Automatic continuity of biorthogonality preservers between weakly compact JB^* -triples and atomic JBW^* -triples

by

María Burgos, Jorge J. Garcés and Antonio M. Peralta (Granada)

Abstract. We prove that every biorthogonality preserving linear surjection from a weakly compact JB^* -triple containing no infinite-dimensional rank-one summands onto another JB^* -triple is automatically continuous. We also show that every biorthogonality preserving linear surjection between atomic JBW^* -triples containing no infinite-dimensional rank-one summands is automatically continuous. Consequently, two atomic JBW^* -triples containing no rank-one summands are isomorphic if and only if there exists a (not necessarily continuous) biorthogonality preserving linear surjection between them.

1. Introduction and preliminaries. Studies on the automatic continuity of linear surjections between C^* -algebras and von Neumann algebras preserving orthogonality relations in both directions constitute the latest variant of a problem initiated by W. Arendt in the early eighties.

We recall that two complex-valued continuous functions f and g are said to be orthogonal whenever they have disjoint supports. A mapping T between C(K)-spaces is called orthogonality preserving if it maps orthogonal functions to orthogonal functions. The main result established by Arendt states that every orthogonality preserving bounded linear mapping $T: C(K) \to C(K)$ is of the form

$$T(f)(t) = h(t)f(\varphi(t)) \hspace{0.5cm} (f \in C(K), \, t \in K),$$

where $h \in C(K)$ and $\varphi : K \to K$ is a mapping which is continuous on $\{t \in K : h(t) \neq 0\}.$

The hypothesis of T being continuous was relaxed by K. Jarosz in [24]. In fact, Jarosz obtained a complete description of all orthogonality preserving (not necessarily continuous) linear mappings between C(K)-spaces.

DOI: 10.4064/sm204-2-1

²⁰¹⁰ Mathematics Subject Classification: Primary 46L05, 46L70; Secondary 17A40, 17C65, 46K70, 46L40, 47B47, 47B49.

Key words and phrases: C^* -algebra, JB^* -triple, weakly compact JB^* -triple, atomic JBW^* -triple orthogonality preserver, biorthogonality preserver, automatic continuity.

A consequence of his description is that an orthogonality preserving linear surjection between C(K)-spaces is automatically continuous.

Two elements a, b in a general C^* -algebra A are said to be orthogonal (denoted by $a \perp b$) if $ab^* = b^*a = 0$. When $a = a^*$ and $b = b^*$, we have $a \perp b$ if and only if ab = 0. A mapping T between two C^* -algebras A, B is called orthogonality preserving if $T(a) \perp T(b)$ for every $a \perp b$ in A. When $T(a) \perp T(b)$ in B if and only if $a \perp b$ in A, we say that T is biorthogonality preserving. Under continuity assumptions, orthogonality preserving bounded linear operators between C^* -algebras are completely described in [10, §4]. This last paper is a culmination of the studies developed by W. Arendt [2], W. Wolff [34], and W.-W. Wong [35], among others, on bounded orthogonality preserving linear maps between W-algebras.

 C^* -algebras belong to a wider class of complex Banach spaces in which orthogonality also makes sense. We refer to the class of (complex) JB^* -triples (see §2 for definitions). Two elements a, b in a JB^* -triple E are said to be orthogonal (denoted by $a \perp b$) if L(a,b) = 0, where L(a,b) is the linear operator in E given by $L(a,b)x = \{a,b,x\}$. A linear mapping $T: E \to F$ between two JB^* -triples is called orthogonality preserving if $T(x) \perp T(y)$ whenever $x \perp y$. The mapping T is biorthogonality preserving whenever the equivalence $x \perp y \Leftrightarrow T(x) \perp T(y)$ holds for all x, y in E.

Most of the novelties introduced in [10] consist in studying orthogonality preserving bounded linear operators from a C^* -algebra or a JB^* -algebra to a JB^* -triple to take advantage of the techniques developed in JB^* -triple theory. These techniques were successfully applied in the subsequent paper [11] to obtain a description of such operators (see §2 for a detailed explanation).

Despite the vast literature on orthogonality preserving bounded linear operators between C^* -algebras and JB^* -triples, just a few papers have considered the problem of automatic continuity of biorthogonality preserving linear surjections between C^* -algebras. Besides Jarosz [24], mentioned above, M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong proved in [13, Theorem 4.2] that every zero products preserving linear bijection from a properly infinite von Neumann algebra into a unital ring is a ring homomorphism followed by left multiplication by the image of the identity. J. Araujo and K. Jarosz showed that every linear bijection between algebras L(X), of continuous linear maps on a Banach space X, which preserves zero products in both directions is automatically continuous and a multiple of an algebra isomorphism [1]. These authors also conjectured that every linear bijection between two C^* -algebras preserving zero products in both directions is automatically continuous (see [1, Conjecture 1]).

The authors of this note proved in [12] that every biorthogonality preserving linear surjection between two compact C^* -algebras or between two von Neumann algebras is automatically continuous. One of the consequences

of this result is a partial answer to [1, Conjecture 1]. Concretely, every surjective and symmetric linear mapping between von Neumann algebras (or compact C^* -algebras) which preserves zero products in both directions is continuous.

In this paper we study the problem of automatic continuity of biorthogonality preserving linear surjections between JB^* -triples, extending some of the results obtained in [12]. Section 2 contains the basic definitions and results used in the paper. Section 3 is devoted to the structure and properties of the (orthogonal) annihilator of a subset M in a JB^* -triple, focusing on the annihilators of single elements. In Section 4 we prove that every biorthogonality preserving linear surjection from a weakly compact JB^* -triple containing no infinite-dimensional rank-one summands to a JB^* -triple is automatically continuous. In Section 5 we show that two atomic JB^* -triples containing no rank-one summands are isomorphic if and only if there exists a biorthogonality preserving linear surjection between them, a result which follows from the automatic continuity of every biorthogonality preserving linear surjection between atomic JB^* -triples containing no infinite-dimensional rank-one summands.

2. Notation and preliminaries. Given Banach spaces X and Y, L(X,Y) will denote the space of all bounded linear mappings from X to Y. The symbol L(X) will stand for the space L(X,X). Throughout the paper the word "operator" will always mean bounded linear mapping. The dual space of a Banach space X is denoted by X^* .

 JB^* -triples were introduced by W. Kaup in [26]. A JB^* -triple is a complex Banach space E together with a continuous triple product $\{\cdot,\cdot,\cdot\}$: $E\times E\times E\to E$, which is conjugate linear in the middle variable and symmetric and bilinear in the outer variables, and satisfies:

- (a) L(a,b)L(x,y) = L(x,y)L(a,b) + L(L(a,b)x,y) L(x,L(b,a)y), where L(a,b) is the operator on E given by $L(a,b)x = \{a,b,x\}$;
- (b) L(a, a) is an hermitian operator with nonnegative spectrum;
- (c) $||L(a,a)|| = ||a||^2$.

For each x in a JB^* -triple E, Q(x) will stand for the conjugate linear operator on E defined by the assignment $y \mapsto Q(x)y = \{x, y, x\}$.

Every C^* -algebra is a JB^* -triple via the triple product given by

$$2\{x, y, z\} = xy^*z + zy^*x,$$

and every JB^* -algebra is a JB^* -triple under the triple product

$$(2.1) \{x, y, z\} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*.$$

The so-called Kaup-Banach-Stone theorem for JB^* -triples states that a bounded linear surjection between JB^* -triples is an isometry if and only

if it is a triple isomorphism (cf. [26, Proposition 5.5], [5, Corollary 3.4] or [18, Theorem 2.2]). It follows, among many other consequences, that when a JB^* -algebra is a JB^* -triple for a suitable triple product, then the latter coincides with the one defined in (2.1).

A JBW^* -triple is a JB^* -triple which is also a dual Banach space (with a unique isometric predual [3]). It is known that the triple product of a JBW^* -triple is separately weak* continuous [3]. The second dual of a JB^* -triple E is a JBW^* -triple with a product extending the product of E [15].

An element e in a JB^* -triple E is said to be a tripotent if $\{e, e, e\} = e$. Each tripotent e in E gives rise to the decomposition

$$E = E_2(e) \oplus E_1(e) \oplus E_0(e),$$

where for i = 0, 1, 2, $E_i(e)$ is the i/2-eigenspace of L(e, e) (cf. [28, Theorem 25]). The natural projection of E onto $E_i(e)$ will be denoted by $P_i(e)$. This decomposition is termed the *Peirce decomposition* of E with respect to the tripotent e. The Peirce decomposition satisfies certain rules known as *Peirce arithmetic*:

$${E_i(e), E_j(e), E_k(e)} \subseteq E_{i-j+k}(e)$$

if $i - j + k \in \{0, 1, 2\}$ and is zero otherwise. In addition,

$${E_2(e), E_0(e), E} = {E_0(e), E_2(e), E} = 0.$$

The Peirce space $E_2(e)$ is a JB^* -algebra with product $x \circ_e y := \{x, e, y\}$ and involution $x^{\sharp_e} := \{e, x, e\}$.

A tripotent e in E is called *complete* (resp., *unitary*) if $E_0(e) = 0$ (resp., $E_2(e) = E$). When $E_2(e) = \mathbb{C}e \neq \{0\}$, we say that e is *minimal*.

For each element x in a JB^* -triple E, we shall denote $x^{[1]} := x$, $x^{[3]} := \{x, x, x\}$, and $x^{[2n+1]} := \{x, x, x^{[2n-1]}\}$ $(n \in \mathbb{N})$. The symbol E_x will stand for the JB^* -subtriple generated by x. It is known that E_x is JB^* -triple isomorphic (and hence isometric) to $C_0(\Omega)$ for some locally compact Hausdorff space Ω contained in (0, ||x||] such that $\Omega \cup \{0\}$ is compact, where $C_0(\Omega)$ denotes the Banach space of all complex-valued continuous functions vanishing at 0. It is also known that there exists a triple isomorphism Ψ from E_x onto $C_0(\Omega)$ satisfying $\Psi(x)(t) = t$ $(t \in \Omega)$ (cf. [25, Corollary 4.8], [26, Corollary 1.15] and [20]). The set $\overline{\Omega} = \operatorname{Sp}(x)$ is called the *triple spectrum* of x. Note that $C_0(\operatorname{Sp}(x)) = C(\operatorname{Sp}(x))$ whenever $0 \notin \operatorname{Sp}(x)$.

