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Norm convergence of some power series
of operators in L? with applications in ergodic theory

by

CHRISTOPHE CUNY (Nouméa)

Abstract. Let X be a closed subspace of LP(u), where p is an arbitrary measure and
1 < p < 00. Let U be an invertible operator on X such that sup,,c [[U"|| < co. Motivated
by applications in ergodic theory, we obtain (optimal) conditions for the convergence of
series like >° o (U™ f)/n'™%, 0 < a < 1, in terms of ||f + --- + U" " f||p, generalizing
results for unitary (or normal) operators in L?(y). The proofs make use of the spectral
integration initiated by Berkson and Gillespie and, more particularly, of results from a
paper by Berkson-Bourgain—Gillespie.

1. Introduction. Let (M, u) be an arbitrary measure space. Fix 1 <
p < oo and let X be a closed subspace of LP(u). Let U be an invertible
operator on X, power bounded in the following sense: sup,,cz [|U"| < oc.
We will call such an operator doubly power bounded.

It is known (see Berkson—Gillespie [2] and the references therein) that
such an operator admits a spectral decomposition consisting of projections
acting in X. We will mostly refer to the paper of Berkson—Bourgain—Gillespie
[1] for the properties we need.

One of our purposes is to obtain conditions on f € X that enable one
to assign a meaning to singular integrals of the type S[O 7T](1 —e )T dE(t)f,
0<a<l, or S[Om] log(1 — e")dE(t) f, where {E(t)};cp0,2+] is a family of
projections to be defined later.

This question is of theoretical interest. In the case where U is a unitary
operator, the functional calculus arising from spectral theory is much richer

than in our situation and it is quite easy to achieve the above mentioned
goal (see Gaposhkin [10], [I1], or Cuny [6]). It is also shown in [11] that the
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2 C. Cuny

previous question is related to the convergence of the series
urf
(1) Z nl—o’
n>1

Our main interest is to show that it is still the case in the more general
situation that we consider now.

As in Gaposhkin [IT] (see also [6]), we want to find conditions for the
convergence of (L)), expressed in terms of {|[S,(f)|lp}, where S,(f) =
f+ -+ U"f. Hence, when we are concerned with the convergence of ,
the spectral theory will happen to be just a tool, not involved in the condi-
tions.

In particular we will obtain

THEOREM 1.1. Let 1 <p<oo and 0 < a < 1. Let f € X be such that
TAIf+-+ Un—lpr min(p,2)
2 — < 00.
? > x

=~ nl-a
Then the limit lim,, ,_,o+ S]u,27r71)](1 — e dE(t)f exists in LP(u) and
D>t (U™ f)/n'= converges in LP ().
THEOREM 1.2. Let 1 < p < oo. Let f € X be such that

1 . n—1 1 min(p,2)
(3) Z <‘f+ +U f”p Ogn) < .

nlogn n
n>2 g

Then the limit lim,, , o+ S]U 9] log(1 — eit)dE(t)f exists in LP(p) and
> ons1 (U™ f)/n converges in LP(p).

REMARK. If U is the isometry induced by an invertible transformation
preserving p, then the series ) -, (U"f)/n even converges p-a.e. by Theo-
rem 1.2 of [].

When p = 2 and U is a unitary operator we recover the previously known
conditions (see [6], or [I1] for related results). In this case, it is even proved
that (for p = 2) is equivalent to the convergence of > o, (U™ f)/n!~.

For p # 2, we lose equivalence, but we will show that conditions
and are optimal in the class of invertible power-bounded operators on
some LP. Finally, we give applications of Theorems [I.1] and [T.2] to pointwise
convergence theorems for certain averages of U arising in ergodic theory.

2. The spectral decomposition and main properties. In this sec-
tion we recall the basic properties of the spectral integration developed by
Berkson—Gillespie [2], and we state the transferred theorems from multiplier
theory, from [I], that are needed.
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Let Y be a Banach space and denote by B(Y) the Banach algebra of
bounded operators on Y. An idempotent element of B(Y) will be called a
projection.

DEFINITION. A spectral family of projections in the Banach space Y is
a uniformly bounded, projection-valued function F'(-) : R — B(Y) which is
right continuous on R in the strong operator topology (SOT), has at each
s € R a SOT left-hand limit (denoted F'(s7)), and satisfies:

(i) F(s)F(t) = F(min(s,t)) for all s,t € R;
(ii) lims— oo F'(s) =0 (SOT);
(iii) limsoo F'(s) =1 (SOT),
where I denotes the identity operator on Y.

If there is a compact interval [«, 5] such that F(3) = I (hence by (i),
F(s) =1I for every s > ) and F(s) = 0 for every s < «, then F() is said
to be concentrated on [, (3].

Let F(-) be a spectral family of projections of Y, concentrated on a
compact interval J := [, §]. Let BV (J) be the Banach algebra of complex
functions g having bounded variation on J, with norm ||g||; defined by

lgllr = 19(B)] + var(g, J),

where var(g, J) denotes the variation of g on J.
Given a partition P = (o = Ao, A1, ..., A\, = ) of J, write

S(g.P) = g(@)F(a) + > g\)(F(Nj) — F(Aj-1)).
j=1

Then S(g, P) converges SOT as P runs through the partitions of J directed
by refinement. The strong limit of S(g,P) is denoted by | ;9 dF (it was de-

noted by SSB gdF in [2]). The mapping g — | ;g dF is an identity preserving
algebra homomorphism of BV (J) into B(Y') such that

Jjsar

< ”g”Jiuﬁ |F(N\)||  for every g € BV (J).
S

Let 1 < p < 0o and (M, p) be an arbitrary measure space. Let X be
a closed subspace of LP(u). Let U be an invertible operator on X, power-
bounded in the following sense:

c:=sup||U"]| < oo.
nez

It follows from [2, Theorem (4.8)] that there is a unique spectral family
of projections on X, denoted by E(-), concentrated on [0,27], such that

E@2r7) =1 and U = 8[0 ox] e dE(t). Since LP(u) is reflexive, LP(u) =
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Ker(I-U)® (I —U)LP(p). Then E(0) is the corresponding projection onto
Ker(I —U). Therefore, E(0)f = 0 if and only if ||f + -+ U" "1 f||,/n — 0.
Moreover there exists a constant C), depending only on p, such that
(4) sup || B(t)] < ¢*Cp.

te[0,2m)

Denote by T the set of unimodular complex numbers. We will identify
the set BV (T) of complex functions with bounded variation on T with a
subalgebra of BV (]0,2n]). For every function ¢ in BV(T) we define its
normalization ¢ by

1 . ,
o(t) :== =(lim (") 4+ lim ¢(e'®)) VteR.
2 stt s—t—

For every ¢ € BV(T), define

T,:= | @(t)dE(®).
[0,27]

Denote by M,(T) the space of ¢?(Z)-multipliers, that is, of bounded func-
tions ¢ on T such that the convolution with {((—n)},ez defines a bounded
operator of (P(Z).

