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Abstract. A directed-edge-reinforced random walk on graphs is considered. Criteria
for the walk to end up in a limit cycle are given. Asymptotic stability of some neural
networks is shown.

1. Introduction. There are a large number of different variants of ran-
dom walk with elements of memory [19]. Let us mention only self-attracting
diffusion [2], [18], self-avoiding walk [14], self-interacting random walk [22],
reinforced random walk, etc. A reinforced random walk, which is the main
subject of our paper, is defined on the lattice Zd or on graphs and the gen-
eral rule is that it prefers earliest visited paths. One can consider vertex
or edge-reinforced random walks. A vertex-reinforced random walk was in-
troduced by Coppersmith and Diaconis [3] and it has been studied later
by Pemantle [17], Davis [4], Sellke [21], Benaïm [1], Volkov [23], Davis and
Volkov [5] and others. Edge-reinforced random walks were investigated by
Pemantle [16], Lyons and Pemantle [13], Mauldin, Monticino, and von Weiz-
säcker [15], Horváth and Shao [8], Keane and Rolles [10], [11], Rudnicki and
Wolf [20], Limic [12] and others.

In this paper we study a new class of edge-reinforced random walks on
graphs. At each time, each vertex a has an associated vector {pab}b∈E(a)
containing the probabilities for jumping from a to each neighbour of b. Here
E(a) denotes the set of all ends of edges which begin at a. When the walk-
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ing point jumps from a to a neighbouring vertex b, the probability vector
{pab}b∈E(a) is replaced by a new one. We show, under certain conditions, that
the walk ends up in a limit cycle with probability one. It should be men-
tioned that our walk is not Markovian because the probability of choosing
any direction depends on the past. If we extend the phase space by adding
the distributions of the probabilities of passing particular edges we obtain a
Markov process.

The main role in our model is played by the learning process [9] which
describes how the vector {pab}b∈E(a) is changed. This process is defined in
Section 2 and it is called a random decision system. The probability of choos-
ing a given edge depends on the state of the system and the changes of the
states after making some decision (i.e. the choice of an edge) are defined by a
transition probability function. The main result of that section is that under
certain assumptions the system eventually takes the same decision.

In Section 3 we study edge-reinforced random walks on graphs. We have
independent decision systems at each vertex and these decision systems are
responsible for the choice of the next vertex. We consider both finite and
infinite graphs. The stabilization of decision systems at vertices which were
visited many times causes that the random walker will go along a limit cycle.
Our theorems generalize those from [20], where the edge-reinforced random
walk was considered on the lattice Zd and the decision system was defined in
the same way at each point of Zd by means of an iterated function system.

The last section is devoted to artificial neural networks. We consider a
simple model of a neural network which is an oriented graph with input and
output vertices. Vertices and oriented edges play the role of, respectively,
neurons and synaptic connections. The neural network is learning using a
reinforcement procedure similar to the previously described one for the ran-
dom walk on graphs. At each vertex except the output vertices we have a
decision system. We begin the process of learning at a randomly chosen in-
put vertex. Then we go through the network choosing edges according to
the rules given by the decision systems. When we reach an output vertex we
repeat the procedure, etc. This kind of learning system is based on hebbian
synaptic modification rules [6], [7]. After some time the network “stabilizes”,
i.e. a path from a given input vertex is strictly determined and if two paths
meet at some vertex then they further coincide. This means that with high
probability similar inputs (i.e. starting from near vertices) produce the same
output.

2. Random decision system. As mentioned in the introduction, the
probabilities of jumping from a vertex to its neighbour change in time and
each vertex has its own random decision system (independent of other ver-
ticies) which determines these probabilities. We start with an informal def-
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inition of a decision system. At each time step a system takes a decision i.
The probability of taking this decision depends on the state x of the system
and equals pi(x). But if we take a decision i then the state of the system will
change to a new state y determined by some transition probability function
Pi(x, ·). Now we proceed to a formal definition.