Therefore, for each $x \in E$, there exists a unique element $y \in E_x$ such that $\{y,y,y\} = x$. The element y, denoted by $x^{[1/3]}$, is termed the cubic root of x. We can inductively define $x^{[1/3^n]} = (x^{[1/3^{n-1}]})^{[1/3]}$, $n \in \mathbb{N}$. The sequence $(x^{[1/3^n]})$ converges in the weak* topology of E^{**} to a tripotent denoted by r(x) and called the range tripotent of x. The tripotent r(x) is the smallest tripotent $e \in E^{**}$ such that x is positive in the B^{**} -algebra E^{**} (cf. [16, Lemma 3.3]).

A subspace I of a JB^* -triple E is a triple ideal if $\{E, E, I\} + \{E, I, E\} \subseteq I$. By Proposition 1.3 in [7], I is a triple ideal if and only if $\{E, E, I\} \subseteq I$. We shall say that I is an inner ideal of E if $\{I, E, I\} \subseteq I$. Given an x in E, let E(x) denote the norm closed inner ideal of E generated by x. It is known that E(x) coincides with the norm closure of the set Q(x)(E). Moreover E(x) is a JB^* -subalgebra of $E_2^{**}(r(x))$ and contains x as a positive element (cf. [8]). Every triple ideal is, in particular, an inner ideal.

We recall that two elements a, b in a JB^* -triple E are said to be *orthogonal* (written $a \perp b$) if L(a, b) = 0. Lemma 1 in [10] shows that $a \perp b$ if and only if one of the following nine statements holds:

$$\{a, a, b\} = 0; \quad a \perp r(b); \quad r(a) \perp r(b);$$

$$(2.2) \quad E_2^{**}(r(a)) \perp E_2^{**}(r(b)); \quad r(a) \in E_0^{**}(r(b)); \quad a \in E_0^{**}(r(b));$$

$$b \in E_0^{**}(r(a)); \quad E_a \perp E_b; \quad \{b, b, a\} = 0.$$

The Jordan identity and the above reformulations ensure that

(2.3)
$$a \perp \{x, y, z\}$$
 whenever $a \perp x, y, z$.

An important class of JB^* -triples is given by the Cartan factors. A JBW^* -triple E is called a factor if it contains no proper weak* closed ideals. The $Cartan\ factors$ are precisely the JBW^* -triple factors containing a minimal tripotent [27]. These can be classified in six different types (see [21] or [27]).

A Cartan factor of type 1, denoted by $I_{n,m}$, is a JB^* -triple of the form L(H, H'), where L(H, H') denotes the space of bounded linear operators between two complex Hilbert spaces H and H' of dimensions n, m respectively, with the triple product defined by $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x)$.

We recall that given a conjugation j on a complex Hilbert space H, we can define the linear involution $x \mapsto x^t := jx^*j$ on L(H). A Cartan factor of type 2 (respectively, type 3), denoted by H_n (respectively, III_n), is the subtriple of L(H) formed by the t-skew-symmetric (respectively, t-symmetric) operators, where H is an n-dimensional complex Hilbert space. Moreover, H_n and III_n are, up to isomorphism, independent of the conjugation j on H.

A Cartan factor of type 4, IV_n (also called a complex spin factor), is an n-dimensional complex Hilbert space provided with a conjugation $x \mapsto \overline{x}$, where the triple product and norm are given by

(2.4)
$$\{x, y, z\} = (x|y)z + (z|y)x - (x|\overline{z})\overline{y}$$
 and $||x||^2 = (x|x) + \sqrt{(x|x)^2 - |(x|\overline{x})|^2}$, respectively.

The Cartan factor of type 6 is the 27-dimensional exceptional JB^* -algebra $VI = H_3(\mathbb{O}^{\mathbb{C}})$ of all symmetric 3×3 matrices with entries in the complex octonions $\mathbb{O}^{\mathbb{C}}$, while the Cartan factor of type 5, $V = M_{1,2}(\mathbb{O}^{\mathbb{C}})$, is the subtriple of $H_3(\mathbb{O}^{\mathbb{C}})$ consisting of all 1×2 matrices with entries in $\mathbb{O}^{\mathbb{C}}$.

REMARK 2.1. Let E be a spin factor with inner product $(\cdot|\cdot)$ and conjugation $x \mapsto \overline{x}$. It is not hard to check (and part of the folklore of JB^* -triple theory) that an element w in E is a minimal tripotent if and only if $(w|\overline{w}) = 0$ and (w|w) = 1/2. For every minimal tripotent w in E we have $E_2(w) = \mathbb{C}w$, $E_0(w) = \mathbb{C}\overline{w}$ and $E_1(w) = \{x \in E : (x|w) = (x|\overline{w}) = 0\}$. Therefore, every minimal tripotent $w_2 \in E$ satisfying $w \perp w_2$ can be written in the form $w_2 = \lambda \overline{w}$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

3. Biorthogonality preservers. Let M be a subset of a JB^* -triple E. We write M_E^{\perp} for the *(orthogonal) annihilator* of M defined by

$$M_E^{\perp} := \{ y \in E : y \perp x, \, \forall x \in M \}.$$

When no confusion can arise, we shall write M^{\perp} instead of M_E^{\perp} .

The next result summarises some basic properties of the annihilator. The reader is referred to [17, Lemma 3.2] for a detailed proof.

Lemma 3.1. Let M a nonempty subset of a JB^* -triple E.

- (a) M^{\perp} is a norm closed inner ideal of E.
- (b) $M \cap M^{\perp} = \{0\}.$
- (c) $M \subseteq M^{\perp \perp}$.
- (d) If $B \subseteq C$ then $C^{\perp} \subseteq B^{\perp}$.
- (e) M^{\perp} is weak* closed whenever E is a JBW*-triple.

As illustration of the main identity (axiom (a) in the definition of a JB^* -triple) we shall prove statement (a). For a, a' in M^{\perp} , b in M, and c, d in E we have $\{c, a, \{d, a', b\}\} = \{\{c, a, d\}, a', b\} - \{d, \{a, c, a'\}, b\} + \{d, a', \{c, a, b\}\}$, which shows that $\{a, c, a'\} \perp b$.

Let e be a tripotent in a JB^* -triple E. Clearly, $\{e\} \subseteq E_2(e)$. Therefore, by Peirce arithmetic and Lemma 3.1,

$$E_2(e)^{\perp} \subseteq \{e\}^{\perp} = E_0(e) \subseteq E_2(e)^{\perp},$$

and hence

(3.1)
$$E_2(e)^{\perp} = \{e\}^{\perp} = E_0(e).$$

The next lemma describes the annihilator of an element in an arbitrary JB^* -triple. Its proof follows directly from the reformulations of orthogonality in (2.2) (see also [10, Lemma 1]).

Lemma 3.2. Let x be an element in a JB^* -triple E. Then

$$\{x\}_E^{\perp} = E_0^{**}(r(x)) \cap E.$$

Moreover, when E is a JBW^* -triple we have

$$\{x\}_E^{\perp} = E_0(r(x)). \blacksquare$$

Proposition 3.3. Let e be a tripotent in a JB^* -triple E. Then

$$E_2(e) \oplus E_1(e) \supseteq \{e\}_E^{\perp \perp} = E_0(e)^{\perp} \supseteq E_2(e).$$

Proof. It follows from (3.1) that $\{e\}^{\perp \perp} = \{e\}_{E}^{\perp \perp} = (E_0(e))^{\perp} \supseteq E_2(e)$. Now select $x \in (E_0(e))^{\perp}$. For each $i \in \{0, 1, 2\}$ we write $x_i = P_i(e)(x)$, where $P_i(e)$ denotes the Peirce i-projection with respect to e. Since $x \in (E_0(e))^{\perp}$, x must be orthogonal to x_0 and so $\{x_0, x_0, x\} = 0$. This equality, together with Peirce arithmetic, shows that $\{x_0, x_0, x_0\} + \{x_0, x_0, x_1\} = 0$, which implies that $||x_0||^3 = ||\{x_0, x_0, x_0\}|| = 0$.

Remark 3.4. For a tripotent e in a JB^* -triple E, the equality $\{e\}_E^{\perp\perp} =$ $E_0(e)^{\perp} = E_2(e)$ does not hold in general. Let H_1 and H_2 be two infinitedimensional complex Hilbert spaces and let p be a minimal projection in $L(H_1)$. We define E as the orthogonal sum $pL(H_1) \oplus^{\infty} L(H_2)$. In this example $\{p\}_{E}^{\perp} = L(H_2)$ and $\{p\}_{E}^{\perp \perp} = pL(H_1) \neq \mathbb{C}p = E_2(p)$.

However, if E is a Cartan factor and e is a noncomplete tripotent in E, then the equality $\{e\}^{\perp\perp} = E_0(e)^{\perp} = E_2(e)$ always holds (cf. Lemma 5.6 in [27]).

Corollary 3.5. Let x be an element in a JB^* -triple E. Then

$$E(x) \subseteq E_2^{**}(r(x)) \cap E \subseteq \{x\}_E^{\perp \perp}.$$

Proof. Clearly, $E(x) = \overline{Q(x)(E)} \subseteq E_2^{**}(r(x)) \cap E$. Pick y in $E_2^{**}(r(x)) \cap E$. Then $y \in E_2^{**}(r(x)) \subseteq \{x\}_{E^{**}}^{\perp \perp}$. Since $\{x\}_E^{\perp} \subset \{x\}_{E^{**}}^{\perp}$, we conclude that $y \in \{x\}_{E^{**}}^{\perp \perp} \cap E \subseteq (\{x\}_E^{\perp})_{E^{**}}^{\perp} \cap E = \{x\}_E^{\perp}$. ■

In the setting of C^* -algebras the following conditions describing the first and second annihilator of a projection were established in [12, Lemma 3].