Recall that by the Stechkin Theorem (see e.g. [9]), BV (T) is contained
in My(T) and ||| ar, (1) < Cpp(1) + var(p, T)). Then we have

THEOREM 2.1 (Berkson-Gillespie, [2, Theorems (3.10)(ii) and (4.14)]).
For every ¢ € BV (T), we have

(5) 1Tl < llollar, (r)-

We now define the dyadic decomposition of T. For j € N, define t_; =
7/20, t; = 2m — w/27. Then, for every j € Z, define w; = €', I} = {e" :
tj <t <tjr1} and A; to be the closure of Ij.

The Strong Marcinkiewicz Multiplier Theorem (see e.g. [9]) asserts that
a bounded function on T with bounded variation on each A; uniformly
bounded with respect to j is in M,(T):

THEOREM 2.2. Let ¢ : T — C be bounded and such that

sup var(p, 4;) < oo.
JEZ
Then ¢ € My(T) and
1ellaz,(my < Cplsup|p(2)] + sup var(p, 4;)).
z€T JEZ
Given ¢ € BV(T) the operator T, is meaningful as defined before.
By , the Strong Marcinkiewicz Multiplier Theorem gives a much bet-
ter control of ||T, || than what we would obtain by the Stechkin Theorem.
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Denote by Y; the dyadic sigma-algebra, that is, the sigma-algebra gen-
erated by {wj};jez, {Ij}jez and {1}. The following was proved by Berkson—
Bourgain-Gillespie [1].

THEOREM 2.3. There exists a strongly countably additive spectral mea-
sure £ on Xy, acting in X, such that
E(Iy) = E(tj,) — E(t;)  Vj €
E{1}) = E(0);  E({w;}) = E(ty) — E(t);
sup €(0)]| < AC,.

oeXy

Moreover, £ has the following property, to which we will refer as an
analogue of the Littlewood—Paley Theorem, or simply Littlewood—Paley.

THEOREM 2.4. There exists a positive constant C, > 0, depending only
on p, such that for every f € X and any mutually disjoint {oj}j>1 C Xq4
with T = ;> 05, we have

¢y < || (S leenr?) | <@l
Jjz1

If 2 € [0,27], E(x¥) will mean that we are either looking at E(zt) =
E(z) or at E(z~). We will also need the following transferred Riesz property
(see [1, Theorem (3.15)]).

THEOREM 2.5. There exists a positive constant C, such that for any
sequences {a;}j>1,{bj}j>1 C [0,27] and {g;};>1 C X, we have

1/2 1/2
(> 1EeD) - B@igl?) 7| <] (X 1P) |
§>1 P Jj=1 P
By the triangle inequality, it is enough to show that
1/2 1/2
(S ipenee) || <ol () -
i>1 g i>1 P

which may be proved exactly as Theorem (3.15) of [1].

3. Conditions to define S[o 27 Y(t)dE(t)f for certain unbounded

functions 1. Denote by £ the set of positive functions ¢ € C*(]0,7]) such
that

(i) ¢ is non-increasing,
(ii) there exists K > 1 such that ¢(t/2) < Ko(t) for every t € ]0, 7).
Every function in £ has bounded variation on any closed interval of |0, 7.

We are interested in functions ¢ € £ such that lim; o+ ¢(t) = oo, the
convergence to infinity being controlled by (ii).
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For every ¢ € L, define
L, = {y € C*(]0,7]) : 3C > 0 such that [¢| < Cy, || < —Cy'}.

For convenience, we define a sequence of arcs by II, := {e® : t €
Jtn—1,tn]} for n € Z.

PROPOSITION 3.1. Let p € L. Let f € X be such that
. 1/2
(6) | (X e ramieun ) 7| <o
n>0

Then, for every ¢ € Ly, lim,,_,o+ S]u ] Y(t)dE(t)f exists in LP(u).

Proof. We show that the sequence {Sh Jon ] Y(t)dE(t)f} (which is well-

defined, since ¢ has bounded variation on any closed interval in ]0,7]) is
a Cauchy sequence; then the result will follow, since, using , for u €
[1/281 7 /2F], we have

| § wewaEws| =|E@2-B@) | wwaEos|

Ju,m/2F] Jm /241w /2K]
<¢o| | wwaEws| .
I/ 2641 /24 g
Let n > 1. We now define two functions ¢, and ¢, on T as follows:
Up : T — C,
Gt {¢(t) if t € Jm/281 7 /2% for some 0 < k <n —1,

0 otherwise,
¢n: T — C,
Gt {(,0(7T/2k) if t € |m/2Ft /2% for some 0 < k <n — 1,
0 otherwise.

Then the function ), /¢y, is well defined (with 0/0 interpreted as 0), bounded
on T by KC (use the fact that ¢ € £ and |¢)| < Cy), and has bounded
variation on any closed interval in ]0, 27r]. Moreover, for every 0 < k <n—1
and every t € | /281 /2K

dgn(e) (1)

dt gn(e't) — o(m/28)

Hence 4
d d)n (ezt)

dt d)n(eit) <

~p(m/2F)

Pn p(m /2" — p(m/29)
Var(%,/lk> <C o(r/2%) <C(K-1),

and
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since ¢ € L. In particular,

sup supvar(wn,/lj) < 00,
neN jeZ (bn

and, by Theorem and the Strong Marcinkiewicz Multiplier Theorem,
(7) sup [Ty, /0,1l < oo.

neN
We obtain, for every 1 < m < n,

| § wwaEes] < T waeamms]
]

/27 /2™ w27 /2™
| § @O - v arw|
Je/2m /2] P
SHTwn/% S @n(eit)l]n/zn,ﬂ/zm}dE(t)pr
[0,27]

+CH(§W2@/2’“)!5({UJk})f\Q)l/sz

n—1

< Ty, 012G | (D2 2 (r/2)ET1) 1)

k=m
we| (3 e )|

where we have used the analogue of the Littlewood—Paley Theorem and the
transferred Riesz property. Then the result follows from , our assumption
and the Riesz property again (for the first term). m

1/2H

)
p

REMARK. It is not hard to see, by a similar proof, that the existence of
lim, o+ S]u - @(t)dE(t)f in LP(u) implies condition (6]).

Of course we have a proposition similar to Proposition [3.1] for functions
having a singularity at 2.

