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Toeplitz operators on Bergman spaces and Hardy multipliers

by

Wolfgang Lusky (Paderborn) and Jari Taskinen (Helsinki)

Abstract. We study Toeplitz operators Ta with radial symbols in weighted Bergman
spaces Ap

µ, 1 < p < ∞, on the disc. Using a decomposition of Ap
µ into finite-dimensional

subspaces the operator Ta can be considered as a coefficient multiplier. This leads to
new results on boundedness of Ta and also shows a connection with Hardy space multi-
pliers. Using another method we also prove a necessary and sufficient condition for the
boundedness of Ta for a satisfying an assumption on the positivity of certain indefinite
integrals.

1. Introduction and notation. We study Toeplitz operators Ta with
radial symbols in weighted Bergman spaces Apµ = Apµ(D), 1 < p <∞, of the
open unit disc D of the complex plane C. In the Hilbert space case p = 2,
the article [8] (see also [22]) contains a study of Ta as the Taylor coefficient
multiplier

(1.1) Ta :
∑
k∈N

fkz
k 7→

∑
k∈N

γkfkz
k.

The multiplier coefficients γk are weighted moments γk of the symbol a (see
(3.1)), so the boundedness of Ta : A2 → A2 can be characterized in terms
of the boundedness of the sequence (γk)∞k=1. The reference [8] contains the
unitary equivalence of Ta to a multiplication operator even in a more general
setting, thus completely clarifiying the basic properties of Ta.

The Toeplitz operator can still be considered as a multiplier even in the
case p 6= 2, but this is a less useful point of view, since the monomials do not
form an unconditional Schauder basis in Ap, p 6= 2, not to speak of the case
with weighted norms. However, in this paper we prove (Theorem 3.5) the
fact that even with quite general weighted norms the Bergman space can
still be decomposed into finite-dimensional subspaces A(n), n ∈ N, spanned
by monomials with degrees in certain subintervals Nn of N = {0, 1, 2, . . .}.
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The boundedness and compactness of Ta can be characterized in terms of
its behaviour on these blocks (see Theorem 3.3).

In fact this leads to the following result (for the assumptions on µ, see
this section below, and for γk and Nn, see Section 3).

Theorem 1.1. Let 1 < p < ∞. The Toeplitz operator Ta : Apµ → Apµ is
bounded if and only if the coefficient multipliers

(1.2) T (n)
a :

∑
k∈N

fke
ikθ 7→

∑
k∈Nn

γkfke
ikθ, θ ∈ [0, 2π],

are for all n ∈ N uniformly bounded operators Hp → Hp, where Hp is the
Hardy space on the disc. Moreover, Ta : Apµ → Apµ is compact if and only
if the sequence formed by the operator norms of T (n)

a : Hp → Hp converges
to 0.

The reason is that on every A(n), the Bergman norm is actually equiv-
alent to a Hardy-type norm, a result which is contained in Theorem 3.5.
We remark that a complete characterization of the boundedness of Hardy
multipliers is not known. The operator norms of T (n)

a : Hp → Hp will later
be denoted by Mp(τn).

As for other results, we observe in Proposition 3.1 that the boundedness
of the multiplier sequence (γk) is still necessary for the boundedness of the
operator Ta : Apµ → Apµ in the case p 6= 2, for general weights. Hence, we
obtain the result that the boundedness of the operator Ta : Apµ → Apµ, p 6= 2,
implies the boundedness Ta : A2

µ → A2
µ (see Theorem 3.2).

The above approach to Toeplitz operators as multipliers is contained in
Section 3. In Section 2 we provide another type of necessary and sufficient
condition for the boundedness of Ta for special a. Namely, under a rather
weak assumption on the positivity of a certain indefinite nth integral Ia(n)
of a, the boundedness of Ta : A2 → A2 was characterized in [9] in terms of
the boundary behaviour of I(n)

a . In Theorem 2.1 we generalize this to the case
p 6= 2. The proof uses some estimates of the kernel of the Berezin transform
and it is considerably more complicated than in the Hilbert space case.

We recall the basic definitions and notation. An introduction to Bergman
spaces on D and Toeplitz operators can be found in [28]. For Hardy spaces we
also refer to [19]. By C, C ′, C1 etc. we mean positive constants independent
of given functions or indices, but which may vary from place to place. The
Toeplitz operator Ta is defined as the product of pointwise multiplication
and Bergman projection operators,

Taf(z) =
�

D

a(w)f(w)
(1− zw̄)2

dA(w),

where dA is the normalized two-dimensional Lebesgue measure on D and
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a : D → C is the symbol of Ta. In the following we restrict to the case of
a ∈ L1(D) radial: a(z) = a(|z|). Then also the one real variable function
a(r) belongs to L1(0, 1).