Let X be a measurable space with a σ-algebra A. Let D be a nonempty
countable set. Assume that for each i ∈ D we have transition probability
functions Pi : X ×A → [0, 1], that is:

(a) for each i ∈ D and x ∈ X the function A 7→ Pi(x,A) is a probability
measure,

(b) for each i ∈ D and A ∈ A the function x 7→ Pi(x,A) is measurable.

Let pi : X → [0, 1], i ∈ D, be measurable functions such that

(1)
∑
i∈D

pi(x) = 1 for x ∈ X.

The system (X,A, {Pi}i∈D, {pi}i∈D) will be called a random decision system.
The sets X, D and X̃ = X ×D are called, respectively, the state space, the
set of decisions, and the decision space. Having a random decision system
we can introduce two Markov processes (or Markov families).

Let Ã be the product σ-algebra A × 2D. Then for each x ∈ X, i ∈ D,
A ∈ A and I ⊂ D we put

(2) P̃ ((x, i), A× I) =
∑
j∈I

pj(x)Pj(x,A).

We can extend the function P̃ onto the set X̃ × Ã in such a way that
P̃ is a transition probability function. Then there exists a homogeneous
Markov process (ξ̃n)∞n=0 corresponding to P̃ . This means that we have some
probability space (Ω,Σ,Prob) and a sequence (ξ̃n)∞n=0 of random elements
ξ̃n : Ω → X̃ such that the sequence ξ̃n is a Markov process and

(3) Prob(ξ̃n+1 ∈ Ã | ξ̃n = x̃) = P̃ (x̃, Ã).

Let ξ̃n(ω) = (ξn(ω), kn(ω)) for n = 0, 1, . . . . Then (ξn)∞n=0 is a homo-
geneous Markov process. The process (ξn)∞n=0 has the transition probability
function

(4) P (x,A) =
∑
i∈D

pi(x)Pi(x,A) for x ∈ X, A ∈ A,

that is,

(5) Prob(ξn+1 ∈ A | ξn = x) = P (x,A).

The random elements ξn, kn describe, respectively, the state of the random
decision system at time t = n and the decision taken at time t = n − 1 (k0
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can be arbitrary). We have

Prob(kn+1 = k | ξn = x) = pk(x),
Prob(ξn+1 ∈ A | ξn = x, kn+1 = k) = Pk(x,A),

for x ∈ X and A ∈ A.
The sequence (kn) of random variables is called a decision process. A tra-

jectory (kn(ω)) is called eventually constant if there are k(ω) ∈ D and
n0(ω) ∈ N such that kn(ω) = k(ω) for n ≥ n0(ω). A random decision
system (X,A, {Pi}i∈D, {pi}i∈D) is called eventually constant if almost all
trajectories are eventually constant.

Now, we give an example of a random decision system.

Example 1 (An iterated function system). Let Ti : X → X, i ∈ D,
be measurable transformations and pi : X → [0, 1], i ∈ D, be measur-
able functions which satisfy (1). If we put Pi(x,A) = 1A(Ti(x)) for x ∈ X
and A ∈ A, then Pi is a transition probability function. The system
(X,A, {Ti}i∈D, {pi}i∈D) will be called an iterated function system. In this
case we have ξn+1 = Tkn+1(ξn).

Let (X,A, {Pi}i∈D, {pi}i∈D) be a random decision system. For x ∈ X
and A ∈ A we set Qi(x,A) = pi(x)Pi(x,A), Q1

i (x,A) = Qi(x,A) and

(6) Qn+1
i (x,A) =

�

X

Qi(y,A)Qni (x, dy).

From the definition of Qni it follows immediately that

(7) Q1
i (x,X) ≥ Q2

i (x,X) ≥ · · · ≥ 0 for each x ∈ X.

The main result of this section is the following

Theorem 1. Let (X,A, {Pi}i∈D, {pi}i∈D) be a random decision system
and let c > 0 be a constant. Assume that for each x ∈ X there is an i ∈ D
such that

(8) Qni (x,X) > c for n ≥ 1.

