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Norm convergence of some power series
of operators in Lp with applications in ergodic theory

by

Christophe Cuny (Nouméa)

Abstract. Let X be a closed subspace of Lp(µ), where µ is an arbitrary measure and
1 < p <∞. Let U be an invertible operator on X such that supn∈Z ‖Un‖ <∞. Motivated
by applications in ergodic theory, we obtain (optimal) conditions for the convergence of
series like

P
n≥1 (Unf)/n1−α, 0 ≤ α < 1, in terms of ‖f + · · · + Un−1f‖p, generalizing

results for unitary (or normal) operators in L2(µ). The proofs make use of the spectral
integration initiated by Berkson and Gillespie and, more particularly, of results from a
paper by Berkson–Bourgain–Gillespie.

1. Introduction. Let (M, µ) be an arbitrary measure space. Fix 1 <
p < ∞ and let X be a closed subspace of Lp(µ). Let U be an invertible
operator on X, power bounded in the following sense: supn∈Z ‖Un‖ < ∞.
We will call such an operator doubly power bounded.

It is known (see Berkson–Gillespie [2] and the references therein) that
such an operator admits a spectral decomposition consisting of projections
acting inX. We will mostly refer to the paper of Berkson–Bourgain–Gillespie
[1] for the properties we need.

One of our purposes is to obtain conditions on f ∈ X that enable one
to assign a meaning to singular integrals of the type

	
[0,π](1− e

it)−α dE(t)f ,
0 < α < 1, or

	
[0,π] log(1 − eit) dE(t)f , where {E(t)}t∈[0,2π] is a family of

projections to be defined later.

This question is of theoretical interest. In the case where U is a unitary
operator, the functional calculus arising from spectral theory is much richer
than in our situation and it is quite easy to achieve the above mentioned
goal (see Gaposhkin [10], [11], or Cuny [6]). It is also shown in [11] that the
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previous question is related to the convergence of the series

(1)
∑
n≥1

Unf

n1−α .

Our main interest is to show that it is still the case in the more general
situation that we consider now.

As in Gaposhkin [11] (see also [6]), we want to find conditions for the
convergence of (1), expressed in terms of {‖Sn(f)‖p}, where Sn(f) =
f + · · ·+ Unf . Hence, when we are concerned with the convergence of (1),
the spectral theory will happen to be just a tool, not involved in the condi-
tions.

In particular we will obtain

Theorem 1.1. Let 1 < p <∞ and 0 < α < 1. Let f ∈ X be such that

(2)
∑
n≥1

1
n

(
‖f + · · ·+ Un−1f‖p

n1−α

)min(p,2)

<∞.

Then the limit limu,v→0+

	
]u,2π−v](1 − eit)−α dE(t)f exists in Lp(µ) and∑

n≥1 (Unf)/n1−α converges in Lp(µ).

Theorem 1.2. Let 1 < p <∞. Let f ∈ X be such that

(3)
∑
n≥2

1
n log n

(
‖f + · · ·+ Un−1f‖p log n

n

)min(p,2)

<∞.

Then the limit limu,v→0+

	
]u,2π−v] log(1 − eit) dE(t)f exists in Lp(µ) and∑

n≥1 (Unf)/n converges in Lp(µ).

Remark. If U is the isometry induced by an invertible transformation
preserving µ, then the series

∑
n≥1 (Unf)/n even converges µ-a.e. by Theo-

rem 1.2 of [4].
When p = 2 and U is a unitary operator we recover the previously known

conditions (see [6], or [11] for related results). In this case, it is even proved
that (2) (for p = 2) is equivalent to the convergence of

∑
n≥1 (Unf)/n1−α.

For p 6= 2, we lose equivalence, but we will show that conditions (2)
and (3) are optimal in the class of invertible power-bounded operators on
some Lp. Finally, we give applications of Theorems 1.1 and 1.2 to pointwise
convergence theorems for certain averages of U arising in ergodic theory.

2. The spectral decomposition and main properties. In this sec-
tion we recall the basic properties of the spectral integration developed by
Berkson–Gillespie [2], and we state the transferred theorems from multiplier
theory, from [1], that are needed.
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Let Y be a Banach space and denote by B(Y ) the Banach algebra of
bounded operators on Y . An idempotent element of B(Y ) will be called a
projection.

Definition. A spectral family of projections in the Banach space Y is
a uniformly bounded, projection-valued function F (·) : R → B(Y ) which is
right continuous on R in the strong operator topology (SOT), has at each
s ∈ R a SOT left-hand limit (denoted F (s−)), and satisfies:

(i) F (s)F (t) = F (min(s, t)) for all s, t ∈ R;
(ii) lims→−∞ F (s) = 0 (SOT);

(iii) lims→∞ F (s) = I (SOT),

where I denotes the identity operator on Y .

If there is a compact interval [α, β] such that F (β) = I (hence by (i),
F (s) = I for every s ≥ β) and F (s) = 0 for every s < α, then F (·) is said
to be concentrated on [α, β].

Let F (·) be a spectral family of projections of Y , concentrated on a
compact interval J := [α, β]. Let BV (J) be the Banach algebra of complex
functions g having bounded variation on J , with norm ‖g‖J defined by

‖g‖J = |g(β)|+ var(g, J),

where var(g, J) denotes the variation of g on J .
Given a partition P = (α = λ0, λ1, . . . , λn = β) of J , write

S(g,P) = g(α)F (α) +
n∑
j=1

g(λj)(F (λj)− F (λj−1)).

Then S(g,P) converges SOT as P runs through the partitions of J directed
by refinement. The strong limit of S(g,P) is denoted by

	
J g dF (it was de-

noted by
	⊕
J g dF in [2]). The mapping g 7→

	
J g dF is an identity preserving

algebra homomorphism of BV (J) into B(Y ) such that∥∥∥ �
J

g dF
∥∥∥ ≤ ‖g‖J sup

λ∈R
‖F (λ)‖ for every g ∈ BV (J).

Let 1 < p < ∞ and (M, µ) be an arbitrary measure space. Let X be
a closed subspace of Lp(µ). Let U be an invertible operator on X, power-
bounded in the following sense:

c := sup
n∈Z
‖Un‖ <∞.

It follows from [2, Theorem (4.8)] that there is a unique spectral family
of projections on X, denoted by E(·), concentrated on [0, 2π], such that
E(2π−) = I and U =

	
[0,2π] e

it dE(t). Since Lp(µ) is reflexive, Lp(µ) =
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Ker(I−U)⊕ (I − U)Lp(µ). Then E(0) is the corresponding projection onto
Ker(I −U). Therefore, E(0)f = 0 if and only if ‖f + · · ·+ Un−1f‖p/n→ 0.

Moreover there exists a constant Cp, depending only on p, such that

(4) sup
t∈[0,2π)

‖E(t)‖ ≤ c2Cp.

Denote by T the set of unimodular complex numbers. We will identify
the set BV (T) of complex functions with bounded variation on T with a
subalgebra of BV ([0, 2π]). For every function ϕ in BV (T) we define its
normalization ϕ̃ by

ϕ̃(t) :=
1
2

( lim
s→t+

ϕ(eis) + lim
s→t−

ϕ(eis)) ∀t ∈ R.

For every ϕ ∈ BV (T), define

Tϕ :=
�

[0,2π]

ϕ̃(t) dE(t).

Denote by Mp(T) the space of `p(Z)-multipliers, that is, of bounded func-
tions ϕ on T such that the convolution with {ϕ̂(−n)}n∈Z defines a bounded
operator of `p(Z).

Recall that by the Stechkin Theorem (see e.g. [9]), BV (T) is contained
in Mp(T) and ‖ϕ‖Mp(T) ≤ Cp(ϕ(1) + var(ϕ,T)). Then we have

Theorem 2.1 (Berkson–Gillespie, [2, Theorems (3.10)(ii) and (4.14)]).
For every ϕ ∈ BV (T), we have

(5) ‖Tϕ‖ ≤ c2‖ϕ‖Mp(T).

We now define the dyadic decomposition of T. For j ∈ N, define t−j =
π/2j , tj = 2π − π/2j . Then, for every j ∈ Z, define ωj = eitj , Γj = {eit :
tj < t < tj+1} and Λj to be the closure of Γj .

The Strong Marcinkiewicz Multiplier Theorem (see e.g. [9]) asserts that
a bounded function on T with bounded variation on each Λj uniformly
bounded with respect to j is in Mp(T):

Theorem 2.2. Let ϕ : T→ C be bounded and such that

sup
j∈Z

var(ϕ,Λj) <∞.

Then ϕ ∈Mp(T) and

‖ϕ‖Mp(T) ≤ Cp(sup
z∈T
|ϕ(z)|+ sup

j∈Z
var(ϕ,Λj)).

