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Automatic continuity of biorthogonality preservers between
weakly compact JB∗-triples and atomic JBW ∗-triples

by

Maŕıa Burgos, Jorge J. Garcés and
Antonio M. Peralta (Granada)

Abstract. We prove that every biorthogonality preserving linear surjection from a
weakly compact JB∗-triple containing no infinite-dimensional rank-one summands onto
another JB∗-triple is automatically continuous. We also show that every biorthogonality
preserving linear surjection between atomic JBW ∗-triples containing no infinite-dimen-
sional rank-one summands is automatically continuous. Consequently, two atomic JBW ∗-
triples containing no rank-one summands are isomorphic if and only if there exists a (not
necessarily continuous) biorthogonality preserving linear surjection between them.

1. Introduction and preliminaries. Studies on the automatic conti-
nuity of linear surjections between C∗-algebras and von Neumann algebras
preserving orthogonality relations in both directions constitute the latest
variant of a problem initiated by W. Arendt in the early eighties.

We recall that two complex-valued continuous functions f and g are
said to be orthogonal whenever they have disjoint supports. A mapping
T between C(K)-spaces is called orthogonality preserving if it maps or-
thogonal functions to orthogonal functions. The main result established by
Arendt states that every orthogonality preserving bounded linear mapping
T : C(K)→ C(K) is of the form

T (f)(t) = h(t)f(ϕ(t)) (f ∈ C(K), t ∈ K),

where h ∈ C(K) and ϕ : K → K is a mapping which is continuous on
{t ∈ K : h(t) 6= 0}.

The hypothesis of T being continuous was relaxed by K. Jarosz in [24].
In fact, Jarosz obtained a complete description of all orthogonality pre-
serving (not necessarily continuous) linear mappings between C(K)-spaces.
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A consequence of his description is that an orthogonality preserving linear
surjection between C(K)-spaces is automatically continuous.

Two elements a, b in a general C∗-algebra A are said to be orthogonal
(denoted by a ⊥ b) if ab∗ = b∗a = 0. When a = a∗ and b = b∗, we have
a ⊥ b if and only if ab = 0. A mapping T between two C∗-algebras A, B is
called orthogonality preserving if T (a) ⊥ T (b) for every a ⊥ b in A. When
T (a) ⊥ T (b) in B if and only if a ⊥ b in A, we say that T is biorthogonality
preserving. Under continuity assumptions, orthogonality preserving bounded
linear operators between C∗-algebras are completely described in [10, §4].
This last paper is a culmination of the studies developed by W. Arendt [2],
K. Jarosz [24], M. Wolff [34], and N.-C. Wong [35], among others, on bounded
orthogonality preserving linear maps between C∗-algebras.

C∗-algebras belong to a wider class of complex Banach spaces in which
orthogonality also makes sense. We refer to the class of (complex) JB∗-
triples (see §2 for definitions). Two elements a, b in a JB∗-triple E are said
to be orthogonal (denoted by a ⊥ b) if L(a, b) = 0, where L(a, b) is the linear
operator in E given by L(a, b)x = {a, b, x}. A linear mapping T : E → F
between two JB∗-triples is called orthogonality preserving if T (x) ⊥ T (y)
whenever x ⊥ y. The mapping T is biorthogonality preserving whenever the
equivalence x ⊥ y ⇔ T (x) ⊥ T (y) holds for all x, y in E.

Most of the novelties introduced in [10] consist in studying orthogonality
preserving bounded linear operators from a C∗-algebra or a JB∗-algebra to a
JB∗-triple to take advantage of the techniques developed in JB∗-triple the-
ory. These techniques were successfully applied in the subsequent paper [11]
to obtain a description of such operators (see §2 for a detailed explanation).

Despite the vast literature on orthogonality preserving bounded linear
operators between C∗-algebras and JB∗-triples, just a few papers have
considered the problem of automatic continuity of biorthogonality preserv-
ing linear surjections between C∗-algebras. Besides Jarosz [24], mentioned
above, M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong proved in
[13, Theorem 4.2] that every zero products preserving linear bijection from
a properly infinite von Neumann algebra into a unital ring is a ring ho-
momorphism followed by left multiplication by the image of the identity.
J. Araujo and K. Jarosz showed that every linear bijection between alge-
bras L(X), of continuous linear maps on a Banach space X, which preserves
zero products in both directions is automatically continuous and a multiple
of an algebra isomorphism [1]. These authors also conjectured that every
linear bijection between two C∗-algebras preserving zero products in both
directions is automatically continuous (see [1, Conjecture 1]).

The authors of this note proved in [12] that every biorthogonality pre-
serving linear surjection between two compact C∗-algebras or between two
von Neumann algebras is automatically continuous. One of the consequences



Automatic continuity of biorthogonality preservers 99

of this result is a partial answer to [1, Conjecture 1]. Concretely, every sur-
jective and symmetric linear mapping between von Neumann algebras (or
compact C∗-algebras) which preserves zero products in both directions is
continuous.

In this paper we study the problem of automatic continuity of biorthog-
onality preserving linear surjections between JB∗-triples, extending some
of the results obtained in [12]. Section 2 contains the basic definitions and
results used in the paper. Section 3 is devoted to the structure and prop-
erties of the (orthogonal) annihilator of a subset M in a JB∗-triple, fo-
cusing on the annihilators of single elements. In Section 4 we prove that
every biorthogonality preserving linear surjection from a weakly compact
JB∗-triple containing no infinite-dimensional rank-one summands to a JB∗-
triple is automatically continuous. In Section 5 we show that two atomic
JB∗-triples containing no rank-one summands are isomorphic if and only
if there exists a biorthogonality preserving linear surjection between them,
a result which follows from the automatic continuity of every biorthogonal-
ity preserving linear surjection between atomic JB∗-triples containing no
infinite-dimensional rank-one summands.

2. Notation and preliminaries. Given Banach spaces X and Y ,
L(X,Y ) will denote the space of all bounded linear mappings from X to Y .
The symbol L(X) will stand for the space L(X,X). Throughout the paper
the word “operator” will always mean bounded linear mapping. The dual
space of a Banach space X is denoted by X∗.

JB∗-triples were introduced by W. Kaup in [26]. A JB∗-triple is a com-
plex Banach space E together with a continuous triple product {·, ·, ·} :
E ×E ×E → E, which is conjugate linear in the middle variable and sym-
metric and bilinear in the outer variables, and satisfies:

(a) L(a, b)L(x, y) = L(x, y)L(a, b)+L(L(a, b)x, y)−L(x, L(b, a)y), where
L(a, b) is the operator on E given by L(a, b)x = {a, b, x};

(b) L(a, a) is an hermitian operator with nonnegative spectrum;
(c) ‖L(a, a)‖ = ‖a‖2.

For each x in a JB∗-triple E, Q(x) will stand for the conjugate linear
operator on E defined by the assignment y 7→ Q(x)y = {x, y, x}.

Every C∗-algebra is a JB∗-triple via the triple product given by

2{x, y, z} = xy∗z + zy∗x,

and every JB∗-algebra is a JB∗-triple under the triple product

(2.1) {x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.
The so-called Kaup–Banach–Stone theorem for JB∗-triples states that

a bounded linear surjection between JB∗-triples is an isometry if and only
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if it is a triple isomorphism (cf. [26, Proposition 5.5], [5, Corollary 3.4] or
[18, Theorem 2.2]). It follows, among many other consequences, that when
a JB∗-algebra is a JB∗-triple for a suitable triple product, then the latter
coincides with the one defined in (2.1).

A JBW ∗-triple is a JB∗-triple which is also a dual Banach space (with a
unique isometric predual [3]). It is known that the triple product of a JBW ∗-
triple is separately weak∗ continuous [3]. The second dual of a JB∗-triple E
is a JBW ∗-triple with a product extending the product of E [15].

An element e in a JB∗-triple E is said to be a tripotent if {e, e, e} = e.
Each tripotent e in E gives rise to the decomposition

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0, 1, 2, Ei(e) is the i/2-eigenspace of L(e, e) (cf. [28, Theorem
25]). The natural projection of E onto Ei(e) will be denoted by Pi(e). This
decomposition is termed the Peirce decomposition of E with respect to the
tripotent e. The Peirce decomposition satisfies certain rules known as Peirce
arithmetic:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e)
if i− j + k ∈ {0, 1, 2} and is zero otherwise. In addition,

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.