We shall work in the context of weighted Bergman spaces with rather
general radial weights. Let µ be a nonatomic, bounded positive measure on
[0, 1[ such that µ([1 − ε, 1[) > 0 for every 0 < ε < 1. We define the space
Lpµ = Lpµ(D) using the norm

(1.3) ‖f‖p,µ :=
(

1
2π

1�

0

2π�

0

|f(reiθ)|pr dθ dµ(r)
)1/p

.

The corresponding weighted Bergman space (the closed subspace of Lpµ con-
sisting of analytic functions) is denoted by Apµ := Apµ(D). The most classical
case of unweighted Bergman space Ap := Ap(D) corresponds to the measure
dµ = dr; in this case we omit the index µ in the notation. Also the weighted
cases with measures dµ = (1− r2)dr are standard in the literature.

Remark 1.2. 1◦ It is not really important to assume that the measure
is nonatomic, since, for any bounded positive measure µ on [0, 1[ and every
ε > 0, there exists a nonatomic (bounded positive) measure µ0 such that
the weighted Bergman spaces corresponding to µ and µ0 are the same and

(1.4) (1− ε)‖f‖p,µ ≤ ‖f‖p,µ0 ≤ ‖f‖p,µ
for all f ∈ Ap,µ. This fact is essentially contained in Proposition 1.2 of [11].

2◦ With our assumptions on the measure µ, the polynomials form a dense
subspace of Apµ. See [14, Proposition 2.1].

The basic problem of characterizing the boundedness of Toeplitz opera-
tors on Bergman spaces is still open. Well-known partial results are included
in [12, 16, 25, 26, 27, 29]. Recently, quite weak sufficient conditions for the
boundedness were given in [21, 17]. The latter reference also contains the
definition of Toeplitz operators with distributional symbols. The recent re-
view [18] contains some results on radial symbols, related to the present
paper. Many other topics, like matrices or products of Toeplitz operators,
operators on general domains, Fredholm properties and so on, have attracted
a lot of attention (see e.g. [1–7, 11, 20, 23, 29]).

2. Symbols with positive integrals. The problem of characterizing
the boundedness of Ta was solved for positive a in [16] (a good presentation
of the topic with references to later developments and generalizations can
be found in [28]): the Toeplitz operator Ta : Ap → Ap is bounded if and
only if the Berezin transform of a is bounded. Our aim here is to consider
the radial case for all 1 < p < ∞ and in particular weaken the positivity
assumption on the symbol a as follows. For all n ∈ N, n ≥ 1, we define the
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nth indefinite integrals by

Ia(r) := I(1)
a (r) =

1�

r

a(s)s ds, I(n+1)
a (r) :=

1�

r

I(n)
a (s)s ds, r ∈ [0, 1[.

It is clear that for positive a all indefinite integrals I(n)
a are positive functions;

moreover, if I(n)
a is positive, then the same is true for all I(k)

a with k > n.
On the other hand, I(n)

a may very well be positive though a is not. We shall
solve the boundedness problem under the assumption that I(n)

a is positive
for some n:

Theorem 2.1. Assume that for some n ≥ 1 the function Ina is nonneg-
ative. Then the Toeplitz operator Ta : Ap → Ap is bounded if and only if

(2.1) |I(n+1)
a (r)| ≤ C(1− r)n+1

for all r ∈ [0, 1[.

In the case p = 2 this result was proven in [8, 22].
The proof requires some preparations. The normalized Bergman kernel

and the kernel of the Berezin transform are denoted, respectively, by

(2.2) kz(w) =
1− |w|2

(1− zw̄)2
, Bz(w) =

(1− |z|2)2

|1− zw̄|4
= kw(z)kw(z),

where z, w ∈ D, the Berezin transform of a function f ∈ L1(D) thus being

f̃(z) :=
�

D
f(w)Bz(w) dA(w).

Lemma 2.2. For every k ∈ N, k ≥ 1, there exists a constant Ck > 0
such that

(2.3)
1
Ck

rk−1(1− r2)2

(1− r%)k+3
≤

2π�

0

∂k

∂%k
(%Bz(%eiθ)) dθ ≤ Ck

rk−1(1− r2)2

(1− r%)k+3
,

where r := |z| and % ∈ [0, 1[.

Proof. Writing w = %eiθ, we see that
1

|1− zw̄|4
=

1
(1− zw̄)2

1
(1− z̄w)2

(2.4)

=
( ∞∑
n=0

(n+ 1)(zw̄)n
)( ∞∑

n=0

(n+ 1)(z̄w)n
)

=
∞∑
n=0

n∑
m=0

(n−m+ 1)(m+ 1)(zw̄)n−m(z̄w)m

=
∞∑
n=0

%n
n∑

m=0

(n−m+ 1)(m+ 1)zn−mz̄me−iθ(n−2m).
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Hence,

∂k

∂%k
%

|1− zw̄|4

=
∞∑

n=k−1

(n+ 1)!
(n− k + 1)!