Given ϕ ∈ BV (T) the operator Tϕ is meaningful as defined before.
By (5), the Strong Marcinkiewicz Multiplier Theorem gives a much bet-
ter control of ‖Tϕ‖ than what we would obtain by the Stechkin Theorem.
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Denote by Σd the dyadic sigma-algebra, that is, the sigma-algebra gen-
erated by {ωj}j∈Z, {Γj}j∈Z and {1}. The following was proved by Berkson–
Bourgain–Gillespie [1].

Theorem 2.3. There exists a strongly countably additive spectral mea-
sure E on Σd, acting in X, such that

E(Γj) = E(t−j+1)− E(tj) ∀j ∈ Z;

E({1}) = E(0); E({ωj}) = E(tj)− E(t−j );

sup
σ∈Σd

‖E(σ)‖ ≤ c2Cp.

Moreover, E has the following property, to which we will refer as an
analogue of the Littlewood–Paley Theorem, or simply Littlewood–Paley.

Theorem 2.4. There exists a positive constant Cp > 0, depending only
on p, such that for every f ∈ X and any mutually disjoint {σj}j≥1 ⊂ Σd
with T =

⋃
j≥1 σj, we have

c−2C−1
p ‖f‖p ≤

∥∥∥(∑
j≥1

|E(σj)f |2
)1/2∥∥∥

p
≤ c2Cp‖f‖p.

If x ∈ [0, 2π], E(x±) will mean that we are either looking at E(x+) =
E(x) or at E(x−). We will also need the following transferred Riesz property
(see [1, Theorem (3.15)]).

Theorem 2.5. There exists a positive constant Cp such that for any
sequences {aj}j≥1, {bj}j≥1 ⊂ [0, 2π] and {gj}j≥1 ⊂ X, we have∥∥∥(∑

j≥1

|(E(b±j )− E(a±j ))gj |2
)1/2∥∥∥

p
≤ c2Cp

∥∥∥(∑
j≥1

|gj |2
)1/2∥∥∥

p
.

By the triangle inequality, it is enough to show that∥∥∥(∑
j≥1

|E(b±j )gj |2
)1/2∥∥∥

p
≤ c2Cp

∥∥∥(∑
j≥1

|gj |2
)1/2∥∥∥

p
,

which may be proved exactly as Theorem (3.15) of [1].

3. Conditions to define
	
[0,2π] ψ(t) dE(t)f for certain unbounded

functions ψ. Denote by L the set of positive functions ϕ ∈ C1(]0, π]) such
that

(i) ϕ is non-increasing,
(ii) there exists K > 1 such that ϕ(t/2) ≤ Kϕ(t) for every t ∈ ]0, π].

Every function in L has bounded variation on any closed interval of ]0, π].
We are interested in functions ϕ ∈ L such that limt→0+ ϕ(t) = ∞, the
convergence to infinity being controlled by (ii).
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For every ϕ ∈ L, define

Lϕ := {ψ ∈ C1(]0, π]) : ∃C > 0 such that |ψ| ≤ Cϕ, |ψ′| ≤ −Cϕ′}.
For convenience, we define a sequence of arcs by Πn := {eit : t ∈

]tn−1, tn]} for n ∈ Z.

Proposition 3.1. Let ϕ ∈ L. Let f ∈ X be such that

(6)
∥∥∥(∑

n≥0

ϕ2(π/2n)|E(Π−n)f |2
)1/2∥∥∥

p
<∞.

Then, for every ψ ∈ Lϕ, limu→0+

	
]u,π] ψ(t) dE(t)f exists in Lp(µ).

Proof. We show that the sequence {
	
]π/2n,π] ψ(t) dE(t)f} (which is well-

defined, since ψ has bounded variation on any closed interval in ]0, π]) is
a Cauchy sequence; then the result will follow, since, using (4), for u ∈
[π/2k+1, π/2k], we have∥∥∥ �

]u,π/2k]

ψ(t) dE(t)f
∥∥∥
p

=
∥∥∥[E(π/2k)− E(u)]

�

]π/2k+1,π/2k]

ψ(t) dE(t)f
∥∥∥
p

≤ c2Cp
∥∥∥ �

]π/2k+1,π/2k]

ψ(t) dE(t)f
∥∥∥
p
.

Let n > 1. We now define two functions ψn and φn on T as follows:

ψn : T→ C,

eit 7→
{
ψ(t) if t ∈ ]π/2k+1, π/2k[ for some 0 ≤ k ≤ n− 1,
0 otherwise,

φn : T→ C,

eit 7→
{
ϕ(π/2k) if t ∈ ]π/2k+1, π/2k[ for some 0 ≤ k ≤ n− 1,
0 otherwise.

Then the function ψn/φn is well defined (with 0/0 interpreted as 0), bounded
on T by KC (use the fact that ϕ ∈ L and |ψ| ≤ Cϕ), and has bounded
variation on any closed interval in ]0, 2π]. Moreover, for every 0 ≤ k ≤ n− 1
and every t ∈ ]π/2k+1, π/2k[,

d

dt

ψn(eit)
φn(eit)

=
ψ′(t)

ϕ(π/2k)
.

Hence ∣∣∣∣ ddt ψn(eit)
φn(eit)

∣∣∣∣ ≤ −Cϕ′(t)ϕ(π/2k)
,

and

var
(
ψn
φn
, Λk

)
≤ Cϕ(π/2k+1)− ϕ(π/2k)

ϕ(π/2k)
≤ C(K − 1),
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since ϕ ∈ L. In particular,

sup
n∈N

sup
j∈Z

var
(
ψn
φn
, Λj

)
<∞,

and, by Theorem 2.1 and the Strong Marcinkiewicz Multiplier Theorem,

(7) sup
n∈N
‖Tψn/φn‖ <∞.

We obtain, for every 1 ≤ m < n,∥∥∥ �

]π/2n,π/2m]

ψ(t) dE(t)f
∥∥∥
p
≤
∥∥∥ �

]π/2n,π/2m]

ψn(eit) dE(t)f
∥∥∥
p

+
∥∥∥ �

]π/2n,π/2m]

(ψ(t)− ψn(eit)) dE(t)f
∥∥∥
p

≤
∥∥∥Tψn/ϕn �

[0,2π]

ϕn(eit)1]π/2n,π/2m] dE(t)f
∥∥∥
p

+ C
∥∥∥( n∑

k=m

|ψ|2(π/2k)|E({ω−k})f |2
)1/2∥∥∥

p

≤ ‖Tψn/φn‖c
2Cp

∥∥∥( n−1∑
k=m

ϕ2(π/2k)|E(Γ−k)f |2
)1/2∥∥∥

p

+ C
∥∥∥( n∑

k=m

ϕ2(π/2k)|E(Π−k)f |2
)1/2∥∥∥

p
,

where we have used the analogue of the Littlewood–Paley Theorem and the
transferred Riesz property. Then the result follows from (7), our assumption
and the Riesz property again (for the first term).

Remark. It is not hard to see, by a similar proof, that the existence of
limu→0+

	
]u,π] ϕ(t) dE(t)f in Lp(µ) implies condition (6).

Of course we have a proposition similar to Proposition 3.1 for functions
having a singularity at 2π.

Proposition 3.2. Let ϕ ∈ L. Let ψ be a complex function in C1([π, 2π[)
such that ψ(2π − ·) ∈ Lϕ. Let f ∈ X be such that

(8)
∥∥∥(∑

n≥0

ϕ2(π/2n)|E(Πn)f |2
)1/2∥∥∥

p
<∞.

Then the limit limu→0+

	
[π,2π−u[ ψ(t) dE(t)f exists in Lp(µ).

We want to show that conditions (6) and (8) are implied by a condition
expressed in terms of ‖f + · · ·+ Un−1f‖p.



8 C. Cuny

We need some definitions. For every operator T on Lp(µ), and every
f ∈ Lp(µ), define

An(T, f) =
f + · · ·+ Tn−1f

n
.

For simplicity, we will write An(U, f) = An(f).
Define also the following square function:

Qn(T, f) =
(∑
k≥n
|A2k(T, f)−A2k+1(T, f)|2

)1/2
.

Again, we write Qn(U, f) = Qn(f).
It follows from the proof of Theorem 5.4 (see 5.7) of [1] that there exists

a constant Cp, depending only on p, such that, for every invertible, doubly
power bounded operator T , and every f ∈ Lp(µ),

(9) ‖Q(T, f)‖p ≤ c2Cp‖f‖p, where c = sup
n∈Z
‖Tn‖ <∞.