The Peirce space E2(e) is a JB∗-algebra with product x ◦e y := {x, e, y}
and involution x]e := {e, x, e}.

A tripotent e in E is called complete (resp., unitary) if E0(e) = 0 (resp.,
E2(e) = E). When E2(e) = Ce 6= {0}, we say that e is minimal.

For each element x in a JB∗-triple E, we shall denote x[1] := x, x[3] :=
{x, x, x}, and x[2n+1] := {x, x, x[2n−1]} (n ∈ N). The symbol Ex will stand
for the JB∗-subtriple generated by x. It is known that Ex is JB∗-triple iso-
morphic (and hence isometric) to C0(Ω) for some locally compact Hausdorff
space Ω contained in (0, ‖x‖] such that Ω ∪ {0} is compact, where C0(Ω)
denotes the Banach space of all complex-valued continuous functions van-
ishing at 0. It is also known that there exists a triple isomorphism Ψ from
Ex onto C0(Ω) satisfying Ψ(x)(t) = t (t ∈ Ω) (cf. [25, Corollary 4.8], [26,
Corollary 1.15] and [20]). The set Ω = Sp(x) is called the triple spectrum
of x. Note that C0(Sp(x)) = C(Sp(x)) whenever 0 /∈ Sp(x).

Therefore, for each x ∈ E, there exists a unique element y ∈ Ex such
that {y, y, y} = x. The element y, denoted by x[1/3], is termed the cubic root
of x. We can inductively define x[1/3n] = (x[1/3n−1])[1/3], n ∈ N. The sequence
(x[1/3n]) converges in the weak∗ topology of E∗∗ to a tripotent denoted by
r(x) and called the range tripotent of x. The tripotent r(x) is the smallest
tripotent e ∈ E∗∗ such that x is positive in the JBW ∗-algebra E∗∗2 (e) (cf.
[16, Lemma 3.3]).
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A subspace I of a JB∗-triple E is a triple ideal if {E,E, I}+{E, I,E}⊆I.
By Proposition 1.3 in [7], I is a triple ideal if and only if {E,E, I} ⊆ I. We
shall say that I is an inner ideal of E if {I, E, I} ⊆ I. Given an x in E, let
E(x) denote the norm closed inner ideal of E generated by x. It is known
that E(x) coincides with the norm closure of the set Q(x)(E). Moreover
E(x) is a JB∗-subalgebra of E∗∗2 (r(x)) and contains x as a positive element
(cf. [8]). Every triple ideal is, in particular, an inner ideal.

We recall that two elements a, b in a JB∗-triple E are said to be orthog-
onal (written a ⊥ b) if L(a, b) = 0. Lemma 1 in [10] shows that a ⊥ b if and
only if one of the following nine statements holds:

(2.2)
{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b);
E∗∗2 (r(a)) ⊥ E∗∗2 (r(b)); r(a) ∈ E∗∗0 (r(b)); a ∈ E∗∗0 (r(b));
b ∈ E∗∗0 (r(a)); Ea ⊥ Eb; {b, b, a} = 0.

The Jordan identity and the above reformulations ensure that

(2.3) a ⊥ {x, y, z} whenever a ⊥ x, y, z.

An important class of JB∗-triples is given by the Cartan factors. A
JBW ∗-triple E is called a factor if it contains no proper weak∗ closed ideals.
The Cartan factors are precisely the JBW ∗-triple factors containing a min-
imal tripotent [27]. These can be classified in six different types (see [21]
or [27]).

A Cartan factor of type 1, denoted by In,m, is a JB∗-triple of the form
L(H,H ′), where L(H,H ′) denotes the space of bounded linear operators be-
tween two complex Hilbert spaces H and H ′ of dimensions n,m respectively,
with the triple product defined by {x, y, z} = 1

2(xy∗z + zy∗x).
We recall that given a conjugation j on a complex Hilbert space H, we

can define the linear involution x 7→ xt := jx∗j on L(H). A Cartan factor of
type 2 (respectively, type 3 ), denoted by II n (respectively, III n), is the sub-
triple of L(H) formed by the t-skew-symmetric (respectively, t-symmetric)
operators, where H is an n-dimensional complex Hilbert space. Moreover,
II n and III n are, up to isomorphism, independent of the conjugation j on H.

A Cartan factor of type 4, IV n (also called a complex spin factor), is an
n-dimensional complex Hilbert space provided with a conjugation x 7→ x,
where the triple product and norm are given by

(2.4) {x, y, z} = (x|y)z + (z|y)x− (x|z)y
and ‖x‖2 = (x|x) +

√
(x|x)2 − |(x|x)|2, respectively.

The Cartan factor of type 6 is the 27-dimensional exceptional JB∗-
algebra VI = H3(OC) of all symmetric 3 × 3 matrices with entries in the
complex octonions OC, while the Cartan factor of type 5, V = M1,2(OC), is
the subtriple of H3(OC) consisting of all 1× 2 matrices with entries in OC.
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Remark 2.1. Let E be a spin factor with inner product (·|·) and conju-
gation x 7→ x. It is not hard to check (and part of the folklore of JB∗-triple
theory) that an element w in E is a minimal tripotent if and only if (w|w) = 0
and (w|w) = 1/2. For every minimal tripotent w in E we have E2(w) = Cw,
E0(w) = Cw and E1(w) = {x ∈ E : (x|w) = (x|w) = 0}. Therefore, every
minimal tripotent w2 ∈ E satisfying w ⊥ w2 can be written in the form
w2 = λw for some λ ∈ C with |λ| = 1.

3. Biorthogonality preservers. Let M be a subset of a JB∗-triple E.
We write M⊥E for the (orthogonal) annihilator of M defined by

M⊥E := {y ∈ E : y ⊥ x, ∀x ∈M}.

When no confusion can arise, we shall write M⊥ instead of M⊥E .
The next result summarises some basic properties of the annihilator. The

reader is referred to [17, Lemma 3.2] for a detailed proof.

Lemma 3.1. Let M a nonempty subset of a JB∗-triple E.

(a) M⊥ is a norm closed inner ideal of E.
(b) M ∩M⊥ = {0}.
(c) M ⊆M⊥⊥.
(d) If B ⊆ C then C⊥ ⊆ B⊥.
(e) M⊥ is weak∗ closed whenever E is a JBW ∗-triple.

As illustration of the main identity (axiom (a) in the definition of a JB∗-
triple) we shall prove statement (a). For a, a′ in M⊥, b in M , and c, d in E we
have {c, a, {d, a′, b}} = {{c, a, d}, a′, b} − {d, {a, c, a′}, b} + {d, a′, {c, a, b}},
which shows that {a, c, a′} ⊥ b.

Let e be a tripotent in a JB∗-triple E. Clearly, {e} ⊆ E2(e). Therefore,
by Peirce arithmetic and Lemma 3.1,

E2(e)⊥ ⊆ {e}⊥ = E0(e) ⊆ E2(e)⊥,

and hence

(3.1) E2(e)⊥ = {e}⊥ = E0(e).

The next lemma describes the annihilator of an element in an arbitrary JB∗-
triple. Its proof follows directly from the reformulations of orthogonality
in (2.2) (see also [10, Lemma 1]).

Lemma 3.2. Let x be an element in a JB∗-triple E. Then

{x}⊥E = E∗∗0 (r(x)) ∩ E.

Moreover, when E is a JBW ∗-triple we have

{x}⊥E = E0(r(x)).
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Proposition 3.3. Let e be a tripotent in a JB∗-triple E. Then

E2(e)⊕ E1(e) ⊇ {e}⊥⊥E = E0(e)⊥ ⊇ E2(e).

Proof. It follows from (3.1) that {e}⊥⊥ = {e}⊥⊥E = (E0(e))⊥ ⊇ E2(e).
Now select x ∈ (E0(e))⊥. For each i ∈ {0, 1, 2} we write xi = Pi(e)(x), where
Pi(e) denotes the Peirce i-projection with respect to e. Since x ∈ (E0(e))⊥,
x must be orthogonal to x0 and so {x0, x0, x} = 0. This equality, together
with Peirce arithmetic, shows that {x0, x0, x0} + {x0, x0, x1} = 0, which
implies that ‖x0‖3 = ‖{x0, x0, x0}‖ = 0.