PROPOSITION 3.2. Let ¢ € L. Let v be a complex function in C*([r, 2)
such that (2w —-) € L,. Let f € X be such that

1/2
®) | (X errzmieams?) 7| <oe.
n>0
Then the limit lim,,_, o+ S[ﬂ 27r7u[1/1(t) dE(t)f exists in LP(p).

We want to show that conditions @ and are implied by a condition
expressed in terms of || f + -+ + UL f||,.
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We need some definitions. For every operator T on LP(u), and every
f € LP(u), define
4+ pnl
Ay =1L
For simplicity, we will write A, (U, f) = A,(f).
Define also the following square function:

1/2
= (D141 ) = Ay (T DP)
k>n
Again, we write Q. (U, f) = Qn(f).
It follows from the proof of Theorem 5.4 (see 5.7) of [I] that there exists
a constant C),, depending only on p, such that, for every invertible, doubly
power bounded operator T, and every f € LP(u),

9) HQ(T7 f)Hp < CszHf”;Da where ¢ = Sug HTTLH < 0.
ne

This result was also obtained in [I3, Theorem 2.3] in the case where 7' is
induced by a probability preserving transformation.
Now, notice that, for every n,k > 1,

A2"+k (T7 f) = AQ’“ (T2n7 AQ" (Ta f))7
hence

Q) = Qu(U. 1) = (X 1Agen () ~ Agrinin (D)

k>0
0 n /
= (140U A (1)) — Agey (U A ()
k>0
= Qo(U*", Aan(f)).
In particular, by @,
(10) 1Qn(N)lp < Cpll Aze (£)llp-

With those notations, we can state our next result.

THEOREM 3.3. Let {un}n>0 be a sequence of positive real numbers. Let
{ni}tr>0 be a non-decreasing sequence of positive integers with ng = 0. Let
f € LP(u). Then

(3 emiemse) ™,

neL

< CQCPH (ZUH‘AQ"(f) B A2”“(f)‘2>1/2‘

n>0

)

p
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a2 | <k20” ?Lk<f>)1/2H,, < &Gy kZO (VT | Az (£) ) ™02,

where ¢ = sup, ¢z [|[U"]| and C, is a universal constant depending only on
p > 1. Moreover, if {u,} is non-decreasing, then

59 [(Sttr— ) ] < [(S i)

Proof. Let us prove (13). As {u,} is (in this case) non-decreasing, we
have

Np41—1
D tnl Ao (f) = A (NP <D gy, Y An(f) = Ay (P,
n>0 k>0 I=ny

hence the result.
Let us prove (12). Assume that p € ]1,2]. Then || - |2 < || - [|zr. Hence,

(Wi @ (102) " < (Wi @ ()7,

k>0 k>0

and, by 7
0 k>0

k>

<62pCpZup/2 | g ( )”g

Nk+1
k>0

Assume now that p > 2. We have, using and the triangle inequality
in LP/2(p),

(S nt0) " [ Srattin]
<t @ ()2

k>0
< 0405 Zu"kJrl ||A2"k (f)”;%

k>0
To prove , we show that
[(Smtemns) ™| < (S wmian ) —ameinP)
n>0 n>0

the proof for the second sum being the same.
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For every m > 1, t € ]0,27[ and k € N, define 0, (t) = 1 + - - - + /(=D
and

G =20 -

Cop(t) gyop(t) (1)
TRl T TR T O9kHI(] _eit)’

We have [Aqk (f) — A2k+1(f)|2 = | S[o,mr] Vi (t) dE(t)f|2 and

w(r/2E{hf = EQuD( § wt)dB@®)f).

[0,27]

Then, using the fact that
4

2| =
[ye(m/2%) 12k T sin(r /2F+1)

and the transferred Riesz property, we obtain

(S wwtettense) ™,
k>0

< || (3wl Aa(h) = A (1E) |

~4/m ask — o0

k>1 P
< 6| (S ul(An () — Anes(F) 7| <.
k>0
Hence, it remains to prove that
[(Suatiecrase) ™)
n>0
< 26| wl(Aen(5) A (1P)
n>0 p

Let n > 1. We define two functions v, and ¢, on T as follows:

p: T — C,
eit'_){\/ak ift € I'_y, for some 0 < k < n,
0 otherwise,
¢n: T — C,
Gt s {\/ﬂk'yk(t) ift e I'_j, for some 0 < k < n,
0 otherwise.

The functions v, and ¢,, are in BV (T).
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By construction, using the analogue of the Littlewood—Paley Theorem,
we have, for every n > 1,

n 1/2 )
1) [(Swlers?) | <] § v arws] |

k=0 P (0,27 P
Hence we are in a position to use the method employed in the proof of
Proposition [3.1] with the present choice of ¥, and ¢,.

Note that the function v, /¢, is well defined (0/0 interpreted as 0), with
bounded variation on T. For every t € |x /281 7 /2F],

‘7,/} 1 ‘_ 2R — eft|
)|~ ] T =P
On the other hand, for every k > 1 and every t € |7 /281 7 /2F[, we have
d (') ok+1; it 22k+1iez’2kt(1 — ¢it)
dt gp(eit)| '(1 — ei2Ft)2 (1 — ei2"t)3

Hence

< (1+v2)m2".

)2k

var<¢ Ak> < | @+v2m2kat =1+ v2)r?/2
bn’ /a1

and sup,,>1 SUpyez var(yn /¢n, Ax) < oo. Then, by Theorem and the
Strong Marcinkiewicz Multiplier Theorem, there exists K > 0 such that
1Ty, /6, || < K for every n > 1.

Using the analogues of the Littlewood—Paley Theorem and of the Riesz
property, we deduce

| § eneaBf| =T o, ( | entnaBos)]

0,2 [0,27] P

< Ty, 612G, (kiowc\]/wil o i),

< PC| Ty /| (kZuk’ | () de(t f‘)l/2H
0 [0,27]

" /
= O Ty o ]| (3 el () — A (1)P) |
k=0

p

< 20K (S wlan () — Az (DP) || <.
k>0

p

Letting n go to infinity in , we obtain the desired result. m
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In applications, we will take nj, = k or nj, = 2*. It is convenient to show
that for suitable {u, } the right-hand side of may be replaced by a series
involving the whole sequence {||A,(f)»}

We say that a positive function b is in the Zygmund class if for every
§ >0,z — 2°b(x) (respectively z — x~9b(x)) is increasing (resp. decreasing)
at infinity.

LEMMA 3.4. Let T' be an operator on a Banach space Y such that
sup,>1 [|[T"|ly < oo. Let b be a function in the Zygmund class, v > 1 and
r > 1. For every f € Y, the following are equivalent:

(i) Yps1 bO)[If + -+ T 7LF5 /07 < 0.
(ii) anl b2 f + -+ T2n71f”§//2n(771) < 0.