This result was also obtained in [13, Theorem 2.3] in the case where T is
induced by a probability preserving transformation.

Now, notice that, for every n, k ≥ 1,

A2n+k(T, f) = A2k(T 2n , A2n(T, f)),

hence

Qn(f) = Qn(U, f) =
(∑
k≥0

|A2k+n(f)−A2k+n+1(f)|2
)1/2

=
(∑
k≥0

|A2k(U2n , A2n(f))−A2k+1(U2n , A2n(f))|2
)1/2

= Q0(U2n , A2n(f)).

In particular, by (9),

(10) ‖Qn(f)‖p ≤ c2Cp‖A2n(f)‖p.

With those notations, we can state our next result.

Theorem 3.3. Let {un}n≥0 be a sequence of positive real numbers. Let
{nk}k≥0 be a non-decreasing sequence of positive integers with n0 = 0. Let
f ∈ Lp(µ). Then

(11)
∥∥∥(∑

n∈Z
u|n||E(Πn)f |2

)1/2∥∥∥
p

≤ c2Cp
∥∥∥(∑

n≥0

un|A2n(f)−A2n+1(f)|2
)1/2∥∥∥

p
,
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(12)
∥∥∥(∑

k≥0

unk+1
Q2
nk

(f)
)1/2∥∥∥

p
≤ c2Cp

∑
k≥0

(√
unk+1

‖A2nk (f)‖p
)min(p,2)

,

where c = supn∈Z ‖Un‖ and Cp is a universal constant depending only on
p > 1. Moreover, if {un} is non-decreasing, then

(13)
∥∥∥(∑

n≥0

un|A2n(f)−A2n+1(f)|2
)1/2∥∥∥

p
≤
∥∥∥(∑

k≥0

unk+1
Q2
nk

(f)
)1/2∥∥∥

p
.

Proof. Let us prove (13). As {un} is (in this case) non-decreasing, we
have∑

n≥0

un|A2n(f)−A2n+1(f)|2 ≤
∑
k≥0

unk+1

nk+1−1∑
l=nk

|A2l(f)−A2l+1(f)|2,

hence the result.
Let us prove (12). Assume that p ∈ ]1, 2]. Then ‖ · ‖`2 ≤ ‖ · ‖`p . Hence,(∑

k≥0

(
√
unk+1

Qnk(f))2
)1/2

≤
(∑
k≥0

(
√
unk+1

Qnk(f)
)p

)1/p,

and, by (10),∥∥∥(∑
k≥0

(
√
unk+1

Qnk(f))2
)1/2∥∥∥p

p
≤
∑
k≥0

up/2nk+1
‖Qnk(f)‖pp

≤ c2pCpp
∑
k≥0

up/2nk+1
‖A2nk (f)‖pp.

Assume now that p ≥ 2. We have, using (10) and the triangle inequality
in Lp/2(µ),∥∥∥(∑

k≥0

unk+1
Q2
nk

(f)
)1/2∥∥∥2

p
=
∥∥∥∑
k≥0

unk+1
Q2
nk

(f)
∥∥∥
p/2

≤
∑
k≥0

unk+1
‖Qnk(f)‖2p

≤ c4C2
p

∑
k≥0

unk+1
‖A2nk (f)‖2p.

To prove (11), we show that∥∥∥(∑
n≥0

un(|E(Π−n)f |2
)1/2∥∥∥

p
≤ c2Cp

∥∥∥(∑
n≥0

un|A2n(f)−A2n+1(f)|2
)1/2∥∥∥

p
,

the proof for the second sum being the same.
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For every m ≥ 1, t ∈ ]0, 2π[ and k ∈ N, define σm(t) = 1 + · · ·+ ei(m−1)t

and

γk(t) =
σ2k(t)

2k
− σ2k+1(t)

2k+1
(14)

=
σ2k(t)
2k+1

− ei2ktσ2k(t)
2k+1

=
(1− ei2kt)2

2k+1(1− eit)
.

We have |A2k(f)−A2k+1(f)|2 = |
	
[0,2π] γk(t) dE(t)f |2 and

γk(π/2k)E({ωk})f = E({ωk})
( �

[0,2π]

γk(t) dE(t)f
)
.

Then, using the fact that

|γk(π/2k)| =
∣∣∣∣ 4
i2k+1 sin(π/2k+1)

∣∣∣∣ ∼ 4/π as k →∞

and the transferred Riesz property, we obtain∥∥∥(∑
k≥0

uk|E({ω−k})f |2
)1/2∥∥∥

p

≤ C
∥∥∥(∑

k≥1

uk|E({ω−k})(A2k(f)−A2k+1(f))|2
)1/2∥∥∥

p

≤ c2Cp
∥∥∥(∑

k≥0

uk|(A2k(f)−A2k+1(f))|2
)1/2∥∥∥

p
<∞.

Hence, it remains to prove that∥∥∥(∑
n≥0

un(|E(Γ−n)f |2
)1/2∥∥∥

p

≤ c2Cp
∥∥∥(∑

n≥0

un|(A2n(f)−A2n+1(f))|2
)1/2∥∥∥

p
.

Let n ≥ 1. We define two functions ψn and φn on T as follows:

ψn : T→ C,

eit 7→
{√

uk if t ∈ Γ−k for some 0 ≤ k ≤ n,
0 otherwise,

φn : T→ C,

eit 7→
{√

ukγk(t) if t ∈ Γ−k for some 0 ≤ k ≤ n,
0 otherwise.

The functions ψn and φn are in BV (T).
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By construction, using the analogue of the Littlewood–Paley Theorem,
we have, for every n ≥ 1,

(15)
∥∥∥( n∑

k=0

uk|E(Γ−k)f |2
)1/2∥∥∥

p
≤ c2Cp

∥∥∥ �

[0,2π]

ψn(eit) dE(t)f
∥∥∥
p
.

Hence we are in a position to use the method employed in the proof of
Proposition 3.1 with the present choice of ψn and φn.

Note that the function ψn/φn is well defined (0/0 interpreted as 0), with
bounded variation on T. For every t ∈ ]π/2k+1, π/2k[,∣∣∣∣ψn(eit)

φn(eit)

∣∣∣∣ =
∣∣∣∣ 1
γk(t)

∣∣∣∣ =
2k+1|1− eit|
|1− e2kit|2

≤ π.

On the other hand, for every k ≥ 1 and every t ∈ ]π/2k+1, π/2k[, we have∣∣∣∣ ddt ψn(eit)
φn(eit)

∣∣∣∣ =
∣∣∣∣ 2k+1ieit

(1− ei2kt)2
− 2

22k+1iei2
kt(1− eit)

(1− ei2kt)3

∣∣∣∣ ≤ (1 +
√

2)π2k.

Hence

var
(
ψn
φn
, Λk

)
≤

π/2k�

π/2k+1

(1 +
√

2)π2k dt = (1 +
√

2)π2/2

and supn≥1 supk∈Z var(ψn/φn, Λk) < ∞. Then, by Theorem 2.1 and the
Strong Marcinkiewicz Multiplier Theorem, there exists K > 0 such that
‖Tψn/φn‖ ≤ K for every n ≥ 1.

Using the analogues of the Littlewood–Paley Theorem and of the Riesz
property, we deduce∥∥∥ �

[0,2π]

ψn(eit) dE(t)f
∥∥∥
p

=
∥∥∥Tψn/φn( �

[0,2π]

ϕn(t) dE(t)f
)∥∥∥

p

≤ ‖Tψn/φn‖c
2Cp

∥∥∥( n∑
k=0

uk

∣∣∣ �

]π/2k+1,π/2k[

γk(t) dE(t)f
∣∣∣2)1/2∥∥∥

p

≤ c2Cp‖Tψn/ϕn‖
∥∥∥( n∑

k=0

uk

∣∣∣ �

[0,2π]

γk(t) dE(t)f
∣∣∣2)1/2∥∥∥

p

= c2Cp‖Tψn/φn‖
∥∥∥( n∑

k=0

uk|A2k(f)−A2k+1(f)|2
)1/2∥∥∥

p

≤ c2CpK
∥∥∥(∑

k≥0

uk|A2k(f)−A2k+1(f)|2
)1/2∥∥∥

p
<∞.

Letting n go to infinity in (15), we obtain the desired result.
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In applications, we will take nk = k or nk = 2k. It is convenient to show
that for suitable {un} the right-hand side of (12) may be replaced by a series
involving the whole sequence {‖An(f)‖p}.

We say that a positive function b is in the Zygmund class if for every
δ > 0, x 7→ xδb(x) (respectively x 7→ x−δb(x)) is increasing (resp. decreasing)
at infinity.