Remark 3.4. For a tripotent e in a JB∗-triple E, the equality {e}⊥⊥E =
E0(e)⊥ = E2(e) does not hold in general. Let H1 and H2 be two infinite-
dimensional complex Hilbert spaces and let p be a minimal projection in
L(H1). We define E as the orthogonal sum pL(H1) ⊕∞ L(H2). In this ex-
ample {p}⊥E = L(H2) and {p}⊥⊥E = pL(H1) 6= Cp = E2(p).

However, if E is a Cartan factor and e is a noncomplete tripotent in E,
then the equality {e}⊥⊥ = E0(e)⊥ = E2(e) always holds (cf. Lemma 5.6
in [27]).

Corollary 3.5. Let x be an element in a JB∗-triple E. Then

E(x) ⊆ E∗∗2 (r(x)) ∩ E ⊆ {x}⊥⊥E .

Proof. Clearly, E(x) = Q(x)(E) ⊆ E∗∗2 (r(x)) ∩ E. Pick y in E∗∗2 (r(x))
∩E. Then y ∈ E∗∗2 (r(x)) ⊆ {x}⊥⊥E∗∗ . Since {x}⊥E ⊂ {x}⊥E∗∗ , we conclude that
y ∈ {x}⊥⊥E∗∗ ∩ E ⊆ ({x}⊥E)⊥E∗∗ ∩ E = {x}⊥⊥E .

In the setting of C∗-algebras the following conditions describing the first
and second annihilator of a projection were established in [12, Lemma 3].

Lemma 3.6. Let p be a projection in a (not necessarily unital) C∗-al-
gebra A. The following assertions hold:

(a) {p}⊥A = (1− p)A(1− p), where 1 denotes the unit of A∗∗;
(b) {p}⊥⊥A = pAp.

Let x be an element in a JB∗-triple E. We say that x is weakly compact
(respectively, compact) if the operator Q(x) : E → E is weakly compact (re-
spectively, compact). A JB∗-triple is weakly compact (respectively, compact)
if every element in E is weakly compact (respectively, compact).

Let E be a JB∗-triple. If we denote by K(E) the Banach subspace of
E generated by its minimal tripotents, then K(E) is a (norm closed) triple
ideal of E and it coincides with the set of weakly compact elements of E (see
Proposition 4.7 in [7]). For a Cartan factor C we define the elementary JB∗-
triple of the corresponding type to be K(C). Consequently, the elementary
JB∗-triples Ki (i = 1, . . . , 6) are defined as follows: K1 = K(H,H ′) (the
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compact operators between complex Hilbert spaces H and H ′); Ki = Ci ∩
K(H) for i = 2, 3, and Ki = Ci for i = 4, 5, 6.

It follows from [7, Lemma 3.3 and Theorem 3.4] that a JB∗-triple E is
weakly compact if and only if one of the following statement holds:

(a) K(E∗∗) = K(E).
(b) K(E) = E.
(c) E is a c0-sum of elementary JB∗-triples.

Let E be a JB∗-triple. A subset S ⊆ E is said to be orthogonal if 0 /∈ S
and x ⊥ y for every x 6= y in S. The minimal cardinal number r satisfying
card(S) ≤ r for every orthogonal subset S ⊆ E is called the rank of E (and
will be denoted by r(E)).

For every orthogonal family (ei)i∈I of minimal tripotents in a JBW ∗-
triple E the weak∗ convergent sum e :=

∑
i ei is a tripotent, and we call

(ei)i∈I a frame in E if e is a maximal tripotent in E (i.e., e is a complete
tripotent and dim(E1(e)) ≤ dim(E1(ẽ)) for every complete tripotent ẽ in E).
Every frame is a maximal orthogonal family of minimal tripotents; the con-
verse is not true in general (see [4, §3] for more details).

Proposition 3.7. Let e be a minimal tripotent in a JB∗-triple E. Then
{e}⊥⊥E is a rank-one norm closed inner ideal of E.

Proof. Let F denote {e}⊥⊥E . Since e is a minimal tripotent (i.e. E2(e) =
Ce), the set of states on E2(e), {ϕ ∈ E∗ : ϕ(e) = 1 = ‖ϕ‖}, reduces to one
point ϕ0 in E∗. Proposition 2.4 and Corollary 2.5 in [9] imply that the norm
of E restricted to E1(e) is equivalent to a Hilbertian norm. More precisely,
in the terminology of [9], the norm ‖ · ‖e coincides with the Hilbertian norm
‖ · ‖ϕ0 and is equivalent to the norm of E1(e).

Proposition 3.3 guarantees that F is a norm closed subspace of E2(e)⊕
E1(e) = Ce⊕ E1(e), and hence F is isomorphic to a Hilbert space.

We deduce, by Proposition 4.5(iii) in [7] (and its proof), that F is a finite
orthogonal sum of Cartan factors C1, . . . , Cm which are finite-dimensional,
or infinite-dimensional spin factors, or of the form L(H,H ′) for suitable
complex Hilbert spaces H and H ′ with dim(H ′) < ∞. Since F is an inner
ideal of E (and hence a JB∗-subtriple of E) and e is a minimal tripotent
in E, we can easily check that e is a minimal tripotent in F =

⊕`∞
j=1,...,mCj .

If we write e = e1 + · · ·+ em, where each ej is a tripotent in Cj and ej ⊥ ek
whenever j 6= k, then since Ce1 ⊕ · · · ⊕ Ce1 ⊆ F2(e) = Ce, we deduce that
there exists a unique j0 ∈ {1, . . . ,m} satisfying ej = 0 for all j 6= j0 and
e = ej0 ∈ Cj0 .

For each j 6= j0, we have Cj ⊆ {e}⊥E , and hence⊕`∞

j=1,...,m

Cj = F = {e}⊥⊥ ⊆ C⊥j .
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This implies that Cj ⊥ Cj (or equivalently Cj = 0) for every j 6= j0. We
consequently have F = {e}⊥⊥E = Cj0 .

Finally, if r(F ) ≥ 2, then we deduce, via Proposition 5.8 in [27], that
there exist minimal tripotents e2, . . . , er in F such that e, e2, . . . , er is a frame
in F . For each i ∈ {2, . . . , r}, ei is orthogonal to e and lies in F = {e}⊥⊥E ,
which is impossible.

Let T : E → F be a linear map between two JB∗-triples. We shall
say that T is orthogonality preserving if T (x) ⊥ T (y) whenever x ⊥ y. The
mapping T is said to be biorthogonality preserving whenever the equivalence

x ⊥ y ⇔ T (x) ⊥ T (y)

holds for all x, y in E.
It can be easily seen that every biorthogonality preserving linear mapping

T : E → F between JB∗-triples is injective. Indeed, for each x ∈ E, the
condition T (x) = 0 implies that T (x) ⊥ T (x), and hence x ⊥ x, which gives
x = 0.

Orthogonality preserving bounded linear maps from a JB∗-algebra to a
JB∗-triple were completely described in [11].

Before stating the result, let us recall some basic definitions. Two ele-
ments a and b in a JB∗-algebra J are said to operator commute in J if
the multiplication operators Ma and Mb commute, where Ma is defined
by Ma(x) := a ◦ x. That is, a and b operator commute if and only if
(a ◦ x) ◦ b = a ◦ (x ◦ b) for all x in J . Self-adjoint elements a and b in
J generate a JB∗-subalgebra that can be realised as a JC∗-subalgebra of
some B(H) [36], and, in this realisation, a and b commute in the usual
sense whenever they operator commute in J [33, Proposition 1]. Similarly,
two self-adjoint elements a and b in J operator commute if and only if
a2 ◦ b = {a, a, b} = {a, b, a} (i.e., a2 ◦ b = 2(a ◦ b) ◦ a − a2 ◦ b). If b ∈ J we
use {b}′ to denote the set of elements in J that operator commute with b.
We shall write Z(J) := J ′ for the center of J (this agrees with the usual
notation in von Neumann algebras).

Theorem 3.8 ([11, Theorem 4.1]). Let T : J → E be a bounded linear
mapping from a JB∗-algebra to a JB∗-triple. For h = T ∗∗(1) and r = r(h)
the following assertions are equivalent:

(a) T is orthogonality preserving.
(b) There exists a unique Jordan ∗-homomorphism S : J → E∗∗2 (r) such

that S∗∗(1) = r, S(J) and h operator commute, and T (z) = h◦rS(z)
for all z ∈ J .