If either (i) or (ii) is satisfied then b(n)||f+---+T" 1 f|l5/n~ 1 — 0 as
n—oo. Ify=r+1 and b = log® for some § € R — {—1}, we even have
|f+ -+ T f|5-(logn)°+t /n™ — 0 and (i) and (i) are equivalent to

(i) Yoy 220D 4o+ T2 L fly /22') < o0
For the proof, see Appendix A.
COROLLARY 3.5. Letl<p<oo,0<a<l,and f € X.

(i) If @) holds, then ||(3, ez 22ME (1) fI2) /2|, < oo
(i) If holds, then ||(3°,,cz n2|E(IT,) f12)Y? ], < .

In particular we can apply Propositions and either with ¢(t) = t=«
and p(t) = (1 — )™ or with o(t) = log(27/t) and ¥ (t) = log(1 — e*).

Proof. Assume (2)). By Lemma with b = 1, r = min(p,2), v =
1+ (1 — a)min(p,2), we obtain 3 (27| Agn|,)™"P2) < co. Then apply
Theorem with ng = k, u, = 22" to obtain (i).

Assume . By Lemmawith blogmn®2)=1 . — min(p,2), v =r+1,
we obtain 3 (27| Agen [|,)™™P2) < oo. Then apply Theorem with
ng = 2%, u, = n? to obtain (ii). m

4. Conditions for the norm convergence of power series of U.
In this section, we want to obtain conditions for the norm convergence of
general power series including Y°, <, (U™ f)/n'=%, for 0 < a < 1. It is proved
in [§] that the convergence of the latter is equivalent to f being in the range
of (I — U)®, where this operator is well defined, using the power series
expansion of (1 —2)® (see [§]).

As shown in [§], [19], [4], [6] or [5], the convergence of power series in U
allows one to obtain pointwise ergodic theorems with rate and has applica-
tions in probability theory.
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The spectral representation of U will enable us to relate the convergence
of general power series to the studies in the previous section.

Given a sequence {a,} we want to find conditions on f € LP(u) such
that > o, a,U™f converges in LP(p). Writing S,,(f) = f + -+ + UL,
we have

(16) > axU"f =D ar(Skpa(f) — Sk(f))
k=1 k=1

— Z Sk(f)(ag—1 — ar) + anSni1(f) — a1S1(f).
k=2

Hence to obtain the desired convergence it suffices to show that the series
Y n>1 Sn(f)(an—1 — ap) converges in LP(u) and lim,— ||anSn+1(f)|l, = 0.

We will now study the convergence of the series on the right-hand side
of . Actually, for regular sequences {a,}, one automatically obtains
limy, oo ||@nSn+1(f)|lp = 0 (as one can see in the examples of the next
lemma). Also the conditions for the convergence of > -, Sn(f)(an—1 — an)
that we will obtain (such as (2)) or (3))) imply that limy, oo [|anSn+1(f)|lp =0,
using Lemma

LEMMA 4.1. Let T be an operator on the Banach space Y with
sup,,>q |[T"|| < 0o. Let f € Y and 3 € ]0,1]. Assume that one of the follow-
g s satisfied:

(1) >on>1 (T™f)/nP converges in'Y,

(i) > 1 Sn(f)/n+P converges Y.

Then ||Sn(f)|ly/n® — 0 as n — co. In particular, (i) and (ii) are equivalent.

REMARK. The lemma shows that the condition ), -, IS0 (£)|ly/nt*?
< oo is sufficient for the convergence in Y of -, (T f)/n”.

For the proof of Lemma 4.1, see Appendix B.

We go back to the study of the convergence of series of the type

Zn21 anSn(f)-
Denote by K the set of positive functions p € C1(]0,7]) satisfying the
following set of conditions:

(A1) ¢ and —¢ are non-increasing,

(A2) t > tp(t) and t — —t2¢/(t) are non-decreasing,

(A3) lim,_g+ to(t) = 0.
In particular, the functions t — log(27/t), and t — 1/t* for 0 < a < 1,
belong to K.

Notice that IC C £ by (A2), and by (Al) and (A2),

(17) 0< —t(t) <ot) Vte (0,7
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Then, by (A3), we obtain
(18) lim t%¢/(t) = 0.

t—0+t
Recall that for every t € R and every n > 1, 0,(t) = 14 - -- + /"= D¢,

Given a function ¢ € K, we denote by K, the set of sequences {a,} C C
such that there exists a constant C' > 0 for which, for every p >n > 1 and
every t € [—m, 7]\ {0},

(19) ‘Zakak(t)‘SCgp(w/n), ‘;aka;(t)]g—w'(w/n),

20 | men®)] <2 | Y agoq] < 2T,
k=n k=n

n|t| n?t?

For instance, the previous conditions will be fulfilled in the following
situation.

PROPOSITION 4.2. Let p € K. Let {a,} C RT. Assume that {nay,} is
non-increasing, and that there exists K > 0 such that for every n > 1,

(21) > Koy < —K¢/(n/n),
k=1
(22) Y < K‘pl(;/n).
k>n

Then {ay,} € KCy.

For the proof, see Appendix C.
For instance, Proposition applies with oy, = 1/n?>=% for 0 < a < 1,
and p(t) = log(2n/t) if @« =0 and ¢(t) = t~* otherwise.

PROPOSITION 4.3. Let ¢ € K and {a,} € K. Then ), <y anoy(t) con-
verges uniformly on any compact subset of R\27Z to a function W with

bounded variation on any compact subset of R\2nZ. Moreover the restric-
tions to |0, 7] of W and W (27 —-) belong to L.

Proof. Since ¢ € K, the first condition of implies that the series
Y n>0Qnop converges uniformly on every compact subset of 0,27 to a
function W defined and continuous on ]0, 27r[. Then, by the second condition
of (20), W has bounded variation on any closed interval in ]0, 27| (actually
W e C(]0,7])) and still holds when p — co.

Let t € [-m, 7], t # 0. Using the monotonicity properties of ¢ € K,
and , we have
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[7/I¢]
W(t)| = ‘Zanan ‘ } Zt o (t ’ ‘ 2 ozno*n(t)‘
n>1 n>[m/[t]]+1
< 2C([t)),
[7/I¢]
[W'(t)| = ‘Zana ‘ < ‘ Z ano), ‘ ‘ Z ana,’l(t)‘
n>1 n>[m/[t[]+1
< —CP(|t]). w

PROPOSITION 4.4. Let ¢ € K and {anfnen € Ky Let W =3 o) anoy,
be as in Proposition[4.3] Let f € X be such that E( )f =0 and

(23) (S 22iemys)” e .

ne”Z

Then there exists {gm} C LP(n), with limy,—o [|gm|lp = 0, such that, for
every m > 1, taking n = [logy m|,

Z apSk(f) = gm + S W(t)dE(t)f.

|w/2n 27— /27]
In particular, by Proposition > n>1nSn(f) converges in LP(p).