Lemma 3.4. Let T be an operator on a Banach space Y such that
supn≥1 ‖Tn‖Y < ∞. Let b be a function in the Zygmund class, γ > 1 and
r ≥ 1. For every f ∈ Y , the following are equivalent:

(i)
∑

n≥1 b(n)‖f + · · ·+ Tn−1f‖rY /nγ <∞.
(ii)

∑
n≥1 b(2

n)‖f + · · ·+ T 2n−1f‖rY /2n(γ−1) <∞.

If either (i) or (ii) is satisfied then b(n)‖f + · · ·+ Tn−1f‖rY /nγ−1 → 0 as
n → ∞. If γ = r + 1 and b = logδ for some δ ∈ R − {−1}, we even have
‖f + · · ·+ Tn−1f‖rY (log n)δ+1/nr → 0 and (i) and (ii) are equivalent to

(iii)
∑

n≥1 2n(δ+1)(‖f + · · ·+ T 22n−1f‖Y /22n)r <∞.

For the proof, see Appendix A.

Corollary 3.5. Let 1 < p <∞, 0 < α < 1, and f ∈ X.

(i) If (2) holds, then ‖(
∑

n∈Z 22|n|α|E(Πn)f |2)1/2‖p <∞.
(ii) If (3) holds, then ‖(

∑
n∈Z n

2|E(Πn)f |2)1/2‖p <∞.

In particular we can apply Propositions 3.1 and 3.2 either with ϕ(t) = t−α

and ψ(t) = (1− eit)−α or with ϕ(t) = log(2π/t) and ψ(t) = log(1− eit).

Proof. Assume (2). By Lemma 3.4 with b ≡ 1, r = min(p, 2), γ =
1 + (1 − α) min(p, 2), we obtain

∑
n(2nα‖A2n‖p)min(p,2) < ∞. Then apply

Theorem 3.3 with nk = k, un = 22nα to obtain (i).
Assume (3). By Lemma 3.4 with b logmin(p,2)−1, r = min(p, 2), γ = r+ 1,

we obtain
∑

n(2n‖A22n‖p)min(p,2) < ∞. Then apply Theorem 3.3 with
nk = 2k, un = n2 to obtain (ii).

4. Conditions for the norm convergence of power series of U .
In this section, we want to obtain conditions for the norm convergence of
general power series including

∑
n≥1 (Unf)/n1−α, for 0 ≤ α < 1. It is proved

in [8] that the convergence of the latter is equivalent to f being in the range
of (I − U)α, where this operator is well defined, using the power series
expansion of (1− z)α (see [8]).

As shown in [8], [19], [4], [6] or [5], the convergence of power series in U
allows one to obtain pointwise ergodic theorems with rate and has applica-
tions in probability theory.
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The spectral representation of U will enable us to relate the convergence
of general power series to the studies in the previous section.

Given a sequence {an} we want to find conditions on f ∈ Lp(µ) such
that

∑
n≥1 anU

nf converges in Lp(µ). Writing Sn(f) := f + · · · + Un−1f ,
we have

n∑
k=1

akU
kf =

n∑
k=1

ak(Sk+1(f)− Sk(f))(16)

=
n∑
k=2

Sk(f)(ak−1 − ak) + anSn+1(f)− a1S1(f).

Hence to obtain the desired convergence it suffices to show that the series∑
n≥1 Sn(f)(an−1 − an) converges in Lp(µ) and limn→∞ ‖anSn+1(f)‖p = 0.
We will now study the convergence of the series on the right-hand side

of (16). Actually, for regular sequences {an}, one automatically obtains
limn→∞ ‖anSn+1(f)‖p = 0 (as one can see in the examples of the next
lemma). Also the conditions for the convergence of

∑
n≥1 Sn(f)(an−1 − an)

that we will obtain (such as (2) or (3)) imply that limn→∞ ‖anSn+1(f)‖p = 0,
using Lemma 3.4.

Lemma 4.1. Let T be an operator on the Banach space Y with
supn≥1 ‖Tn‖ <∞. Let f ∈ Y and β ∈ ]0, 1]. Assume that one of the follow-
ing is satisfied:

(i)
∑

n≥1 (Tnf)/nβ converges in Y ,
(ii)

∑
n≥1 Sn(f)/n1+β converges Y .

Then ‖Sn(f)‖Y /nβ → 0 as n→∞. In particular, (i) and (ii) are equivalent.

Remark. The lemma shows that the condition
∑

n≥1 ‖Sn(f)‖Y /n1+β

<∞ is sufficient for the convergence in Y of
∑

n≥1 (Tnf)/nβ.

For the proof of Lemma 4.1, see Appendix B.

We go back to the study of the convergence of series of the type∑
n≥1 αnSn(f).
Denote by K the set of positive functions ϕ ∈ C1(]0, π]) satisfying the

following set of conditions:

(A1) ϕ and −ϕ′ are non-increasing,
(A2) t 7→ tϕ(t) and t 7→ −t2ϕ′(t) are non-decreasing,
(A3) limt→0+ tϕ(t) = 0.

In particular, the functions t 7→ log(2π/t), and t 7→ 1/tα for 0 < α < 1,
belong to K.

Notice that K ⊂ L by (A2), and by (A1) and (A2),

(17) 0 ≤ −tϕ′(t) ≤ ϕ(t) ∀t ∈ (0, π].
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Then, by (A3), we obtain

(18) lim
t→0+

t2ϕ′(t) = 0.

Recall that for every t ∈ R and every n ≥ 1, σn(t) = 1 + · · ·+ ei(n−1)t.
Given a function ϕ ∈ K, we denote by Kϕ the set of sequences {αn} ⊂ C

such that there exists a constant C > 0 for which, for every p > n ≥ 1 and
every t ∈ [−π, π] \ {0},∣∣∣ n∑

k=1

αkσk(t)
∣∣∣ ≤ Cϕ(π/n),

∣∣∣ n∑
k=1

αkσ
′
k(t)

∣∣∣ ≤ −Cϕ′(π/n),(19)

∣∣∣ p∑
k=n

αkσk(t)
∣∣∣ ≤ Cϕ(π/n)

n|t|
,

∣∣∣ p∑
k=n

αkσ
′
k(t)

∣∣∣ ≤ −Cϕ′(π/n)
n2t2

.(20)

For instance, the previous conditions will be fulfilled in the following
situation.

Proposition 4.2. Let ϕ ∈ K. Let {αn} ⊂ R+. Assume that {nαn} is
non-increasing, and that there exists K > 0 such that for every n ≥ 1,

n∑
k=1

k2αk ≤ −Kϕ′(π/n),(21)

∑
k≥n

αk ≤ −K
ϕ′(π/n)
n2

.(22)

Then {αn} ∈ Kϕ.

For the proof, see Appendix C.
For instance, Proposition 4.2 applies with αn = 1/n2−α for 0 ≤ α < 1,

and ϕ(t) = log(2π/t) if α = 0 and ϕ(t) = t−α otherwise.

Proposition 4.3. Let ϕ ∈ K and {αn} ∈ Kϕ. Then
∑

n≥1 αnσn(t) con-
verges uniformly on any compact subset of R\2πZ to a function W with
bounded variation on any compact subset of R\2πZ. Moreover the restric-
tions to ]0, π] of W and W (2π − ·) belong to Lϕ.

Proof. Since ϕ ∈ K, the first condition of (20) implies that the series∑
n≥0 αnσn converges uniformly on every compact subset of ]0, 2π[ to a

function W defined and continuous on ]0, 2π[. Then, by the second condition
of (20), W has bounded variation on any closed interval in ]0, 2π[ (actually
W ∈ C1(]0, π])) and (20) still holds when p→∞.

Let t ∈ [−π, π], t 6= 0. Using the monotonicity properties of ϕ ∈ K, (19)
and (20), we have
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|W (t)| =
∣∣∣∑
n≥1

αnσn(t)
∣∣∣ ≤ ∣∣∣ [π/|t|]∑

n=1

αnσn(t)
∣∣∣+
∣∣∣ ∑
n≥[π/|t|]+1

αnσn(t)
∣∣∣

≤ 2Cϕ(|t|),

|W ′(t)| =
∣∣∣∑
n≥1

αnσ
′
n(t)

∣∣∣ ≤ ∣∣∣ [π/|t|]∑
n=1

αnσ
′
n(t)

∣∣∣+
∣∣∣ ∑
n≥[π/|t|]+1

αnσ
′
n(t)

∣∣∣
≤ −C̃ϕ′(|t|).

Proposition 4.4. Let ϕ ∈ K and {αn}n∈N ∈ Kϕ. Let W =
∑

n≥1 αnσn
be as in Proposition 4.3. Let f ∈ X be such that E(0)f = 0 and

(23)
(∑
n∈Z

ϕ2(π/2|n|)|E(Πn)f |2
)1/2

∈ Lp(µ).