(c) T preserves zero triple products, that is, {T (x), T (y), T (z)} = 0
whenever {x, y, z} = 0.
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The above characterisation proves that the bitranspose of an orthogonal-
ity preserving bounded linear mapping from a JB∗-algebra onto a JB∗-triple
is also orthogonality preserving.

The following theorem was essentially proved in [11]. We include here a
sketch of proof for completeness.

Theorem 3.9. Let T : J → E be a surjective linear operator from
a JBW ∗-algebra onto a JBW ∗-triple and let h denote T (1). Then T is
biorthogonality preserving if and only if r(h) is a unitary tripotent in E, h
is an invertible element in the JB∗-algebra E = E2(r(h)), and there exists
a Jordan ∗-isomorphism S : J → E = E2(r(h)) such that S(J) ⊆ {h}′ and
T = h ◦r(h) S. Further, if J is a factor (i.e. Z(J) = C1) then T is a scalar
multiple of a triple isomorphism.

Proof. The sufficiency is clear. We shall prove the necessity. To this end
let T : J → E be a surjective linear operator from a JBW ∗-algebra onto
a JBW ∗-triple and let h = T (1) ∈ E. We have already seen that every
biorthogonality preserving linear mapping between JB∗-triples is injective.
Therefore T is a linear bijection.

From Corollary 4.1(b) in [11] and its proof, we deduce that

T (Jsa) ⊆ E2(r(h))sa, and hence E = T (J) ⊆ E2(r(h)) ⊆ E.
This implies that E = E2(r(h)), which ensures that r(h) is a unitary tripo-
tent in E. Since the range tripotent of h, r(h), is the unit of E2(r(h)), and
h is a positive element in the JBW ∗-algebra E2(r(h)), we can easily check
that h is invertible in E2(r(h)). Furthermore, h1/2 is invertible in E2(r(h))
with inverse h−1/2.

The proof of [11, Theorem 4.1] can be literally applied here to show the
existence of a Jordan ∗-homomorphism S : J → E = E2(r(h)) such that
S(J) ⊆ {h}′ and T = h ◦r(h) S. Since, for each x ∈ J , h and S(x) operator
commute and h1/2 lies in the JB∗-subalgebra of E2(r(h)) generated by h,
we can easily check that S(x) and h1/2 operator commute. Thus,

T = h ◦r(h) S = Uh1/2S,

where Uh1/2 : E2(r(h))→ E2(r(h)) is the linear mapping defined by

Uh1/2(x) = 2(h1/2 ◦r(h) x) ◦r(h) h1/2 − (h1/2 ◦r(h) h1/2) ◦r(h) x.

It is well known that h1/2 is invertible if and only if Uh1/2 is an invertible
operator and, in this case, U−1

h1/2 = Uh−1/2 (cf. [22, Lemma 3.2.10]). There-
fore, S = Uh−1/2T. It follows from the bijectivity of T that S is a Jordan
*-isomorphism.

Finally, when Z(J) = C1, the center of E2(r(h)) also reduces to Cr(h),
and since h is an invertible element in the center of E2(r(h)), we deduce
that T is a scalar multiple of a triple isomorphism.



Automatic continuity of biorthogonality preservers 107

Proposition 3.10. Let E1, E2 and F be three JB∗-triples (respectively,
JBW ∗-triples). Let T : E1 ⊕∞ E2 → F be a biorthogonality preserving
linear surjection. Then T (E1) and T (E2) are norm closed (respectively,
weak∗ closed) inner ideals of F , B = T (A1) ⊕∞ T (A2), and for j = 1, 2,
T |Aj : Aj → T (Aj) is a biorthogonality preserving linear surjection.

Proof. Fix j ∈ {1, 2}. Since Ej = E⊥⊥j and T is a biorthogonality pre-
serving linear surjection, we deduce that T (Ej) = T (E⊥⊥j ) = T (Ej)⊥⊥.
Lemma 3.1 guarantees that T (Ej) is a norm closed inner ideal of F (re-
spectively, a weak∗ closed inner ideal of F whenever E1, E2 and F are
JBW ∗-triples). The rest of the assertion follows from Lemma 3.1 and the
fact that F coincides with the orthogonal sum of T (E1) and T (E2).

4. Biorthogonality preservers between weakly compact JB∗-
triples. The following theorem generalises [12, Theorem 5] by proving that
biorthogonality preserving linear surjections between JB∗-triples send min-
imal tripotents to scalar multiples of minimal tripotents.

Theorem 4.1. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples and let e be a minimal tripotent in E.
Then ‖T (e)‖−1T (e) = fe is a minimal tripotent in F . Further, T (E2(e)) =
F2(fe) and T (E0(e)) = F0(fe).

Proof. Since T is a biorthogonality preserving surjection, the equality

T (S⊥E ) = T (S)⊥F
holds for every subset S of E. Lemma 3.1 ensures that for each minimal
tripotent e in E, {T (e)}⊥⊥F = T ({e}⊥⊥E ) is a norm closed inner ideal in F .
By Proposition 3.7, {e}⊥⊥E is a rank-one JB∗-triple, and hence {T (e)}⊥⊥F
cannot contain two nonzero orthogonal elements. Thus, {T (e)}⊥⊥F is a rank-
one JB∗-triple.

The arguments given in the proof of Proposition 3.7 above (see also
Proposition 4.5.(iii) in [7] and its proof or [4, §3]) show that the inner ideal
{T (e)}⊥⊥F is a rank-one Cartan factor, and hence a type 1 Cartan factor of
the form L(H,C), where H is a complex Hilbert space, or a type 2 Cartan
factor II 3 (it is known that II 3 is a JB∗-triple isomorphic to a 3-dimensional
complex Hilbert space). This implies that ‖T (e)‖−1 T (e) = fe is a minimal
tripotent in F and T (e) = λefe for a suitable λe ∈ C \ {0}.

The equality T (E2(e)) = F2(fe) has been proved. Concerning the Peirce
zero subspace we have

T (E0(e)) = T (E2(e)⊥E) = T (E2(e))⊥F = F2(fe)⊥F = F0(fe).

Let H and H ′ be complex Hilbert spaces. Given k ∈ H ′ and h ∈ H, we
define k⊗h in L(H,H ′) by k⊗h(ξ) := (ξ|h)k. Then every minimal tripotent
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in L(H,H ′) can be written in the form k ⊗ h, where h and k are norm-one
elements in H and H ′, respectively. It can be easily seen that two minimal
tripotents k1 ⊗ h1 and k2 ⊗ h2 are orthogonal if and only if h1 ⊥ h2 and
k1 ⊥ k2.

Theorem 4.2. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, where E is a type In,m Cartan factor
with n,m ≥ 2. Then there exists a positive real number λ such that ‖T (e)‖
= λ for every minimal tripotent e in E.

Proof. Let H,H ′ be complex Hilbert spaces such that E = L(H,H ′).
Let e1 := k1 ⊗ h1 and e2 := k2 ⊗ h2 be two minimal tripotents in E. We
write H1 = span({h1, h2}) and H ′1 = span({k1, k2}). The tripotents k1 ⊗ h1

and k2 ⊗ h2 can be identified with elements in L(H1, H
′
1). By Theorem 4.1,

T (e1) = α1f1 and T (e2) = α2f2, where f1 and f2 are two minimal tripotents
in F .

If dim(H1) = dim(H ′1) = 2, then the norm closed inner ideal Ee1,e2 of E
generated by e1 and e2 identifies with L(H1, H

′
1), which is JB∗-isomorphic

to M2(C) and coincides with the inner ideal generated by the orthogonal
minimal tripotents g1 =

(
1 0
0 0

)
and g2 =

(
0 0
0 1

)
, where g1 + g2 is the unit

element in Ee1,e2
∼= M2(C).

By Theorem 4.1, w1 := 1
‖T (g1)‖T (g1) and w2 := 1

‖T (g2)‖T (g2) are orthog-
onal minimal tripotents in F . The element w = w1 +w2 is a rank-2 tripotent
in F and coincides with the range tripotent of the element h = T (g1 +g2) =
‖T (g1)‖w1 + ‖T (g2)‖w2. By Theorem 3.8 (see also [11, Corollary 4.1(b)]),
T (Ee1,e2) ⊆ F2(w). It is not hard to see that h is invertible in F2(w) with
inverse h−1 = 1

‖T (g1)‖w1 + 1
‖T (g2)‖w2.