Lemma 3.6. Let p be a projection in a (not necessarily unital) C^* -algebra A. The following assertions hold:

- (a) $\{p\}_A^{\perp} = (1-p)A(1-p)$, where 1 denotes the unit of A^{**} ; (b) $\{p\}_A^{\perp\perp} = pAp$.

Let x be an element in a JB^* -triple E. We say that x is weakly compact (respectively, compact) if the operator $Q(x): E \to E$ is weakly compact (respectively, compact). A JB^* -triple is weakly compact (respectively, compact) if every element in E is weakly compact (respectively, compact).

Let E be a JB^* -triple. If we denote by K(E) the Banach subspace of E generated by its minimal tripotents, then K(E) is a (norm closed) triple ideal of E and it coincides with the set of weakly compact elements of E (see Proposition 4.7 in [7]). For a Cartan factor C we define the elementary JB^* triple of the corresponding type to be K(C). Consequently, the elementary JB^* -triples K_i (i = 1, ..., 6) are defined as follows: $K_1 = K(H, H')$ (the

compact operators between complex Hilbert spaces H and H'); $K_i = C_i \cap K(H)$ for i = 2, 3, and $K_i = C_i$ for i = 4, 5, 6.

It follows from [7, Lemma 3.3 and Theorem 3.4] that a JB^* -triple E is weakly compact if and only if one of the following statement holds:

- (a) $K(E^{**}) = K(E)$.
- (b) K(E) = E.
- (c) E is a c_0 -sum of elementary JB^* -triples.

Let E be a JB^* -triple. A subset $S \subseteq E$ is said to be *orthogonal* if $0 \notin S$ and $x \perp y$ for every $x \neq y$ in S. The minimal cardinal number r satisfying $\operatorname{card}(S) \leq r$ for every orthogonal subset $S \subseteq E$ is called the rank of E (and will be denoted by r(E)).

For every orthogonal family $(e_i)_{i\in I}$ of minimal tripotents in a JBW^* -triple E the weak* convergent sum $e := \sum_i e_i$ is a tripotent, and we call $(e_i)_{i\in I}$ a frame in E if e is a maximal tripotent in E (i.e., e is a complete tripotent and $\dim(E_1(e)) \leq \dim(E_1(\widetilde{e}))$ for every complete tripotent \widetilde{e} in E). Every frame is a maximal orthogonal family of minimal tripotents; the converse is not true in general (see [4, §3] for more details).

PROPOSITION 3.7. Let e be a minimal tripotent in a JB^* -triple E. Then $\{e\}_E^{\perp\perp}$ is a rank-one norm closed inner ideal of E.

Proof. Let F denote $\{e\}_{E}^{\perp\perp}$. Since e is a minimal tripotent (i.e. $E_2(e) = \mathbb{C}e$), the set of states on $E_2(e)$, $\{\varphi \in E^* : \varphi(e) = 1 = \|\varphi\|\}$, reduces to one point φ_0 in E^* . Proposition 2.4 and Corollary 2.5 in [9] imply that the norm of E restricted to $E_1(e)$ is equivalent to a Hilbertian norm. More precisely, in the terminology of [9], the norm $\|\cdot\|_e$ coincides with the Hilbertian norm $\|\cdot\|_{\varphi_0}$ and is equivalent to the norm of $E_1(e)$.

Proposition 3.3 guarantees that F is a norm closed subspace of $E_2(e) \oplus E_1(e) = \mathbb{C}e \oplus E_1(e)$, and hence F is isomorphic to a Hilbert space.

We deduce, by Proposition 4.5(iii) in [7] (and its proof), that F is a finite orthogonal sum of Cartan factors C_1, \ldots, C_m which are finite-dimensional, or infinite-dimensional spin factors, or of the form L(H, H') for suitable complex Hilbert spaces H and H' with $\dim(H') < \infty$. Since F is an inner ideal of E (and hence a JB^* -subtriple of E) and e is a minimal tripotent in E, we can easily check that e is a minimal tripotent in $F = \bigoplus_{j=1,\ldots,m}^{\ell_\infty} C_j$. If we write $e = e_1 + \cdots + e_m$, where each e_j is a tripotent in C_j and $e_j \perp e_k$ whenever $j \neq k$, then since $\mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_1 \subseteq F_2(e) = \mathbb{C}e$, we deduce that there exists a unique $j_0 \in \{1,\ldots,m\}$ satisfying $e_j = 0$ for all $j \neq j_0$ and $e = e_{j_0} \in C_{j_0}$.

For each $j \neq j_0$, we have $C_j \subseteq \{e\}_E^{\perp}$, and hence

$$\bigoplus_{j=1,\dots,m}^{\ell_{\infty}} C_j = F = \{e\}^{\perp \perp} \subseteq C_j^{\perp}.$$

This implies that $C_j \perp C_j$ (or equivalently $C_j = 0$) for every $j \neq j_0$. We consequently have $F = \{e\}_E^{\perp \perp} = C_{j_0}$.

Finally, if $r(F) \geq 2$, then we deduce, via Proposition 5.8 in [27], that there exist minimal tripotents e_2, \ldots, e_r in F such that e, e_2, \ldots, e_r is a frame in F. For each $i \in \{2, \ldots, r\}$, e_i is orthogonal to e and lies in $F = \{e\}_E^{\perp \perp}$, which is impossible. \blacksquare

Let $T: E \to F$ be a linear map between two JB^* -triples. We shall say that T is orthogonality preserving if $T(x) \perp T(y)$ whenever $x \perp y$. The mapping T is said to be biorthogonality preserving whenever the equivalence

$$x \perp y \Leftrightarrow T(x) \perp T(y)$$

holds for all x, y in E.

It can be easily seen that every biorthogonality preserving linear mapping $T: E \to F$ between JB^* -triples is injective. Indeed, for each $x \in E$, the condition T(x) = 0 implies that $T(x) \perp T(x)$, and hence $x \perp x$, which gives x = 0.

Orthogonality preserving bounded linear maps from a JB^* -algebra to a JB^* -triple were completely described in [11].

Before stating the result, let us recall some basic definitions. Two elements a and b in a JB^* -algebra J are said to operator commute in J if the multiplication operators M_a and M_b commute, where M_a is defined by $M_a(x) := a \circ x$. That is, a and b operator commute if and only if $(a \circ x) \circ b = a \circ (x \circ b)$ for all x in J. Self-adjoint elements a and b in J generate a JB^* -subalgebra that can be realised as a JC^* -subalgebra of some B(H) [36], and, in this realisation, a and b commute in the usual sense whenever they operator commute in J [33, Proposition 1]. Similarly, two self-adjoint elements a and b in J operator commute if and only if $a^2 \circ b = \{a, a, b\} = \{a, b, a\}$ (i.e., $a^2 \circ b = 2(a \circ b) \circ a - a^2 \circ b$). If $b \in J$ we use $\{b\}'$ to denote the set of elements in J that operator commute with b. We shall write Z(J) := J' for the center of J (this agrees with the usual notation in von Neumann algebras).

Theorem 3.8 ([11, Theorem 4.1]). Let $T: J \to E$ be a bounded linear mapping from a JB^* -algebra to a JB^* -triple. For $h = T^{**}(1)$ and r = r(h) the following assertions are equivalent:

- (a) T is orthogonality preserving.
- (b) There exists a unique Jordan *-homomorphism $S: J \to E_2^{**}(r)$ such that $S^{**}(1) = r$, S(J) and h operator commute, and $T(z) = h \circ_r S(z)$ for all $z \in J$.
- (c) T preserves zero triple products, that is, $\{T(x), T(y), T(z)\} = 0$ whenever $\{x, y, z\} = 0$.

The above characterisation proves that the bitranspose of an orthogonality preserving bounded linear mapping from a JB^* -algebra onto a JB^* -triple is also orthogonality preserving.

The following theorem was essentially proved in [11]. We include here a sketch of proof for completeness.

Theorem 3.9. Let $T: J \to E$ be a surjective linear operator from a JBW^* -algebra onto a JBW^* -triple and let h denote T(1). Then T is biorthogonality preserving if and only if r(h) is a unitary tripotent in E, h is an invertible element in the JB^* -algebra $E = E_2(r(h))$, and there exists a J-ordan * -isomorphism $S: J \to E = E_2(r(h))$ such that $S(J) \subseteq \{h\}'$ and $T = h \circ_{r(h)} S$. Further, if J is a factor (i.e. $Z(J) = \mathbb{C}1$) then T is a scalar multiple of a triple isomorphism.

Proof. The sufficiency is clear. We shall prove the necessity. To this end let $T: J \to E$ be a surjective linear operator from a JBW^* -algebra onto a JBW^* -triple and let $h = T(1) \in E$. We have already seen that every biorthogonality preserving linear mapping between JB^* -triples is injective. Therefore T is a linear bijection.

From Corollary 4.1(b) in [11] and its proof, we deduce that

$$T(J_{\mathrm{sa}}) \subseteq E_2(r(h))_{\mathrm{sa}}$$
, and hence $E = T(J) \subseteq E_2(r(h)) \subseteq E$.

This implies that $E = E_2(r(h))$, which ensures that r(h) is a unitary tripotent in E. Since the range tripotent of h, r(h), is the unit of $E_2(r(h))$, and h is a positive element in the JBW^* -algebra $E_2(r(h))$, we can easily check that h is invertible in $E_2(r(h))$. Furthermore, $h^{1/2}$ is invertible in $E_2(r(h))$ with inverse $h^{-1/2}$.

The proof of [11, Theorem 4.1] can be literally applied here to show the existence of a Jordan *-homomorphism $S: J \to E = E_2(r(h))$ such that $S(J) \subseteq \{h\}'$ and $T = h \circ_{r(h)} S$. Since, for each $x \in J$, h and S(x) operator commute and $h^{1/2}$ lies in the JB^* -subalgebra of $E_2(r(h))$ generated by h, we can easily check that S(x) and $h^{1/2}$ operator commute. Thus,

$$T = h \circ_{r(h)} S = U_{h^{1/2}}S,$$

where $U_{h^{1/2}}: E_2(r(h)) \to E_2(r(h))$ is the linear mapping defined by

$$U_{h^{1/2}}(x) = 2(h^{1/2} \circ_{r(h)} x) \circ_{r(h)} h^{1/2} - (h^{1/2} \circ_{r(h)} h^{1/2}) \circ_{r(h)} x.$$

It is well known that $h^{1/2}$ is invertible if and only if $U_{h^{1/2}}$ is an invertible operator and, in this case, $U_{h^{1/2}}^{-1}=U_{h^{-1/2}}$ (cf. [22, Lemma 3.2.10]). Therefore, $S=U_{h^{-1/2}}T$. It follows from the bijectivity of T that S is a Jordan *-isomorphism.