Then there exists {gm} ⊂ Lp(µ), with limm→∞ ‖gm‖p = 0, such that, for
every m ≥ 1, taking n = [log2m],

m∑
k=1

αkSk(f) = gm +
�

]π/2n,2π−π/2n]

W (t) dE(t)f.

In particular, by Proposition 3.1,
∑

n≥1 αnSn(f) converges in Lp(µ).

Remarks. The proposition may be seen as a version of Lemma 5 of [11]
(see also Theorem 4 of the same paper) where the case of unitary operators is
considered. It can be checked that the conditions in [11] are actually the same
as ours in this case. In [11], even the µ-a.e. convergence of {gm} is obtained.
The study of the µ-a.e. convergence will be done in the forthcoming work [7].

Proof of Proposition 4.4. Let m ≥ 1 and n = [log2m]. Define Wm(t) =∑m
k=0 αkσk(t) and write

m∑
k=1

αkSk(f) =
�

[0,2π]

Wm(t) dE(t)f

=
�

]0,π/2n]

Wm(t) dE(t)f +
�

]2π−π/2n,2π]

Wm(t) dE(t)f

+
�

]π/2n,2π−π/2n]

(Wm(t)−W (t)) dE(t)f +
�

]π/2n,2π−π/2n]

W (t) dE(t)f.

The proposition will follow from the next lemmata, whose proofs are given
in Appendix D.

Lemma 4.5. Let ϕ ∈ K and {αn}n∈N ∈ Kϕ. There exists L > 0 such
that for every f ∈ X and every m ≥ 1, we have (with n = [log2m])
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(24)
∥∥∥ �

]π/2n,2π−π/2n]

(Wm(t)−W (t)) dE(t)f
∥∥∥
p

≤ Lϕ(π/2n)
2n

∥∥∥( n−1∑
k=1−n

22|k||E(Π−k)f |2
)1/2∥∥∥

p
.

Lemma 4.6. Let ϕ ∈ K and {αn}n∈N ∈ Kϕ. There exists L > 0 such
that for every f ∈ X and every m ≥ 1, we have (with n = [log2m])∥∥∥ �

]0,π/2n]

Wm(t) dE(t)f
∥∥∥
p
≤ Lϕ(π/2n)

∥∥∥(∑
k≥n
|E(Π−k)f |2

)1/2∥∥∥
p
,(25)

∥∥∥ �

]2π−π/2n,2π]

Wm(t) dE(t)f
∥∥∥
p
≤ Lϕ(π/2n)

∥∥∥(∑
k≥n
|E(Πk)f |2

)1/2∥∥∥
p
.(26)

Since (ϕ(π/2n)) is non-decreasing, (23) implies that the right-hand sides
of (25) and (26) converge to zero as m→∞, by the monotone convergence
theorem.

It remains to prove that (23) implies the convergence to zero of the
right-hand side of (24). We need the following version of Kronecker’s Lemma
(whose proof, based on Abel summation, is left to the reader).

Lemma 4.7 (Kronecker’s Lemma). Let {an} be a sequence of real num-
bers decreasing to zero, and {bn} be a sequence of non-negative real numbers
such that

∑
n≥1 anbn <∞. Then an

∑n
k=1 bk → 0 and supn≥1 an

∑n
k=1 bk ≤∑

n≥1 anbn.

Assume (23). Apply Kronecker’s Lemma with an = ϕ(π/2n)/2n and bn =
|E(Π±n)f |2(x)) for µ-a.e. x ∈ M and Lebesgue’s Dominated Convergence
Theorem to see that the right-hand side of (24) converges to zero.

Now we are in a position to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. Let 0 < α < 1 and f ∈ X be such that
(2) holds. It follows from Corollary 3.5 that the limit in Theorem 1.1 exists
and that condition (23) holds.

On the other hand, by (2) and Lemma 3.4, ‖Sn(f)‖p/n1−α → 0. Hence
E(0)f = 0 (see Section 2).

Hence, we can apply Proposition 4.4 to the cases mentioned after Propo-
sition 4.2 and obtain the convergence in Lp(µ) of

∑
n≥1 Sn(f)/n1+α. Then

we conclude by means of Lemma 4.1.
Theorem 1.2 can be proved exactly the same way with suitable modifi-

cations.

5. Optimality of the conditions. We now discuss the sufficient condi-
tions obtained in Theorems 1.1 and 1.2 for the convergence of series in Lp(µ).
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By Lemma 4.1, for every operator T on a Banach space Y such that
supn≥1 ‖Tn‖ <∞, if f ∈ Y satisfies

(27)
∑
n≥1

‖f + · · ·+ Tn−1f‖Y
n2−α <∞

for some α ∈ [0, 1[ then
∑

n≥1 (Tnf)/n1−α converges in Y = Lp(µ).
Condition (27) always implies the conditions of Theorems 1.1 and 1.2.

Indeed, by Corollary 3.4, if (27) holds then

lim
n→∞

‖f + · · ·+ Tn−1f‖Y
n1−α = 0 if α ∈ ]0, 1[,

lim
n→∞

‖f + · · ·+ Tn−1f‖Y
n

log n = 0 if α = 0.

Using (27) again, we see that the conditions of Theorems 1.1 and 1.2 hold
for the corresponding α, with Y = Lp.

Now, from a practical point of view, one can see that Theorems 1.1 and
1.2 yield a quantitative improvement of condition (27): if one has an estimate
of the type ‖f + · · ·+Un−1f‖p = O(nγ(log n)δ), there is a gain in the power
of the logarithm.

Before proving the optimality of our conditions, let us discuss the specific
case p = 2.

When p = 2, Theorems 1.1 and 1.2 have been proved in [6] (see also
[11] and the references therein) for U either an isometry or a (sub)normal
contraction of L2.

Here we consider invertible power bounded operators. By a result of
Nagy [16], if U is an invertible operator on L2 (or on a Hilbert space) such
that supn∈Z ‖Un‖ < ∞, then U is similar to a unitary operator. Hence our
results do not bring any novelty in the case p = 2.

We will distinguish the cases p ≤ 2 and p ≥ 2.

5.1. The case p ∈ ]1, 2]. Let ν be a finite measure on the Borel sets of
[−π, π]. Define an operator V on L1(ν) by V f(t) = eitf(t). Then V is an
invertible isometry on each Lp(ν), p ≥ 1.

In this paper, we are only concerned with norm convergence. It is well
known that if U is a unitary operator on L2(µ) then, for every f ∈ L2(µ),
there exists a positive finite measure νf on [−π, π] (the spectral measure of
f relative to U) such that for all α1, . . . , αm ∈ C and n1, . . . nm ∈ Z,∥∥∥ m∑

k=1

αkU
nkf
∥∥∥2

2
=

π�

−π

∣∣∣ m∑
k=1

αke
inkt
∣∣∣2 dνf (t).

In particular, in order to prove Theorems 1.1 and 1.2 for f , it suffices to
prove them for the function t 7→ 1 and V acting on L2([−π, π], νf ).
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For p 6= 2, one cannot deduce results for general operators from the study
of V (on some Lp([−π, π], ν), but we will see that when p ∈ ]1, 2] condition
(2) of Theorem 1.1 is optimal.

Proposition 5.1. Let V be the operator on L1([−π, π], ν) defined above.
Let p ≥ 1 and α ∈ ]0, 1[. For every f ∈ Lp(ν) the following are equivalent:

(i)
∑
n≥1

‖f + · · ·+ V n−1f‖pLp(ν)
n1+(1−α)p

<∞,

(ii)
π�

−π

|f(t)|p

|t|αp
ν(dt) <∞,

(iii)
∑
n≥1

V nf

n1−α converges in Lp(ν).

Proof. We may and do assume that ν({0}) = 0. Let t ∈ [−π, π] \ {0}.
We have∑
n≥1

‖f + · · ·+ V n−1f‖pp
n1+(1−α)p

=
π�

−π

∑
1≤n≤1/|t|

|σn(t)|p

n1+(1−α)p
|f(t)|p ν(dt) +

π�

−π

∑
n>1/|t|

|σn(t)|p

n1+(1−α)p
|f(t)|p ν(dt)

≤ C
π�

−π

|f(t)|p

|t|αp
ν(dt),

since |σn(t)| ≤ C min(n, 1/|t|). Similarly, using the estimate, |σn(t)| ≥ Cn
for 1 ≤ n ≤ 1/|t|, we have∑

n≥1

‖f + · · ·+ V n−1f‖pp
n1+(1−α)p

≥
2π�

0

|f(t)|p

|t|αp
ν(dt),

and (i)⇔(ii).
To see that (ii)⇔(iii), just notice that

(28) sup
n≥1

∣∣∣∣ n∑
k=1

eikt

k1−α

∣∣∣∣ ≤ C

|t|α
and

∣∣∣∣∑
n≥1

eint

n1−α

∣∣∣∣ ∼ Cα
|t|α

, t→ 0,

and use Fatou’s Lemma for (iii)⇒(ii) and Lebesgue’s Dominated Conver-
gence Theorem for (ii)⇒(iii).