%n−k+1
n∑

m=0

(n−m+ 1)(m+ 1)zn−mz̄me−iθ(n−2m),

and, since only the terms with even n and m = n/2 are nonzero after
integration, we get

(2.5)
2π�

0

∂k

∂%k
%

|1−zw̄|4
dθ = 2π

∑
n≥k−1
n even

(n+1)!
(n−k+1)!

(
n

2
+1
)2

zn/2z̄n/2%n−k+1

=
π

2
rk−1

∑
n≥0

n+k odd

(n+k)!
n!

(n+k+1)2(r%)n.

From the identity

(2.6)
dk+2

dxk+2

1
1− x

=
∞∑
n=0

(n+ k + 2)!
n!

xn, k ∈ N,

one can develop the Taylor series for the expressions (1−r%)−k−3; the result
follows from (2.5), using the estimates

(2.7)
1
C

(n+ k + 2)!
n!

≤ (n+ k)!
n!

(n+ k + 1)2 ≤ C(n+ k + 2)!
n!

,

and the observation that the missing even, say (n+ k+ 1)st, degree term in
(2.5) is proportional to the existing (n+ k)th degree term.

Notice that though the %-derivatives of the Berezin kernel are not positive
functions, the angular integrals of the derivatives are, by the previous lemma.
This will be of crucial importance for the proof of the main result.

The following lemma is well-known, and follows from the boundedness
of Ta by considering the expression 〈Takζ , kζ〉, and using the definition of
the operator norm and duality of Bergman spaces.

Lemma 2.3. If Ta : Ap → Ap is bounded, then

(2.8)
∣∣∣�
D
a(w)Bz(w) dA(w)

∣∣∣ ≤ C.
Proof of Theorem 2.1. Let us consider the necessity of condition (2.1).

Assuming Ta : Ap → Ap bounded, Lemma 2.3 and repeated integration by
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parts imply

C ≥
∣∣∣�
D
a(w)Bz(w) dA(w)

∣∣∣ =
∣∣∣2π�

0

1�

0

a(%)Bz(%eiθ)% d% dθ
∣∣∣(2.9)

=
∣∣∣∣2π�

0

( n∑
k=1

(−1)k+1

[
I(k)
a (%)

∂k−1

∂%k−1
(%Bz(%eiθ))

]%=1

%=0

+ (−1)n
1�

0

I(n)
a (%)

∂n

∂%n
(%Bz(%eiθ)) d%

)
dθ

∣∣∣∣.
Since a ∈ L1(D, dA) and it is constant with respect to θ, the function

a restricted to the unit interval actually belongs to L1(0, 1) with respect to
the one-dimensional measure. Hence,

(2.10) lim
%→1

1�

%

a(s) ds = 0

and by induction lim%→1 I
(k)
a (%) = 0 for every k. This implies that the sub-

stitution term with % = 1 in (2.9) is null, since for any fixed z the expres-
sion ∂k(%Bz(%))/∂%k is even bounded. Moreover, the substitution term with
% = 0 is bounded by a constant times the L1(0, 1)-norm of a, hence the same
applies to the whole term

(2.11)
[
I(k)
a (%)

∂k−1

∂%k−1
(%Bz(%eiθ))

]%=1

%=0

Concerning the last term of (2.9), its modulus can be bounded from below,
using the positivity of I(n)

a , the fact that r ≥ 1/2, and (2.3), as follows:

(2.12)
1�

0

I(n)
a (%)

2π�

0

∂n

∂%n
(%Bz(%eiθ)) dθ d% ≥ Cn

1�

0

I(n)
a (%)

rn−1(1− r2)2

(1− r%)n+3
d%

≥ C ′n(1− r)2
1�

r

I(n)
a (%)

1
(1− r%)n+3

d%

≥ C ′′n
(1− r)n+1

1�

r

I(n)
a (%) d% =

C ′′nI
(n+1)
a

(1− r)n+1
.

This, together with (2.9) and the boundedness of (2.11), implies that con-
dition (2.1) is necessary for the boundedness of the Toeplitz operator.

The sufficiency part follows using the method of [17, Theorem 3.1]. Some
details are however different, so we present the proof. Let n ∈ N be as in
the assumption, and let f be an arbitrary polynomial and z ∈ D. Repeated
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integration by parts yields

Taf(z) =
2π�

0

1�

0

a(%eiθ)
f(%eiθ)

(1− z%e−iθ)2
% d% dθ(2.13)

=
2π�

0

( n∑
k=1

(−1)k+1

[
I(k)
a (%)

∂k−1

∂%k−1

%f(%eiθ)
(1− z%e−iθ)2

]%=1

%=0

+ (−1)n
1�

0

I(n)
a (%)

∂n

∂%n
%f(%eiθ)

(1− z%e−iθ)2
d%

)
dθ.

