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The path space of a higher-rank graph
by

SAMUEL B. G. WEBSTER (Wollongong)

Abstract. We construct a locally compact Hausdorff topology on the path space of
a finitely aligned k-graph A. We identify the boundary-path space /A as the spectrum of
a commutative C*-subalgebra D4 of C*(A). Then, using a construction similar to that
of Farthing, we construct a finitely aligned k-graph A with no sources in which A is
embedded, and show that dA is homeomorphic to a subset of 4. We show that when

A is row-finite, we can identify C*(A) with a full corner of C*(A), and deduce that Dx
is isomorphic to a corner of D ;. Lastly, we show that this isomorphism implements the
homeomorphism between the boundary-path spaces.

1. Introduction. Cuntz and Krieger’s work [2] on C*-algebras associ-
ated to (0, 1)-matrices and its subsequent interpretation by Enomoto and
Watatani [4] were the foundation of the field we now call graph algebras.
Directed graphs and their higher-rank analogues provide an intuitive frame-
work for the analysis of this broad class of C*-algebras; there is an explicit
relationship between the dynamics of a graph and various properties of its as-
sociated C*-algebra. Kumjian and Pask in [7] introduced higher-rank graphs
(or k-graphs) as analogues of directed graphs in order to study Robertson
and Steger’s higher-rank Cuntz—Krieger algebras [18] using the techniques
previously developed for directed graphs. Higher-rank graph C*-algebras
have received a great deal of attention in recent years, not least because
they extend the already rich and tractable class of graph C*-algebras to
include all tensor products of graph C*-algebras (and thus many Kirchberg
algebras whose K7 contains torsion elements [7]), as well as (up to Morita
equivalence) the irrational rotation algebras and many other examples of
simple AT-algebras with real rank zero [§].

Although the definition of a k-graph (see Definition is not quite as
straightforward as that of a directed graph, k-graphs are a natural general-
isation of directed graphs: Kumjian and Pask show in [7, Example 1.3] that
1-graphs are precisely the path-categories of directed graphs. Like directed
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graph C*-algebras, higher-rank graph C*-algebras were first studied using
groupoid techniques. Kumjian and Pask defined the k-graph C*-algebra
C*(A) to be the universal C*-algebra for a set of Cuntz—Krieger relations
among partial isometries associated to paths of the k-graph A. Using direct
analysis, they proved a version of the gauge-invariant uniqueness theorem
for k-graph algebras. They then constructed a groupoid G, from each k-
graph A, and used the gauge-invariant uniqueness theorem to prove that
the groupoid C*-algebra C*(G,) is isomorphic to C*(A). This allowed them
to make use of Renault’s theory of groupoid C*-algebras to analyse C*(A).

The unit space g(AO) of G4, which must be locally compact and Hausdorff,
is a collection of paths in the graph: for a row-finite graph with no sources,
g(AO) is the collection of infinite paths in A (the definition of an infinite path
in a k-graph is not straightforward, see Remark . For more complicated
graphs, the infinite paths are replaced with boundary paths (Definition .

In [12], Raeburn, Sims and Yeend developed a “bare-hands” analysis
of k-graph C*-algebras. They found a slightly weaker alternative to the no-
sources hypothesis from Kumjian and Pask’s theorems, called local convexity
(Deﬁnition. The same authors later introduced finitely aligned k-graphs
in [13], and gave a direct analysis of their C*-algebras. This remains the
most general class of k-graphs to which a C*-algebra has been associated
and studied in detail.

Many results for row-finite directed graphs with no sources can be ex-
tended to arbitrary graphs via a process called desingularisation. Given an
arbitrary directed graph F, Drinen and Tomforde show in [3] how to con-
struct a row-finite directed graph F with no sources by adding vertices and
edges to E in such a way that the C*-algebra associated to F' contains the
C*-algebra associated to E as a full corner. The modified graph F' is now
called a Drinen—Tomforde desingularisation of E. Although no analogue of
a Drinen—Tomforde desingularisation is currently available for higher-rank
graphs, Farthing provided a construction in [5] analogous to that in [I] for
removing the sources in a locally convex, row-finite higher-rank graph. The
statements of the results of [5] do not contain the local convexity hypothesis,
but Farthing alerted us to an issue in the proof of [5, Theorem 2.28] (see
Remark , which arises when the graph is not locally convex.

The goal of this paper is to explore the path spaces of higher-rank graphs
and investigate how these path spaces interact with desingularisation pro-
cedures such as Farthing’s.

In Section [2| we recall the definitions and standard notation for higher-
rank graphs. In Section following the approach of [9], we build a topology
on the path space of a higher-rank graph, and show that the path space is
locally compact and Hausdorff under this topology.
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 In Section [ given a finitely aligned k-graph A, we construct a k-graph
A with no sources which contains a subgraph isomorphic to A. Our con-
struction is modelled on Farthing’s construction in [5], and the reader is
directed to [5] for several proofs. The crucial difference is that our construc-
tion involves extending elements of the boundary-path space 9A, whereas
Farthing extends paths from a different set A5 (see Remark . Inter-
estingly, although A and AS* are potentially different when A is row-finite
and not locally convex (Proposition , our construction and Farthing’s
yield isomorphic k-graphs except in the non-row-finite case (Example
and Proposition. We follow Robertson and Sims’ notational refinement
[17] of Farthing’s desourcification: we construct a new k-graph in which the
original k-graph is embedded, whereas Farthing’s construction adds bits onto
the existing k-graph. This simplifies many arguments involving A; however,
the main reason for modifying Farthing’s construction is that AS> is not
as well-behaved topologically as 0A (see Remark , and in particular, no
analogue of Theorem holds for Farthing’s construction.

In Section |5, we prove that given a row-finite k-graph A, there is a
natural homeomorphism from the boundary-path space of A onto the space
of infinite paths in A with range in the embedded copy of A. We provide
examples and discussion showing that the topological basis constructed in
Section [3] is the one we want.

In Section |§| we recall the definition of the Cuntz—Krieger algebra C*(A)
of a higher-rank graph A. We show that if A is a row-finite k-graph and
A is the graph with no sources obtained by applying the construction of
Section 4| to A, then the embedding of A in A induces an isomorphism 7 of
C*(A) onto a full corner of C*(A).

Section [7| contains results about the diagonal C*-subalgebra of a k-graph
C*-algebra: the C*-algebra generated by range projections associated to
paths in the k-graph. We identify the boundary-path space of a finitely
aligned higher-rank graph with the spectrum of its diagonal C*-algebra. We
then show that the isomorphism 7 of Section [f] restricts to an isomorphism
of diagonals which implements the homeomorphism of Section

2. Preliminaries

DEFINITION 2.1. Given k € N, a k-graph is a pair (A,d) consisting of
a countable category A = (Obj(A),Mor(A),r,s) together with a functor
d: A — NF called the degree map, which satisfies the factorisation prop-
erty: for every A € Mor(A) and m,n € N*¥ with d(\) = m + n, there are
unique elements p, v € Mor(A) such that A = v, d(n) = m and d(v) = n.
Elements A € Mor(A) are called paths. We follow the usual abuse of notation
and write A € A to mean A € Mor(A). For m € N* we define A™ := {\ € A :
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d(A) = m}. For subsets FF C A and V C Obj(A), we write VF =
{ANe F:r(\)eV}iand FV := {A € F :s(\) € V}. It V = {v}, we
drop the braces and write vF and Fv. A morphism between two k-graphs
(Ay1,d1) and (Ag,d3) is a functor f : A; — Ao which respects the degree
maps. The factorisation property allows us to identify Obj(A) with A°. We
refer to elements of A° as vertices.

REMARK 2.2. To visualise a k-graph we draw its 1-skeleton: a directed
graph with vertices A° and edges Ule A%, To each edge we assign a colour
determined by the edge’s degree. We tend to use 2-graphs for examples, and
we draw edges of degree (1,0) as solid lines, and edges of degree (0,1) as
dashed lines.