It follows from Proposition 5.1 that condition (2), for 1 < p < 2, in
Theorem 1.1 cannot be improved in the context of doubly power bounded
operators on Lp spaces. One can see (looking at irrational rotations as below)
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that the equivalence of (i) and (iii) does not hold, in general, for other
operators than V .

We also have the following.

Proposition 5.2. Let V be the operator on L1([−π, π], ν) defined above.
Let p ≥ 1. For every f ∈ Lp(ν) the following are equivalent:

(i)
∑
n≥1

‖f + · · ·+ V n−1f‖pLp(ν)
n1+p

(log n)p−1 <∞,

(ii)
π�

−π
(log(1/|t|))p|f(t)|p ν(dt) <∞,

(iii)
∑
n≥1

V nf

n
converges in Lp(ν).

This proposition can be proved just as Proposition 5.1.
To conclude with the case p ∈ ]1, 2], we make the following remark.

Assume U acts on each Lp (1 ≤ p ≤ 2), for instance, take U induced
by an invertible measure preserving transformation. Then condition (2) of
Theorem 1.1 (for 1 < p < 2) really “looks like” what one would obtain
by interpolating condition (2) for p = 2 and condition (27) with Y = L1.
However, we have not succeeded in doing it.

5.2. The case p ∈ ]2,∞[. Let θ ∈ R \ 2πQ and denote by Rθ the
rotation by θ, i.e. Rθg = g(· + θ) for every function g on [0, 2π). Then Rθ
induces an invertible (positive) isometry on any Lp([0, 2π), λ), p ≥ 1, where
λ is the normalised Lebesgue measure on [0, 2π).

For ρ > 1, denote by Lρ the set of non-decreasing sequences {nk} ⊂ N
for which infk≥1 nk+1/nk ≥ ρ. Fix n = {nk} ∈ Lρ and define the following
subspace of L2([0, 2π), λ):

κn =
{
g ∈ L2([0, 2π), λ) : ∃{ck} ∈ `2(N), g(x) =

∑
k≥1

cke
inkx

}
.

Clearly, for all ρ > 1 and n ∈ Lρ, κn is Rθ-invariant for every θ ∈ R.
It follows from the (classical) Littlewood–Paley Theorem (see e.g. The-

orem 2.1, p. 225, Vol. II of [20]) that for every p > 1, there exists Cp =
Cp(ρ) > 0 such that for every g ∈ κn, we have

(29)
1
Cp
‖g‖p ≤ ‖g‖2 ≤ Cp‖g‖p.

In particular, κn ⊂
⋂
p>1 L

p([0, 2π), λ).
We have the following

Proposition 5.3. Let ρ > 1, n ∈ Lρ and f ∈ κn. Let p > 1, θ ∈ R\2πQ
and α ∈ ]0, 1[. The following are equivalent:
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(i)
∑

n≥1 (Rnθ f)/n1−α converges in Lp([0, 2π), λ).
(ii)

∑
n≥1 ‖f + · · ·+Rn−1

θ f‖2p/n1+2(1−α) <∞.

In particular, condition (2) of Theorem 1.1 is optimal for p > 2.

Remark. Similarly, for f ∈ κn, the convergence of
∑

n≥1 (Rnθ f)/n in
Lp([0, 2π), λ) is equivalent to

∑
n≥1 ‖f + · · ·+Rnθ f‖2p/n3 log n <∞.

Proof of Proposition 5.3. By (29), (i) and (ii) are respectively equivalent
to the same condition for p = 2. Now the assertion is true for p = 2 (even
for all f ∈ L2([0, 2π), λ)) either by Proposition 5.1 or by Proposition 2.3
of [6].

To see that condition (2) of Theorem 1.1 is optimal, it suffices to show
that there exists n ∈ Lρ for some ρ > 1, and f ∈ κn such that (i) is satisfied.

Given θ ∈ R \ 2πQ, define n0 = 1 and for k ≥ 0, nk+1 = inf{n >
ρnk : nθ ∈ 2πZ + [π/2, 3π/2]}. The sequence {nk} is well defined since
2πZ + {nθ}n≥1 is dense in R by the assumption on θ.

Define f(x) =
∑

k≥1 e
inkx/k. For every s > r ≥ 1, we have∥∥∥∥ s∑

m=r

Rmθ f

m1−α

∥∥∥∥2

2

=
∑
k≥1

1
k2

∣∣∣∣ s∑
m=r

eimnkθ

m1−α

∣∣∣∣2
=
∑
k≥1

1
k2

∣∣∣∣ s∑
m=r

σm(nkθ)− σm−1(nkθ)
m1−α

∣∣∣∣2
≤ 4C
π2r2−2α

∑
k≥1

1
k2
−−→
r→∞

0,

where we have used Abel summation by parts.

Proposition 5.4. Let θ ∈ R\2πZ and α ∈ ]0, 1[. Let ρ > 1 and n ∈ Lρ.
If p > 2 (resp. if 1 < p < 2), then the condition

(30)
∑
n≥1

‖
∑n−1

k=0 R
k
θf‖

p
p

n1+(1−α)p
<∞

on f ∈ κn is not sufficient (resp. not necessary), in general, for the conver-
gence in Lp([0, 2π), λ) of

∑
n≥1 (Rnθ f)/n1−α.

Proof. Set n0 = 1 and nk+1 = inf{n ≥ ρnk : nθ ∈ 2πZ + [1/(k + 1),
1/k]}. Let {dk}k≥1 ∈ `2 and define f(x) =

∑
k≥1 dke

inkx. Using (28), it is
not hard to see that the convergence of

∑
n≥1 (Rnθ f)/n1−α in L2([0, 2π), λ)

(hence in Lp([0, 2π), λ)) is equivalent to
∑

k≥1 |dk|2/|1− einkθ|2α<∞, which,
by our choice of {nk}, is equivalent to

∑
k≥1 |dk|2k2α <∞.
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On the other hand, using (29), we have∑
n≥1

‖
∑n−1

k=0 R
k
θf‖

p
p

n1+(1−α)p
≤ Cp

∑
n≥1

1
n1+(1−α)p

(∑
k≥1

|dk|2|γn(nkθ)|2
)p/2

.

Recall that |γn(u)| ≤ C min(1/u, n) for u ∈ ]0, π], and |γn(u)| ≥ Cn for
u ∈ ]0, 2/(πn)]. By our choice of {nk}, taking dk = 1/(k1/2+α(log k)δ), we
obtain

1
C

∑
n≥1

1
n(log n)pδ

≤
∑
n≥1

‖
∑n−1

k=0 R
k
θf‖

p
p

n1+(1−α)p
≤ C

∑
n≥1

1
n(log n)pδ

.

With our choice of {dk}, the convergence of the series
∑

n≥1 (Rnθ f)/n1−α

in L2([0, 2π), λ) is equivalent to
∑

k≥1 1/(k(log k)2δ) <∞. Hence the result
clearly follows.

6. Applications in ergodic theory. We now give some applications
in ergodic theory. We start with conditions to obtain a rate in the point-
wise ergodic theorem. Let (Ω,F ,m) be a σ-finite measure space. Given a
Dunford–Schwartz operator on (Ω,F ,m) (i.e. an operator which is a con-
traction on each Lp(m)), Derriennic and Lin [8] obtained rates in the point-
wise ergodic theorem for functions f ∈ (I − T )αLp(m) with 1 < p <∞ and
0 < α < 1. The operator (I − T )α was defined there thanks to the power
series expansion of (1− z)α.

It was also shown in [8] that f ∈ (I − T )αLp(m) if and only if the series∑
n≥1 (Tnf)/n1−α converges in Lp(m). In particular, when T is induced

by an (invertible) measure preserving transformation, one can apply the
previous section.

Recall the result of Derriennic–Lin.

Theorem 6.1. Let T be a Dunford–Schwartz operator on the measure
space (Ω,F ,m). Let p > 1 and α ∈ ]0, 1[. Let f ∈ (I − T )αLp(m). If
q := p/(p− 1) then the following hold.

(i) If α > 1− 1/p, then n−1/p
∑n−1

k=0 T
kf → 0 m-a.e.

