exist nontrivial
measures ν1, ν2 ∈M such that some subsequences of the sequences {µk1}k≥1,
{µk2}k≥1 (not relabeled) converge weakly to ν1, ν2, respectively. Choose v1 ∈
supp ν1 and v2 ∈ supp ν2 and let ñ ∈ N be such that

suppP enδv1 ∩ suppP enδv2 6= ∅,
as P overlaps supports. Fix w ∈ suppP enδv1∩suppP enδv2 . Since U is equicon-
tinuous, we may choose r > 0 such that

(2.12) |Unf(w)− Unf(w̃)| < ε/2 for w̃ ∈ B(w, r) and n ∈ N.

Set γ = P enδv1(B(w, r))∧P enδv2(B(w, r)). Since P is a Feller operator, there
exists r̃ > 0 such that

(2.13) P enδv(B(w, r)) ≥ γ/2 for v ∈ B(v1, r̃) ∪B(v2, r̃).
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Choose β such that 0 < β < ν1(B(v1, r̃)) ∧ ν2(B(v2, r̃)). As the measures
µ̃k1, µ̃

k
2 converge weakly to ν1, ν2, it follows that µ̃k1(B(v1, r̃))∧ µ̃k2(B(v2, r̃)) ≥

β for all sufficiently large k, by the Aleksandrov theorem. From (2.13) and
the Chapman–Kolmogorov equation we obtain

P enµ̃ki (B(w, r)) ≥ γβ/2 for i = 1, 2

and large enough k. Let k0 ∈ N be such that the above condition is satisfied
and

(2.14) αk0 + γβ/2 > θ.

Define

µ̂i(·) =
P enµ̃ki (· ∩B(w, r))
P enµ̃ki (B(w, r))

for i = 1, 2.

Then we have

(2.15)
Pnk0

+enδx ≥ αk0P enµk01 + (γβ/2)µ̂1,

Pnk0
+enδy ≥ αk0P enµk02 + (γβ/2)µ̂2.

From (2.12) and the fact that supp µ̂i ⊂ B(w, r), i = 1, 2, it follows that

(2.16) |〈f, Pnµ̂1〉 − 〈f, Pnµ̂2〉| < ε for n ∈ N.
Set

µ1 = (αk0 + γβ/2)−1(αk0P
enµk01 + (γβ/2)µ̂1),

µ2 = (αk0 + γβ/2)−1(αk0P
enµk01 + (γβ/2)µ̂2).

Then condition (2.16) holds with µ1 in place of µ̂1 and µ2 in place of µ̂2, by
(2.16) and the definitions of µk01 and µk02 . Finally, from (2.15) it follows that
(x, y) ∈ (T×T)εαk0

+γβ/2, contrary to (2.14) and the definition of θ.

Step III. What is left is to show that condition (2.8) holds. Fix an
ε > 0. We conclude from Step II that sup{α ≥ 0 : (x, y) ∈ (T×T)ε/3α } = 1,
hence there exist n0 ∈ N and µ1, µ2 ∈M1 such that

Pn0δx ≥ (1− ε/(3‖f‖))µ1 and Pn0δy ≥ (1− ε/(3‖f‖))µ2.

Moreover,
|〈f, Pnµ1〉 − 〈f, Pnµ2〉| < ε/3 for n ∈ N.

Then an easy calculation shows that

|〈f, Pn+n0δx〉 − 〈f, Pn+n0δy〉| < ε for n ∈ N,
which by Step I finishes the proof.

3. Dense trajectories. Let P be a Feller operator and let π be its
transition function. It is well known that having the transition function π
and the space of all Borel probability measure M1, one can construct a
probability space (Ω,Σ, prob) such that for every µ ∈ M1 there exists a
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Markov chain {xn}n≥0 such that prob(x0 ∈ A) = µ(A) and prob(xn+1∈ A |
xn = x) = π(x,A). We call such a Markov chain corresponding to the Markov
operator P . The following strengthening of results of [6] holds:

Theorem 3.1. Let P : M→M be a Feller operator with the equicon-
tinuous dual operator U . If P overlaps supports and admits an invariant
measure µ∗ ∈M1, then

prob(cl{x0, x1, . . .} = suppµ∗) = 1

for every Markov chain {xn}n≥0 corresponding to P and such that prob(x0 ∈
suppµ∗) = 1.

Proof. By Theorem 3.1 in [6] it is enough to show that P is recurrent
in suppµ∗. Let B ⊂ X be a ball with center in suppµ∗. We will show
that condition (1.1) holds with α = µ∗(B). Fix x ∈ suppµ∗ and consider a
sequence {µn}n≥1 of measures given by the formula

µn =
1
n

n∑
i=1

P iδx for n ∈ N.

We conclude from Proposition 2.1 that the sequence {Pnδx}n≥1 is tight and
hence so is {µn}n≥1. By Prokhorov’s theorem there exists a subsequence
{mn}n≥1, mn → ∞ as n → ∞, such that µmn converges weakly to some
probability measure µ. Since µ is invariant with respect to P , which, in turn,
admits a unique invariant measure µ∗, we have µ∗ = µ. The Aleksandrov
theorem now gives

lim inf
n→∞

µmn(B) ≥ µ∗(B),

and consequently
lim sup
n→∞

Pnδx(B) ≥ µ∗(B).

Since x ∈ suppµ∗ was arbitrary, this proves our theorem.

4. Example. We end the paper with an example of a Feller operator
P with the equicontinuous dual operator U which does not have the strong
Feller property. Recently M. Hairer and J. Mattingly have introduced the
class of asymptotic strong Feller operators (see [4]). Observe that these oper-
ators also possess an equicontinuous dual operator. We present here a more
straightforward example. Our operator will also overlap supports.

Let P1 be a strong Feller operator such that suppP1δx = X for x ∈ X.
We may assume that P1 is nonexpansive with respect to the Wasserstein
metric, i.e.

dW (P1µ1, P1µ2) ≤ dW (µ1, µ2) for all µ1, µ2 ∈M1,
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where

dW (µ1, µ2) = sup{|〈f, µ1〉 − 〈f, µ2〉| : Lip f ≤ 1 and ‖f‖ ≤ 1}.
In the case when X is a Hilbert space, P1 may be defined as a Markov
operator corresponding to some stochastic differential equation (see [2]).

Let P2 be an arbitrary nonexpansive Markov operator with respect to
the Wasserstein norm operator. Then P2 is a Feller operator (see [10]). We
assume that P2 is not strongly Feller. Such an operator may be defined as a
Markov operator associated with some iterated function system (see [11]).
Define a new Markov operator by

P = P1/2 + P2/2.

Observe that P is nonexpansive with respect to the Wasserstein metric.
Further, since suppP1δx = X for x ∈ X, we have suppPδx ∩ suppPδy 6= ∅
for x, y ∈ X. On the other hand, P is not strongly Feller. Finally,

dW (Pnδx, Pnδy) = sup{|Unf(x)− Unf(y)| : Lip f ≤ 1, ‖f‖ ≤ 1}
≤ dW (δx, δy) ≤ %(x, y) for n ∈ N,

which shows that U is equicontinuous. From Theorem 2.1 it follows that P
admits at most one invariant measure.
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