EXAMPLE 2.3. For k € Nand m € (NU{co})¥, we define k-graphs (2,
as follows. Set Obj(£2k.) = {p € N¥ : p; <m; for all i < k},

Mor (2 m) = {(p,q) : p,q € Obj(2 ) and p; < g; for all ¢ < k},

r(p,q) = p, s(p,q) = q and d(p,q) = q — p, with composition given by
(p,q)(q,t) = (p,t). If m = (c0)*, we drop m from the subscript and write (2.
The 1-skeleton of {25 5 is depicted in Figure

2,0)

Fig. 1. The 2-graph {22 2

REMARK 2.4. The graphs (2 ,, provide an intuitive model for paths:
every path A of degree m in a k-graph A determines a k-graph morphism
xy : {2m — A. To see this, let p,q € N* be such that p < ¢ < m. Define
zx(p,q) = N, where A = XXX and d(N) = p, d(\") = ¢—p and d(\") =
m — ¢. In this way, paths in A are often identified with the graph morphisms
zy : {2, — A We refer to the segment \” of X (as factorised above) as
A(p,q), and for n < m, we refer to the vertex r(A(n,m)) = s(A(0,n)) as
A(n). By analogy, for m € (NU {oo})* we define A™ := {z : Qpm — A:
x is a graph morphism}. For clarity of notation, if m = (co0)¥ we write A,

Define
Wy = U A",
ne(NU{oo})k
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We call W4 the path space of A. We drop the subscript when confusion is
unlikely.

For m,n € N¥, we denote by m A n the coordinate-wise minimum, and
by m V n the coordinate-wise maximum. With no parentheses, V and A take
priority over the group operation: a — b A ¢ means a — (b A ¢).

Since finite and infinite paths are fundamentally different, that one can
compose them is not immediately obvious.

LEMMA 2.5 ([19, Proposition 3.0.1.1]). Let A be a k-graph. Suppose X €
A and suppose that v € W satisfies v(x) = s()\). Then there exists a unique
k-graph morphism Az : (2 q\)4d@) — A such that (Ax)(0,d(A\)) = X and
(Az)(d(N),n+d(X)) = x(0,n) for all n < d(x).

DEFINITION 2.6. For A\, u € A, write
AN p) = {(a, B) € Ax Az da = puf, d(ha) = d(N) V d(p)}

for the collection of pairs which give minimal common extensions of A and u,
and denote the set of minimal common extensions by

MCE(\, ) i= {Aa: (@, 8) € A" 1)} = {uf: (@, B) € A™2(\, 1)},

DEFINITION 2.7. A k-graph A is row-finite if for each v € A° and
m € N*, the set vA™ is finite; A has no sources if vA™ # () for all v € A°
and m € NF.

We say that A is finitely aligned if A™"(\, ) is finite (possibly empty)
for all A\, € A.

Asin [I2, Definition 3.1], a k-graph A is locally convez if for all v € A°, all
i,7 €{1,...,k} with i # j, all A € vA% and all u € vA%, the sets s(\)A%
and s(u)A% are non-empty. Roughly speaking, local convexity stipulates
that A contains no subgraph resembling

u

X
v
Ve——w

A

DEFINITION 2.8. For v € A%, a subset'E C vA is exhaustive if for every
w € vA there exists a A € E such that A™™(\, u) # (). We denote the set of
all finite ezhaustive subsets of A by FE(A).

DEFINITION 2.9. An element z € W is a boundary path if for all n € N*
with n < d(x) and for all E € z(n)FE(A) there exists m € N¥ such that
x(n,m) € E. We write 04 for the set of all boundary paths.

Define the set AS* as follows. A k-graph morphism z : Q% m — Alis an
element of A= if there exists n, < d(x) such that for n € N¥ satisfying
ne < n < d(z) and n; = d(z);, we have z(n)A% = ().
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REMARK 2.10. Raeburn, Sims and Yeend introduced AS* to construct
a non-zero Cuntz—Krieger A-family [I3, Proposition 2.12]. Farthing, Muhly
and Yeend introduced 04 in [6]; in order to construct a groupoid to which
Renault’s theory of groupoid C*-algebras [15] applied, they required a path
space which was locally compact and Hausdorff in an appropriate topology,
and A=* did not suffice. The differences between 94 and A=* can be easily
seen if A contains any infinite receivers (e.g. any path in a 1-graph A with
source an infinite receiver is an element of A\ A=), but can even show
themselves in the row-finite case if A is not locally convex.

EXAMPLE 2.11. Suppose A is the 2-graph with the skeleton pictured
below:

[ ] [ [ ] ® <«
\ \ \ |
fo | fr f2} fal---
voxg ¥ vz v
Vo U1 U2
w[;\ wl\ w;\ w;\
Consider the paths x = zgz1..., and W™ = zgz1...Tp_ 1w, for n =

0,1,2,.... Observe that z ¢ AS>: for each n € N, we have d(z); = 0 =
(n,0)2, and z((n,0))A° = v, A% # (.

We claim that € 9A. Fix m € Nand E € v, FE(A). Since F is exhaus-
tive, for each n > m, there exists A™ € E such that MCE(A", &y, . . . &p—1wp)
is non-empty. Since F is finite, it cannot contain x,, ...z, 1w, for every
n > m, so it must contain z,, ...z, for some p € N. So z((m,0), (m+p)) =
T - .. Tp belongs to F.

The 2-graph of Example first appeared in Robertson’s honours the-
sis [16] to illustrate a subtlety arising in Farthing’s procedure [5] for removing
sources in k-graphs when the k-graphs in question are not locally convex. It
was for this reason that only locally convex k-graphs were considered in the
main results of [16] [17].

ProPOSITION 2.12. Suppose A is a finitely aligned k-graph. Then
AS® C 9QA. If A is row-finite and locally convex, then AS® = QA.

To prove this we use the following lemma.

LEMMA 2.13. Let A be a row-finite, locally convex k-graph, and suppose
that v € A° satisfies vA® # O for some i < k. Then vA® € vFE(A).

Proof. Since A is row-finite, vA% is finite. To see that it is exhaustive, let
p € vA. If d(p); > 0, then g = pu(0,¢e;) € vA% implies that A™"(u, g) # 0.
Suppose that d(u); = 0. Let g = pq ... uy be a factorisation of x such that
|d(5)| = 1 for each j < n. Since A is locally convex, s(u) A% = s(p,) A% # 0.
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Fix g € s(u)A%. Let f := (ug)(0,€;). Then f € vA%. Since d(u;) = 0,
we have d(ug) = d(p) v d(f). Hence (g, (ng)(ei,d(ng))) € A™(u, f) as
required. m

Proof of Proposition. Fix x € AS®°, m < d(x) and E € z(m)FE(A).
Define t € N* by

d(z): if d(x); < o0,
" { max(ng V (m +d(N)); if d(x); = co.

Then x(m,t) € x(m)A, so there exists A € E such that A™"(x(m,t), ) is
non-empty. Let (o, 3) € A™"(x(m,t), \). We first show that d(a) = 0. Since
r € AS® and n, <t < d(z), if d(z); < oo then z(t)A% = ). So for each i
such that d(x); < oo, we have d(a); = 0. Now suppose that d(x); = co. Then
d(z(m,t)); = ti —m; > d(N);. So d(z(m,t)a); = max{d(x(m,t));,d(\);} =
d(xz(m,t));, giving d(a); = 0. Hence xz(m,t) = A3, so x(m,m + d(\)) = A.