(ii) If α = 1− 1/p, then n−1/p(log n)−1/q
∑n−1

k=0 T
kf → 0 m-a.e.

(iii) If α < 1− 1/p, then n−1+α
∑n−1

k=0 T
kf → 0 m-a.e.

It is shown in [6] that the rates in (i)–(iii) are best possible for functions
in (I − T )αLp(m).

Applying the previous results, we obtain

Theorem 6.2. Let (Ω,F ,m, θ) be an invertible ergodic dynamical sys-
tem (the measure m is θ-invariant). Let T be the Dunford–Schwartz operator
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induced by θ. Let α ∈ ]0, 1[, p ∈ ]1, 2] and f ∈ Lp(m) be such that∑
n≥1

‖f + · · ·+ f ◦ θn−1‖pp
n1+(1−α)p

<∞

(e.g. supn≥1 ‖f + · · ·+ f ◦ θn−1‖p(log n)1/p+η/n1−α for some η > 0). Then
f ∈ (I − T )αLp(m) and Theorem 6.1 applies.

Remark. For p > 2, we have a similar result. We have assumed θ is
invertible, to be able to apply Theorem 1.1. If θ is not invertible, but acting
on a Lebesgue space, one may use the natural extension (see e.g. Rokhlin
[17] or Maharam [14]).

We give a theorem which is a combination of results of Cohen and Lin
[3] and of Weber [18] obtained for general (not necessarily invertible) power
bounded operators on some fixed Lp.

Theorem 6.3. Let T be a power bounded operator on the measure space
(Ω,F ,m). Let α ∈ ]0, 1[ and p > 1. Let f ∈ Lp(m) be such that there exists
η > 0 with supn≥1 ‖f + · · ·+ f ◦ θn−1‖p(log n)1/p+η/n1−α < ∞. Then, for
every ε > 0:

(i) If α > 1− 1/p, then

1
n1/p(log n)1/p+ε

n−1∑
k=0

T kf → 0 m-a.e.

(ii) If α = 1− 1/p, then

1
n1/p(log n)1+ε−η

n−1∑
k=0

T kf → 0 m-a.e.

(iii) If α < 1− 1/p, then

1
n1−α(log n)ε−η

n−1∑
k=0

T kf → 0 m-a.e.

Remarks. 1. (i) and (ii) of Theorem 6.3 follow from Theorem 1.3 of [18]
applied with Mn = n, L(x) = x(log x)1+ε, Ψ(x) = xp(1−α)/(log x)1+η and
ϕ(n) given by the corresponding denominator in (i) or (ii).

2. The rate in (iii) follows from Theorem 2.13 of Cohen–Lin [3] applied
with ϕ(n) given by the denominator in (iii), q = p(1 − α) and dq(0, n) =
np(1−α)/(log n)1/p+η.

To compare Theorem 6.2 with the results of Weber and Cohen–Lin, one
should let η go to zero in Theorem 6.3. The rates in cases (i) and (ii) are
better in Theorem 6.2 and essentially the same in case (iii).

When p = 2, the use of the spectral theory for unitary operators enabled
us in [6] and [5] to consider more general power series (as proposed by
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Zhao–Woodroofe) than the one giving (I − T )α, and thus, to obtain more
precise rates.

There are technical difficulties (that should not be hard to overcome)
to extend the results of [6] and [5] to the case p 6= 2. Those difficulties are
essentially due to the fact that the spectral integration of Berkson–Gillespie
works for functions with bounded variation (hence we “need” a control of
the differential of the functions) while in the unitary case one may integrate
a much wider class of functions.

We now give another application in ergodic theory, using a result of [4].

Theorem 6.4. Let (Ω,F ,m) be a σ-finite measure space and θ be an
invertible F-measurable transformation preserving m. Let p > 1 and f ∈
Lp(m) be such that∑

n≥2

1
n log n

(‖f + · · ·+ f ◦ θn−1‖2p log n
n

)min(p,2)

<∞.

Then
∑

n≥1 f ◦ θn/n converges in Lp(m) and m-a.e. Moreover,

sup
n≥1

∣∣∣∣ n∑
k=1

f ◦ θk

k

∣∣∣∣ ∈ Lp(m).

Proof. By Theorem 1.2,
∑

n≥1 f ◦ θn/n converges in Lp(m). The a.e.
convergence and the integrability of the maximal function then follow from
Theorem 2.1 of [4].

A. Proof of Lemma 3.4. It is well-known (and easy to check) that
N(g) := supn≥0 ‖Tng‖Y defines a norm on Y equivalent to the norm ‖ ·
‖Y , such that T becomes a contraction for N . In particular, the sequence
{N(f + · · ·+ Tn−1f)} is subadditive. Then Lemma 3.4 is a corollary of the
following lemma which generalizes Lemma 2.7 of [15].

Lemma A.1. Let {wn} be a subadditive sequence of positive numbers.
Let b be slowly varying and γ > 1 and r ≥ 1. The following are equivalent:

(i)
∑

n≥1 b(n)wrn/n
γ <∞.

(ii)
∑

n≥1 b(2
n)wr2n/2

n(γ−1) <∞.

If either (i) or (ii) is satisfied then b(n)wrn/n
γ−1 → 0 as n→∞. If γ = r+1

and b = logδ for some δ ∈ R, then (i) and (ii) are equivalent to

(iii)
∑

n≥1 2n(δ+1)(w22n/22n)r <∞,

and we have wrn(log n)δ+1/nr → 0 as n→∞ if δ 6= −1, and wrn(log log n)/nr

→ 0 as n→∞ if δ = −1.

Proof. (i)⇒(ii). For every k ∈ {4n−1, . . . , 4n/2 − 1}, we have wr4n ≤
2r−1(wrk + wr4n−k). Since {b(m)/mγ} is non-increasing (for m large), one
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obtains

4n

2
b(4n)wr4n

4γn
≤ 2r−1

4n/2−1∑
k=4n−1

(
b(k)wrk
kγ

+
b(4n − k)w4n−k

(4n − k)γ

)
.

Hence
∑

n≥1 b(2
2n)wr22n/22(γ−1)n < ∞ and the result follows as w22n+1 ≤

2w22n .
(ii)⇒(i). Let δ > 0 be such that γ− 1− δr > 0. Let k ≥ 0 and 2k ≤ n ≤

2k+1 − 1. Then, with 1/r + 1/r′ = 1, we have

wrn ≤
( k∑
l=0

w2l

)r
≤
( k∑
l=0

2lδr
′
)r/r′ k∑

l=0

wr
2l

2lδr
≤ C2kδr

k∑
l=0

wr
2l

2lδr
.

Hence∑
n≥1

b(n)wrn
nγ

=
∑
k≥0

2k+1−1∑
n=2k

b(n)wrn
nγ

≤ C
∑
k≥0

2kδr
k∑
l=0

wr
2l

2lδr

2k+1−1∑
n=2k

b(n)
nγ

≤ C ′
∑
l≥0

wr
2l

2lδr
∑
k≥l

2kδr
b(2k)

2k(γ−1)
≤ C ′′

∑
l≥0

b(2l)wr
2l

2(γ−1)l
<∞.

Assume that (ii) is satisfied. Then, clearly, b(2n)wr2n/2
n(γ−1) → 0 as

n→∞. Using the fact that wm ≤
∑log2m

k=0 w2k , one can see that b(n)wrn/n
γ−1

→ 0 as n→∞.
Assume that b = logδ and γ = r + 1. Noticing that {w2n/2n} is non-

increasing, it is not difficult to see that (iii) is equivalent to (ii). Then, for
every m ≥ 1,

o(1) =
∑

m/2≤n≤m

(
w2n

2n

)r
(n log 2)δ ≥

(
w2m

2m

)r
(log 2)δ

∑
m/2≤n≤m

nδ.

Hence, (wr2n/2
nr)nδ+1 → 0 as n → ∞, when δ 6= −1. If δ = −1, use∑

√
m≤n≤m instead of

∑
m/2≤n≤m.

B. Proof of Lemma 4.1. Since 1/(k−1)β−1/kβ = β/k1+β+O(1/k2+β)
and since T is power bounded, if we use (16) the equivalence of (i) and
(ii) will follow once we prove that ‖Sn(f)‖Y /nβ → 0 as n → ∞. This
convergence follows from Kronecker’s Lemma if we know that (i) is satisfied.

Hence, assume that (ii) is satisfied. By Cauchy’s criterion,
2n−1∑
k=n

Sk(f)
k1+β

= Sn(f)
2n−1∑
k=n

1
k1+β

+ Tn
( n−1∑
k=1

Sk(f)
(n+ k)1+β

)
n→∞−−−→ 0.