Since f is a polynomial, we deduce as around (2.10) that the substitution
terms with % = 1 vanish and those with % = 0 are bounded by the L1-norm
of a times ‖f‖p. Moreover, it is plain that∣∣∣∣2π�

0

1/2�

0

I(n)
a (%)

∂n

∂%n
%f(%eiθ)

(1− z%e−iθ)2
d% dθ

∣∣∣∣
can be bounded by C‖f‖p. Hence, we can add the Jacobian % and bound
the last term of (2.13) by C‖f‖p plus

(2.14)
2π�

0

1�

1/2

|I(n)
a (%)|

∣∣∣∣ ∂n∂%n f(%eiθ)
(1− z%e−iθ)2

∣∣∣∣% d% dθ
≤ C

2π�

0

1�

1/2

|I(n)
a (%)|

n∑
m=0

∣∣∣∣∂mf(%eiθ)
∂%m

∂n−m

∂%n−m
1

(1−z%e−iθ)2

∣∣∣∣% d% dθ
≤ C

2π�

0

1�

1/2

|I(n)
a (%)|(1−%)−n

n∑
m=0

(1−%)m|f (m)(%eiθ)| (1−%)n−m

|1−z%e−iθ|2+n−m % d% dθ

≤ C ′
2π�

0

1�

0

n∑
m=0

(1−%)m|f (m)(%eiθ)| 1
|1−z%e−iθ|2

% d% dθ,

where (2.1) and the identity ∂mf(%eiθ)/∂%m = f (m)(%eiθ)eimθ were used.
The rest goes as in [21]: the last expression of (2.14) is the maximal Bergman
projection of the Lp(dA)-function

n∑
m=0

(1− |z|)m|f (m)(z)|.

As a conclusion, the Lp(dA)-norm of (2.14) is bounded by a constant times
‖f‖p, proving that Ta : Ap → Ap is bounded, since the polynomials form a
dense subspace of Ap.
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3. Toeplitz operators as multipliers. In case p = 2 and for radial
symbols it was proven in [8] that the Toeplitz operator Ta is unitarily equiv-
alent to the `2-multiplier operator. We provide here a partial generalization
for the case p 6= 2, though a complete analogue is not possible due to the
fact that the monomials do not form an unconditional Schauder basis in
this case. However, it is still possible to decompose the weighted Bergman
space into finite-dimensional blocks such that the space is the `p-sum of
the blocks, with some consequences for the boundedness and compactness
properties of Ta (see Theorem 3.3). This approach has been taken by the
first named author in a series of papers (see [13, 14, 15]). Moreover, our
methods work in Bergman spaces with quite general radial weights: we use
the weighted norms ‖ · ‖p,µ as defined in (1.3).

We start with some easy observations. For all k, the quantity

(3.1) γk = 2
1�

0

(k + 1)r2k+1a(r) dr

is well-defined, since a(r) ∈ L1(0, 1) by our basic assumptions (see Section 1).

Proposition 3.1. Let 1 < p <∞. If the Toeplitz operator Ta : Apµ → Apµ
is bounded, then it is a coefficient multiplier, i.e.,

(3.2) (Taf)(z) =
∑
n∈N

γnfnz
n,

and moreover

(3.3) sup
k∈N
|γk| ≤ ‖Ta‖ <∞,

where ‖Ta‖ is the operator norm.

Proof. We first recall that the Taylor series

1
(1− zw̄)2

=
∞∑
n=0

(n+ 1)znrne−inθ

of the Bergman kernel converges uniformly for z and w = reiθ in compact
subsets of D. For f(w) =

∑
n fnr

ne−inθ ∈ Apµ we thus get

Taf(z) =
1
π

∞∑
n=0

∞∑
k=0

(k + 1)zkfn
1�

0

2π�

0

rn+ke−ikθeinθa(r)r dθ dr

=
∞∑
n=0

fnz
n

1�

0

2(n+ 1)r2n+1a(r) dr,

i.e. (3.2) holds. Furthermore, for any k, define hk(z) = Ckz
k, where Ck > 0

is chosen such that ‖hk‖p,µ = 1. Since Tahk = γkhk, we obtain |γk| ≤ ‖Ta‖
for all k.
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If f is a polynomial, then Taf is well-defined by the integral formula for
all radial a ∈ L1(D). We remark that in this case (3.2) holds irrespective of
whether Ta is a bounded operator or not.

An interesting consequence of the proposition is the following:

Theorem 3.2. If Ta : Apµ → Apµ is bounded for some 1 < p < ∞, then
Ta is bounded A2

µ → A2
µ.

This will follow from (3.8), Theorem 3.3(a) and Proposition 4.1(ii) below.
In the unweighted case this already follows from [22, Corollary 6.1.2]: it was
proven there that (3.3) is sufficient for the boundedness of Ta : A2 → A2.