Then the random decision system (X,A, {Pi}i∈D, {pi}i∈D) is eventually con-
stant.

Corollary 1. Let (X,A, {Ti}i∈D, {pi}i∈D) be an iterated function sys-
tem and let c > 0 be a constant. Assume that for each x ∈ X there is an
i ∈ D such that

(9)
∞∏
n=0

pi(Tni (x)) > c.

Then the random decision system (X,A, {Pi}i∈D, {pi}i∈D) is eventually con-
stant.
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Remark 1. Condition (9) cannot be replaced by a weaker one: for each
x ∈ X there is i ∈ D such that

(10)
∞∏
n=0

pi(Tni (x)) > 0.

Indeed, let X = Z, D = {1, 2}, T1(x) = x+1, T2(x) = x−1, p1(x) = 1−x−2

for x ≥ 2 and p1(x) = 1/3 for x ≤ 1. Then
∞∏
n=0

p1(Tn1 (x)) > 0 for each x ∈ X

and
Prob( lim

n→∞
ξn = −∞ | ξ0 = x) > 0 for each x ∈ X.

This means that there exists a subset Ω1 of Ω with Prob(Ω1) > 0 such that
for each ω ∈ Ω1 we have kn(ω) = 2 for an infinite number of n’s. On the
other hand, the probability that kn = 2 for all but finitely many n equals
zero.

Remark 2. Inequality (9) can be written in the following way:

(11)
∞∏
n=0

�

X

pi(y)Pni (x, dy) > c,

where P 1
i (x,A) = Pi(x,A) and Pn+1

i (x,A) =
	
X Pi(y,A)Pni (x, dy). It is

interesting that condition (8) of Theorem 1 cannot be replaced by (11).
Consider a random decision system (X,A, P1, P2, p1, p2) on the space X =
{1, 2, 3, 4}, A = 2X . Let pnij = Pn1 (i, {j}), qnij = Pn2 (i, {j}), pij = p1

ij , qij =
q1ij and assume that

p1(1) = p1(3) = 0, p1(2) = p1(4) = 1,

p11 = 1, p22 = p23 = 1
2 , p34 = 1, p44 = 1,

q11 = 1, q21 = 1, q32 = q33 = 1
2 , q44 = 1.

Since pn22 = 2−n and pn24 = 1− 21−n for n ≥ 1, we have
�

X

p1(y)Pn1 (2, dy) = pn22 + pn24 = 1− 2−n

and since p0
22 = 1 we obtain

∞∏
n=0

�

X

p1(y)Pn1 (2, dy) = c,

where c =
∏∞
n=1(1− 2−n). Since pn44 = 1 for all n ≥ 0, inequality (11) holds

for x = 4 and i = 1. Analogously, we can check that (11) holds for x = 1, 3
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and i = 2. On the other hand,

Prob(ξn+1 = 2 | ξn = 2) = Prob(ξn+1 = 3 | ξn = 2) = 1
2 ,

Prob(ξn+1 = 2 | ξn = 3) = Prob(ξn+1 = 3 | ξn = 3) = 1
2 ,

which implies that if ξ0 = 2 then the process ξn takes each of the values 2
and 3 for infinitely many n.

We precede the proof of Theorem 1 by some definitions and a lemma.
Let

(12) ϕi(x) = lim
n→∞

Qni (x,X).

We define

Xi,ε = {x ∈ X : ϕi(x) ≥ 1− ε}, Xε =
⋃
i∈D

Xi,ε,

and let Pn(x,A) be the n-step transition probability function for the pro-
cess ξn.

Lemma 1. Assume that (8) holds. Then for every x ∈ X and ε > 0 we
have

lim
n→∞

Pn(x,Xε) = 1.

Proof. Fix x ∈ X and ε > 0. Let i ∈ D be a decision such that ϕi(x) ≥ c.
From (6) and (12) it follows that

(13) ϕi(x) =
�

X

ϕi(y)Qni (x, dy).