Finally, when $Z(J) = \mathbb{C}1$, the center of $E_2(r(h))$ also reduces to $\mathbb{C}r(h)$, and since h is an invertible element in the center of $E_2(r(h))$, we deduce that T is a scalar multiple of a triple isomorphism.

PROPOSITION 3.10. Let E_1 , E_2 and F be three JB^* -triples (respectively, JBW^* -triples). Let $T: E_1 \oplus^{\infty} E_2 \to F$ be a biorthogonality preserving linear surjection. Then $T(E_1)$ and $T(E_2)$ are norm closed (respectively, weak* closed) inner ideals of F, $B = T(A_1) \oplus^{\infty} T(A_2)$, and for $j = 1, 2, T|_{A_j}: A_j \to T(A_j)$ is a biorthogonality preserving linear surjection.

Proof. Fix $j \in \{1,2\}$. Since $E_j = E_j^{\perp \perp}$ and T is a biorthogonality preserving linear surjection, we deduce that $T(E_j) = T(E_j^{\perp \perp}) = T(E_j)^{\perp \perp}$. Lemma 3.1 guarantees that $T(E_j)$ is a norm closed inner ideal of F (respectively, a weak* closed inner ideal of F whenever E_1 , E_2 and F are JBW^* -triples). The rest of the assertion follows from Lemma 3.1 and the fact that F coincides with the orthogonal sum of $T(E_1)$ and $T(E_2)$.

4. Biorthogonality preservers between weakly compact JB^* -triples. The following theorem generalises [12, Theorem 5] by proving that biorthogonality preserving linear surjections between JB^* -triples send minimal tripotents to scalar multiples of minimal tripotents.

THEOREM 4.1. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples and let e be a minimal tripotent in E. Then $||T(e)||^{-1}T(e) = f_e$ is a minimal tripotent in F. Further, $T(E_2(e)) = F_2(f_e)$ and $T(E_0(e)) = F_0(f_e)$.

Proof. Since T is a biorthogonality preserving surjection, the equality

$$T(S_E^{\perp}) = T(S)_F^{\perp}$$

holds for every subset S of E. Lemma 3.1 ensures that for each minimal tripotent e in E, $\{T(e)\}_F^{\perp\perp} = T(\{e\}_E^{\perp\perp})$ is a norm closed inner ideal in F. By Proposition 3.7, $\{e\}_E^{\perp\perp}$ is a rank-one JB^* -triple, and hence $\{T(e)\}_F^{\perp\perp}$ cannot contain two nonzero orthogonal elements. Thus, $\{T(e)\}_F^{\perp\perp}$ is a rank-one JB^* -triple.

The arguments given in the proof of Proposition 3.7 above (see also Proposition 4.5.(iii) in [7] and its proof or [4, §3]) show that the inner ideal $\{T(e)\}_F^{\perp\perp}$ is a rank-one Cartan factor, and hence a type 1 Cartan factor of the form $L(H,\mathbb{C})$, where H is a complex Hilbert space, or a type 2 Cartan factor II_3 (it is known that II_3 is a JB^* -triple isomorphic to a 3-dimensional complex Hilbert space). This implies that $||T(e)||^{-1} T(e) = f_e$ is a minimal tripotent in F and $T(e) = \lambda_e f_e$ for a suitable $\lambda_e \in \mathbb{C} \setminus \{0\}$.

The equality $T(E_2(e)) = F_2(f_e)$ has been proved. Concerning the Peirce zero subspace we have

$$T(E_0(e)) = T(E_2(e)_E^{\perp}) = T(E_2(e))_F^{\perp} = F_2(f_e)_F^{\perp} = F_0(f_e).$$

Let H and H' be complex Hilbert spaces. Given $k \in H'$ and $h \in H$, we define $k \otimes h$ in L(H, H') by $k \otimes h(\xi) := (\xi | h)k$. Then every minimal tripotent

in L(H, H') can be written in the form $k \otimes h$, where h and k are norm-one elements in H and H', respectively. It can be easily seen that two minimal tripotents $k_1 \otimes h_1$ and $k_2 \otimes h_2$ are orthogonal if and only if $h_1 \perp h_2$ and $k_1 \perp k_2$.

THEOREM 4.2. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples, where E is a type $I_{n,m}$ Cartan factor with $n, m \geq 2$. Then there exists a positive real number λ such that $||T(e)|| = \lambda$ for every minimal tripotent e in E.

Proof. Let H, H' be complex Hilbert spaces such that E = L(H, H'). Let $e_1 := k_1 \otimes h_1$ and $e_2 := k_2 \otimes h_2$ be two minimal tripotents in E. We write $H_1 = \text{span}(\{h_1, h_2\})$ and $H'_1 = \text{span}(\{k_1, k_2\})$. The tripotents $k_1 \otimes h_1$ and $k_2 \otimes h_2$ can be identified with elements in $L(H_1, H'_1)$. By Theorem 4.1, $T(e_1) = \alpha_1 f_1$ and $T(e_2) = \alpha_2 f_2$, where f_1 and f_2 are two minimal tripotents in F.

If $\dim(H_1) = \dim(H'_1) = 2$, then the norm closed inner ideal E_{e_1,e_2} of E generated by e_1 and e_2 identifies with $L(H_1, H'_1)$, which is JB^* -isomorphic to $M_2(\mathbb{C})$ and coincides with the inner ideal generated by the orthogonal minimal tripotents $g_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $g_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, where $g_1 + g_2$ is the unit element in $E_{e_1,e_2} \cong M_2(\mathbb{C})$.

By Theorem 4.1, $w_1 := \frac{1}{\|T(g_1)\|}T(g_1)$ and $w_2 := \frac{1}{\|T(g_2)\|}T(g_2)$ are orthogonal minimal tripotents in F. The element $w = w_1 + w_2$ is a rank-2 tripotent in F and coincides with the range tripotent of the element $h = T(g_1 + g_2) = \|T(g_1)\|w_1 + \|T(g_2)\|w_2$. By Theorem 3.8 (see also [11, Corollary 4.1(b)]), $T(E_{e_1,e_2}) \subseteq F_2(w)$. It is not hard to see that h is invertible in $F_2(w)$ with inverse $h^{-1} = \frac{1}{\|T(g_1)\|}w_1 + \frac{1}{\|T(g_2)\|}w_2$.

The inner ideal E_{e_1,e_2} is finite-dimensional, $T(E_{e_1,e_2})$ is norm closed and $T|_{E_{e_1,e_2}}: E_{e_1,e_2} \to F$ is a continuous biorthogonality preserving linear operator. Theorem 3.8 guarantees the existence of a Jordan *-homomorphism $S: E_{e_1,e_2} \cong M_2(\mathbb{C}) \to F_2(w)$ such that $S(g_1 + g_2) = w$, $S(E_{e_1,e_2})$ and h operator commute and

(4.1)
$$T(z) = h \circ_w S(z) \quad \text{ for all } z \in E_{e_1, e_2}.$$

It follows from the operator commutativity of h^{-1} and $S(E_{e_1,e_2})$ that $S(z) = h^{-1} \circ_w T(z)$ for all $z \in E_{e_1,e_2}$. The injectivity of T implies that S is a Jordan *-monomorphism.

Lemma 2.7 in [19] shows that $F_2(w) = F_2(w_1+w_2)$ coincides with $\mathbb{C} \oplus^{\ell_{\infty}} \mathbb{C}$ or with a spin factor. Since $4 = \dim(T(E_{e_1,e_2})) \leq \dim(F_2(w))$, we deduce that $F_2(w)$ is a spin factor with inner product $(\cdot|\cdot)$ and conjugation $x \mapsto \overline{x}$. From Remark 2.1, we may assume, without loss of generality, that $(w_1|w_1) = 1/2$, $(w_1|\overline{w}_1) = 0$, and $w_2 = \overline{w}_1$.

Now, we take $g_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $g_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ in E_{e_1,e_2} . The elements $w_3 := S(g_3)$ and $w_4 := S(g_4)$ are orthogonal minimal tripotents in $F_2(w)$ with $\{w_i, w_i, w_j\} = \frac{1}{2}w_j$ for every $(i, j), (j, i) \in \{1, 2\} \times \{3, 4\}$. Applying again Remark 2.1, we may assume that $(w_3|w_3) = 1/2$, $(w_3|\overline{w}_3) = 0$, $w_4 = \overline{w}_3$, and $(w_3|w_1) = (w_3|w_2) = 0$. Applying the definition of the triple product in a spin factor given in (2.4) we can check that $(w_1, w_3, w_2 = \overline{w}_1, w_4 = \overline{w}_3)$ are four minimal tripotents in $F_2(w)$ with $w_1 \perp w_2, w_3 \perp w_4, \{w_i, w_i, w_j\} = \frac{1}{2}w_j$ for every $(i, j), (j, i) \in \{1, 2\} \times \{3, 4\}, \{w_1, w_3, w_2\} = -\frac{1}{2}w_4, \{w_3, w_2, -w_4\} = \frac{1}{2}w_1, \{w_2, -w_4, w_1\} = \frac{1}{2}w_3$, and $\{-w_4, w_1, w_3\} = \frac{1}{2}w_2$. Thus, denoting by M the JB^* -subtriple of $F_2(w)$ generated by w_1, w_3, w_2 , and w_4 , we have shown that M is a JB^* -triple isomorphic to $M_2(\mathbb{C})$.