REMARKS. The proposition may be seen as a version of Lemma 5 of [I1]
(see also Theorem 4 of the same paper) where the case of unitary operators is
considered. It can be checked that the conditions in [I1] are actually the same
as ours in this case. In [I1]], even the p-a.e. convergence of {g,,} is obtained.
The study of the u-a.e. convergence will be done in the forthcoming work [7].

Proof of Proposition 4.4. Let m > 1 and n = [logy m]. Define W, (t) =
Yot akok(t) and write

YoaSu(f) = | W) dE®)f
k=1

[0,27]

= | WamdBE®f+ | W) dE®)f
10,7 /2™] 12 —m /27 27]
+ ) e -wmdEMS+ ) W dE@)/.
|w/27 27 —m /27] Jm/2" 2 —7 /2]
The proposition will follow from the next lemmata, whose proofs are given

in Appendix D.

LEMMA 4.5. Let ¢ € K and {on}nen € Ky. There exists L > 0 such
that for every f € X and every m > 1, we have (with n = [logy m])
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ey |1 W -ww)aewys|

[ /2 27 —x /27] P

n—1
(30 #eanre)

k=1—-n

LEMMA 4.6. Let ¢ € K and {an}nen € Ky. There exists L > 0 such
that for every f € X and every m > 1, we have (with n = [logy m])

<r 7T/2”

(25) H | W) de fH < Lip(m/2") (Z|€U_ f|) H
J0./27]
e |1 wawdsos]| < ewe|(Tleamsr) |
12 —m /27 27) k>n

Since (p (7r / 2™)) is non-decreasing, (23)) implies that the right-hand sides
of (25) and (26| converge to zero as m — oo, by the monotone convergence
theorem

It remains to prove that implies the convergence to zero of the
right-hand side of . We need the following version of Kronecker’s Lemma
(whose proof, based on Abel summation, is left to the reader).

LEMMA 4.7 (Kronecker’s Lemma). Let {a,} be a sequence of real num-
bers decreasing to zero, and {b,} be a sequence of non-negative real numbers
such that Y, <y anby, < 00. Then ap > p_qbp — 0 and sup,~; an > p_q b <
anl anbn.

Assume (23)). Apply Kronecker’s Lemma with a, = ¢(7/2")/2" and b, =
|E(Iy) f?(x)) for p-a.e. x € M and Lebesgue’s Dominated Convergence
Theorem to see that the right-hand side of converges to zero. m

Now we are in a position to prove Theorems [I.1] and

Proof of Theorems[I.1l and[1.9 Let 0 < o <1 and f € X be such that
. ) holds. It follows from Corollary - 3.5| that the limit in Theorem (1.1} u exists
and that condition (23) holds.

On the other hand by ([2) and Lemma [3.4) u S0 (F)|lp/nt~* — 0. Hence
E(0)f =0 (see Section 2).

Hence, we can apply Proposition [£.4] to the cases mentioned after Propo-
sition and obtain the convergence in LP(u) of > o Sn(f)/n'T®. Then
we conclude by means of Lemma B

Theorem can be proved exactly the same way with suitable modifi-
cations. m

5. Optimality of the conditions. We now discuss the sufficient condi-
tions obtained in Theorems|1.1{and [L.2|for the convergence of series in LP ().
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By Lemma for every operator T on a Banach space Y such that
sup,,>1 |77 < oo, if f € Y satisfies
3 If+---+T"'f HY

nQOé

(27)

for some « € [0, 1] then anl (T™f)/n'=% converges in Y = LP(p).
Condition always implies the conditions of Theorems and
Indeed, by Corollary if holds then

If +- + T flly

lim i =0 ifae]0,l1],
n—00 nt—e
R i
lim Ift- Sy logn =0 ifa=0.
n—oo n

Using again, we see that the conditions of Theorems and hold
for the corresponding o, with Y = LP.

Now, from a practical point of view, one can see that Theorems[l.1| and
-yleld a quantltatlve improvement of condition (27)): if one has an estlmate
of the type || f+---+U" L f||, = O(n”(logn)?), there is a gain in the power
of the logarithm.

Before proving the optimality of our conditions, let us discuss the specific
case p = 2.

When p = 2, Theorems and have been proved in [6] (see also
[11] and the references therein) for U either an isometry or a (sub)normal
contraction of L2,

Here we consider invertible power bounded operators. By a result of
Nagy [16], if U is an invertible operator on L? (or on a Hilbert space) such
that sup,cz [|[U™]| < oo, then U is similar to a unitary operator. Hence our
results do not bring any novelty in the case p = 2.

We will distinguish the cases p < 2 and p > 2.

5.1. The case p € |1,2]. Let v be a finite measure on the Borel sets of
[—7,7]. Define an operator V on L(v) by Vf(t) = e f(t). Then V is an
invertible isometry on each LP(v), p > 1.

In this paper, we are only concerned with norm convergence. It is well
known that if U is a unitary operator on L?(u) then, for every f € L?(u),
there exists a positive finite measure vy on [—m, 7| (the spectral measure of
f relative to U) such that for all ay,...,a,, € C and nq,...n,, € Z,

[ ewtmisf = § 3 e

In particular, in order to prove Theorems [I.1] and [I.2] for f, it suffices to
prove them for the function ¢ — 1 and V acting on L?([—m, 7], vy).

dv(t).
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For p # 2, one cannot deduce results for general operators from the study
of V' (on some LP([—m,7],v), but we will see that when p € |1, 2] condition

of Theorem is optimal.