The main result, Theorem 3.3, is based on a natural decomposition of Apµ
into finite-dimensional subspaces spanned by monomials of degrees in the
intervals Nn := N∩ ]mn,mn+1], where (mn)∞n=1 is a positive strictly increas-
ing sequence to be defined shortly. For analytic functions f(z) =

∑
k∈N fkz

k

on D we define

Qnf(z) =
∑
k∈Nn

fkz
k, Pn =

n∑
k=1

Qk, n = 1, 2, . . . ,(3.4)

Mp(f, r) =
(

1
2π

2π�

0

|f(reiθ)|p dθ
)1/p

, r ∈ [0, 1[.(3.5)

If f is analytic in a neighbourhood of the closed unit disc, say a polyno-
mial, then the quantity Mp(f, 1) can be defined by putting r = 1 in (3.5).
Moreover, for polynomials h =

∑
k hkz

k we can define

(3.6) Mp(h) = sup
Mp(f,1)≤1
f polynomial

Mp(h ∗ f, 1),

where

(3.7) h ∗ f =
∑
k

hkfkz
k.

Finally, for all n let τn be the polynomial

(3.8) τn(z) =
∑
k∈Nn

γkz
k.

So, if we denote by A(n) the finite-dimensional space of the polynomials
f =

∑
k∈Nn fkz

k, then the mapping Qn is the canonical projection, say,

from Apµ onto A(n). Moreover, if f ∈ A(n), then Taf = T
(n)
a f = τn ∗ f ; see

(1.2) and the remark after Proposition 3.1.

Theorem 3.3. (a) Ta : Apµ → Apµ is bounded if and only if

(3.9) sup
n∈N
Mp(τn) <∞.
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Moreover, if Ta is bounded, then its operator norm satisfies, for some con-
stant C > 0,

1
C
‖Ta‖ ≤ sup

n∈N
Mp(τn) ≤ C‖Ta‖.

(b) Ta : Apµ → Apµ is compact if and only if

(3.10) lim
n→∞

Mp(τn) = 0.

Proof of Theorem 1.1. Working out the definitions of Mp and τn one
finds that the operator norm of the multiplier T (n)

a on Hp is equal toMp(τn).
So Theorem 3.3 is a reformulation of Theorem 1.1.

The proof of Theorem 3.3 will be given in Section 4. The rest of the
current section is devoted to the study of the finite-dimensional decomposi-
tion of the weighted Bergman space. First we need to specify the numerical
sequence appearing in the above definitions.

Definition 3.4. Let cp > 0 be a constant such that the bound
Mp(Pnf, r) ≤ cpMp(f, r) holds for all 0 < r < 1, n and f ∈ Apµ (see [24]).
We fix a number

b > 16 · 3p−1(1 + 2p)cpp + 2

and set m1 = 0, and assume that for some n ≥ 1 the numbers m1 < · · · < mn

and 0 =: s0 < s1 < · · · < sn−1 < 1 have been chosen. Let sn be such that

(3.11)
sn�

0

rmnpr dµ = b

1�

sn

rmnpr dµ.

This is possible by what was assumed on dµ (see (1.3)); moreover, when
choosing s1, we may require by possibly increasing b that

(3.12) s1 ≥ max{1/2, 1− 1/p}, hence sp1 ≥ 1/4.

Then find mn+1 > mn such that

(3.13)
sn�

0

rmn+1pr dµ =
1
b

1�

sn

rmn+1pr dµ.

We define

(3.14) ωn :=
(sn�

0

(
r

sn

)mnp
r dµ+

1�

sn

(
r

sn

)mn+1p

r dµ

)1/p

.

The following result shows that the weighted Bergman space is an `p-sum
of finite-dimensional subspaces; this is a substitute for the property that the
monomials form an orthogonal basis of A2.
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Theorem 3.5. If every space A(n) = Qn(Apµ), n ∈ N, is endowed with
the norm

(3.15) ‖g‖p,µ,n := ωnMp(g, sn) = ωn

(
1

2π

2π�

0

|g(sneiθ)|p dθ
)1/p

,

then Apµ is the `p-sum of the spaces A(n); more precisely, there are constants
C1, C2 > 0 such that

(3.16) C1‖f‖p,µ ≤
( ∞∑
n=1

‖Qnf‖pp,µ,n
)1/p

≤ C2‖f‖p,µ

for all f ∈ Apµ.

For the proof we first provide a collection of lemmas. The symbol [s]
denotes the largest integer not larger than s ∈ R.

Lemma 3.6. If n > 0, 0 < m < M , 0 < r ≤ s, and g =
∑[n]

k=0 gkz
k and

h =
∑M

k=[m]+1 hkz
k, then

(3.17)
(
r

s

)n
Mp(g, s) ≤Mp(g, r) and Mp(h, r) ≤

(
r

s

)m
Mp(h, s).