Combining (4.1) and (2.4) we get

$$T(g_3) = h \circ_w S(g_3) = \{h, w, w_3\} = \frac{\|T(g_1)\| + \|T(g_2)\|}{2} w_3,$$

$$T(g_4) = h \circ_w S(g_4) = \{h, w, w_4\} = \frac{\|T(g_1)\| + \|T(g_2)\|}{2} w_4.$$

Since $T(g_1) = ||T(g_1)||w_1, T(g_2) = ||T(g_2)||w_2$, and E_{e_1,e_2} is linearly generated by g_1, g_2, g_3 and g_4 , we deduce that $T(E_{e_1,e_2}) \subseteq M$ with $4 = \dim(T(E_{e_1,e_2})) \le \dim(M) = 4$. Thus, $T(E_{e_1,e_2}) = M$ is a JB^* -subtriple of F.

The mapping $T|_{E_{e_1,e_2}}: E_{e_1,e_2} \cong M_2(\mathbb{C}) \to T(E_{e_1,e_2})$ is a continuous biorthogonality preserving linear bijection. Theorem 3.9 implies that $T|_{E_{e_1,e_2}}$ is a (nonzero) scalar multiple of a triple isomorphism, and hence $||T(e_1)|| = ||T(e_2)||$.

If $\dim(H_1') = 1$, then $L(H_1, H_1')$ is a rank-one JB^* -triple. Since $n, m \geq 2$, we can find a minimal tripotent e in E such that the norm closed inner ideals of E generated by $\{e, e_1\}$ and $\{e, e_2\}$ both coincide with $M_2(\mathbb{C})$. The arguments in the above paragraph show that $||T(e_1)|| = ||T(e)|| = ||T(e_2)||$.

Finally, the case $\dim(H_1) = 1$ follows from the same arguments.

REMARK 4.3. Given a sequence $(\mu_n) \subset c_0$ and a bounded sequence (x_n) in a Banach space X, the series $\sum_k \mu_k x_k$ need not be, in general, convergent in X. However, when (x_n) is a bounded sequence of mutually orthogonal elements in a JB^* -triple E, the equality

$$\left\| \sum_{k=1}^{n} \mu_k x_k - \sum_{k=1}^{m} \mu_k x_k \right\| = \max\{|\mu_{n+1}|, \dots, |\mu_m|\} \sup\{\|x_n\|\}$$

holds for every n < m in \mathbb{N} . It follows that $(\sum_{k=1}^n \mu_k x_k)$ is a Cauchy sequence and hence converges in E.

The following three results generalise [12, Lemmas 8, 9 and Proposition 10] to the setting of JB^* -triples.

LEMMA 4.4. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples and let (e_n) be a sequence of mutually orthogonal minimal tripotents in E. Then there exist positive constants $m \leq M$ satisfying $m \leq ||T(e_n)|| \leq M$ for all $n \in \mathbb{N}$.

Proof. We deduce from Theorem 4.1 that, for each natural n, there exist a minimal tripotent f_n and a scalar $\lambda_n \in \mathbb{C} \setminus \{0\}$ such that $T(e_n) = \lambda_n f_n$, where $||T(e_n)|| = \lambda_n$. Note that T being biorthogonality preserving implies (f_n) is a sequence of mutually orthogonal minimal tripotents in F.

Let (μ_n) be any sequence in c_0 . Since the e_n 's are mutually orthogonal the series $\sum_{k\geq 1} \mu_k e_k$ converges to an element in E (cf. Remark 4.3). For each natural n, $\sum_{k\geq 1} \mu_k e_k$ decomposes as the orthogonal sum of $\mu_n e_n$ and $\sum_{k\neq n} \mu_k e_k$, therefore

$$T\left(\sum_{k\geq 1}\mu_k e_k\right) = \mu_n \lambda_n f_n + T\left(\sum_{k\neq n}\mu_k e_k\right)$$

with $\mu_n \lambda_n f_n \perp T(\sum_{k \neq n}^{\infty} \mu_k e_k)$, which in particular implies

$$\left\| T\left(\sum_{k>1} \mu_k e_k\right) \right\| = \max\left\{ |\mu_n| |\lambda_n|, \left\| T\left(\sum_{k\neq n} \mu_k e_k\right) \right\| \right\} \ge |\mu_n| |\lambda_n|.$$

This establishes that, for each (μ_n) in c_0 , $(\mu_n \lambda_n)$ is a bounded sequence, which in particular implies that (λ_n) is bounded.

Finally, since T is a biorthogonality preserving linear surjection and $T^{-1}(f_n) = \lambda_n^{-1} e_n$, we can similarly show that (λ_n^{-1}) is also bounded.

LEMMA 4.5. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples, (μ_n) a sequence in c_0 , and (e_n) a sequence of mutually orthogonal minimal tripotents in E. Then the sequence $(T(\sum_{k\geq n}\mu_k e_k))_n$ is well defined and converges in norm to zero.

Proof. From Theorem 4.1 and Lemma 4.4 it follows that $(T(e_n))$ is a bounded sequence of mutually orthogonal elements in F. Let M denote a bound of the above sequence. For each natural n, Remark 4.3 ensures that the series $\sum_{k>n} \mu_k e_k$ converges.

Define $y_n := T(\sum_{k \ge n} \mu_k e_k)$. We claim that (y_n) is a Cauchy sequence in F. Indeed, given n < m in \mathbb{N} , we have

(4.2)
$$||y_n - y_m|| = ||T(\sum_{k \ge n}^{m-1} \mu_k e_k)|| = ||\sum_{k \ge n}^{m-1} \mu_k T(e_k)||$$

$$\le M \max\{|\mu_n|, \dots, |\mu_{m-1}|\},$$

where in the last inequality we have used the fact that $(T(e_n))$ is a sequence of mutually orthogonal elements. Consequently, (y_n) converges in norm to some element y_0 in F. Let z_0 denote $T^{-1}(y_0)$.

Fix a natural m. By hypothesis, for each n > m, e_m is orthogonal to $\sum_{k \geq n} \mu_k e_k$. This implies that $T(e_m) \perp y_n$ for every n > m, which in particular implies $\{T(e_m), T(e_m), y_n\} = 0$ for every n > m. Letting n tend to ∞ we have $\{T(e_m), T(e_m), y_0\} = 0$. This shows that $y_0 = T(z_0)$ is orthogonal to $T(e_m)$, and hence $e_m \perp z_0$. Since m was arbitrary, we deduce that z_0 is orthogonal to $\sum_{k \geq n} \mu_k e_k$ for every n. Therefore, $(y_n) \subset \{y_0\}^{\perp}$, and hence y_0 belongs to the norm closure of $\{y_0\}^{\perp}$, which implies $y_0 = 0$.

PROPOSITION 4.6. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples, where E is weakly compact. Then T is continuous if and only if the set $T := \{ ||T(e)|| : e \text{ a minimal tripotent in } E \}$ is bounded. Moreover, in that case $||T|| = \sup(T)$.

Proof. The necessity being obvious, suppose that

$$M = \sup\{||T(e)|| : e \text{ a minimal tripotent in } E\} < \infty.$$

Since E is weakly compact, each nonzero element x of E can be written as a norm convergent (possibly finite) sum $x = \sum_{n} \lambda_n u_n$, where u_n are mutually orthogonal minimal tripotents of E, and $||x|| = \sup\{|\lambda_n| : n \ge 1\}$ (cf. Remark 4.6 in [7]). If the series $x = \sum_{n} \lambda_n u_n$ is finite then

$$||T(x)|| = \left\| \sum_{n=1}^{m} \lambda_n T(u_n) \right\| \stackrel{(*)}{=} \max\{ \|\lambda_n T(u_n)\| : n = 1, \dots, m \} \le M ||x||,$$

where at (*) we apply the fact that $(T(u_n))$ is a finite set of mutually orthogonal tripotents in F. When the series $x = \sum_n \lambda_n u_n$ is infinite we may assume that $(\lambda_n) \in c_0$.

It follows from Lemma 4.5 that the sequence $(T(\sum_{k\geq n}\lambda_k u_k))_n$ is well defined and converges in norm to zero. We can find a natural m such that $\|T(\sum_{k\geq m}\lambda_k u_k)\| < M\|x\|$. Since the elements $\lambda_1 u_1, \ldots, \lambda_{m-1} u_{m-1}, \sum_{k\geq m}\lambda_k u_k$ are mutually orthogonal, we have

$$||T(x)|| = \max \left\{ ||T(\lambda_1 u_1)||, \dots, ||T(\lambda_{m-1} u_{m-1})||, ||T(\sum_{k \ge m} \lambda_k u_k)||\right\}$$

$$\le M||x||. \blacksquare$$

Let E be an elementary JB^* -triple of type 1 (that is, an elementary JB^* -triple such that E^{**} is a type 1 Cartan factor), and let $T: E \to F$ be a biorthogonality preserving linear surjection from E onto another JB^* -triple. Then by Theorem 4.2 and Proposition 4.6, T is continuous. Further, we claim that T is a scalar multiple of a triple isomorphism. Indeed, let us see that $S = (1/\lambda)T$ is a triple isomorphism, where $\lambda = ||T(e)|| = ||T||$ for some (and hence any) minimal tripotent e in E (cf. Theorem 4.2). Let $x \in E$. Then $x = \sum_n \lambda_n e_n$ for a suitable $(\lambda_n) \in c_0$ and a family of mutually orthogonal minimal tripotents (e_n) in E [7, Remark 4.6]. Then by observing that T is

continuous we have

$$||S(x)|| = \frac{1}{\lambda} ||T(x)|| = \frac{1}{\lambda} ||T(\sum_{n} \lambda_n e_n)|| = \frac{1}{\lambda} ||\sum_{n} \lambda_n T(e_n)||$$
$$= \frac{1}{\lambda} \sup_{n} |\lambda_n| ||T(e_n)|| = \frac{1}{\lambda} \sup_{n} |\lambda_n| \lambda = \sup_{n} |\lambda_n| = ||x||.$$

This proves that S is a surjective linear isometry between JB^* -triples, and hence a triple isomorphism (see [26, Proposition 5.5], [5, Corollary 3.4], [18, Theorem 2.2]). We have thus proved the following result:

COROLLARY 4.7. Let $T: E \to F$ a biorthogonality preserving linear surjection from a type 1 elementary JB^* -triple of rank greater than one onto another JB^* -triple. Then T is a scalar multiple of a triple isomorphism.