PROPOSITION 5.1. Let V be the operator on L'([—m, 7|, v) defined above.
Let p > 1 and a €0, 1. For every f € LP(v) the following are equivalent:

. If+--+ Vn_lfHZL)p(V)
(1) Z nlt(1-a)p < 00,

n>1

(i) | A v(dt) <

[t|o®

(iii) Z % converges in LP(v).

n>1
Proof. We may and do assume that v({0}) = 0. Let t € [—m, 7] \ {0}.
We have

I+ VL
2

nlt+(l—a)p

n>1

=1y O ey + § S O e
“m1<n<1/l] “wn>1/l

™

5 (i

since |0y, (t)] < C'min(n,1/|t|). Similarly, using the estimate, |0, (t)] > Cn
for 1 <n < 1/|t|, we have

n— 2m
DL i N HELC

n1+(1 a)p ‘t‘ap

n>1

and (i)<(ii).
To see that (ii)<>(iii), just notice that

n z'

> -

and use Fatou’s Lemma for (iii)=-(ii) and Lebesgue’s Dominated Conver-
gence Theorem for (ii)=-(iii). m

int

(&

n>1

Ca
[t

(28) sup and t—0,

n>1

\t\

It follows from Proposition that condition , for 1 < p < 2/ in
Theorem cannot be improved in the context of doubly power bounded
operators on LP spaces. One can see (looking at irrational rotations as below)
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that the equivalence of (i) and (iii) does not hold, in general, for other
operators than V.
We also have the following.

PROPOSITION 5.2. Let V be the operator on L'([—m, n],v) defined above.
Let p > 1. For every f € LP(v) the following are equivalent:

N 1
oDy 2 (logn)" ! < o0,

n>1

™

(i) | (og(1/[¢))71f(#)P v(dt) < oo,

—T

(iii) Z an converges in LP(v).

n>1

This proposition can be proved just as Proposition

To conclude with the case p € ]1,2], we make the following remark.
Assume U acts on each LP (1 < p < 2), for instance, take U induced
by an invertible measure preserving transformation. Then condition of
Theorem (for 1 < p < 2) really “looks like” what one would obtain
by interpolating condition for p = 2 and condition with Y = L.
However, we have not succeeded in doing it.

5.2. The case p € ]2,00[. Let § € R\ 27Q and denote by Ry the
rotation by 0, i.e. Rgg = g(- + ) for every function g on [0,27). Then Ry
induces an invertible (positive) isometry on any LP([0,27),\), p > 1, where
A is the normalised Lebesgue measure on [0, 27).

For p > 1, denote by L, the set of non-decreasing sequences {n;} C N
for which infy>1 ngy1/nk > p. Fix n = {n;} € L, and define the following
subspace of L2([0,27), \):

Kn = {g € L*([0,27), \) : 3{ex} € AN cheznkx}
k>1

Clearly, for all p > 1 and n € L, ky is Ry-invariant for every 6 € R.

It follows from the (classical) Littlewood—Paley Theorem (see e.g. The-
orem 2.1, p. 225, Vol. II of [20]) that for every p > 1, there exists C) =
Cp(p) > 0 such that for every g € kn, we have

1
(29) o lglly = llgllz < Cpllgllp-
p

In particular, K, C ﬂp>1 LP([0,27), A).
We have the following

PROPOSITION 5.3. Letp>1,ne L, and f € ky. Letp > 1,0 € R\27Q
and a € 10, 1[. The following are equivalent:
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1) >on>1 (Ryf)/n'~ converges in LP([0,2), \).
(i) Yoy If + -+ Ry FIZ/ 2070 < oo

In particular, condition of Theorem is optimal for p > 2.

REMARK. Similarly, for f € kn, the convergence of 3 -, (Rjf)/n in
LP([0,27), A) is equivalent to Y-, -1 [|f + -+~ + Ry fI|7/n’logn < oc.

Proof of Proposition 5.5. By (29 . ) and (ii) are respectively equivalent
to the same condition for p = 2. Now the assertion is true for p = 2 (even
for all f € L?([0,27),))) either by Proposition or by Proposition 2.3
of [6]. m

To see that condition of Theorem is optimal, it suffices to show
that there exists n € L, for some p > 1, and f € ry such that (i) is satisfied.

Given 0 € R\ 27Q, define ng = 1 and for k& > 0, ngy1 = inf{n >
png = nb € 2nZ + [7/2,37/2]}. The sequence {nj} is well defined since
27Z + {nf},>1 is dense in R by the assumption on 6.

Define f(x) = Y_;5, €™ " /k. For every s > > 1, we have

Rmf 1 S imng0 |2
H Z ml o ; k2 z_: c;,nlfa
_ s Om nke) — Om— 1(nk0)
% k2 Z ml « ‘

— 0
—ﬂr2 2azk2 oy

where we have used Abel summation by parts. =

PROPOSITION 5.4. Let 0 € R\27Z and o € ]0,1[. Let p > 1 andn € L,,.
If p> 2 (resp. if 1 < p < 2), then the condition

(30) Z || k 0 RGf”P < 00

1+(1—a)p
n>1 n

on f € ky is not sufficient (resp. not necessary), in general, for the conver-
gence in LP([0,2m),\) of 3=~ (Rg f)/n' .

Proof. Set ng = 1 and ngr1 = inf{n > pny : nf € 27Z + [1/(k + 1),
1/k]}. Let {dg}r>1 € £ and define f(z) = >, dre™*. Using (28), it is
not hard to see that the convergence of ) -, (]_%gf)/nl_a in L2([0,27), )
(hence in LP([0, 27), A)) is equivalent to 37, - |di|2/[1 — |2 < oo, which,
by our choice of {ng}, is equivalent to 37, |di|?k** < co.
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On the other hand, using , we have

Rk /2
s e ol nm&f”p CZ e (Sl ?)

n>1 k>1

Recall that |y, (u)| < Cmin(1/u,n) for u € 0, 7], and |y,(u)] > Cn for
u € ]0,2/(wn)]. By our choice of {ny}, taking d = 1/(k'/***(log k)?), we
obtain

Z ey IS BTl oy
c logn = pit(-ap = n>1n(logn)1’5'

With our choice of {dy}, the convergence of the series }, -, (Ryf)/nt™

in L%([0,27), \) is equivalent to >_,~, 1/(k(log k)??) < co. Hence the result
clearly follows. m -

6. Applications in ergodic theory. We now give some applications
in ergodic theory. We start with conditions to obtain a rate in the point-
wise ergodic theorem. Let (§2, F,m) be a o-finite measure space. Given a
Dunford—Schwartz operator on ({2, F,m) (i.e. an operator which is a con-
traction on each LP(m)), Derriennic and Lin [§] obtained rates in the point-
wise ergodic theorem for functions f € (I —T)“LP(m) with 1 < p < oo and
0 < a < 1. The operator (I — T)* was defined there thanks to the power
series expansion of (1 — z)“.

It was also shown in [§] that f € (I —T)*LP(m) if and only if the series
s (Tf)/nt= converges in LP(m). In particular, when 7' is induced
by an (invertible) measure preserving transformation, one can apply the
previous section.

Recall the result of Derriennic-Lin.

THEOREM 6.1. Let T be a Dunford-Schwartz operator on the measure
space (£2,F,m). Let p > 1 and o € |0,1[. Let f € (I — T)*LP(m). If
q:=p/(p—1) then the following hold.