This follows from the monotonicity of Mp(f, r) as a function of r.

Lemma 3.7. For all g ∈ A(n) = Qn(Apµ),

(3.18)
1�

0

Mp
p (g, r)r dµ ≤ ωpnMp

p (g, sn) ≤ b
1�

0

Mp
p (g, r)r dµ.

Proof. One can estimate, using Lemma 3.6 and then (3.11), (3.13),
1�

0

Mp
p (g, r)r dµ ≤Mp

p (g, sn)
sn�

0

(
r

sn

)mnp
r dµ+Mp

p (g, sn)
1�

sn

(
r

sn

)mn+1p

r dµ

≤Mp
p (g, sn)b

1�

sn

(
r

sn

)mnp
r dµ+Mp

p (g, sn)b
sn�

0

(
r

sn

)mn+1p

r dµ

≤ b
1�

sn

Mp
p (g, r)r dµ+ b

sn�

0

Mp
p (g, r)r dµ ≤ b

1�

0

Mp
p (g, r)r dµ.

Lemma 3.8. If g ∈ A(n), then

(3.19)
1�

0

Mp
p (g, r)r dµ ≤ b

b− 2

sn+1�

sn−1

Mp
p (g, r)r dµ.
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Proof. Again by (3.11) and (3.13),
sn−1�

0

Mp
p (g, r)r dµ ≤Mp

p (g, sn−1)
sn−1�

0

(
r

sn−1

)mnp
r dµ

≤Mp
p (g, sn−1)

1
b

1�

sn−1

(
r

sn−1

)mnp
r dµ ≤ 1

b

1�

sn−1

Mp
p (g, r)r dµ,

hence

(3.20)
b

b+ 1

1�

0

Mp
p (g, r)r dµ ≤

1�

sn−1

Mp
p (g, r)r dµ.

Moreover,

1�

sn+1

Mp
p (g, r)r dµ ≤Mp

p (g, sn+1)
1�

sn+1

(
r

sn+1

)mn+1p

r dµ(3.21)

≤ 1
b

sn+1�

0

Mp
p (g, r)r dµ ≤ 1

b

1�

0

Mp
p (g, r)r dµ.

As a consequence,

(3.22)
sn+1�

sn−1

Mp
p (g, r)r dµ =

1�

sn−1

Mp
p (g, r)r dµ−

1�

sn+1

Mp
p (g, r)r dµ

≥
(

b

b+ 1
− 1
b

) 1�

0

Mp
p (g, r)r dµ ≥ b− 2

b

1�

0

Mp
p (g, r)r dµ.

Corollary 3.9. If f ∈ Apµ, then

(3.23)
sn�

0

Mp
p ((id− Pn)f, r)r dµ ≤ 8

b− 2

sn+2�

sn

Mp
p ((id− Pn)f, r)r dµ

for n ≥ 1, and

(3.24)
1�

sn−1

Mp
p (Pn−2f, r)r dµ ≤

8
b− 2

sn−1�

sn−3

Mp
p (Pn−2f, r)r dµ

for n ≥ 4.

Proof. We may assume that f is a polynomial. An application of Lemma
3.8 to the functions g(z) = z[mn+1]+1 and h(z) = z[mn−1] yields, since g ∈
A(n+1) and h ∈ A(n−2),
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sn�

0

r(mn+1+1)pr dµ ≤
sn�

0

r([mn+1]+1)pr dµ

≤
1�

0

r([mn+1]+1)pr dµ−
sn+2�

sn

r([mn+1]+1)pr dµ

≤
(

b

b− 2
− 1
) sn+2�

sn

r([mn+1]+1)pr dµ

≤ 2s−pn
b− 2

sn+2�

sn

r(mn+1+1)pr dµ ≤ 8
b− 2

sn+2�

sn

r(mn+1+1)pr dµ

due to (3.12), and similarly, for n ≥ 4,
1�

sn−1

rmn−1pr dµ ≤
1�

sn−1

r[mn−1]pr dµ ≤
1�

0

r[mn−1]pr dµ−
sn−1�

sn−3

r[mn−1]pr dµ

≤ 2
b− 2

sn−1�

sn−3

r[mn−1]pr dµ ≤ 2s−p1

b− 2

sn−1�

sn−3

rmn−1pr dµ

≤ 8
b− 2

sn−1�

sn−3

rmn−1pr dµ.