Now suppose that A is row-finite and locally convex. We want to show
OA C AS®. Fix z € 0A, and n € N* such that n < d(x) and n; = d(x);.
It suffices to show that z(n)A% = (. Since n; = d(z);, we have z(n)A% ¢
xz(n)FE(A). Lemma then implies that z(n)A% = (. =

3. Path space topology. Following the approach of Paterson and
Welch in [9], we construct a locally compact Hausdorff topology on the
path space W of a finitely aligned k-graph A. The cylinder set of p € A is
Z(u) == {v e W:v(0,d(u)) = u}. Define a : W — {0,1}" by a(w)(y) = 1
if w € Z(y) and 0 otherwise. For a finite subset G C s(u)A we define
(3.1) Z(p\G) = Z(w\ J Z(w).

ve@
Our goals for this section are the following two theorems. The basis we end

up with is slightly different to that in [9, Corollary 2.4], revealing a minor
oversight of the authors.

THEOREM 3.1. Let A be a finitely aligned k-graph. Then the collection

k
{Z(,u \G):peAand G C U(s(,u)/lei) is ﬁm’te}
=1

is a base for the initial topology on W induced by {a}.

THEOREM 3.2. Let A be a finitely aligned higher-rank graph. With the
topology described in Theorem [3.1], W is a locally compact Hausdorff space.
Let F be a set of paths in a k-graph A. A path 8 € W is a common
extension of the paths in F if for each u € F', we can write 3 = u3, for some
B, € W. If in addition d(8) = V ,cpd(p), then B is a minimal common
extension of the paths in F. We denote the set of all minimal common
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extensions of the paths in F' by MCE(F'). Since MCE({y, v}) = MCE(y, v),
this definition is consistent with Definition 2.6

REMARK 3.3. If F C A is finite, then (,cp Z(1) = Ugemcrr) Z(8)-

Proof of Theorem . We first describe the topology on {0,1}4. Given
disjoint finite subsets F,G C A and p € A, define sets UE’G to be {1} if
p € F, {0} if p € G and {0,1} otherwise. Then the sets N(F,G) :=
H#E A Ui ’G, where F, G range over all finite disjoint pairs of subsets of A,

form a base for the topology on {0,1}4.
Clearly, « is a homeomorphism onto its range, so the sets a~}(N(F, G))
are a base for a topology on W. Routine calculation shows that

oNEG)=( U 2w)\(Uzw).

HEMCE(F) veG

so the sets Z(u) \ U,cq Z(nv) = Z(p \ G) are a base for our topology.

To finish the proof, it suffices to show that for y € A, a finite subset G C
s(u)A and A € Z(u\ G), there exist & € A and a finite F' C |J*_, (s(a)A%)
such that A € Z(a\ F) C Z(p\ G). Let N := (\/,cqd(pr)) A d(\) and
a =M\, N). To define F, we first define a set F), associated to each v € G,
then take F' = J, . Fy. Fix v € G. We consider the following cases:

(1) If N > d(uv) or MCE(«, uv) = 0, let F, = 0.

(2) If N # d(pv) and MCE(a, puv) # 0, define F, as follows: Since
N # d(pv), there exists j, < k such that Nj, < d(uv)j,. Hence
each v € MCE(«, pv) satisfies d(v);, = (N Vd(uv));, > Nj,. Define
F, ={y(N,N +e;,) : v € MCE(a, pv)}. Since A is finitely aligned,
F,, is finite.

We now show that A € Z(a \ F'). We have A € Z(«) by choice of a.
If F = () we are done. If not, then fix v € G such that F, # (), and fix
e € F,. Then e = y(N,N + ¢;,) for some v € MCE(«, uv). Therefore
d(N)j, = Nj, < (N +ej,)j, =d(ae)j,. So X ¢ Z(ce), hence A € Z(a'\ F).

We now show that Z(a \ F) C Z(p\ G). Fix g € Z(a \ F). Since
a € Z(p), we have § € Z(p). Fix v € G. We show that 8 ¢ Z(uv) in cases:

(1) Suppose that N > d(uv). Since 8 € Z(a) = Z(A(0,N)) and \ ¢
Z(pv), it follows that 5 ¢ Z(uv).
(2) If N # d(uv), then either

(a) MCE(a, uv) = 0, in which case f € Z(«) implies that 5 ¢
Z(pw); or

(b) MCE(q, uv) # (. Then for each v € MCE(q, uv), we know
B(N,N +e€j,) #~v(N,N +e¢j,). Hence 8 ¢ Z(pv). w
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LEMMA 3.4. Let {v™} be a sequence of paths in A such that

(1) d( D) > d(v™) for all n € N,
(i) v™*(0,d(¥ ™)) = ™ for alln € N.

Then there erxists a unique w € W such that d(w) = \/,cn d(v™) and
w(0,d( ™)) = ™ for alln € N.

Proof. Let m = \/,,cyd(v™) € (NU {o0})¥. Then
(3.2)  For a € N* with a < m, there exists N, € N such that d(vNe)) > a.

For each (p, q) € 2, apply (3.2 . with a = g and define w(p, q) = vNa)(p, q).
Routine calculations using (3.2)) show that w : {2, — A is a well-defined
graph morphism with the required properties. m

Proof of Theorem . Fix v € A%, We follow the strategy of [9, The-
orem 2.2] to show Z(v) is compact: since « is a homeomorphism onto
its range, and since {0,1}" is compact, it suffices to prove that a(Z(v))
is closed in {0,1}4. Suppose that (w(™),ey is a sequence in Z(v) con-
verging to f € {0,1}. We seek w € Z(v) such that f = a(w). Define
A={veA:aw™)(v) - lasn — oco}. Then A # ) since v € A. Let
d(A) ==V, cad(v).

CLAIM 3.2.1. There exists w € vAYA) such that:

o d(w) >d(p) forall pe A,
e w(0,n) € A for all n € N¥ with n < d(A).

Proof. To define w we construct a sequence of paths and apply Lem-
ma . We first show that for each pair pu,v € A, MCE(u,v) N A contains
exactly one element. Fix pu,v € A. Then for large enough n, there exist
B" € MCE(u,v) such that w™ = "(w™)". Since MCE(u, v) is finite, there
exists M such that w™ = M (w™)’ for infinitely many n. Define Buy = gM.
Then 5, € A. For uniqueness, suppose that ¢ € MCE(y,v) N A. Then for
large n we have 3, = w"(0,d(p) vV d(v)) = <b.

Since A is countable, we can list A = {v!,12,...}. Let y! := v}, and iter-
atively define y™ = Byn-1 ,n. Then d(y") = d( ) Vd(v ) 2 d(y™1), and
y"(0,y" 1) = y" 1. By Lemma there exists a unique w € W satisfying
d(w) = d(A) and w(0,d(y™)) = y™ for all n. It then follows from that
w(0,n) € A for all n < d(A). mClaim

To see a(Z(v)) is closed, fix A € A. We show that a(w(”))( ) — a(w)(N).
If a(w)(A) = 1, then A = w(0,d())) € A by Claim[3.2.1] and thus a(w(™)())
approaches 1 as n approaches co. Now suppose that a( J(A) = 0. If d(N) £
d(w), then A ¢ A by Claim forcing a(w™)(A\) — 0. Suppose that
d(\) < d(w). Since w(0,d(\)) € A, we have w™(0,d()\)) = w(0,d()\)) for
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large n. Then a(w)(A) = 0 implies that w(0,d(X)) # A. So for large enough n
we have w(™(0,d()\)) # A, forcing a(w™)(A) — 0. =

REMARK 3.5. It has been shown that 9A is a closed subset of W [6l,
Lemma 5.12]. Hence 0/, with the relative topology, is a locally compact
Hausdorff space. Consider the 2-graph of Example For each n € N,
we have w" € A=, Notice that w" — z ¢ AS>®°. So A= is not closed in
general, and hence is not locally compact.