The inner ideal Ee1,e2 is finite-dimensional, T (Ee1,e2) is norm closed and
T |Ee1,e2 : Ee1,e2 → F is a continuous biorthogonality preserving linear op-
erator. Theorem 3.8 guarantees the existence of a Jordan ∗-homomorphism
S : Ee1,e2 ∼= M2(C) → F2(w) such that S(g1 + g2) = w, S(Ee1,e2) and h
operator commute and

(4.1) T (z) = h ◦w S(z) for all z ∈ Ee1,e2 .

It follows from the operator commutativity of h−1 and S(Ee1,e2) that S(z) =
h−1 ◦w T (z) for all z ∈ Ee1,e2 . The injectivity of T implies that S is a Jordan
*-monomorphism.

Lemma 2.7 in [19] shows that F2(w) = F2(w1+w2) coincides with C⊕`∞C
or with a spin factor. Since 4 = dim(T (Ee1,e2)) ≤ dim(F2(w)), we deduce
that F2(w) is a spin factor with inner product (·|·) and conjugation x 7→ x.
From Remark 2.1, we may assume, without loss of generality, that (w1|w1) =
1/2, (w1|w1) = 0, and w2 = w1.
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Now, we take g3 =
(

0 1
0 0

)
and g4 =

(
0 0
1 0

)
in Ee1,e2 . The elements w3 :=

S(g3) and w4 := S(g4) are orthogonal minimal tripotents in F2(w) with
{wi, wi, wj} = 1

2wj for every (i, j), (j, i) ∈ {1, 2} × {3, 4}. Applying again
Remark 2.1, we may assume that (w3|w3) = 1/2, (w3|w3) = 0, w4 = w3,
and (w3|w1) = (w3|w2) = 0. Applying the definition of the triple product in
a spin factor given in (2.4) we can check that (w1, w3, w2 = w1, w4 = w3) are
four minimal tripotents in F2(w) with w1 ⊥ w2, w3 ⊥ w4, {wi, wi, wj} = 1

2wj
for every (i, j), (j, i) ∈ {1, 2}×{3, 4}, {w1, w3, w2} = −1

2w4, {w3, w2,−w4} =
1
2w1, {w2,−w4, w1} = 1

2w3, and {−w4, w1, w3} = 1
2w2. Thus, denoting by M

the JB∗-subtriple of F2(w) generated by w1, w3, w2, and w4, we have shown
that M is a JB∗-triple isomorphic to M2(C).

Combining (4.1) and (2.4) we get

T (g3) = h ◦w S(g3) = {h,w,w3} =
‖T (g1)‖+ ‖T (g2)‖

2
w3,

T (g4) = h ◦w S(g4) = {h,w,w4} =
‖T (g1)‖+ ‖T (g2)‖

2
w4.

Since T (g1)=‖T (g1)‖w1, T (g2)=‖T (g2)‖w2, and Ee1,e2 is linearly generated
by g1, g2, g3 and g4, we deduce that T (Ee1,e2) ⊆M with 4 = dim(T (Ee1,e2))
≤ dim(M) = 4. Thus, T (Ee1,e2) = M is a JB∗-subtriple of F .

The mapping T |Ee1,e2 : Ee1,e2
∼= M2(C) → T (Ee1,e2) is a continu-

ous biorthogonality preserving linear bijection. Theorem 3.9 implies that
T |Ee1,e2 is a (nonzero) scalar multiple of a triple isomorphism, and hence
‖T (e1)‖ = ‖T (e2)‖.

If dim(H ′1) = 1, then L(H1, H
′
1) is a rank-one JB∗-triple. Since n,m ≥ 2,

we can find a minimal tripotent e in E such that the norm closed inner
ideals of E generated by {e, e1} and {e, e2} both coincide with M2(C). The
arguments in the above paragraph show that ‖T (e1)‖ = ‖T (e)‖ = ‖T (e2)‖.

Finally, the case dim(H1) = 1 follows from the same arguments.

Remark 4.3. Given a sequence (µn) ⊂ c0 and a bounded sequence (xn)
in a Banach space X, the series

∑
k µkxk need not be, in general, convergent

in X. However, when (xn) is a bounded sequence of mutually orthogonal
elements in a JB∗-triple E, the equality∥∥∥ n∑

k=1

µkxk −
m∑
k=1

µkxk

∥∥∥ = max{|µn+1|, . . . , |µm|} sup{‖xn‖}

holds for every n < m in N. It follows that (
∑n

k=1 µkxk) is a Cauchy sequence
and hence converges in E.

The following three results generalise [12, Lemmas 8, 9 and Proposition
10] to the setting of JB∗-triples.
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Lemma 4.4. Let T : E → F be a biorthogonality preserving linear sur-
jection between two JB∗-triples and let (en) be a sequence of mutually or-
thogonal minimal tripotents in E. Then there exist positive constants m ≤M
satisfying m ≤ ‖T (en)‖ ≤M for all n ∈ N.

Proof. We deduce from Theorem 4.1 that, for each natural n, there exist
a minimal tripotent fn and a scalar λn ∈ C \ {0} such that T (en) = λnfn,
where ‖T (en)‖ = λn. Note that T being biorthogonality preserving implies
(fn) is a sequence of mutually orthogonal minimal tripotents in F .

Let (µn) be any sequence in c0. Since the en’s are mutually orthogonal
the series

∑
k≥1 µkek converges to an element in E (cf. Remark 4.3). For

each natural n,
∑

k≥1 µkek decomposes as the orthogonal sum of µnen and∑
k 6=n µkek, therefore

T
(∑
k≥1

µkek

)
= µnλnfn + T

(∑
k 6=n

µkek

)
with µnλnfn ⊥ T

(∑∞
k 6=n µkek

)
, which in particular implies∥∥∥T(∑

k≥1

µkek

)∥∥∥ = max
{
|µn| |λn|,

∥∥∥T(∑
k 6=n

µkek

)∥∥∥} ≥ |µn| |λn|.
This establishes that, for each (µn) in c0, (µnλn) is a bounded sequence,
which in particular implies that (λn) is bounded.

Finally, since T is a biorthogonality preserving linear surjection and
T−1(fn) = λ−1

n en, we can similarly show that (λ−1
n ) is also bounded.

Lemma 4.5. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, (µn) a sequence in c0, and (en) a se-
quence of mutually orthogonal minimal tripotents in E. Then the sequence
(T (
∑

k≥n µkek))n is well defined and converges in norm to zero.

Proof. From Theorem 4.1 and Lemma 4.4 it follows that (T (en)) is a
bounded sequence of mutually orthogonal elements in F . Let M denote a
bound of the above sequence. For each natural n, Remark 4.3 ensures that
the series

∑
k≥n µkek converges.

Define yn := T (
∑

k≥n µkek). We claim that (yn) is a Cauchy sequence
in F . Indeed, given n < m in N, we have

‖yn − ym‖ =
∥∥∥T(m−1∑

k≥n
µkek

)∥∥∥ =
∥∥∥m−1∑
k≥n

µkT (ek)
∥∥∥(4.2)

≤M max{|µn|, . . . , |µm−1|},
where in the last inequality we have used the fact that (T (en)) is a sequence
of mutually orthogonal elements. Consequently, (yn) converges in norm to
some element y0 in F . Let z0 denote T−1(y0).
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Fix a natural m. By hypothesis, for each n > m, em is orthogonal to∑
k≥n µkek. This implies that T (em) ⊥ yn for every n > m, which in partic-

ular implies {T (em), T (em), yn} = 0 for every n > m. Letting n tend to ∞
we have {T (em), T (em), y0} = 0. This shows that y0 = T (z0) is orthogonal
to T (em), and hence em ⊥ z0. Since m was arbitrary, we deduce that z0 is
orthogonal to

∑
k≥n µkek for every n. Therefore, (yn) ⊂ {y0}⊥, and hence

y0 belongs to the norm closure of {y0}⊥, which implies y0 = 0.

Proposition 4.6. Let T : E → F be a biorthogonality preserving linear
surjection between two JB∗-triples, where E is weakly compact. Then T is
continuous if and only if the set T := {‖T (e)‖ : e a minimal tripotent in E}
is bounded. Moreover, in that case ‖T‖ = sup(T ).