(In case n = 3 the second to last estimate does not hold.) We obtain, using
Lemma 3.6 two times in both cases,
sn�

0

Mp
p ((id− Pn)f, r)r dµ ≤Mp

p ((id− Pn)f, sn)
sn�

0

(
r

sn

)(mn+1+1)p

r dµ

≤ 8
b− 2

Mp
p ((id− Pn)f, sn)

sn+2�

sn

(
r

sn

)(mn+1+1)p

r dµ

≤ 8
b− 2

sn+2�

sn

Mp
p ((id− Pn)f, r)r dµ

and
1�

sn−1

Mp
p (Pn−2f, r)r dµ ≤Mp

p (Pn−2f, sn−1)
1�

sn−1

(
r

sn−1

)mn−1p

r dµ

≤ 8
b− 2

Mp
p (Pn−2f, sn−1)

sn−1�

sn−3

(
r

sn−1

)mn−1p

r dµ

≤ 8
b− 2

sn−1�

sn−3

Mp
p (Pn−2f, r)r dµ.



150 W. Lusky and J. Taskinen

Proof of Theorem 3.5. Using Lemma 3.8 and Mp(Qnf, r) ≤ 2cpMp(f, r)
(see the beginning of Definition 3.4) we get

∞∑
n=1

b2

b− 2

sn+1�

sn−1

Mp
p (Qnf, r)r dµ ≤

∞∑
n=1

2cpb2

b− 2

sn+1�

sn−1

Mp
p (f, r)r dµ(3.25)

≤ 4cpb2

b− 2

1�

0

Mp
p (f, r)r dµ.

Use of Lemmas 3.7 and 3.8 yields
sn+1�

sn−1

Mp
p (Qnf, r)r dµ ≤Mp

p (Qnf, sn)ωpn(3.26)

≤ b2

b− 2

sn+1�

sn−1

Mp
p (Qnf, r)r dµ,

so combining this with (3.25) proves the second inequality of the theorem
with C2 = ((4cpb2)/(b− 2))1/p.

To prove the first inequality, consider f =
∑∞

n=1Qnf ; we may and do
assume that Q1f = P1f = 0, since Q1 is a bounded finite rank projection
which commutes with the other Qk. Denoting by 1[a,b] : R → {0, 1} the
characteristic function of the interval [a, b], we put, for z = reiθ,

f1(z) =
∞∑
n=1

(Qnf)(z)1[sn−1,sn+1[(r), f2(z) =
∞∑
n=1

(Qnf)(z)1[0,sn−1[(r),

f3(z) =
∞∑
n=1

(Qnf)(z)1[sn+1,1[(r) with f = f1 + f2 + f3.

We have

f2 =
∞∑
k=1

( ∞∑
n=k+1

Qnf
)

1[sk−1,sk[ =
∞∑
k=1

((id− Pk)f)1[sk−1,sk[

and

f3 =
∞∑
k=3

(k−2∑
n=1

Qnf
)

1[sk−1,sk[ =
∞∑
k=3

(Pk−2f)1[sk−1,sk[.

We obtain

(3.27)
1�

0

Mp
p (f, r)r dµ

≤ 3p−1
(1�

0

Mp
p (f1, r)r dµ+

1�

0

Mp
p (f2, r)r dµ+

1�

0

Mp
p (f3, r)r dµ

)
.

Now
	1
0M

p
p (f1, r)r dµ =

∑∞
n=1

	sn+1

sn−1
Mp
p (Qnf, r)r dµ. Corollary 3.9 yields
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1�

0

Mp
p (f2, r) dµ =

∞∑
k=1

sk�

sk−1

Mp
p ((id− Pk)f, r)r dµ

≤ 8
b− 2

∞∑
k=1

sk+2�

sk

Mp
p ((id− Pk)f, r)r dµ

≤ 8 · 2pcpp
b− 2

∞∑
k=1

sk+2�

sk

Mp
p (f, r)r dµ ≤ 16 · 2pcpp

b− 2
‖f‖pp,µ

and (using the assumption Q1f = 0, so that (3.24) also holds for n = 3)
1�

0

Mp
p (f3, r) dµ =

∞∑
k=3

sk�

sk−1

Mp
p (Pk−2f, r)r dµ ≤

8
b− 2

∞∑
k=3

sk−1�

sk−3

Mp
p (Pk−2f, r)r dµ

≤ 8cpp
b− 2

∞∑
k=3

sk−1�

sk−3

Mp
p (f, r)r dµ ≤ 16cpp

b− 2
‖f‖pp,µ.

Insert this in (3.27) to get

‖f‖pp,µ ≤ 3p−1
∞∑
n=1

sn+1�

sn−1

Mp
p (Qnf, r)r dµ+ 3p−1 16cpp(1 + 2p)

b− 2
‖f‖pp,µ.

By our choice of b we obtain a := 16cpp(1 + 2p)3p−1/(b− 2) < 1 and hence

(1− a)31−p‖f‖pp,µ ≤
∞∑
n=1

sn+1�

sn−1

Mp
p (Qnf, r)r dµ.

In view of (3.26), the proof is complete.