4. Removing sources

THEOREM 4.1. Let A be a finitely aligned k-graph. Then there exists a
finitely aligned k-graph A with no sources, and an embedding v of A in A. If
A is row-finite, then so is A.

DEFINITION 4.2. Define a relation ~ on V4 := {(z;m) : x € 94, m € N¥}
by: (z;m) = (y;p) if and only if

(V1) z(m Ad(x)) = y(p Ad(y)),

(V2) m—mAd(z) =p—pAdy).

DEFINITION 4.3. Define a relation ~ on Py := {(z;(m,n)) : z € 04,
m < n € NF} by: (z; (m,n)) ~ (y; (p,q)) if and only if

(P1) w(m Ad(x),n Ad(Pz)) = y(p Ad(y),q Ad(y)),

(P2) m —m Ad(x) =p—pAdly),

(P3) n—m=q—p.

It is clear from the definitions that both ~ and ~ are equivalence rela-
tions.

LEMMA 4.4. Suppose that (z;(m,n)) ~ (y; (p,q)). Then n —n Ad(z) =
q—qAd(y).

Proof. 1t follows from (P[L)) and (P3)) that

n—nAd(x)—(m—-mAd)=q—qgAdy)—(p—pAdy)).
The result is then a consequence of ( "

Let Py := Py/~ and V, := V,/~. The class in Py of (z;(m,n)) € Py is
denoted [z; (m,n)], and similarly the class in Vj of (x;m) € V, is denoted
[z;m)].

To define the range and source maps, observe that if (z;(m,n)) ~
(y; (p,q)), then (z;m) ~ (y;p) by definition of ~, and (z;n) =~ (y;q) by
Lemma We define range and source maps as follows.

DEFINITION 4.5. Define 7,5 : ]5/1 — ‘7}1 by

(s (m,n)]) = [z;m] and  5([; (m,n)]) = [z,n].
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We now define composition. For each m € N*¥ we define the shift map
o™ Uan A" — A by a™(N)(p,q) = Mp+ m,q+m).

PROPOSITION 4.6. Suppose that A is a k-graph, and that [; (m,n)] and
[v; (p,q)] are elements of Py satisfying [x;n] = [y;p]. Let z := z(0,n A
d(x))oP W)y, Then

(1) z € 04,

(2) mAd(z) =mAd(z) and n ANd(z) =nAd(z),

(3) w(mAd(x),nNd(x)) = z(mAd(z),nNd(z)) and y(pAd(y), gNd(y)) =

z(n A d(z), (n+q —p) Ad(2)).

Proof. Part (1) follows from [6, Lemma 5.13], and (2) and (3) can be

proved as in [0, Proposition 2.11]. =

Fix [2; (m,n)], [y; (p, ¢)] € Pa such that [z;n] = [y;p], and let z = 2:(0, nA
d(z))oP @)y, That the formula
(4.1) [z; (m,m)] o [y; (p, @)] = [2; (M, + g = p)]
determines a well-defined composition follows from Proposition

Define id : Vj — Py by idjg,y,) = [2; (m, m)].

PROPOSITION 4.7 ([B, Lemma 2.19]). A := (Vy, Pa,7,5,0,id) is a cate-
gory.

DEFINITION 4.8. Define d : A — N¥ by d(v) = « for all v € V4, and
d([z; (m,n)]) = n —m for all [x; (m,n)] € Py.

PROPOSITION 4.9 (|5, Theorem 2.22]). The map d defined above has
the factorisation property. Hence with A as in Proposition (A,d) is a
k-graph with no sources.

ExaMPLE 4.10. If we allow infinite receivers, our construction yields a
different k-graph to Farthing’s construction in [5, §2]: consider the 1-graph
FE with an infinite number of loops f; on a single vertex v:

&

(Y

Here we have E<> = (), so Farthing’s construction yields a 1-graph E & E.
Since v belongs to every finite exhaustive set in E, we have OF = FE. Fur-
thermore [f;;p] = [fi;p] = [v;p] for all 4, j,p € N, and

i (0, @] = [fi; (0, @)l = [v; (p — 1,4 — 1)]
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for all ¢, j, p, ¢ such that 1 < p < gq. Thus there is exactly one path between

any two of the added vertices, resulting in a head at v, yielding the graph
illustrated below:

fi

VUV <——

It is intriguing that following Drinen and Tomforde’s desingularisation,
a head is also added at infinite receivers like this, and then the ranges of the
edges f; are distributed along this head—we cannot help but wonder whether
this might suggest an approach to a Drinen—Tomforde desingularisation for
k-graphs.

4.1. Row-finite 1-graphs. While one expects this style of desourci-
fication to agree with adding heads to a row-finite 1-graph as in [1], this
appears not to have been checked anywhere.

PROPOSITION 4.11. Let E be a row-finite directed graph and F be the
graph obtained by adding heads to sources, as in [1l, p. 4]. Let A be the 1-graph
associated to E. Then A = F*, where F* is a the path-category of F'.

Proof. Define ' : Py — F* as follows. Fix x € OF and m,n € N.
Then either x € E*, or x € E* and s(z) is a source in E. If v € E*,
define n/((x; (m,n))) = x(m,n). For x € E*, let u, be the head added to
s(z), and define n'((x; (m,n))) = (zp)(m, n). It is straightforward to check
that 1’ respects the equivalence relation ~ on P4. Define 7 : A — F* by
n([x; (m,n)]) = n'((z; (m,n))). Easy but tedious calculations show that 7 is
a graph morphism.

We now construct a graph morphism £ : F* — A. Let v € F*. To define 3
we first need some preliminary notation. We will define ¢ casewise, broken
up as follows:

(i) v e B,
(ii) r(v) € E* and s(v) € F* \ E*, or
(iii) r(v),s(v) € F*\ E*.

If v e ¥, fix ay, € s(v)OE. If v has r(v) € E* and s(v) € F*\ E*,
let p, = max{p € N : v(0,p) € E*}. Then v(p,) is a source in E*, and
v(0,py) € OFE. If v € F* \ E*, then v is a segment of a head p, added to a
source in E*, and we let ¢, be such that v = p,(q, ¢ + d(u)).
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We then define ¢ by
[vaw; (0,d(v))] if ve £,
E(v) =< [¥(0,p,); (0,d(v))] if r(v) € E* and s(v) ¢ E*,
[r(10): (@ g+ d@))] i r(v), s(v) € F*\ E*.
Again, tedious but straightforward calculations show that £ is a well-defined
graph morphism, and that {on=17and no{ = 1p«. m

When A is row-finite and locally convex, Proposition implies that
AS® = 9A. In this case our construction is essentially the same as that of
Farthing [5 §2], with notation as in [I7]. If A is row-finite but not locally
convex, then AS® C 9A (Example shows that this may be a strict
containment). Thus it is reasonable to suspect that our construction could
result in a larger path space than Farthing’s. Interestingly, this is not the
case.

PROPOSITION 4.12. Let A be a row-finite k-graph. Suppose that x €
OA\ A= and m < n € NF. Then there exists y € AS® such that (x; (m,n))

~ (y; (m, n)).
Proof. Since x ¢ A= there exists ¢ > n A d(x) and i < k such that
q < d(z), g; = d(z);, and x(q)A% # (. Let

J:={i<k:q =d(x); and z(q)A% # 0}.

Since © € 0A, for each E € x(q)FE(A) there exists t € N¥ such that
z(q,q +1t) € E. Since ¢; = d(x); for all i € J, the set | J;c ; v(q)A® contains
no such segments of x, and thus cannot be finite exhaustive. Since A is
row-finite, | J;c; 2(q)A% is finite, so |J;c;#(q)A% is not exhaustive. Thus
there exists p € x(¢q)A such that MCE(u, v) = () for all v € {J;c; x(q)A%. By
[13, Lemma 2.11], s(1) AS%®° # (). Let 2 € s(u) A=, and define y := x(0, q)pz.
Then y € A by [13, Lemma 2.10].