Let p and q be two minimal projections in a C^* -algebra A with $q \neq p$. It is known that the C^* -subalgebra of A generated by p and q is isometrically isomorphic to $\mathbb{C} \oplus^{\infty} \mathbb{C}$ when p and q are orthogonal, and isomorphic to $M_2(\mathbb{C})$ otherwise. More concretely, by [31, Theorem 1.3] (see also [29, §3]), denoting by $C_{p,q}$ the C^* -subalgebra of A generated by p and q, we have the following statements:

- (a) If $p \perp q$ then there exists an isometric C^* -isomorphism $\Phi: C_{p,q} \to \mathbb{C} \oplus^{\infty} \mathbb{C}$ such that $\Phi(p) = (1,0)$ and $\Phi(q) = (0,1)$.
- (b) If p and q are not orthogonal then there exist 0 < t < 1 and an isometric C^* -isomorphism $\Phi: C_{p,q} \to M_2(\mathbb{C})$ such that

$$\Phi(p) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } \Phi(q) = \begin{pmatrix} t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1-t \end{pmatrix}.$$

In the setting of JB^* -algebras we have:

LEMMA 4.8. Let p and q be two minimal projections in a JB^* -algebra J with $q \neq p$ and let $J_{p,q}$ denote the JB^* -subalgebra of J generated by p and q.

- (a) If $p \perp q$ then there exists an isometric JB^* -isomorphism $\Phi: J_{p,q} \to \mathbb{C} \oplus^{\infty} \mathbb{C}$ such that $\Phi(p) = (1,0)$ and $\Phi(q) = (0,1)$.
- (b) If p and q are not orthogonal then there exist 0 < t < 1 and an isometric JB^* -isomorphism $\Phi: C \to S_2(\mathbb{C})$ such that

$$\Phi(p) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad and \quad \Phi(q) = \begin{pmatrix} t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1-t \end{pmatrix},$$

where $S_2(\mathbb{C})$ denotes the type 3 Cartan factor of all symmetric operators on a two-dimensional complex Hilbert space.

Moreover, the JB^* -subtriple of J generated by p and q coincides with $J_{p,q}$.

Proof. Statement (a) is clear. Now assume that p and q are not orthogonal. The Shirshov–Cohn theorem (see [22, Theorem 7.2.5]) ensures that $J_{p,q}$ is a JC^* -algebra, that is, a Jordan *-subalgebra of some C^* -algebra A. The symbol $C_{p,q}$ will stand for the (associative) C^* -subalgebra of A generated by p and q. Set

$$P := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $Q := \begin{pmatrix} t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1-t \end{pmatrix}$.

We have already mentioned that there exist 0 < t < 1 and an isometric C^* -isomorphism $\Phi: C_{p,q} \to M_2(\mathbb{C})$ such that $\Phi(p) = P$ and $\Phi(q) = Q$.

Since $J_{p,q}$ is a Jordan *-subalgebra of $C_{p,q}$, $J_{p,q}$ can be identified with the Jordan *-subalgebra of $M_2(\mathbb{C})$ generated by the matrices P and Q. It can be easily checked that

$$P \circ Q = \begin{pmatrix} t & \frac{1}{2}\sqrt{t(1-t)} \\ \frac{1}{2}\sqrt{t(1-t)} & 0 \end{pmatrix},$$

$$2P \circ Q - 2tP = \begin{pmatrix} 0 & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 0 \end{pmatrix},$$

$$Q - (2P \circ Q - 2tP) - tP = \begin{pmatrix} 0 & 0 \\ 0 & 1-t \end{pmatrix}.$$

These identities show that $J_{p,q}$ contains the generators of the JB^* -algebra $S_2(\mathbb{C})$, and hence identifies with $S_2(\mathbb{C})$.

In order to prove the last assertion, let $E_{p,q}$ denote the JB^* -subtriple of J generated by p and q. As $J_{p,q}$ is itself a subtriple containing p and q, we have $E_{p,q} \subseteq J_{p,q}$. If $p \perp q$ then it can easily be seen that $E_{p,q} \cong \mathbb{C} \oplus^{\infty} \mathbb{C} \cong J_{p,q}$. Now assume that p and q are not orthogonal.

From Proposition 5 in [20], $E_{p,q}$ is a JB^* -triple isometrically isomorphic to $M_{1,2}(\mathbb{C})$ or $S_2(\mathbb{C})$. If $E_{p,q}$ is a rank-one JB^* -triple, that is, $E \cong M_{1,2}(\mathbb{C})$, then $P_0(p)(q)$ must be zero. Thus, according to the above representation, we have 1-t=0, which is impossible. \blacksquare

A JB^* -algebra which is a weakly compact JB^* -triple will be called weakly compact or dual (see [6]). Every positive element x in a weakly compact JB^* -algebra J can be written in the form $x = \sum_n \lambda_n p_n$ for a suitable $(\lambda_n) \in c_0$ and a family (p_n) of mutually orthogonal minimal projections in J (see Theorem 3.3 in [6]).

Our next theorem extends [12, Theorem 11].

Theorem 4.9. Let $T: J \to E$ be a biorthogonality preserving linear surjection from a weakly compact JB^* -algebra onto a JB^* -triple. Then T is continuous and $||T|| \le 2 \sup\{||T(p)|| : p \text{ a minimal projection in } J\}$.

Proof. Since J is a JB^* -algebra, it is enough to show that T is bounded on positive norm-one elements. In this case, it suffices to prove that the set

$$\mathcal{P} = \{ ||T(p)|| : p \text{ a minimal projection in } J \}$$

is bounded (cf. the proof of Proposition 4.6).

Suppose, on the contrary, that \mathcal{P} is unbounded. We shall show by induction that there exists a sequence (p_n) of mutually orthogonal minimal projections in J such that $||T(p_n)|| > n$.

The case n=1 is clear. The induction hypothesis guarantees the existence of mutually orthogonal minimal projections p_1, \ldots, p_n in J with $||T(p_k)|| > k$ for all $k \in \{1, \ldots, n\}$.

By assumption, there exists a minimal projection $q \in J$ satisfying

$$||T(q)|| > \max\{||T(p_1)||, \dots, ||T(p_n)||, n+1\}.$$

We claim that q must be orthogonal to each p_j . If that is not the case, there exists j such that p_j and q are not orthogonal. Let C denote the JB^* -subtriple of J generated by q and p_j . We conclude from Lemma 4.8 that C is isomorphic to the JB^* -algebra $S_2(\mathbb{C})$.

Let $g_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $g_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $g_1 + g_2$ is the unit element in $C \cong S_2(\mathbb{C})$. By Theorem 4.1, $w_1 := \frac{1}{\|T(g_1)\|}T(g_1)$ and $w_2 := \frac{1}{\|T(g_2)\|}T(g_2)$ are two orthogonal minimal tripotents in E. The element $w = w_1 + w_2$ is a rank-2 tripotent in E and coincides with the range tripotent of the element $h = T(g_1 + g_2) = \|T(g_1)\|w_1 + \|T(g_2)\|w_2$. Furthermore, h is invertible in $E_2(w)$, and by Theorem 3.8 (see also [11, Corollary 4.1(b)]), $T(C) \subseteq E_2(w)$.

The rest of the argument is parallel to the argument in the proof of Theorem 4.2.

The finite-dimensionality of the JB^* -subtriple C ensures that T(C) is norm closed and $T|_C: C \cong S_2(\mathbb{C}) \to E$ is a continuous biorthogonality preserving linear operator. Theorem 3.8 guarantees the existence of a Jordan *-homomorphism $S: C \to E_2(w)$ such that $S(g_1 + g_2) = w$, S(C) and h operator commute and

(4.3)
$$T(z) = h \circ_w S(z) \quad \text{ for all } z \in C.$$

It follows from the operator commutativity of h^{-1} and S(C) that $S(z) = h^{-1} \circ_w T(z)$ for all $z \in C$. The injectivity of T implies that S is a Jordan *-monomorphism.

Lemma 2.7 in [19] shows that $E_2(w) = E_2(w_1 + w_2)$ coincides with $\mathbb{C} \oplus^{\ell_{\infty}} \mathbb{C}$ or with a spin factor. Since $3 = \dim(T(C)) \leq \dim(E_2(w))$, we deduce that $E_2(w)$ is a spin factor with inner product $(\cdot|\cdot)$ and conjugation $x \mapsto \overline{x}$. We may assume, by Remark 2.1, that $(w_1|w_1) = 1/2$, $(w_1|\overline{w}_1) = 0$, and $w_2 = \overline{w}_1$.

Now, taking $g_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in C \cong S_2(\mathbb{C})$, the element $w_3 := S(g_3)$ is a tripotent in $E_2(w)$ with $\{w_i, w_i, w_3\} = \frac{1}{2}w_3$ for every $i \in \{1, 2\}$. Remark 2.1 implies that $(w_3|w_1) = (w_3|w_2) = 0$. Let M denote the JB^* -subtriple of $E_2(w)$ generated by w_1, w_2 , and w_3 . The mapping $S: C \cong S_2(\mathbb{C}) \to M$ is a Jordan *-isomorphism.

Combining (4.3) and (2.4) we get

$$T(g_3) = h \circ_w S(g_3) = \{h, w, w_3\} = \frac{\|T(g_1)\| + \|T(g_2)\|}{2} w_3.$$

Since $T(g_1) = ||T(g_1)||w_1$, $T(g_2) = ||T(g_2)||w_2$, and C is linearly generated by g_1 , g_2 and g_3 , we deduce that $T(C) \subseteq M$ with $3 = \dim(T(C)) \le \dim(M) = 3$. Thus, T(C) = M is a JB^* -subtriple of E.

The mapping $T|_C: C \cong S_2(\mathbb{C}) \to T(C)$ is a continuous biorthogonality preserving linear bijection. Theorem 3.9 guarantees the existence of a scalar $\lambda \in \mathbb{C} \setminus \{0\}$ and a triple isomorphism $\Psi: C \to T(C)$ such that $T(x) = \lambda \Psi(x)$ for all $x \in C$. Since p_j and q are projections, $\|\Psi(q)\| = \|\Psi(p_j)\| = 1$. Hence $\|T(p_j)\| = |\lambda|$ and $\|T(q)\| = |\lambda|$, contradicting the induction hypothesis. Therefore $q \perp p_j$ for every $j = 1, \ldots, n$.