(i) Ifa>1—1/p, then n=1/? Zz;é TFf — 0 m-a.e.
(ii) If « =1 —1/p, then n=Y/P(logn)~1/4 ZZ;(I) TFf — 0 m-a.e.
(it) If o <1—1/p, then n= S P0TFf — 0 m-a.e.
It is shown in [6] that the rates in (i)—(iii) are best possible for functions
n (I —T)“LP(m).
Applying the previous results, we obtain

THEOREM 6.2. Let (£2, F,m,0) be an invertible ergodic dynamical sys-
tem (the measure m is 6-invariant). Let T be the Dunford-Schwartz operator
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induced by 0. Let o € ]0,1[, p € |1,2] and f € LP(m) be such that
3 If+--+ o0

nl""(l—a)p

< 00

(e.g. supp>q |[f +---+ fo 0", (log n)V/P+1 /nl=2 for some > 0). Then
f e —T)*LP(m) and Theorem [6.1] applies.

REMARK. For p > 2, we have a similar result. We have assumed 0 is
invertible, to be able to apply Theorem If 6 is not invertible, but acting

on a Lebesgue space, one may use the natural extension (see e.g. Rokhlin
[17] or Maharam [14]).

We give a theorem which is a combination of results of Cohen and Lin
[3] and of Weber [18] obtained for general (not necessarily invertible) power
bounded operators on some fixed LP.

THEOREM 6.3. Let T be a power bounded operator on the measure space
(£2,F,m). Let a € |0,1[ and p > 1. Let f € LP(m) be such that there ezists
n > 0 with sup,s, ||[f + -+ f o 0", (logn) /P17 /nl=% < oo. Then, for
every € > 0: -

(i) Ifa >1—1/p, then
n—1

1
Zka —0 m-a.e.

nl/p (]og n) 1/p+e —

(ii) If a =1—1/p, then
n—1

1
Zka —0 m-a.e.

nl/p(log n)1+6777 prt
(iii) Ifa <1—1/p, then
1
nl=(logn)s—"

REMARKS. 1. (i) and (ii) of Theorem [6.3] follow from Theorem 1.3 of [18]
applied with M, = n, L(z) = z(logz)'*e, ¥(z) = 2P(1=%) /(log z)!*" and
©(n) given by the corresponding denominator in (i) or (ii).

2. The rate in (iii) follows from Theorem 2.13 of Cohen-Lin [3] applied
with ¢(n) given by the denominator in (iii), ¢ = p(1 — ) and d?(0,n) =
np(l_a)/(log n)l/p+77'

To compare Theorem [6.2] with the results of Weber and Cohen—Lin, one
should let  go to zero in Theorem [6.3] The rates in cases (i) and (ii) are
better in Theorem and essentially the same in case (iii).

When p = 2, the use of the spectral theory for unitary operators enabled
us in [6] and [5] to consider more general power series (as proposed by

n—1
Zka —0 m-a.e.
k=0
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Zhao—Woodroofe) than the one giving (I — 7)), and thus, to obtain more
precise rates.

There are technical difficulties (that should not be hard to overcome)
to extend the results of [6] and [5] to the case p # 2. Those difficulties are
essentially due to the fact that the spectral integration of Berkson—Gillespie
works for functions with bounded variation (hence we “need” a control of
the differential of the functions) while in the unitary case one may integrate
a much wider class of functions.

We now give another application in ergodic theory, using a result of [4].

THEOREM 6.4. Let (£2,F,m) be a o-finite measure space and 6 be an

invertible F-measurable transformation preserving m. Let p > 1 and f €
LP(m) be such that

1 <Hf+---+f09”1H,%logn>mi“(”’2)
Z < 00.

nlogn n

n>2

Then 3,51 f 00" /n converges in LP(m) and m-a.e. Moreover,

n fogk

2.7

k=1

Proof. By Theorem |1.2 . > on>1f 00" /n converges in LP(m). The a.e.
convergence and the integrability of the maximal function then follow from
Theorem 2.1 of [4]. m

sup € LP(m).

n>1

A. Proof of Lemma It is well-known (and easy to check) that
N(g) := sup,,~o ||[T"g|ly defines a norm on Y equivalent to the norm || -
ly, such that T becomes a contraction for N. In particular, the sequence
{N(f+---+T"1f)} is subadditive. Then Lemma is a corollary of the
following lemma which generalizes Lemma 2.7 of [I5].

LEMMA A.l. Let {w,} be a subadditive sequence of positive numbers.
Let b be slowly varying and v > 1 and r > 1. The following are equivalent:

() 5o bl /7 < .
(i) > ,zq b2M)whn /207D < o0,
If either (i) or (ii) is satisfied then b(n)w”/nY~1 — 0 asn — co. If y =r+1
and b =log® for some § € R, then (i) and (i) are equivalent to
(iii) Zn21 2n(§+1)(w22" /2%")" < o0,
and we have w?,(logn)%+ /n™ — 0 asn — oo if § # —1, and w},(loglogn)/n"
—0asn—o0ifd=—1.

Proof. (i)=(ii). For every k € {471 ... 4"/2 — 1}, we have w}, <
27wl 4+ wh._,). Since {b(m)/m?} is non-increasing (for m large), one
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obtains
4m /21
CCUT TP S COT R G T
2 4m = it kv (47 — k) ’

Hence )" -, b(22”)w§2n/22(7*1)" < oo and the result follows as wg2nt1 <
2w22n.

(ii))=(i). Let 6 > 0 be such that v —1—dr > 0. Let £k > 0 and 2*¥ < n <
2F+1 _ 1. Then, with 1/r +1/r' = 1, we have

k
wh< (Ywa) < (2215?“')” z 2 < czwz 22
=0 =

Hence
ok+1_1 2k+1_1
b(n)wy, b(n)wz ks ws
P D DD Dl ) PP TZW Z
n>1 k>0 np—ok k>0 1=0 n=2k
/ k(57” k " (2l wgl
<C Z2l§r 22 <C Z 2(v—1)1 < 0o.
1>0 k>l >0

Assume that (i) is satisfied. Then, clearly, b(2™)wh, /2"~ — 0 as

n — oo. Using the fact that w,, < Zlog? Wk, one can see that b(n)w?, /n7~*
— 0 as n — oo.