Clearly, since supn≥1 ‖Tn‖ < ∞, it suffices to show that the sequence
{‖
∑n−1

k=1 Sk(f)/(n+ k)1+β‖Y } converges to 0.
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Define Rn =
∑

k≥n Sk(f)/k1+β. We have
n−1∑
k=1

Sk(f)
(n+ k)1+β

=
n−1∑
k=1

(Rk −Rk+1)
k1+β

(n+ k)1+β

=
n−1∑
k=2

Rk

(
k1+β

(n+ k)β
− (k − 1)1+β

(n+ k − 1)1+β

)
+

R1

n1+β
− Rn(n− 1)1+β

(2n− 1)1+β
.

Let ε > 0. By assumption, there exists n0 > 0 such that ‖Rk‖Y < ε for
every k ≥ n0. As x 7→ x/(n+ x) is increasing to 1 on ]0,∞[, one obtains∥∥∥∥ n−1∑

k=1

Sk(f)
(n+ k)1+β

∥∥∥∥
Y

≤
n2+β

0 sup1≤k≤n0
‖Rk‖Y

n1+β
+ 2ε,

which proves the desired result.

C. Proof of Proposition 4.2. Recall that |σn(t)| ≤ C min(n, 1/|t|) for
n ≥ 1 and t ∈ [−π, π] \ {0}. Write Ln =

∑n
k=1 k

2αk for n ≥ 1 and L0 = 0.
Then, for every n ≥ 1, using the fact that t 7→ −t2ϕ′(t) is non-increasing,
we have

n∑
k=1

αk|σk(t)| ≤
n∑
k=1

Lk − Lk−1

k
=

n−1∑
k=1

Lk
k(k + 1)

+
Ln
n

≤ K
n−1∑
k=1

−ϕ′(π/k)
k2

−Kϕ′(π/n)
n

≤ K

π

n�

1

dϕ(π/x)
dx

dx−Kϕ′(π/n)
n

≤ 2Kϕ(π/n),

where we have used (17) in the last step. That proves the first part of (19).
The second part of (19) follows immediately from (21) and the fact that

|σ′n(t)| = |
∑n−1

k=0 ke
ikt| ≤ Cn2.

Similarly, using (22), we have

(31)
∑
k≥n

αk|σk(t)| ≤
−Cϕ′(π/n)

n2|t|
,

and the first part of (20) follows, using (17).
The second part of (20) needs more care. Notice that

σ′k(t) =
ieitσk(t)− ikeikt

1− eit
Hence ∑

k≥n
αkσ

′
k(t) =

ieit

1− eit
∑
k≥n

αkσk(t)−
i

1− eit
∑
k≥n

kαke
ikt.

The first term above was treated in (31).



26 C. Cuny

For the second term, notice that, by (22) (using the fact that {nαn},
hence {αn} is non-increasing),

nαn
2
≤

∑
n/2≤k≤n

αn ≤
−4Kϕ′(2π/n)

n2
≤ −4Kϕ′(π/n)

n2
,

since −ϕ′ is non-increasing. Then by Abel summation, we obtain∣∣∣ p∑
k=n

kαke
ikt
∣∣∣ ≤ p∑

k=n

(kαk − (k + 1)αk+1)|σk(t)|

+ nαn|σn(t)|+ (p+ 1)αp+1|σp(t)| ≤
2Cnαn
|t|

,

which proves the second part of (20).

D. Proof of Lemmata 4.5 and 4.6

Proof of Lemma 4.5. We will prove that∥∥∥ �

]π/2n,π]

(Rm(t)−R(t)) dE(t)f
∥∥∥
p
≤ Lϕ(π/2n)

2n

∥∥∥( n−1∑
k=0

22k|E(Π−k)f |2
)1/2∥∥∥

p
,

the proof for
	
]π,2π−π/2n] being similar. Recall that, for every t ∈ ]0, π[,

|Rm(t)−R(t)| ≤ Cϕ(π/m)
mt

,(32)

|R′m(t)−R′(t)| ≤ −Cϕ
′(π/m)
m2t2

.(33)

Let m ≥ 1 and n = [log2m]. Define a function ψm on T by ψm(eit) =
Rm(t)−R(t) if t ∈ ]π/2k+1, π/2k[ for some k ∈ {0, . . . , n− 1}, and 0 other-
wise. Then, using the analogue of Littlewood–Paley, we have

(34)
∥∥∥ �

]π/2n,π]

(Rm(t)−R(t)) dE(t)f
∥∥∥
p

≤
∥∥∥ �

[0,2π]

ψm(eit) dE(t)f
∥∥∥
p

+
∥∥∥ �

[0,2π]

(Rm(t)−R(t)− ψm(eit))1]π/2n,π] dE(t)f
∥∥∥
p

≤
∥∥∥ �

[0,2π]

ψm(eit) dE(t)f
∥∥∥
p

+
c2CpCϕ(π/2n)

π2n

∥∥∥( n−1∑
k=0

22k|E({ω−k})f |2
)1/2∥∥∥

p
,

where we have used (32) for the last inequality. The second term of (34) can
be estimated by means of the Riesz property, hence it remains to deal with
the first term.
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Define a function φm by

φm : T→ R,

eit 7→

{
2k
ϕ(π/2n)

2n
if t ∈ ]π/2k+1, π/2k[ for some k ∈ {0, . . . n− 1},

0 otherwise.
Then the function ψm/φm is well defined (with 0/0 interpreted as 0), sup-
ported by the arc {eit : t ∈ ]π/2n, π[}. Moreover, since R ∈ Lϕ and ϕ ∈ K,
we have ψm/φm ∈ BV (T) for every m ≥ 1, and, as ϕ ∈ K,

K := sup
m≥1

∥∥∥∥ψmφm
∥∥∥∥
∞

+ sup
m≥1

sup
j∈Z

var
(
ψm
φm

, Λj

)
<∞.

By the Strong Marcinkiewicz Multiplier Theorem and the analogue of
Littlewood–Paley, we obtain∥∥∥ �

[0,2π]

ψm(eit) dE(t)f
∥∥∥
p

=
∥∥∥Tψm/φ̃m( �

[0,2π]

φm(t) dE(t)f
)∥∥∥

p

≤ ‖Tψm/φm‖
∥∥∥∥( n−1∑

k=0

22kϕ
2(π/2n)

22n
|E(Γ−k)f |2

)1/2∥∥∥∥
p

≤ Kϕ(π/2n)
2n

∥∥∥( n−1∑
k=0

22k|E(Π−k)f |2
)1/2∥∥∥

p
,

where we have used the analogue of the Riesz property.

Proof of Lemma 4.6. Let us show that∥∥∥ �

]0,π/2n]

Rm(t) dE(t)f
∥∥∥
p
≤ ϕ(π/2n)

∥∥∥(∑
k≥n
|E(Π−k)f |2

)1/2∥∥∥
p
.

The proof of (26) may be done the same way.
Define ψm and ϕm on T by ψm(eit) = Wm(t) and φm(eit) = ϕ(π/2n)

if t ∈ ]0, π/2n[, and 0 otherwise. The function ψm/φm is well defined (with
0/0 interpreted as 0), supported by the arc {eit : t ∈ ]0, π/2n[}, and belongs
to BV (T). By (19), ψm/φm is bounded on T, uniformly with respect to m.

Moreover, by (19) and (17), for every t ∈ ]0, π/2n[,∣∣∣∣ ddt ψm(eit)
ϕ(π/2n)

∣∣∣∣ ≤ C2n.

Hence

sup
m≥1

sup
j∈Z

var
(
ψm
φm

, Λj

)
<∞.

So, for every n ≥ 1, Tψm/φm is well defined and, by Theorem 2.1 and the
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Strong Marcinkiewicz Multiplier Theorem,

L = sup
m≥1
‖Tψm/φm‖ <∞.

We obtain∥∥∥ �

]0,π/2n]

Rm(t) dE(t)f
∥∥∥
p
≤
∥∥∥ �

[0,2π]

ψm(t) dE(t)f
∥∥∥
p

+ ϕ(π/2n)‖E({ω−n})f‖p,

where the second term is bounded by c2Cpϕ(π/2n)‖E(Π−n)f‖p.
On the other hand, using the analogue of the Littlewood–Paley theorem

and of the Riesz property,∥∥∥ �

[0,2π]

ψm(t) dE(t)f
∥∥∥
p

=
∥∥∥Tψm/φm �

[0,2π]

φm(t) dE(t)f
∥∥∥
p

≤ Lϕ(π/2n)
∥∥∥∑
k≥n
|E(Π−k)f |2)1/2

∥∥∥
p
,

which finishes the proof of Lemma 4.6.
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