It follows by induction that there exists a sequence (p_n) of mutually orthogonal minimal projections in J such that $||T(p_n)|| > n$. The series $\sum_{n=1}^{\infty} (1/\sqrt{n})p_n$ defines an element a in J (cf. Remark 4.3). For each natural m, a decomposes as the orthogonal sum of $(1/\sqrt{m})p_m$ and $\sum_{n\neq m} (1/\sqrt{n})p_n$, therefore

$$T(a) = \frac{1}{\sqrt{m}}T(p_m) + T\left(\sum_{n \neq m} \frac{1}{\sqrt{n}}p_n\right),$$

with orthogonal summands. This argument implies that

$$||T(a)|| = \max \left\{ \frac{1}{\sqrt{m}} ||T(p_m)||, \ \left\| T\left(\sum_{n \neq m} \frac{1}{\sqrt{n}} p_n\right) \right\| \right\} > \sqrt{m}.$$

Since m was arbitrary, we have arrived at the desired contradiction. \blacksquare

By Proposition 2 in [23], every Cartan factor of type 1 with $\dim(H) = \dim(H')$, every Cartan factor of type 2 with $\dim(H)$ even or infinite, and every Cartan factor of type 3 is a JBW^* -algebra factor for a suitable Jordan product and involution. In the case of C being a Cartan factor which is also a JBW^* -algebra, the corresponding elementary JB^* -triple K(C) is a weakly compact JB^* -algebra.

COROLLARY 4.10. Let K be an elementary JB^* -triple of type 1 with $\dim(H) = \dim(H')$, or of type 2 with $\dim(H)$ even or infinite, or of type 3. Suppose that $T: K \to E$ is a biorthogonality preserving linear surjection from K onto a JB^* -triple. Then T is continuous. Further, since K^{**} is a

 JBW^* -algebra factor, Theorem 3.9 ensures that T is a scalar multiple of a triple isomorphism. \blacksquare

Theorem 4.11. Let $T: E \to F$ be a biorthogonality preserving linear surjection between JB^* -triples, where E is weakly compact containing no infinite-dimensional rank-one summands. Then T is continuous.

Proof. Since E is a weakly compact JB^* -triple, the statement follows from Proposition 4.6 as soon as we prove that the set

$$\mathcal{T} := \{ ||T(e)|| : e \text{ a minimal tripotent in } E \}$$

is bounded.

We know that $E = \bigoplus_{\alpha \in \Gamma}^{c_0} K_{\alpha}$, where $\{K_{\alpha} : \alpha \in \Gamma\}$ is a family of elementary JB^* -triples (see Lemma 3.3 in [7]). Now, Lemma 3.1 guarantees that $T(K_{\alpha}) = T(K_{\alpha}^{\perp \perp}) = T(K_{\alpha})^{\perp \perp}$ is a norm closed inner ideal for every $\alpha \in \Gamma$.

For each $\alpha \in \Gamma$, K_{α} is finite-dimensional, or a type 1 elementary JB^* -triple of rank greater than one, or a JB^* -algebra. It follows, by Corollary 4.7 and Theorem 4.9, that $T|_{K_{\alpha}}: K_{\alpha} \to T(K_{\alpha})$ is continuous.

Suppose that \mathcal{T} is unbounded. Having in mind that every minimal tripotent in E belongs to a unique factor K_{α} , by Proposition 4.6, there exists a sequence (e_n) of mutually orthogonal minimal tripotents in E such that $||T(e_n)||$ diverges to $+\infty$. The element $z := \sum_{n=1}^{\infty} ||T(e_n)||^{-1/2} e_n$ lies in E and hence $||T(z)|| < \infty$. We fix an arbitrary natural m. Since $z - ||T(e_m)||^{-1/2} e_m$ and $||T(e_m)||^{-1/2} e_m$ are orthogonal, we have

$$T(z - ||T(e_m)||^{-1/2}e_m) \perp T(||T(e_m)||^{-1/2}e_m),$$

and hence

$$||T(z)|| = ||T(z - ||T(e_m)||^{-1/2}e_m)| + T(||T(e_m)||^{-1/2}e_m)||$$

$$= \max\{||T(z - ||T(e_m)||^{-1/2}e_m)||, ||T(e_m)||^{-1/2}||T(e_m)||\} \ge \sqrt{||T(e_m)||},$$

which contradicts that $||T(e_m)||^{1/2} \to +\infty$. Therefore \mathcal{T} is bounded.

COROLLARY 4.12. Let $T: E \to F$ be a biorthogonality preserving linear surjection between two JB^* -triples, where K(E) contains no infinite-dimensional rank-one summands. Then $T|_{K(E)}: K(E) \to K(F)$ is continuous.

Proof. Pick $x \in K(E)$. It can be written in the form $x = \sum_{n} \lambda_n u_n$, where u_n are mutually orthogonal minimal tripotents of E, and $||x|| = \sup\{|\lambda_n| : n \ge 1\}$ (cf. Remark 4.6 in [7]). For each natural m we define $y_m := T(\sum_{n \ge m+1} \lambda_n u_n)$. Theorem 4.1 guarantees that $T(x_m) = T(\sum_{n=1}^m \lambda_n u_n)$ defines a sequence in K(F).

Since, by Lemma 4.5, $y_m \to 0$ in norm, we deduce that $T(x_m) = T(x) - y_m$ tends to T(x) in norm. Therefore T(K(E)) = K(F) and $T|_{K(E)} : K(E) \to K(F)$ is a biorthogonality preserving linear surjection between weakly compact JB^* -triples. The result now follows from Theorem 4.11.

REMARK 4.13. In Remark 15 of [10] it was already pointed out that the conclusion of Theorem 4.11 is no longer true if we allow E to have infinite-dimensional rank-one summands. Indeed, let $E = L(H) \oplus^{\infty} L(H, \mathbb{C})$, where H is an infinite-dimensional complex Hilbert space. We can always find an unbounded bijection $S: L(H, \mathbb{C}) \to L(H, \mathbb{C})$. Since $L(H, \mathbb{C})$ is a rank-one JB^* -triple, S is a biorthogonality preserving linear bijection and the mapping $T: E \to E$ given by $x + y \mapsto x + S(y)$ has the same properties.

COROLLARY 4.14. Two weakly compact JB^* -triples containing no rankone summands are isomorphic if and only if there exists a biorthogonality preserving linear surjection between them.

5. Biorthogonality preservers between atomic JBW^* -triples. A JBW^* -triple E is said to be atomic if it coincides with the weak* closed ideal generated by its minimal tripotents. Every atomic JBW^* -triple can be written as an ℓ_{∞} -sum of Cartan factors [21].

The aim of this section is to study when the existence of a biorthogonality preserving linear surjection between two atomic JBW^* -triples implies that they are isomorphic (note that continuity is not assumed). We shall establish an automatic continuity result for biorthogonality preserving linear surjections between atomic JBW^* -triples containing no rank-one factors.

Before dealing with the main result, we survey some results describing the elements in the predual of a Cartan factor. We make use of the description of the predual of L(H) in terms of the trace class operators (cf. [32, $\S II.1$]). The results, included here for completeness, are direct consequences of this description but we do not know an explicit reference.

Let C = L(H, H') be a type 1 Cartan factor. Lemma 2.6 in [30] ensures that each φ in C_* can be written in the form $\varphi := \sum_{n=1}^{\infty} \lambda_n \varphi_n$, where (λ_n) is a sequence in ℓ_1^+ and each φ_n is an extreme point of the closed unit ball of C_* . More concretely, for each natural n there exist norm-one elements $h_n \in H$ and $k_n \in H'$ such that $\varphi_n(x) = (x(h_n)|k_n)$ for every $x \in C$, that is, for each natural n there exists a minimal tripotent e_n in C such that $P_2(e_n)(x) = \varphi_n(x)e_n$ for every $x \in C$ (cf. [20, Proposition 4]).

We now consider (infinite-dimensional) type 2 and type 3 Cartan factors. Let j be a conjugation on a complex Hilbert space H, and consider the linear involution on L(H) defined by $x \mapsto x^t := jx^*j$. Let $C_2 = \{x \in L(H) : x \in L(H) : x$

 $x^t = -x$ and $C_3 = \{x \in L(H) : x^t = x\}$ be Cartan factors of type 2 and 3, respectively.

Noticing that $L(H) = C_2 \oplus C_3$, it is easy to see that every element φ in $(C_2)_*$ (respectively, $(C_3)_*$) admits an extension of the form $\widetilde{\varphi} = \varphi \pi$, where π denotes the canonical projection of L(H) onto C_2 (respectively, C_3). Making use of [32, Lemma 1.5], we can find an element $x_{\widetilde{\varphi}} \in K(H)$ satisfying

(5.1)
$$(x_{\widetilde{\varphi}}(h)|k) = \widetilde{\varphi}(h \otimes k) \quad (h, k \in H).$$

Since, for each $x \in L(H)$, $\widetilde{\varphi}(x) = \frac{1}{2}\widetilde{\varphi}(x-x^t)$, we can easily check, via (5.1), that $x_{\widetilde{\varphi}}^t = -x_{\widetilde{\varphi}}$. Therefore $x_{\widetilde{\varphi}} \in K_2 = K(C_2)$. From [7, Remark 4.6] it may be deduced that $x_{\widetilde{\varphi}}$ can be (uniquely) written as a norm convergent (possibly finite) sum $x_{\widetilde{\varphi}} = \sum_n \lambda_n u_n$, where u_n are mutually orthogonal minimal tripotents in K_2 and $(\lambda_n) \in c_0$ (notice that u_n is a minimal tripotent in C_2 but it need not be minimal in L(H); in any case, either u_n is minimal in L(H) or it can be written as a convex combination of two minimal tripotents in L(H)). For each $(\beta_n) \in c_0$, $z := \sum_n \beta_n u_n \in K_2$ and, by (5.1), $\sum_n \lambda_n \beta_n = \widetilde{\varphi}(z) = \varphi(z) < \infty$. Thus, $(\lambda_n) \in \ell_1$, and another application of (5.1) shows that $\varphi(x) = \sum_n \lambda_n \varphi_n(x)$ for all $x \in C_2$, where φ_n lies in $(C_2)_*$ and satisfies $P_2(u_n)(x) = \varphi_n(x)u_n$. A similar reasoning remains true for C_3 .