Now we show that (z;(m,n)) ~ (y;(m,n)). Condition (P@) is trivially
satisfied. To see that (P[I)) and (Pf2) hold, it suffices to show that n A d(z) =
nAd(y). Firstly, let i € J. If d(uz); # 0, then (uz)(0,d(p)+e;) € MCE(u, v)
for v = (uz)(0,€;) € r(u)A% = z(q) A%, a contradiction. So for each i € J,
we have d(uz); = 0, and hence d(y); = d(x);. Now suppose that i ¢ J.
Then either x(q)A% = () or ¢; < d(x);. If (q)A% = 0 then d(y); = d(z);. So
suppose that ¢; < d(z);. Since n A d(z) < g, it follows that n; < d(x); and
n; < q; < d(y)i, hence (nAd(x)); = n; = (nAd(y))i- So nAd(z) =nAd(y). =

The following result allows us to identify A with a subgraph of A

PROPOSITION 4.13. Suppose that A is a k-graph, and that A € A. Then
s(MNOA # 0. If z,y € s(A\)0A, then Az, \y € 0A and (Az;(0,d(N))) ~
(Ay; (0,d(N))). Moreover, there is an injective k-graph morphism ¢ : A — A
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such that for A € A,
t(A) = [Az; (0,d(N)]  for any x € s(A)IA.

Proof. By [6, Lemma 5.15], we have vOA # ) for all v € A°. In particular,
s(A)0A # 0. Let x,y € s(\)OA. Then [6, Lemma 5.13(ii)] says that Az, \y
€ 0A. It follows from the definition of ~ that (Ax; (0,d()))) ~ (Ay; (0,d(N))).
Then straightforward calculations show that ¢ is an injective k-graph mor-
phism. =

We want to extend ¢ to an injection of W, into W ;. The next proposition
shows that any injective k-graph morphism defined on A can be extended
to WA.

PROPOSITION 4.14. Let A, I" be k-graphs and ¢ : A — I' be a k-graph
morphism. Let x € W \A. Then ¢(x) : 24, 4ty — Wr defined by ¢(x)(p, q) =
o(x(p,q)) belongs to Wp.

Proof. This follows from ¢ being a k-graph morphism. =

In particular, we can extend ¢ to paths with non-finite degree. We need
to know that composition works as expected for non-finite paths.

PROPOSITION 4.15. Let A, I" be k-graphs and ¢ : A — I' be a k-graph
morphism. Let A € A, x € s(A\)Wy, and suppose that n € NF satisfies
n < d(x). Then

(1) ¢(Mo(z) = ¢(Az),
(2) o"(¢(2)) = d(0"(2)).

Proof. Again this follows from ¢ being a k-graph morphism.

REMARK 4.16. We deduce that the extension of an injective k-graph
morphism to W, is also injective. In particular, the map ¢ : A — A has an
injective extension ¢ : Wy — Wi

We need to be able to ‘project’ paths from A onto the embedding u(A)
of A. For y € 0A define

(4.2) 7([y; (m,n)]) = [y; (m A d(y),n A d(y))].

Straightforward calculations show that 7 is a surjective functor, and is a pro-
jection in the sense that w(w([y; (m,n)])) = 7([y; (m,n)]) for all [y; (m,n)]
€ A. In particular, 7|,4) = id,()-

LEMMA 4.17. Let A be a k-graph. Suppose that A, MG/T, and that A€ Z(u).
Then w(A) € Z(m(w)). If d(m(X))i > d(m(w)); for some i < k, then d(u); =
d(m(p))i-
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Proof. Write A = [x; (m,m + d()))]. Then p = [z; (m,m + d(p))], so
m(A) = [z; (m A d(x), (m + d(X)) A d(2))],
7() = [z (m A d(z), (m + d(p)) A d(2))].

Since d(\) > d(u), it follows that w(\) € Z(mw(u)).
If d(m(N))i > d(m(w))s, then d(z); > m; + d(u)q, so

d(ﬂ'(u))i =m; + d(,u)i —m; = d(M)i- =
LEMMA 4.18. Let A be a k-graph and p,v € A. Then
~(MCE(p, v)) € MCE( (1), 7(v)).

Proof. Suppose that A € MCE(u,v). By Lemma we have 7(A) €
Z(m(p)) N Z(m(v)), hence d(w(A)) = d(m(p)) V d(x(v)).

It remains to prove that d(m(\)) = d(mw(u)) V d(7(v)). Suppose, for a
contradiction, that ¢ < k is such that d(7w(X)); > max{d(7(u))i, d(7(v));}.
By Lemma we then have d(m(p)); = d(p); and d(w(v)); = d(v);. So
d(N\); > d(m(N)); > max{d(u);, d(v);}, contradicting A € MCE(u,v). =

LEMMA 4.19. Let A be a k-graph, and let pu, N € L(AO)/T be such that
d(A\) =d(p) and 7(X) = w(p). Then A\ = p.

Proof. Since p, A € 1(A%)A and d(\) = d(p), we can write A = [z; (0,7)]
and g = [y;(0,n)] for some x,y € 94 and n € NF. We will show that
(z;(0,n)) ~ (y; (0,n)). Conditions (P2)) and (P[3)) are trivially satisfied. Since

[ (0,n A d(x))] = 7(A) = () = [y; (0,n A d(y))],

we have (z;(0,n A d(z))) ~ (y;(0,n A d(y))). Hence z(0,n A d(z)) =
y(0,n A d(y)), and (P[l)) is satisfied.

Proof of Theorem . The existence of A follows from Proposition
and the embedding from Proposition [4.13 B B

To check that A is finitely aligned, fix y,v € A, and o € (A%)Ar(p).
Then [MCE(y,v)| = IMCE(au, av)|. We know that |[MCE(7(au), 7(av))|
is finite since A is finitely aligned. We will show that |[MCE(au,av)| =
IMCE(r(ap), m(av))].

It follows from Lemma that

IMCE(au, av)| > |IMCE(n(ap), m(av))|.

For the opposite inequality, suppose that A and 3 are distinct elements of
MCE(ap, av). Then d()\) = d(f). Since r(au),r(av) € 1(A°), Lemma m
implies that m(\) # 7(8). So IMCE(au, av)| = [IMCE(n(au), m(av))|.

For the last part of the statement, we prove the contrapositive. Sup-

pose that A is not row-finite. Let [z;m] € A” and i < k be such that
|[z; m]A%| = o00. Then for each [y;(n,n + ¢;)] € [z;m]A% we have [y;n] =
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[z;m], so [z; (m,m + €;)] # [y; (n,n + ;)] only if (Pfl)) fails. That is,
(4.3) z(m Ad(x), (m+e;) Nd(x)) #y(n Ad(y), (n+e) Ad(y)).
Since |[x;m]A%| = oo, there are infinitely many [y; (n,n + ;)] € [a;m]A¢
satisfying (4.3)). Hence |z(m A d(x))A%] = cc. =
REMARK 4.20. Suppose that A is a finitely aligned k-graph, that x € 94

and that F C x(0)A. Since ¢ : A — (A) is a bijective k-graph morphism, we
have E € z(0)FE(A) if and only if «(E) € [x; 0] FE(L(A)).

The following results show how sets of minimal common extensions and
finite exhaustive sets in a k-graph A relate to those in A.

PROPOSITION 4.21 ([5, Lemma 2.25]). Suppose that A is a finitely aligned
k-graph, and that v € 1(A°). Then E € vFE(1(A)) implies that E € vFE(A).

LEMMA 4.22. Let A be a finitely aligned k-graph and let p,v € 1(A).
Then MCE, (i, v) = MCE 3(, ).