Let

(14) µn(A) =
Qni (x,A)
Qni (x,X)

.

Then µn is a probability measure. From the definition of ϕi it follows that
there exists an integer n0(x) such that

(15)
ϕi(x)

Qni (x,X)
≥ 1− ε2 for n ≥ n0(x).

From (13)–(15) we obtain
�

X

ϕi(y)µn(dy) ≥ 1− ε2

and consequently

(16)
�

X

(1− ϕi(y))µn(dy) ≤ ε2.
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Since ϕi ≤ 1, the Chebyshev inequality and (16) imply

µn(y ∈ X : 1− ϕi(y) ≥ ε) ≤
1
ε

�

X

(1− ϕi(y))µn(dy) ≤ ε.

This means that

(17) µn(Xi,ε) ≥ 1− ε.

From the definition of µn it follows that

Qni (x,Xi,ε) ≥ (1− ε)Qni (x,X) ≥ (1− ε)ϕi(x).

Since
Pn(x,Xε) ≥ Pn(x,Xi,ε) ≥ Qni (x,Xi,ε) ≥ (1− ε)ϕi(x)

for n ≥ n0(x), we obtain

lim inf
n→∞

Pn(y,Xε) ≥ (1− ε)c for y ∈ X,(18)

lim inf
n→∞

Pn(y,Xε) ≥ (1− ε)2 for y ∈ Xε.(19)

From the Fatou lemma and the formula

Pn+m(x,Xε) =
�

Xε

Pn(y,Xε)Pm(x, dy) +
�

X\Xε

Pn(y,Xε)Pm(x, dy)

we have

lim inf
n→∞

Pn+m(x,Xε) ≥ (1− ε)2Pm(x,Xε) + (1− ε)cPm(x,X \Xε)

= c(1− ε) + (1− ε− c)(1− ε)Pm(x,Xε).

Fix x ∈ X and let α(ε) = lim infn→∞ Pn(x,Xε). Then from the last inequal-
ity we obtain

α(ε) ≥ c(1− ε) + (1− ε− c)(1− ε)α(ε)

and consequently

(20) α(ε) ≥ c(1− ε)
1− (1− ε− c)(1− ε)

.

Since α is a nondecreasing function and α(ε) ≤ 1 inequality (20) implies

1 ≥ α(ε) ≥ lim
ε→0

α(ε) ≥ 1,

and α(ε) = 1 for each ε > 0, which completes the proof.

Proof of Theorem 1. Let Xk = X ×{k} for k ∈ D. For every (x, i) ∈ X̃
and A ⊂ X we have

P̃ ((x, i), A× {k}) = pk(x)Pk(x,A) = Qk(x,A).
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Since P̃ is the probability transition function of the process ξ̃n, we have

Prob(kn+1 = kn+2 = · · · = kn+m = k | ξ̃n = (x, i))

= Prob(ξ̃n+1 ∈ Xk, . . . , ξ̃n+m ∈ Xk | ξ̃n = (x, i))

=
�

Xk

. . .
�

Xk

P̃ ((x, i), dỹ1)P̃ (ỹ1, dỹ2) . . . P̃ (ỹm−1, dỹm)

=
�

X

. . .
�

X

Qk(x, dy1)Qk(y1, dy2) . . . Qk(ym−1, dym) = Qmk (x,X).

This implies that

Prob(kn+1 = kn+2 = · · · = kn+m = k | ξn = x) = Qmk (x,X)

and consequently

(21) Prob(km = k for all m > n | ξn = x) = ϕk(x).

Let ε ∈ (0, 1/2) be a given number. Since

Prob(ξn ∈ Xε) =
�

Ω

Pn(ξ0(ω), Xε) Prob(dω),

from Lemma 1 and the Lebesgue theorem it follows that

lim
n→∞

Prob(ξn ∈ Xε) = 1.