We have thus proved:

PROPOSITION 5.1. Let C be an infinite-dimensional Cartan factor of type 1, 2 or 3. For each φ in C_* , there exist a sequence $(\lambda_n) \in \ell_1$ and a sequence (u_n) of mutually orthogonal minimal tripotents in C such that

$$\|\varphi\| = \sum_{n=1}^{\infty} |\lambda_n| \quad and \quad \varphi(x) = \sum_n \lambda_n \varphi_n(x) \quad (x \in C),$$

where for each $n \in \mathbb{N}$, $\varphi_n(x)u_n = P_2(u_n)(x)$ $(x \in C)$.

Let $T: E \to F$ be a biorthogonality preserving linear surjection between atomic JBW^* -triples, where E contains no rank-one Cartan factors. In this case K(E) and K(F) are weakly compact JB^* -triples with $K(E)^{**} = E$ and $K(F)^{**} = F$. Corollary 4.12 ensures that $T|_{K(E)}: K(E) \to K(F)$ is continuous. This is not, a priori, enough to guarantee that T is continuous. In fact, for each nonreflexive Banach space X there exists an unbounded linear operator $S: X^{**} \to X^{**}$ such that $S|_X: X \to X$ is continuous. The main result of this section establishes that a mapping T as above is automatically continuous.

Theorem 5.2. Let $T: E \to F$ be a biorthogonality preserving linear surjection between atomic JBW^* -triples, where E contains no rank-one Cartan factors. Then T is continuous.

Proof. Corollary 4.12 ensures that $T|_{K(E)}: K(E) \to K(F)$ is continuous. By Lemma 3.3 in [7], K(E) decomposes as a c_0 -sum of all elementary triple ideals of E, that is, if $E = \bigoplus^{\ell_{\infty}} C_{\alpha}$, where each C_{α} is a Cartan factor, then $K(E) = \bigoplus^{c_0} K(C_{\alpha})$. By Proposition 3.10, for each α , $T(K_{\alpha})$ (respectively, $T(C_{\alpha})$ is a norm closed (respectively, weak* closed) inner ideal of K(F) (respectively, F) and $K(F) = \bigoplus^{c_0} T(K(C_{\alpha}))$ (respectively, $F = \bigoplus^{c_0} T(C_{\alpha})$).

For each α , C_{α} is either finite-dimensional, or an infinite-dimensional Cartan factor of type 1, 2 or 3. Corollaries 4.7 and 4.10 prove that the operator $T|_{K(C_{\alpha})}: K(C_{\alpha}) \to T(K(C_{\alpha}))$ is a scalar multiple of a triple isomorphism. We claim that, for each α and each φ_{α} in the predual of $T(C_{\alpha})$, $\varphi_{\alpha}T$ is weak* continuous. There is no loss of generality in assuming that C_{α} is infinite-dimensional.

Each minimal tripotent f in F lies in a unique elementary JB^* -triple $T(K(C_{\alpha}))$. Since $T|_{K(C_{\alpha})}: K(C_{\alpha}) \to T(K(C_{\alpha}))$ is a scalar multiple of a triple isomorphism, there exist a nonzero scalar λ_{α} and a minimal tripotent e satisfying $T^{-1}(f) = \lambda_{\alpha}e$, $|\lambda_{\alpha}| \leq ||(T|_{K(C_{\alpha})})^{-1}|| \leq ||(T|_{K(E)})^{-1}||$, and

(5.2)
$$T(K(C_{\alpha})_{i}(e)) = T(K(C_{\alpha}))_{i}(f)$$

for every i=0,1,2. Theorem 4.1 shows that $T((C_{\alpha})_i(e))=T(C_{\alpha})_i(f)$ for every i=0,2. Since K(E) is an ideal of E and e is a minimal tripotent, $(C_{\alpha})_1(e)=E_1(e)=K(E)_1(e)=K(C_{\alpha})_1(e)$. It follows from (5.2) that

$$T((C_{\alpha})_{i}(e)) = T((C_{\alpha}))_{i}(f)$$

for every i=0,1,2. Consequently, $P_2(f)T=\lambda_\alpha^{-1}P_2(e)\in (C_\alpha)_*$, and $|\lambda_\alpha^{-1}|\leq \|T|_{K(C_\alpha)}\|\leq \|T|_{K(E)}\|$.

Since f was an arbitrary minimal tripotent in F (equivalently, in $T(K(C_{\alpha}))$), Proposition 5.1 ensures that $\varphi_{\alpha}T \in E_*$ with $\|\varphi_{\alpha}T\| \leq \|T\|_{K(E)}$ for every $\varphi_{\alpha} \in (T(C_{\alpha}))_*$. Therefore, T is bounded with

$$||T|| \le ||T||_{K(E)}|| \le ||T||.$$

Corollary 5.3. Two atomic JBW^* -triples containing no rank-one summands are isomorphic if and only if there is a biorthogonality preserving linear surjection between them. \blacksquare

The conclusion of Theorem 5.2 does not hold for atomic JBW^* -triples containing rank-one summands.

Acknowledgements. The authors would like to express their gratitude to the anonymous referee whose valuable comments improved the final form of this paper.

This research was partly supported by I+D MEC project no. MTM 2008-02186, and Junta de Andalucía grants FQM 0199 and FQM 3737.

References

- J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), 48–55.
- [2] W. Arendt, Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), 199–215.
- [3] T. Barton and R. M. Timoney, Weak*-continuity of Jordan triple products and applications, Math. Scand. 59 (1986), 177–191.
- [4] J. Becerra Guerrero, G. López Pérez, A. M. Peralta, and A. Rodríguez-Palacios, Relatively weakly open sets in closed balls of Banach spaces, and real JB*-triples of finite rank, Math. Ann. 330 (2004), 45–58.
- [5] J. Becerra Guerrero and A. M. Peralta, Subdifferentiability of the norm and the Banach–Stone theorem for real and complex JB*-triples, Manuscripta Math. 114 (2004), 503–516.
- [6] L. J. Bunce, The theory and structure of dual JB-algebras, Math. Z. 180 (1982), 525–534.
- [7] L. J. Bunce and C. H. Chu, Compact operations, multipliers and Radon-Nikodym property in JB*-triples, Pacific J. Math. 153 (1992), 249-265.
- [8] L. J. Bunce, C. H. Chu, and B. Zalar, Structure spaces and decomposition in JB*triples, Math. Scand. 86 (2000), 17–35.
- [9] L. J. Bunce, F. J. Fernández-Polo, J. Martínez Moreno, and A. M. Peralta, A Saitô-Tomita-Lusin theorem for JB*-triples and applications, Quart. J. Math. Oxford 57 (2006), 37–48.
- [10] M. Burgos, F. J. Fernández-Polo, J. J. Garcés, J. Martínez Moreno, and A. M. Peralta, Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), 220–233.
- [11] M. Burgos, F. J. Fernández-Polo, J. J. Garcés, and A. M. Peralta, Orthogonality preservers revisited, Asian-Eur. J. Math. 2 (2009), 387–405.
- [12] M. Burgos, J. J. Garcés, and A. M. Peralta, Automatic continuity of biorthogonality preservers between compact C*-algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), 221–230.
- [13] M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), 77–94.
- [14] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
- [15] S. Dineen, *The second dual of a JB*-triple system*, in: Complex Analysis, Functional Analysis and Approximation Theory, J. Mujica (ed.), North-Holland Math. Stud. 125, North-Holland, Amsterdam, 1986, 67–69.
- [16] C. M. Edwards and G. T. Rüttimann, Compact tripotents in bi-dual JB*-triples, Math. Proc. Cambridge Philos. Soc. 120 (1996), 155–174.
- [17] —, —, Peirce inner ideals in Jordan *-triples, J. Algebra 180 (1996), 41–66.
- [18] F. J. Fernández-Polo, J. Martínez Moreno, and A. M. Peralta, Geometric characterization of tripotents in real and complex JB*-triples, J. Math. Anal. Appl. 295 (2004), 435–443.
- [19] —, —, —, Surjective isometries between real JB*-triples, Math. Proc. Cambridge Philos. Soc. 137 (2004), 709–723.

- [20] Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985), 67–89.
- [21] —, —, The Gelfand-Naimark theorem for JB*-triples, Duke Math. J. 53 (1986), 139–148.
- [22] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Monogr. Stud. Math. 21, Pitman, Boston, MA, 1984.
- [23] T. Ho, J. Martínez Moreno, A. M. Peralta, and B. Russo, *Derivations on real and complex JB*-triples*, J. London Math. Soc. 65 (2002), 85–102.
- [24] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139–144.
- [25] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39–64.
- [26] —, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529.
- [27] —, On real Cartan factors, Manuscripta Math. 92 (1997), 191–222.
- [28] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lectures, Univ. of California, Irvine, 1977.
- [29] G. K. Pedersen, Measure theory for C* algebras. II, Math. Scand. 22 (1968), 63–74.
- [30] A. M. Peralta, New advances on the Grothendieck's inequality problem for bilinear forms on JB*-triples, Math. Inequal. Appl. 8 (2005), 7–21.
- [31] I. Raeburn and A. M. Sinclair, The C*-algebra generated by two projections, Math. Scand. 65 (1989), 278–290.
- [32] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
- [33] D. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965).
- [34] M. Wolff, Disjointness preserving operators in C*-algebras, Arch. Math. (Basel) 62 (1994), 248–253.
- [35] N. C. Wong, Triple homomorphisms of C*-algebras, Southeast Asian Bull. Math. 29 (2005), 401–407.
- [36] J. D. M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291–302.

María Burgos, Jorge J. Garcés, Antonio M. Peralta Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain E-mail: mariaburgos@ugr.es jgarces@ugr.es aperalta@ugr.es

> Received June 18, 2010 Revised version April 16, 2011 (6922)