Proof. Since «(A) C /T, we have MCE,4)(u,v) C MCE 3(p1,v). Suppose
that A € MCE 3(p, v). It suffices to show that A € «(A). Write u = [z; (0,n)],
v =1[y;(0,¢q)] and A = [2;(0,n V ¢)]. Then X\ € Z(u) N Z(v) implies that
d(z) >nVq, hence A € ((A). m

REMARK 4.23. Since there is a bijection from A™"(y, v) onto MCE(y, v/),
it follows from Lemmathat AmIn () = (A)™in(y, v) for all p, v € 1(A).

5. Topology of path Spaces under desourcification. We extend the
projection 7 defined in ) to the set of infinite paths in A and prove that
its restriction to L(/lo)/loO is a homeomorphism onto ¢(9A). For z € 1(A%) A%,

let p, = \/{p € N*: 2(0,p) € t(A)}, and define 7(z) to be the composition
of z with the inclusion of (2, ,, in {2 4(5). Then 7(x) is a k-graph morphism.
Our goal for this section is the following theorem.

THEOREM 5.1. Let A be a row-finite k-graph. Then w : 1(A°)A® — 1(dA)
1s a homeomorphism.

We first show that the range of 7 is a subset of +(0A).

PROPOSITION 5.2. Let A be a finitely aligned k-graph. Let x € L(AO)/TOO.
Suppose that {y, : n € N*} C 0A satisfy [yn; (0,n)] = 2(0,n). Then
(1) lim,enn t(yn) = 7(z) in W3,
(2) there exists y € OA such that w(x) = u(y), and for m,n € NF with
m < n < p, we have w(x)(m,n) = t(y(m,n)).
Proof. For part (i), fix a basic open set Z(u \ G) C W containing

m(x). Fix n > N := \/ cod(uv). We first show that t(y,) € Z(u). Since
m(x) € Z(u), we have p € 1(A). Since n > d(u), we have [y,; (0,d(n))] = p.
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Let a=:"1(n) and z € s(a)0A. Then [y,; (0,d(n))] = p = [az; (0,d(n))],
and (PI) gives ¢(yn(0,d(n) A d(yn))) = 1((a2)(0,d(n))) = v(a) = p. So
Uyn) € Z(p).

We now show that «(y,) ¢ U,cq Z(nv). Fix v € G. If d(y,) 2 d(uv),
then trivially we have «(y,) ¢ Z(uv). Suppose that d(y,) > d(uv). Since
n > d(uv), we have

2(0,d(pv)) = [yn; (0,n)](0, d(pv)) = 1(yn)(0, d(p)) € 1(A).

So t(yn)(0, d(pv)) = (0, d(pv)) = m()(0, d(uv)) # pv.
For part (ii), recall that ¢ is injective, hence we can define y : (2, — A

by «(y(m,n)) = n(x)(m,n). So 1(y) = 7(x). To see that y € IA, fix m € NF
such that m < d(y) and fix E € y(m)FE(A). We seek t € NF such that
y(m,m+t) € E. Let p:=m+\ e d(p). Then since m < d(y) = py, we get
[yps (0,m)] = 2(0,m) = 7(x)(0,m) = 1(y(0,m)) = [y(0,m)y"; (0, m))]
for some y' € y(m)OA. So (yp; (0,m)) ~ (y(0,m)y’; (0,m)), hence
Yp(0,m A d(yp)) = (y(0,m)y")(0,m A d(y(0,m)y')) = y(0,m)

by P. In particular, this implies that y,(m) = y(m). Since y, € 0A, there
exists t € N¥ such that y,(m,m +t) € E. So m +t < p, and we have

Uyp(m,m + 1)) = [yp; (0,p)](m, m +t) = 2(0,p)(m, m +t) = z(m, m +1).
So z(m,m +1) € 1(A), giving
L(yp(m,m+1)) = x(m,m +t) = w(z)(m,m +t) = t(y(m,m +1)).
Finally, injectivity of ¢ gives y(m,m +1t) = yp(m,m+t) € E. u
The next few results ensure that our definition of m on A% is compatible

with (4.2)) when we regard finite paths as k-graph morphisms. The following
lemma is also crucial in showing that 7 is injective on ¢(A°%) A%,

LEMMA 5.3. Let A be a finitely aligned k-graph. Let x € L(AO)/TOO. Sup-
pose that w € OA satisfies w(x) = v(w). Then x(0,n) = [w; (0,n)] for all
n € Nk,

Proof. Fix n € N¥. Let z € 04 be such that x(0,n) = [z;(0,n)]. We
aim to show that (z;(0,n)) ~ (w;(0,n)). That (P2) and (P{3) hold follows
immediately from their definitions. It remains to verify condition (P|L)):

(5.1) z(0,n AN d(2)) = w(0,n Ad(w)).
Since m(x) = ¢(w) we have d(w) = p,. Thus

[w; (0,7 A pa)] = t(w(0,n A psy)) = x(0,n A ps) = [2 (0,7 A pa)].
So (w; (0,1 A pg)) ~ (2;(0,n A py)). It then follows from (Pfl)) that
(5.2) w(0,n A pz) = 2(0,n A pg).
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Hence n A d(z) > n A pg. Furthermore,
20,0 A d(2)) = [ (0,0 A d(2))] = 1((0,n A d(2))) € 1(4)
implies that n Ap; > nAd(z). So nAd(z) = nApg, and (5.2]) becomes (5.1)),

as required. m

REMARK 5.4. Suppose that A is a finitely aligned k-graph, and that
y € 9A and m,n € N¥ satisfy m < n < d(y). Then

[y; (m,n)] = [0 (y); (0,n —m)] = (™ (y)(0,n — m)) = (y(m,n)),
so [y; (m,n)] = «(y(m, n)).
The next proposition shows that our definitions of 7 for finite and infinite
paths are compatible:
PROPOSITION 5.5. Let A be a finitely aligned k-graph. Suppose that
€ A®, and m <n € NF. Then n(x(m,n)) = w(x)(m A pg,n A pg).
Proof. Fix y € A such that 7(x) = ¢(y). Then
(x(m,n)) = 7([y; (m,n)]) by Lemma [5.3
= [y; (m Apz,n Ape)]  since d(y) = p

= 1(y(m A pz,n Apz)) by Remark
= m(z)(m A pg,n Apg) by Proposition i). m
We can now show that 7 restricts to a homeomorphism of +(A%)A®

onto ¢(0A). We first show that it is a bijection, then show it is continuous.
Openness is the trickiest part, and the proof of it completes this section.

PROPOSITION 5.6. Let A be a finitely aligned k-graph. Then the map
71 1(A%) A% — (DA) is a bijection.

Proof. That w is injective follows from Lgmmam To see that 7 is onto
1(0A), let w € 0A and define x : 2, — A by z(p,q) = [w;(p,q)]. Then
pe = d(w), and r(z) € 1(A). To see that 7(x) = t(w), fix m,n € NF with
m <n < d(w). Then

()(m,n) = x(m,n) by Proposition [5.5
= [w;(m,n)] by Lemma[5.3
= 1(w(m,n)) by Remark
= (w)(m,n) by Proposition [£.14] =

PROPOSITION 5.7. Let A be a finitely aligned k-graph. Then w : L(AO)/TOO

— 1(0A) is continuous.