Proof. The necessity being obvious, suppose that

M = sup{‖T (e)‖ : e a minimal tripotent in E} <∞.
Since E is weakly compact, each nonzero element x of E can be written
as a norm convergent (possibly finite) sum x =

∑
n λnun, where un are

mutually orthogonal minimal tripotents of E, and ‖x‖ = sup{|λn| : n ≥ 1}
(cf. Remark 4.6 in [7]). If the series x =

∑
n λnun is finite then

‖T (x)‖ =
∥∥∥ m∑
n=1

λnT (un)
∥∥∥ (∗)

= max{‖λnT (un)‖ : n = 1, . . . ,m} ≤M‖x‖,

where at (∗) we apply the fact that (T (un)) is a finite set of mutually
orthogonal tripotents in F . When the series x =

∑
n λnun is infinite we

may assume that (λn) ∈ c0.
It follows from Lemma 4.5 that the sequence (T (

∑
k≥n λkuk))n is well

defined and converges in norm to zero. We can find a natural m such
that ‖T (

∑
k≥m λkuk)‖ < M‖x‖. Since the elements λ1u1, . . . , λm−1um−1,∑

k≥m λkuk are mutually orthogonal, we have

‖T (x)‖ = max
{
‖T (λ1u1)‖, . . . , ‖T (λm−1um−1)‖,

∥∥∥T(∑
k≥m

λkuk

)∥∥∥}
≤M‖x‖.

Let E be an elementary JB∗-triple of type 1 (that is, an elementary
JB∗-triple such that E∗∗ is a type 1 Cartan factor), and let T : E → F be a
biorthogonality preserving linear surjection from E onto another JB∗-triple.
Then by Theorem 4.2 and Proposition 4.6, T is continuous. Further, we claim
that T is a scalar multiple of a triple isomorphism. Indeed, let us see that
S = (1/λ)T is a triple isomorphism, where λ = ‖T (e)‖ = ‖T‖ for some (and
hence any) minimal tripotent e in E (cf. Theorem 4.2). Let x ∈ E. Then
x =

∑
n λnen for a suitable (λn) ∈ c0 and a family of mutually orthogonal

minimal tripotents (en) in E [7, Remark 4.6]. Then by observing that T is
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continuous we have

‖S(x)‖ =
1
λ
‖T (x)‖ =

1
λ

∥∥∥T(∑
n

λnen

)∥∥∥ =
1
λ

∥∥∥∑
n

λnT (en)
∥∥∥

=
1
λ

sup
n
|λn| ‖T (en)‖ =

1
λ

sup
n
|λn|λ = sup

n
|λn| = ‖x‖.

This proves that S is a surjective linear isometry between JB∗-triples, and
hence a triple isomorphism (see [26, Proposition 5.5], [5, Corollary 3.4], [18,
Theorem 2.2]). We have thus proved the following result:

Corollary 4.7. Let T : E → F a biorthogonality preserving linear
surjection from a type 1 elementary JB∗-triple of rank greater than one onto
another JB∗-triple. Then T is a scalar multiple of a triple isomorphism.

Let p and q be two minimal projections in a C∗-algebra A with q 6= p. It
is known that the C∗-subalgebra of A generated by p and q is isometrically
isomorphic to C ⊕∞ C when p and q are orthogonal, and isomorphic to
M2(C) otherwise. More concretely, by [31, Theorem 1.3] (see also [29, §3]),
denoting by Cp,q the C∗-subalgebra of A generated by p and q, we have the
following statements:

(a) If p ⊥ q then there exists an isometric C∗-isomorphism Φ : Cp,q →
C⊕∞ C such that Φ(p) = (1, 0) and Φ(q) = (0, 1).

(b) If p and q are not orthogonal then there exist 0 < t < 1 and an
isometric C∗-isomorphism Φ : Cp,q →M2(C) such that

Φ(p) =
(

1 0
0 0

)
and Φ(q) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

In the setting of JB∗-algebras we have:

Lemma 4.8. Let p and q be two minimal projections in a JB∗-algebra
J with q 6= p and let Jp,q denote the JB∗-subalgebra of J generated by p
and q.

(a) If p ⊥ q then there exists an isometric JB∗-isomorphism Φ : Jp,q →
C⊕∞ C such that Φ(p) = (1, 0) and Φ(q) = (0, 1).

(b) If p and q are not orthogonal then there exist 0 < t < 1 and an
isometric JB∗-isomorphism Φ : C → S2(C) such that

Φ(p) =
(

1 0
0 0

)
and Φ(q) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
,

where S2(C) denotes the type 3 Cartan factor of all symmetric op-
erators on a two-dimensional complex Hilbert space.

Moreover, the JB∗-subtriple of J generated by p and q coincides with Jp,q.
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Proof. Statement (a) is clear. Now assume that p and q are not orthogo-
nal. The Shirshov–Cohn theorem (see [22, Theorem 7.2.5]) ensures that Jp,q
is a JC∗-algebra, that is, a Jordan *-subalgebra of some C∗-algebra A. The
symbol Cp,q will stand for the (associative) C∗-subalgebra of A generated
by p and q. Set

P :=
(

1 0
0 0

)
and Q :=

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

We have already mentioned that there exist 0 < t < 1 and an isometric
C∗-isomorphism Φ : Cp,q →M2(C) such that Φ(p) = P and Φ(q) = Q.

Since Jp,q is a Jordan *-subalgebra of Cp,q, Jp,q can be identified with
the Jordan *-subalgebra of M2(C) generated by the matrices P and Q. It
can be easily checked that

P ◦Q =
(

t 1
2

√
t(1− t)

1
2

√
t(1− t) 0

)
,

2P ◦Q− 2tP =
(

0
√
t(1− t)√

t(1− t) 0

)
,

Q− (2P ◦Q− 2tP )− tP =
(

0 0
0 1− t

)
.

These identities show that Jp,q contains the generators of the JB∗-algebra
S2(C), and hence identifies with S2(C).

In order to prove the last assertion, let Ep,q denote the JB∗-subtriple of J
generated by p and q. As Jp,q is itself a subtriple containing p and q, we have
Ep,q ⊆ Jp,q. If p ⊥ q then it can easily be seen that Ep,q ∼= C ⊕∞ C ∼= Jp,q.
Now assume that p and q are not orthogonal.

From Proposition 5 in [20], Ep,q is a JB∗-triple isometrically isomorphic
to M1,2(C) or S2(C). If Ep,q is a rank-one JB∗-triple, that is, E ∼= M1,2(C),
then P0(p)(q) must be zero. Thus, according to the above representation,
we have 1− t = 0, which is impossible.

A JB∗-algebra which is a weakly compact JB∗-triple will be called
weakly compact or dual (see [6]). Every positive element x in a weakly com-
pact JB∗-algebra J can be written in the form x =

∑
n λnpn for a suitable

(λn) ∈ c0 and a family (pn) of mutually orthogonal minimal projections in J
(see Theorem 3.3 in [6]).

Our next theorem extends [12, Theorem 11].

Theorem 4.9. Let T : J → E be a biorthogonality preserving linear
surjection from a weakly compact JB∗-algebra onto a JB∗-triple. Then T is
continuous and ‖T‖ ≤ 2 sup{‖T (p)‖ : p a minimal projection in J}.
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Proof. Since J is a JB∗-algebra, it is enough to show that T is bounded
on positive norm-one elements. In this case, it suffices to prove that the set

P = {‖T (p)‖ : p a minimal projection in J}

is bounded (cf. the proof of Proposition 4.6).
Suppose, on the contrary, that P is unbounded. We shall show by in-

duction that there exists a sequence (pn) of mutually orthogonal minimal
projections in J such that ‖T (pn)‖ > n.

The case n = 1 is clear. The induction hypothesis guarantees the ex-
istence of mutually orthogonal minimal projections p1, . . . , pn in J with
‖T (pk)‖ > k for all k ∈ {1, . . . , n}.

By assumption, there exists a minimal projection q ∈ J satisfying

‖T (q)‖ > max{‖T (p1)‖, . . . , ‖T (pn)‖, n+ 1}.