Let n0 be a positive integer such that

(22) Prob(ξn0 ∈ Xε) ≥ 1− ε.
Let A = {ω : ξn0 ∈ Xε} and Ak = {ω : ξn0 ∈ Xk,ε} for k ∈ D. Then
A =

⋃
k∈D Ak. Let

Bk = {ω : kn = k for n ≥ n0}, B =
⋃
k∈D

Bk.

Then from (21) we obtain

Prob(Bk | ξn0 = x) = ϕk(x).

Since ϕk(x) ≥ 1− ε for x ∈ Xk,ε we have

Prob(Bk | Ak) ≥ 1− ε.
Consequently,

(23) Prob(Bk) ≥ Prob(Bk ∩Ak) ≥ (1− ε) Prob(Ak).

Since B1, . . . , BN are pairwise disjoint we obtain

(24) Prob(B) ≥ (1− ε) Prob(A) ≥ (1− ε)2.
Since ε is any positive constant, inequality (24) implies that for almost ev-
ery ω there is k(ω) such that kn(ω) = k(ω) for sufficiently large n, which
completes the proof.
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Example 2. Now we give an example of an iterated function system
which satisfies the assumptions of our theorem. Let

X = {x ∈ [0, 1]N : x1 + · · ·+ xN = 1}, pi(x) = xi for x ∈ X,
and we assume that the transformations Ti : X → X, i = 1, . . . , N , satisfy
the inequality

(25) 1− (Ti(x))i ≤ ϕ(1− xi),
where (Ti(x))i is the ith coordinate of Ti(x). We assume that ϕ : [0, 1] →
[0, 1] is an increasing function such that

(26)
∞∑
k=1

ϕk(1− 1/N) <∞,

where ϕk(t) = ϕ ◦ ϕk−1(t) for k ≥ 1. Since ϕ is an increasing function,
inequality (25) implies

(27) 1− (Tni (x))i ≤ ϕn(1− xi).
From (26) it follows that

(28) pi(Tni (x)) ≥ 1− ϕn(1− xi).
Since xi ≥ 1/N for some i, inequalities (26) and (28) imply

∞∏
n=0

pi(Tni (x)) ≥
∞∏
n=0

(1− ϕn(1− xi)) ≥ c > 0,

where c =
∏∞
n=0(1− ϕn(1− 1/N)).

If for example there exists λ < 1 such that (Ti(x))j ≤ λxj for xi ≥ 1/N
and all j 6= i, then (25) and (26) hold with ϕ(t) = λt for t ∈ [0, 1− 1/N ].

3. Reinforced random walk on graphs. Let Z be a nonempty set
and let K be a nonempty subset of Z ×Z. A pair (Z,K) is a directed graph,
Z is the set of its vertices and K is the set of its oriented edges. If (a, b) ∈ K
then a and b are called, respectively, the beginning and end of the edge (a, b).
For any vertex a ∈ Z we set

E(a) = {b ∈ Z : (a, b) ∈ K}, B(a) = {b ∈ Z : (b, a) ∈ K}.
Now we assume that the set Z is finite and that for each vertex a the set
E(a) is nonempty. Moreover, we assume that at each vertex a we have a
random decision system

Sa = (X,A, {Pab}b∈E(a), {pab}b∈E(a)).
For simplicity we assume that the set X and the σ-algebra A are the same
for all vertices.

Now we describe a random walk on the graph (Z,K). At the beginning
all random decision systems are in state x0 ∈ X. We begin the walk at some
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vertex a0. We choose an adjacent vertex bi ∈ E(a0) with the probability
pa0bi(x0) and we go to the vertex bi. We also change the state of the random
decision system Sa0 . The distribution of the new state of Sa0 is given by
the probability measure µ(A) = Pa0bi(x0, A). At the next vertex, say b, we
choose an adjacent vertex and change the state of Sb according to the same
law as at a0, and so on.

The state of the random walk at any time t is described by the position
of the moving point and the states of all random decision systems Sa, a ∈ Z.