Proof. Fix a basic open set Z(u\ G) C Wi If Z(p\ G) N (0A4) = 0,
then 7= 1(Z(u\ G)N1(0A)) = 0 is open. Suppose that Z(u\ G)Nw(dA) # 0,
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and fix y € Z(p\ G) N(0A). Let F = G N(A). We will show that

(5:3) 7 (y) € Z(u\ F)N (A N1 (u(A) € 77 H(E (1 G) N u(9A)).
Since y € Z(p), we have 77 1(y) € Z(u). To see that 7~ (y) ¢ Uper Z2(13)
fix 8 € F. First suppose that d(uB) % d(y). Then 7= 1(y)(0,d(uB3)) ¢

1(A). Since pB € 1(A), we have 7 1(y)(0,d(u3)) # pB. Now suppose that
d(ppB) < d(y); then

™ (¥)(0,d(1B)) = y(0, d(13)) # B,
We now show that Z(u \ F) N u(A°)A%° C 7Y Z(un\ G) N (DA)). Let

z € Z(p\ F) N o(A%)A%. It suffices to show that 7(z) € Z(u \ G). Firstly,

m(2)(0,d(p)) = 2(0,d(p)) = M € 1(4). To see that m(z) ¢ U,eq Z(mv),
fix v € G. If d(pv) £ d(w(2)), then trivially 7(z) ¢ Z(uv). Suppose that
d(pv) < d(m(z)). If v & 1(A), then (2)(0,d(uv)) # pv. Otherwise, v € 1(A),
so v € F and we have 7(2)(0,d(uv)) = 2(0,d(uv)) # pv. =

PROPOSITION 5.8. Let A be a row-finite k-graph. Then T : L(AO)/TOO —
1(0A) is open.

Proof. Fix n(y) € m(Z(p\ G) N 1(A°)A®). Let w € AA be such that
m(y) = t(w). Define A := y(0, \/Z/EG ( v)), and

F o= J{s(n( ) 1 d(\); > d(n(y))i}-
We claim that

m(y) € Z(x(\) \ F) N1(d4) C w(Z(p\ G) N o(A°) A=)
y) € Z(mw(N)). It follows from Lemma E 3| that
|. Since d(w) = d(m(y)), Proposition implies

First we show that 7
)

m(A) = [w; (0,d(A) Ad(w

that

m(y)(0,d(mw(A))) = 7(y)(0,d(A) A d(w)) = 7(y(0,d(N))) = 7(A).
Now we show that 7(y) & Uscp Z(m(A)f). Fix f € F; say d(f) = e;. Then
by definition of F', d(\); > d(7(y)); = d(w);, and thus
e =i o) = )= e
So d(m(y)) # d(n , and hence 7(y) ¢ Z(mw(\)f) as required. N
Now we show that Z(Tr()\) \ F)Nu(0A) C w(Z(u\ G) N(A%)A). Let
w(B) € Z(xw(A\) \ F) N (0A). We aim to show that 5 € Z(u \ G). Since
Z(N) € Z(p\G), it suffices to show that 8 € Z()\). Clearly g € Z(w(A)\ F).
If d(A\) = d(w(\)) then w(\) = X\ and we are done. Suppose that d(\) >
d(m(X)), and let 7 = B(d(m(X)),d(N)). We know that § € Z(m(A)). We aim
to use Lemma to show that 7 = A(d(7(X)),d(N)). Fix @ < k such that
d(\); > d(w(A));. Then since d(7(A)) = d(A\) Ad(w), we have d(\); > d(w); =
d(m(y));. Now 8 € Z(w(\) \ F) implies that 7(0,¢;) ¢ F. In particular,

(
)
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7(0,€;) ¢ 1(A). We claim that d(7(7)) = 0. Suppose, for a contradiction,
that d(m(7)); > 0 for some j < k. Then 7(7)(0,¢e;) = 7(0,¢;) ¢ ¢(A). But
7(7) € 1(A) by definition of 7. So we must have d(m (7)) = 0, which implies
that

(1) = r(7) = s(r(A)) = m(A(d(7(A)), d(N)))-
Now Lemma implies that 7 = A(d(7w()\)),d(\)). Then

B(0,2) = B(0,d(7(A\)7 = m(MA(d(7(A)), d(A)) = A. =

EXAMPLE 5.9. We can see that 7 is not open for non-row-finite graphs
by considering the 1l-graph E from Example with ‘desourcifica-
tion” E. Observe that Z(u1) N ¢(E®)A® = {pypus---} is open in E, and
7(Z(p1) N (E°)E>®) = {v}. Since dE = E, any basic open set in E con-
taining v is of the form Z(v\ G) for some finite G C E'. Since E! is infinite,
there is no finite G C E' such that Z(v\ G) C {v}. Hence {v} is not open
in F, and 7 is not an open map.

Proof of Theorem[5.1 Propositions and [5.8] say precisely that 7

is a bijection, is continuous, and is open. =

REMARK 5.10. Although 7r|L A0
it behaves particularly well Wlth respect to cylinder sets for locally convex
k-graphs. The following discussion and example arose in preliminary work
on a proof that 7 is open when A is row-finite and locally convex. We have
retained this example since it helps illustrate some of the issues surrounding
the map .

Denote our standard topology for a finitely k-graph by 71. The collection
{Z(p) : p € A} of cylinder sets also forms a base for a topology: they
cover Wy, and if x € Z(A\) N Z(v), then z € Z(z(0,d(\) Vd(v))) C Z(A)N
Z(v). This topology, denoted 7o, is not necessarily Hausdorff: we cannot
separate any edge from its range: if r(f) € Z(u) then p = r(f), and thus
feZ(p).

It may seem reasonable to expect that {Z(u) NOA : p € A} is a base for
the restriction of 71 to A. However, this is not so. To see why, consider the
2-graph of Example Let y be the boundary path beginning with fj.
So z,y € 0A. Let u be such that x € Z(u). Then pu = z¢...z, for some
n €N, soy € Z(u) as well. So the topology 71 is not Hausdorff even when
restricted to 0A. In the topology 7o, it is easy to see how to separate these
two points: y € Z(fo) N0A and x € Z(r(x) \ {fo}) N0A, and these two sets
are disjoint.

is open for all row-finite k-graphs,

If we restrict ourselves to locally convex k-graphs, 71 and 7o do restrict to
the same topology on 0A: certainly, for each u € A, we can realise a cylinder
set Z(u) as a set of the form Z(u \ G) by taking G = (). Now suppose that
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x € Z(u\ G)NOA. We claim that with
Uy i= 33(0, ( \/ d(;wz)) A d(m)),
acCG

we have x € Z(v,)N0A C Z(pu\G)NOA. Clearly z € Z(v;)NOA. The contain-
ment requires a little more work. Clearly y € Z(p). Fix a € G. We will show
that y ¢ Z(pa). If d(y) # d(pa), then trivially y ¢ Z(ua). Suppose that
d(y) > d(ua) We clalm that d(z) > d(pa). Suppose, for a contradiction,
that d(z) # d(u«). Then there exists i < k such that d(z); < d(u«);. Then
d(x); = d(vs);. Since x € 0A, we must have z(d(v;))A% ¢ x(d(v,))FE(A).
Since A is locally convex, Lemma[2.13implies that y(d(v;)) A% = 2(d(vy)) A%
= 0. So d(y)i = d(vg); = d(x); < d(u«);, a contradiction. Hence d(z) >
d(par). This implies that d(v;) > d(pa). So
y(0,d(pa)) = v5(0,d(pa)) = (0, d(ucr)) # pcr.

PROPOSITION 5.11. Suppose that A is a row-finite, locally convex k-
graph, and let i € L(A°)A. Then w(Z(p) N (A% A®) = Z(x (k) N L(DA).
In particular, ™ is open.

Proof. We first show that 7 (Z(1)Ne(A°)A%) € Z(m(1))Ne(DA). Suppose
that 7(y) € T(Z(x\ G) N 1(A°)A%®). Trivially 7(y) € 1(OA). We will show
that 7(y) € Z(w(p) \ 7(G)). Since y(0,d(p)) = p, we have

m(p) = m(y(0,d(p))) = 7(y)(0,d(p) A d(7(y)))-
So m(y) € Z(n(p)). Furthermore, d(mw(u)) = d(p) A d(7(y)).