We claim that q must be orthogonal to each pj . If that is not the case,
there exists j such that pj and q are not orthogonal. Let C denote the
JB∗-subtriple of J generated by q and pj . We conclude from Lemma 4.8
that C is isomorphic to the JB∗-algebra S2(C).

Let g1 =
(

1 0
0 0

)
and g2 =

(
0 0
0 1

)
. Then g1 + g2 is the unit element in

C ∼= S2(C). By Theorem 4.1, w1 := 1
‖T (g1)‖T (g1) and w2 := 1

‖T (g2)‖T (g2)
are two orthogonal minimal tripotents in E. The element w = w1 + w2 is a
rank-2 tripotent in E and coincides with the range tripotent of the element
h = T (g1 + g2) = ‖T (g1)‖w1 + ‖T (g2)‖w2. Furthermore, h is invertible in
E2(w), and by Theorem 3.8 (see also [11, Corollary 4.1(b)]), T (C) ⊆ E2(w).

The rest of the argument is parallel to the argument in the proof of
Theorem 4.2.

The finite-dimensionality of the JB∗-subtriple C ensures that T (C) is
norm closed and T |C : C ∼= S2(C) → E is a continuous biorthogonality
preserving linear operator. Theorem 3.8 guarantees the existence of a Jordan
∗-homomorphism S : C → E2(w) such that S(g1 + g2) = w, S(C) and h
operator commute and

(4.3) T (z) = h ◦w S(z) for all z ∈ C.

It follows from the operator commutativity of h−1 and S(C) that S(z) =
h−1 ◦w T (z) for all z ∈ C. The injectivity of T implies that S is a Jordan
*-monomorphism.

Lemma 2.7 in [19] shows that E2(w) = E2(w1 + w2) coincides with
C ⊕`∞ C or with a spin factor. Since 3 = dim(T (C)) ≤ dim(E2(w)), we
deduce that E2(w) is a spin factor with inner product (·|·) and conjugation
x 7→ x. We may assume, by Remark 2.1, that (w1|w1) = 1/2, (w1|w1) = 0,
and w2 = w1.
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Now, taking g3 =
(

0 1
1 0

)
∈ C ∼= S2(C), the element w3 := S(g3) is a

tripotent in E2(w) with {wi, wi, w3} = 1
2w3 for every i ∈ {1, 2}. Remark

2.1 implies that (w3|w1) = (w3|w2) = 0. Let M denote the JB∗-subtriple of
E2(w) generated by w1, w2, and w3. The mapping S : C ∼= S2(C)→M is a
Jordan *-isomorphism.

Combining (4.3) and (2.4) we get

T (g3) = h ◦w S(g3) = {h,w,w3} =
‖T (g1)‖+ ‖T (g2)‖

2
w3.

Since T (g1) = ‖T (g1)‖w1, T (g2) = ‖T (g2)‖w2, and C is linearly gener-
ated by g1, g2 and g3, we deduce that T (C) ⊆ M with 3 = dim(T (C)) ≤
dim(M) = 3. Thus, T (C) = M is a JB∗-subtriple of E.

The mapping T |C : C ∼= S2(C) → T (C) is a continuous biorthogonality
preserving linear bijection. Theorem 3.9 guarantees the existence of a scalar
λ ∈ C\{0} and a triple isomorphism Ψ : C → T (C) such that T (x) = λΨ(x)
for all x ∈ C. Since pj and q are projections, ‖Ψ(q)‖ = ‖Ψ(pj)‖ = 1. Hence
‖T (pj)‖ = |λ| and ‖T (q)‖ = |λ|, contradicting the induction hypothesis.
Therefore q ⊥ pj for every j = 1, . . . , n.

It follows by induction that there exists a sequence (pn) of mutually
orthogonal minimal projections in J such that ‖T (pn)‖ > n. The series∑∞

n=1 (1/
√
n)pn defines an element a in J (cf. Remark 4.3). For each natural

m, a decomposes as the orthogonal sum of (1/
√
m)pm and

∑
n6=m (1/

√
n)pn,

therefore

T (a) =
1√
m
T (pm) + T

(∑
n6=m

1√
n
pn

)
,

with orthogonal summands. This argument implies that

‖T (a)‖ = max
{

1√
m
‖T (pm)‖,

∥∥∥∥T(∑
n6=m

1√
n
pn

)∥∥∥∥} >
√
m.

Since m was arbitrary, we have arrived at the desired contradiction.

By Proposition 2 in [23], every Cartan factor of type 1 with dim(H) =
dim(H ′), every Cartan factor of type 2 with dim(H) even or infinite, and
every Cartan factor of type 3 is a JBW ∗-algebra factor for a suitable Jordan
product and involution. In the case of C being a Cartan factor which is also a
JBW ∗-algebra, the corresponding elementary JB∗-triple K(C) is a weakly
compact JB∗-algebra.

Corollary 4.10. Let K be an elementary JB∗-triple of type 1 with
dim(H) = dim(H ′), or of type 2 with dim(H) even or infinite, or of type 3.
Suppose that T : K → E is a biorthogonality preserving linear surjection
from K onto a JB∗-triple. Then T is continuous. Further, since K∗∗ is a
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JBW ∗-algebra factor, Theorem 3.9 ensures that T is a scalar multiple of a
triple isomorphism.

Theorem 4.11. Let T : E → F be a biorthogonality preserving linear
surjection between JB∗-triples, where E is weakly compact containing no
infinite-dimensional rank-one summands. Then T is continuous.

Proof. Since E is a weakly compact JB∗-triple, the statement follows
from Proposition 4.6 as soon as we prove that the set

T := {‖T (e)‖ : e a minimal tripotent in E}

is bounded.
We know that E =

⊕c0
α∈Γ Kα, where {Kα : α ∈ Γ} is a family of

elementary JB∗-triples (see Lemma 3.3 in [7]). Now, Lemma 3.1 guarantees
that T (Kα) = T (K⊥⊥α ) = T (Kα)⊥⊥ is a norm closed inner ideal for every
α ∈ Γ .

For each α ∈ Γ , Kα is finite-dimensional, or a type 1 elementary JB∗-
triple of rank greater than one, or a JB∗-algebra. It follows, by Corollary
4.7 and Theorem 4.9, that T |Kα : Kα → T (Kα) is continuous.

Suppose that T is unbounded. Having in mind that every minimal tripo-
tent in E belongs to a unique factor Kα, by Proposition 4.6, there exists
a sequence (en) of mutually orthogonal minimal tripotents in E such that
‖T (en)‖ diverges to +∞. The element z :=

∑∞
n=1 ‖T (en)‖−1/2en lies in

E and hence ‖T (z)‖ < ∞. We fix an arbitrary natural m. Since z −
‖T (em)‖−1/2em and ‖T (em)‖−1/2em are orthogonal, we have

T (z − ‖T (em)‖−1/2em) ⊥ T (‖T (em)‖−1/2em),

and hence

‖T (z)‖ = ‖T (z − ‖T (em)‖−1/2em)) + T (‖T (em)‖−1/2em)‖

= max{‖T (z − ‖T (em)‖−1/2em)‖, ‖T (em)‖−1/2‖T (em)‖} ≥
√
‖T (em)‖,

which contradicts that ‖T (em)‖1/2 → +∞. Therefore T is bounded.

Corollary 4.12. Let T : E → F be a biorthogonality preserving lin-
ear surjection between two JB∗-triples, where K(E) contains no infinite-
dimensional rank-one summands. Then T |K(E) : K(E)→ K(F ) is continu-
ous.

Proof. Pick x ∈ K(E). It can be written in the form x =
∑

n λnun,
where un are mutually orthogonal minimal tripotents of E, and ‖x‖ =
sup{|λn| : n ≥ 1} (cf. Remark 4.6 in [7]). For each natural m we define ym :=
T (
∑

n≥m+1 λnun). Theorem 4.1 guarantees that T (xm) = T (
∑m

n=1 λnun)
defines a sequence in K(F ).
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Since, by Lemma 4.5, ym → 0 in norm, we deduce that T (xm) =
T (x)−ym tends to T (x) in norm. Therefore T (K(E)) = K(F ) and T |K(E) :
K(E) → K(F ) is a biorthogonality preserving linear surjection between
weakly compact JB∗-triples. The result now follows from Theorem 4.11.