Assume that b = log® and v = r 4 1. Noticing that {wan/2"} is non-
increasing, it is not difficult to see that (iii) is equivalent to (ii). Then, for
every m > 1,

. Q,U27L r 5 w27n T 5 5
ol)= > <2n> (nlog2)® > < 2m> (log2)’ > n’.
m/2<n<m m/2<n<m
Hence, (wh, /2" )n’t! — 0 as n — oo, when 6 # —1. If § = —1, use

ngngm instead of Zm/zgngm "

B. Proof of Lemmal4.1] Since 1/(k—1)?—1/k% = 3/k"+P+O(1/k*+7)
and since T' is power bounded, if we use the equivalence of (i) and
(ii) will follow once we prove that ||S,(f)|ly/n® — 0 as n — oo. This
convergence follows from Kronecker’s Lemma if we know that (i) is satisfied.

Hence, assume that (ii) is satisfied. By Cauchy’s criterion,

2n— 1 2n—1 n—1

Sk(f) n—oo
Z k1+6 - Z k1+ﬂ <; (n:k)uﬁ) 0-

Clearly, since sup,,>q [|T" H < 00, it suffices to show that the sequence
{12520 Sk()/ (n+ k) Ply ) converges to 0.
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Define R, =7, Si(f)/k"P. We have

n—1 n—1
Se(f) kP
_ TRV R.— R -
; (n+ k)1+7 ;( e ) Gy
_"ZlR KA (k—1)'HP R Ry(n—1)*F
TN\ k) (k=18 Tt 2n - )

Let ¢ > 0. By assumption, there exists ng > 0 such that |Ry|ly < € for
every k > ng. As x — x/(n + z) is increasing to 1 on |0, 0o, one obtains

~1 2
nz Sk(f) ' <P o SUP) <<ng | Rk ly e
= (n+ k)|, = PYEND ’

which proves the desired result. =

C. Proof of Proposition [4.2] Recall that |0, (¢)| < C'min(n,1/|t|) for
n>1andt € [—m x|\ {0}. Write L, = > 7_, k*ay for n > 1 and Lo = 0.
Then, for every n > 1, using the fact that t — —t2¢/(¢) is non-increasing,

we have
n—1

Za’“’”’“ ‘<2Lk = Zk:kJrl Lnn

7rk T/n
Z (m/k) ¢'(m/n)

n

k=1
td 7r/x

IN

% P /n) < 2Kp(m/n),

= C—

where we have used (17)) in the last step. That proves the first part of (19| .

The second part of . ) follows immediately from and the fact that
lon (D] =1 225k= lke”“\ < Cn?.

Similarly, using , we have

—Cy¢'(m/n)
31 < —1 =
(31) ;ak|0k( )| < 2
>n

and the first part of follows, using .

The second part of (20) needs more care. Notice that
iettop(t) — iketkt

i) = O

1—et

ie't i &
> aroh(t) = T > owon(t) = 7 > kare™
k>n k>n k>n
The first term above was treated in .

Hence
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For the second term, notice that, by (using the fact that {na,},
hence {a,} is non-increasing),

nay, —4K¢'(2r/n) _ —4K¢'(7/n)
5 < D, < — <

n/2<k<n
since —¢’ is non-increasing. Then by Abel summation, we obtain
P P
’ 3 kakelkt‘ < 3 (kag — (k + D) ow(0)]
k=n k=n
2Cnay,

+ nan|on(t)] + (p + Daprilop(t)] < i

which proves the second part of . "
D. Proof of Lemmata [4.5] and [4.6]

Proof of Lemma[{.5. We will prove that

7T/2”

| 5 @ - rep ] <1252 \(nzﬂwsn_ )2) "
I /27 7]

the proof for S}ﬂ P being similar. Recall that, for every ¢ € |0, 7|,

(32) [Bn(t) —~ B(0)| < 2T,
(33) R, () - (0] <~ 2T,

Let m > 1 and n = [logy m]. Define a function ), on T by ¥, (e®) =
R (t) — R(t) if t € Jx/2k+1 7 /2] for some k € {0,...,n — 1}, and 0 other-
wise. Then, using the analogue of Littlewood—Paley, we have

(34) H | (Rm(t)—R(t))dE(t)pr
| /27,
<|| 5 wmeazes]
[0,27]

] § Bl = BO) = b ey B
[0,27]

2"

. n-l 1/2
<[ § vaetaBms| + (D2 iewsnr?) |
P — P
[0,27] k=0
where we have used for the last inequality. The second term of can

be estimated by means of the Riesz property, hence it remains to deal with
the first term.
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Define a function ¢,, by
¢ém T — R,

27'L

2n
it { ZkM if ¢ € Jr/2k1 7 /2] for some k € {0,...n — 1},
0 otherwise.

Then the function ¥, /¢, is well defined (with 0/0 interpreted as 0), sup-
ported by the arc {e : ¢t € Jw /2", x[}. Moreover, since R € L, and ¢ € K,
we have ¥, /¢ € BV (T) for every m > 1, and, as ¢ € K,

H +supsupvar<w > < 00.

m>1 jEZ ¢m

By the Strong Marcinkiewicz Multiplier Theorem and the analogue of
Littlewood—Paley, we obtain

| § antrast0s], =7, § sutharion)]

27 0,27

\(Z /2 <r_k>f|2>1/2

k=

1
7T/ 2") 1/ N o2k
< kPG (S e nse)
2 2HEl ,
where we have used the analogue of the Riesz property. =

Proof of Lemmal[{.0. Let us show that

H | Rm(t)dE(t)prﬁw(w/T)
0,m/27]

= sup
m>1

<N Tpp ol
p

(gem_k)fr?)” I

The proof of may be done the same way.

Define 1, and ¢,, on T by v, (e?) = W, (t) and ¢, (e) = ¢(7/2")
if t € ]0,7/2"[, and 0 otherwise. The function ¥, /¢y, is well defined (with
0/0 interpreted as 0), supported by the arc {e’ : ¢ € ]0,7/2"[}, and belongs
to BV (T). By , Ym/Pm is bounded on T, uniformly with respect to m.

Moreover, by and , for every t € ]0,7/2",

i wm(eit)

< 2™,
dt o(m/2m) <¢C

Hence

sup supvar(zpm,/lj> < 00.
m>1 jez Om

So, for every n > 1, Ty, /4,. is well defined and, by Theorem and the
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Strong Marcinkiewicz Multiplier Theorem,

L = sup || Ty, /¢, || < o0.
m>1

We obtain
H n()dEDf| < H U0 AW ]| + olr/2)[E{w-})]
10,m/2m [0,27]

where the second term is bounded by 2Cpp(7/2™)||E(I1-y) f |-
On the other hand, using the analogue of the Littlewood—Paley theorem
and of the Riesz property,

H it 07| = |Tosen | onyam@ys]|
[0,27]
< Lp(n/2")|| Y W) )77 |
k>n

which finishes the proof of Lemma .
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