We denote by ηn the position of the moving point and by χan the state
of Sa at time t = n. Set χn = (χan)a∈Z . Then (ηn, χn) is a Markov process
on some complete probability space (Ω,Σ,Prob) with values in Z × XZ

satisfying the following conditions:

(a) η0 = a0, χa0 = x0 for every a ∈ Z,
(b) for all x ∈ X, A ∈ A, a ∈ Z, b ∈ E(a) we have

(29) Prob(ηn+1 = b, χan+1 ∈ A | ηn = a, χan = x) = pab(x)Pab(x,A),

(c) for all x ∈ X, a, b ∈ Z, a 6= b, we have

Prob(χbn+1 = x | ηn = a, χbn = x) = 1.

A sequence (a1, . . . , am) of different vertices is called a cycle if ai+1 ∈
E(ai) for i ∈ {1, . . . ,m−1} and a1 ∈ E(am). We say that a sequence (bn)n∈N
of vertices has a limit cycle if there is a cycle (a1, . . . , am) and a positive
integer n0 such that bn0+i+km = ai for i ∈ {1, . . . ,m} and k = 0, 1, . . . .

As in the previous section we introduce functions

Qab(x,A) = pab(x)Pab(x,A), Qn+1
ab (x,A) =

�

X

Qab(y,A)Qnab(x, dy),

ϕab(x) = lim
n→∞

Qnab(x,X).

Now we can formulate the following theorem.

Theorem 2. Consider a random walk on a graph (Z,K) and let c > 0
be a given number. Assume that for each a ∈ Z and x ∈ X there is b ∈ E(a)
such that ϕab(x) ≥ c. Then there exists a measurable subset Ω0 ⊂ Ω such
that Prob(Ω0) = 1 and for each ω ∈ Ω0 the sequence {ξn(ω)}∞n=0 has a limit
cycle.

Proof. We denote by A1
a the subset of Ω which consists of all ω ∈ Ω such

that the trajectory {ηn(ω)} goes through a infinitely often. Since Z is finite
we have

Ω =
⋃
a∈Z

A1
a.

If a is visited infinitely often, then according to Theorem 1, the set A1
a can

be divided into disjoint subsets A2
ab, b ∈ E(a), where A2

ab is the set of all
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trajectories which go through a and then through b for n ≥ n0(ω). If b 6= a,
then we can divide A2

ab into subsets A3
abc, c ∈ E(b), such that for ω ∈ A3

abc
the trajectory goes successively through a, b, c, etc. Since Z is finite, after
some steps the moving point returns to a and we obtain a limit cycle.

Now we give a version of Theorem 2 for infinite graphs. In the infinite
case we need some conditions which guarantee that almost all trajectories
are bounded.

We assume that Z is a nonempty countable set and the set K ⊂ Z × Z
has the following properties:

(a) (a, b) ∈ K ⇒ (b, a) ∈ K,
(b) 1 ≤ card E(a) <∞ for a ∈ Z.
Theorem 3. Consider a random walk on a graph (Z,K) which satisfies

conditions (a) and (b). Assume that

(i) for each a ∈ Z there exists ca > 0 such that∧
x∈X

∨
b∈E(a)

ϕab(x) ≥ ca,

(ii) there exists c > 0 such that∧
a∈Z

∧
b∈E(a)

ϕab(x0) ≥ c.

Then almost all trajectories have a limit cycle.

Proof. First we give an interpretation of condition (ii). Assume that A
is the event that the vertex a is visited for the first at time t = n0(ω) and
the vertex b ∈ E(a) has not been visited earlier. Let

B = {ω ∈ Ω : ηn0+2i−1(ω) = b, ηn0+2i(ω) = a for i = 1, 2, . . . }.
Then

(30) Prob(B | A) = ϕab(x0)ϕba(x0) ≥ c2.
Now we check that almost all trajectories go through a finite number of
vertices. We introduce a distance in the set of vertices. By the length of a
chain we mean the number of edges in it. If two vertices a and b are connected
by some chain then their distance d(a, b) is the minimal length of a chain
connecting a and b. If a and b are not connected, then d(a, b) =∞. Assume
that the walk begins at a vertex a0 and set m(a) = d(a0, a) for a ∈ Z. For
k = 1, 2, . . . we define

Ck = {ω ∈ Ω : sup
n
m(ηn(ω)) ≥ k}.