Remark 4.13. In Remark 15 of [10] it was already pointed out that
the conclusion of Theorem 4.11 is no longer true if we allow E to have
infinite-dimensional rank-one summands. Indeed, let E = L(H)⊕∞L(H,C),
where H is an infinite-dimensional complex Hilbert space. We can always
find an unbounded bijection S : L(H,C) → L(H,C). Since L(H,C) is a
rank-one JB∗-triple, S is a biorthogonality preserving linear bijection and
the mapping T : E → E given by x + y 7→ x + S(y) has the same proper-
ties.

Corollary 4.14. Two weakly compact JB∗-triples containing no rank-
one summands are isomorphic if and only if there exists a biorthogonality
preserving linear surjection between them.

5. Biorthogonality preservers between atomic JBW ∗-triples.
A JBW ∗-triple E is said to be atomic if it coincides with the weak∗ closed
ideal generated by its minimal tripotents. Every atomic JBW ∗-triple can
be written as an `∞-sum of Cartan factors [21].

The aim of this section is to study when the existence of a biorthogonal-
ity preserving linear surjection between two atomic JBW ∗-triples implies
that they are isomorphic (note that continuity is not assumed). We shall es-
tablish an automatic continuity result for biorthogonality preserving linear
surjections between atomic JBW ∗-triples containing no rank-one factors.

Before dealing with the main result, we survey some results describing
the elements in the predual of a Cartan factor. We make use of the descrip-
tion of the predual of L(H) in terms of the trace class operators (cf. [32,
§II.1]). The results, included here for completeness, are direct consequences
of this description but we do not know an explicit reference.

Let C = L(H,H ′) be a type 1 Cartan factor. Lemma 2.6 in [30] en-
sures that each ϕ in C∗ can be written in the form ϕ :=

∑∞
n=1 λnϕn, where

(λn) is a sequence in `+1 and each ϕn is an extreme point of the closed
unit ball of C∗. More concretely, for each natural n there exist norm-one
elements hn ∈ H and kn ∈ H ′ such that ϕn(x) = (x(hn)|kn) for every
x ∈ C, that is, for each natural n there exists a minimal tripotent en
in C such that P2(en)(x) = ϕn(x)en for every x ∈ C (cf. [20, Proposi-
tion 4]).

We now consider (infinite-dimensional) type 2 and type 3 Cartan factors.
Let j be a conjugation on a complex Hilbert space H, and consider the
linear involution on L(H) defined by x 7→ xt := jx∗j. Let C2 = {x ∈ L(H) :
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xt = −x} and C3 = {x ∈ L(H) : xt = x} be Cartan factors of type 2 and 3,
respectively.

Noticing that L(H) = C2 ⊕ C3, it is easy to see that every element
ϕ in (C2)∗ (respectively, (C3)∗) admits an extension of the form ϕ̃ = ϕπ,
where π denotes the canonical projection of L(H) onto C2 (respectively,
C3). Making use of [32, Lemma 1.5], we can find an element xeϕ ∈ K(H)
satisfying

(5.1) (xeϕ(h)|k) = ϕ̃(h⊗ k) (h, k ∈ H).

Since, for each x ∈ L(H), ϕ̃(x) = 1
2 ϕ̃(x − xt), we can easily check, via

(5.1), that xteϕ = −xeϕ. Therefore xeϕ ∈ K2 = K(C2). From [7, Remark 4.6]
it may be deduced that xeϕ can be (uniquely) written as a norm convergent
(possibly finite) sum xeϕ =

∑
n λnun, where un are mutually orthogonal min-

imal tripotents in K2 and (λn) ∈ c0 (notice that un is a minimal tripotent
in C2 but it need not be minimal in L(H); in any case, either un is mini-
mal in L(H) or it can be written as a convex combination of two minimal
tripotents in L(H)). For each (βn) ∈ c0, z :=

∑
n βnun ∈ K2 and, by (5.1),∑

n λnβn = ϕ̃(z) = ϕ(z) < ∞. Thus, (λn) ∈ `1, and another application
of (5.1) shows that ϕ(x) =

∑
n λnϕn(x) for all x ∈ C2, where ϕn lies in

(C2)∗ and satisfies P2(un)(x) = ϕn(x)un. A similar reasoning remains true
for C3.

We have thus proved:

Proposition 5.1. Let C be an infinite-dimensional Cartan factor of
type 1, 2 or 3. For each ϕ in C∗, there exist a sequence (λn) ∈ `1 and a
sequence (un) of mutually orthogonal minimal tripotents in C such that

‖ϕ‖ =
∞∑
n=1

|λn| and ϕ(x) =
∑
n

λnϕn(x) (x ∈ C),

where for each n ∈ N, ϕn(x)un = P2(un)(x) (x ∈ C).

Let T : E → F be a biorthogonality preserving linear surjection between
atomic JBW ∗-triples, where E contains no rank-one Cartan factors. In this
case K(E) and K(F ) are weakly compact JB∗-triples with K(E)∗∗ = E
and K(F )∗∗ = F . Corollary 4.12 ensures that T |K(E) : K(E) → K(F ) is
continuous. This is not, a priori, enough to guarantee that T is continuous.
In fact, for each nonreflexive Banach space X there exists an unbounded
linear operator S : X∗∗ → X∗∗ such that S|X : X → X is continuous.
The main result of this section establishes that a mapping T as above is
automatically continuous.

Theorem 5.2. Let T : E → F be a biorthogonality preserving linear sur-
jection between atomic JBW ∗-triples, where E contains no rank-one Cartan
factors. Then T is continuous.
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Proof. Corollary 4.12 ensures that T |K(E) : K(E) → K(F ) is continu-
ous. By Lemma 3.3 in [7], K(E) decomposes as a c0-sum of all elementary
triple ideals of E, that is, if E =

⊕`∞ Cα, where each Cα is a Cartan fac-
tor, then K(E) =

⊕c0 K(Cα). By Proposition 3.10, for each α, T (Kα)
(respectively, T (Cα) is a norm closed (respectively, weak∗ closed) inner
ideal of K(F ) (respectively, F ) and K(F ) =

⊕c0 T (K(Cα)) (respectively,
F =

⊕c0 T (Cα)).
For each α, Cα is either finite-dimensional, or an infinite-dimensional

Cartan factor of type 1, 2 or 3. Corollaries 4.7 and 4.10 prove that the
operator T |K(Cα) : K(Cα) → T (K(Cα)) is a scalar multiple of a triple
isomorphism. We claim that, for each α and each ϕα in the predual of
T (Cα), ϕαT is weak∗ continuous. There is no loss of generality in assuming
that Cα is infinite-dimensional.

Each minimal tripotent f in F lies in a unique elementary JB∗-triple
T (K(Cα)). Since T |K(Cα) : K(Cα) → T (K(Cα)) is a scalar multiple of a
triple isomorphism, there exist a nonzero scalar λα and a minimal tripo-
tent e satisfying T−1(f) = λαe, |λα| ≤ ‖(T |K(Cα))−1‖ ≤ ‖(T |K(E))−1‖,
and

(5.2) T (K(Cα)i(e)) = T (K(Cα))i(f)

for every i = 0, 1, 2. Theorem 4.1 shows that T ((Cα)i(e)) = T (Cα)i(f)
for every i = 0, 2. Since K(E) is an ideal of E and e is a minimal tripo-
tent, (Cα)1(e) = E1(e) = K(E)1(e) = K(Cα)1(e). It follows from (5.2)
that

T ((Cα)i(e)) = T ((Cα))i(f)

for every i = 0, 1, 2. Consequently, P2(f)T = λ−1
α P2(e) ∈ (Cα)∗, and |λ−1

α | ≤
‖T |K(Cα)‖ ≤ ‖T |K(E)‖.

Since f was an arbitrary minimal tripotent in F (equivalently, in
T (K(Cα))), Proposition 5.1 ensures that ϕαT ∈ E∗ with ‖ϕαT‖ ≤ ‖T |K(E)‖
for every ϕα ∈ (T (Cα))∗. Therefore, T is bounded with

‖T‖ ≤ ‖T |K(E)‖ ≤ ‖T‖.

Corollary 5.3. Two atomic JBW ∗-triples containing no rank-one sum-
mands are isomorphic if and only if there is a biorthogonality preserving linear
surjection between them.

The conclusion of Theorem 5.2 does not hold for atomic JBW ∗-triples
containing rank-one summands.
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