4. Proof of Theorem 3.3. We consider the boundedness statements.
Assume (3.9) holds, and let f ∈ Apµ first be a polynomial. Since Ta is a mul-
tiplier, QnTaf = TaQnf = τn ∗Qnf , by the remark just before Theorem 3.3.

Put Fn(z) = (Qnf)(snz) for z ∈ D. Then Fn ∈ A(n) and we obtain

Mp
p (QnTaf, sn) = Mp

p (τn ∗ Fn, 1) ≤Mp
p(τn)Mp

p (Fn, 1)
=Mp

p(τn)Mp
p (Qnf, sn),

hence
‖QnTaf‖p,µ,n ≤ (sup

l
Mp(τl))‖Qnf‖p,µ,n

for all n, so Theorem 3.5 yields

‖Taf‖p,µ ≤ C(sup
n∈N
Mp(τn))‖f‖p,µ

for some constant C. This bound also holds for general f ∈ Apµ due to the
density of the polynomials in the Bergman space.
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Assume next that the Toeplitz operator is bounded. For all n, let hn be
an analytic function with Mp(hn, 1) = 1 and Mp(τn) = Mp(τn ∗ hn, 1). Set

h̃n = Qnhn ∈ A(n).

Then we have Mp(τn ∗ hn, 1) = Mp(τn ∗ h̃n, 1), and Mp(h̃n, 1) ≤ C for a
constant C. Define

f(z) = ω−1
n h̃n(s−1

n z) ∈ A(n), z ∈ D.
Then

‖f‖p,µ,n = Mp(h̃n, 1) ≤ C, ‖Taf‖p,µ,n = Mp(τn ∗ h̃n, 1) =Mp(τn).

Theorem 3.5 yields

‖f‖p,µ ≤ C ′, ‖Taf‖p,µ ≥Mp(τn)/C ′

for a constant C ′ > 0, hence ‖Ta‖ ≥ C ′′Mp(τn) for a constant C ′′ > 0, for
all n. The proof of part (a) is complete.

As for compactness, if (3.10) holds, then Ta can be approximated in the
operator norm by finite rank operators (use Theorem 3.5), hence it must
be compact. Conversely, if (3.10) fails, we find a constant C > 0 and an
increasing subsequence (nl)l∈N such that Mp(τnl) ≥ C. For each l we thus
find a polynomial fl ∈ A(nl) such that

(4.1) Mp(τnl ∗ fl, 1) ≥ CMp(fl, 1)/2.

Normalizing the polynomials so that ‖fl‖p,µ = 1 we find that the unit ball of
Apµ is not mapped into a precompact set by Ta, since Tafl = τnl ∗ fl ∈ A(nl)

and ‖Tafl‖p,µ is bounded from below by a positive constant, by Theorem 3.5
and (4.1).

In view of the above results it is useful to consider the functionalMp in
some more detail. We remark that statement (ii) below completes the proof
of Theorem 3.2.

Proposition 4.1. Let 1/p+ 1/q = 1 and g be a polynomial.

(i) We haveMp(g) ≤Mq(g, 1). In particular, if supn∈NMq(τn, 1) <∞,
then Ta : Apµ → Apµ is bounded.

(ii) If p = q = 2, then Mp(g) = supk |gk|, where g =
∑

k gkz
k.

Proof. For (i),

Mp
p(g) = sup

Mp(f,1)≤1

1
(2π)2

2π�

0

∣∣∣ 2π�
0

f(ei(θ−ϕ))g(eiϕ) dθ
∣∣∣p dϕ

≤ sup
Mp(f,1)≤1

1
2π

2π�

0

Mp
p (f, 1)Mp

q (g, 1) dϕ = sup
Mp(f,1)≤1

Mp
p (f, 1)Mp

q (g, 1)

≤Mp
q (g, 1),
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and for (ii),

M2
2(g) = supP

|fn|2≤1

∑
n

|gn|2|fn|2 = sup
n∈N
|gn|2, where g =

∑
n

gnz
n.

Example 4.2. We calculate the indices sn,mn for dµ = dr for suitable b.
Here

	s
0 r

mr dµ = sm+2/(m+ 2) and
	1
s r

mr dµ = (1− sm+2)/(m+ 2). Hence,
(3.11) means

smnp+2
n = b(1− smnp+2

n ),

and we obtain

sn =
(

b

b+ 1

)1/(mnp+2)

.

Also (3.13) leads to
bsmn+1p+2
n = 1− smn+1p+2

n ,

hence smn+1p+2
n = 1/(b+ 1) or

(4.2) mn+1p+ 2 =
log(1/(b+ 1))

log(sn)
=

log(1/(b+ 1))
log(b/(b+ 1))

(mnp+ 2).

From these equalities we find the indices mn and sn:

mn =
2
p

(an−1−1), sn =
(

b

b+ 1

)a−n+1/2

with a :=
log(b+ 1)

log((b+ 1)/b)
> 1.
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