According to (30) we have

Prob(Ck+2 | Ck) ≤ 1− ϕab(x0)ϕba(x0) ≤ 1− c2.
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This implies that
Prob(C2k) ≤ (1− c2)k.

Let C =
⋂∞
k=1Ck. Since Prob(C) = 0, we have

(31) sup
n
m(ηn(ω)) <∞ for almost all ω ∈ Ω.

From the assumption (b) it follows that

(32) card{a ∈ Z : m(a) ≤ k} <∞ for every k ∈ N.
Inequalities (31) and (32) imply that almost every trajectory goes through
a finite number of vertices. Similar arguments to those in Theorem 2 show
that almost all trajectories have limit cycles.

4. Neural networks. Now we apply our results to a neural network.
Let (Z,K) be a directed graph with a finite set of vertices Z. The graph
(Z,K) is called a neural network if it has the following two properties:

(n1) if (a1, . . . , ak), k ≥ 2, is a sequence of vertices such that (ai, ai+1) ∈
K for i = 1, . . . , k − 1, then a1 6= ak,

(n2) for each a ∈ Z there exists b ∈ Z such that (a, b) ∈ K or (b, a) ∈ K.
Now we divide the set of vertices into three disjoint subsets:

Zb = {a ∈ Z : B(a) = ∅}, Ze = {a ∈ Z : E(a) = ∅},
Zi = Z \ (Zb ∪ Ze).

From (n1) it follows that Zb 6= ∅ and Ze 6= ∅. Elements of Zb are called
input vertices and elements of Ze are called output vertices. Fig. 1 shows an
example of a neural network.

Fig. 1. ©: input vertices Zb, •: output vertices Ze, •: vertices from the set Zi

The neutral network (Z,K) is taught in the following way. For each vertex
a ∈ Zb ∪ Zi we introduce a random decision system

Sa = (X,A, {Pab}b∈E(a), {pab}b∈E(a)).
Let Zb = {b1, . . . , br}. We choose an element bi with a probability qi, where
qi > 0 and q1 + · · ·+ qr = 1. Then we go through the graph (Z,K) according
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to the procedure described in Section 3 using the random decision systems
Sa, a ∈ Zb∪Zi, unless we reach a vertex in Ze. Then we choose an element bi
with a probability qi and we go through the graph (Z,K) etc. As in Section 3,
we denote by ηn the position of the moving point at time t = n.

A neural network (Z,K) is called simple if for each a ∈ Zb ∪ Zi there
exists exactly one b ∈ Ze ∪ Zi such that (a, b) ∈ K. Observe that if a neural
network is simple then the movement on it is strictly determined. A neural
network (Z ′,K′) is called a subnetwork of (Z,K) if Z ′ ⊂ Z, K′ ⊂ K and
Z ′b = Zb. Thick line segments on Fig. 2 form a simple subnetwork of the
neural network from Fig. 1.

Fig. 2

Theorem 4. Consider a neural network (Z,K) and let c > 0 be a given
number. Assume that for each a ∈ Zb ∪ Zi and x ∈ X there is b ∈ E(a)
such that ϕab(x) ≥ c. Then there exists a measurable subset Ω0 ⊂ Ω such
that Prob(Ω0) = 1 and for each ω ∈ Ω0 there exist an n0 ∈ N and a simple
subnetwork (Z ′,K′) of (Z,K) such that ηn ∈ Z ′ for n ≥ n0.

Proof. The proof is the same as that of Theorem 2.
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