Fix v € G. We will show that n(y) ¢ Z(w(uv)). Since y € Z(u \ G),
we have y(0,d(uv)) # pv. Since d(y(0,d(uv))) = d(pv) and r(y) = r(pv) €
1(A%), Lemma implies that

() # (y(0, d(pv))) = m(y)(0, d(pwv) A d(7(y)))-
So (21 G) N(A°) 1) € Z(r() \ 7(G)) N1(0A)

Now suppose that «(w) € Z(m(u)) N e(AA), and let y = 7~ (1(w)). We
show that y € Z(u). Write p = [z;(0,d(p))]. Then w(p) = [2; (0, d(p) Ad(2))]
and (0, (1)) = [w; (0, d(y1))]. We claim that (25 (0, d(1))) ~ (w5 (0, d(u)))
That (P2) and (P{3) hold follows immediately from their deﬁmtlon To show
that (P[L) is satisfied, we must show that z(0, d(u)Ad(z)) = w(0, d(p)Ad(w)).
Since 7(y) € Z(mw(p)), we have y € Z(mw(u)). Then

[w; (0, d(m ()] = (0, d(m(p))) = 7(n) = [2; (0, d(p) A d(2))].
So (w; (0,d(m(1)))) ~ (2; (0,d(p) A d(z))). Therefore (Pfl)) implies that
w(0,d(m(p))) = w(0,d(m(p)) A d(w)) = 2(0,d(p) A d(z)),
and d(mw(p)) = d(p) A d(z). We will show d(u) A d(w) = d(w(p)). Fix i < k.
We argue the following cases separately:
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(1) If d(m(u))i = d(p)s, we have d(w) > d(mw(p)) = d(u);. It follows that
(d(p) A d(w))i = d(p)i = d(m(p))s-

(2) If d(m(p))i < d(p)i, it requires a little more work: Since d(u); >
d(m(p)); = min{d(p);,d(z);}, we have d(m(un)); = d(2);. So z € 9A im-
plies that z(d(m(u)))A% ¢ z(d(w(u)))FE(A). By Lemma we have
2(d(m (1)) A% = 0, and hence w(d(m (1)) A% = 0. So d(w)i = d(m(u))i < d(p)i,
giving (d(p) A d(w))i = d(w)i = d(7(p))i- =

6. High-rank graph C*-algebras

DEFINITION 6.1. Let A be a finitely aligned k-graph. A Cuntz—Krieger
A-family in a C*-algebra B is a collection {t) : A € A} of partial isometries
satisfying

(CK1) {sy:v € A% is a set of mutually orthogonal projections,

(CK2) susy = s, whenever s(p) = r(v),

(CK3) spsv = 2 (a8)c Am”‘(u vy Sasp for all p, v € A,

(CK4) HueE( —su55) = 0 for all v € A% and E € vFE(A).

The C*-algebra C*(A) of a k-graph A is the universal C*-algebra gener-
ated by a Cuntz—Krieger A-family {s) : A € A}.

REMARK 6.2. The following theorem appears as [5, Theorem 2.28]. Far-
thing alerted us to an issue in the proof of the theorem. It contains a claim
which is proved in cases, and in the proof of Case 1 of the claim (on page 189),
there is an error when i is such that m;, = d(x);, + 1. Then a;, = d(z),,
and [5 equation (2.13)] gives t;, < d(2);,; not t;, > d(z);, as stated.

THEOREM 6.3. Let A be a row-finite k-graph. Let C*(A) and g*(/T) be
generated by the Cuntz-Krieger families {sx : A € A} and {t\ : A € A}. Then
the sum Zua A0y Lo converges strictly to a full projection p € M(C*(A))
such that pC*(A)p C*({tun) = A € A}), and s\ — t,5) determines an
isomorphism ¢ : C’*(A) = pC*(A) .

Before proving Theorem we need the following results.

PROPOSITION 6.4 ([5, Theorem 2.26]). Let A be a finitely aligned k-
graph. If {tx : X € A} is a Cuntz—Krieger A-family, then {t) : X € 1(A)} is
a Cuntz—Krieger 1(A)-family.

REMARK 6.5. Let A be a finitely aligned k-graph. It follows from the
universal properties of C*(A) and C*(¢(A)) that C*(A) = C*(«(A)).

PROPOSITION 6.6 ([5, Theorem 2.27]). Let A be a finitely aligned k-
graph, and let {t) : A € /1} be the universal Cuntz—Krieger A -family which
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generates C*(A). Then C*(A) is isomorphic to the subalgebra of C*(A) gen-
erated by {ty : X € L(A)}.

LEMMA 6.7. Suppose that A is a finitely aligned k-graph. Let \ € /T, and
let X' = X\(d(mw(XN)),d(N)). Suppose that z € A satisfies 1(r(x)) = r(N) and
d(z) Nd(N) =0. Then N = [z;(0,d(\))].

Proof. Write A\ = [y; (0,d()))] then X = [y; (d(A) Ad(y), d(N))]. We must
show that (y; (d(\) A d(y),d()\))) ~ (z;(0,d(\))). That conditions (P2)
and ( hold follows immediately from their definitions. It remains to
show that (P[I) is satisfied. Since d(x) A d(X') = 0, it suffices to show that
y(d(A) Ad(y)) = x(0). We have

(2(0)) = u(r(z)) = r(X) = [y; d(N\) A d(y)] = e(y(d(N) A d(y))).
Injectivity of ¢ then gives y(d(A) Ad(y)) = z(0). m

LEMMA 6.8. Let A € A. Let N = A(d(7()\)),d())) and define

k
Gy = | J{a € s(r(N)(A)% : MCE(a, X) = 0}.
=1

Then Gy U{N} € s(m(\))FE(A).

Proof. Fix p € s(m(\)A, and suppose that MCE(u,«) = 0 for all
a € Gy. We will show that MCE(u, X) # 0. Fix v € s(pu)A4mWVIA)~d(w)
Then d(pv) > d(N'). It suffices to show that MCE(uv,\') # 0. Write
pv = [2; (0, d(uv))].

We first show that d(\) A d(m(uv)) = 0. Suppose for a contradiction
that d(\') A d(w(uv)) > 0. So we have d(\') Ad(uv) Ad(z) > 0, hence there
exists i < k such that d(\');, d(uv);, and d(z); are all greater than zero.
Then (ur)(0,e;) = [2;(0,e;)] = ¢(2)(0,e;) € ¢(A). Since 7|,(4) = id,(4) and
w(N) = s(m(N\)) # N, we have X ¢ (A). This implies that (uv)(0,e;) #
N(0,e;). So MCE((uv)(0,e;),N) = 0, and thus (uv)(0,e;) € Gy. But
MCE(uv(0,e;), pv) # 0, which implies that MCE(u, uv(0,e;)) # 0. This
contradicts our supposition that MCE(u,a) = 0 for all a € Gy. So
d(N) ANd(m(pv)) = 0.

Since d(uv) > d(N'), we have

d(z) Ad(N) = d(2) Ad(uv) Ad(X) = d(r(uv)) Ad(N) = 0.

Since r(N) = r(uv) = u(r(z)), it follows from Lemma that \' =
[2; (0, \)]. Thus pv = [z; (0, )] € MCE(uv, \'). =

Proof of Theorem[6.5 Let A := C*({t\: A € u(A)}). Then A = C*(4)
by Proposition We will show that A is a full corner of C*(A).
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Following the argument of [10, Lemma 2.10], the sum >_ ., 40y ty con-
verges strictly in M (C* (/T)) to a projection p satisfying
tatr i), T A°
0 otherwise.
The standard argument shows that p is a full projection in M (C*(A)). It
follows from (6.1)) that A C pC*(A)p. Now suppose that A\, pu € +(A%)A.
We will show that ptyt;p € A. If 5(A\) # s(u), then (CK) implies that
ptat,p =0 € A. Suppose that s(A) = s(u ). We first show
(6.2) Ald(m(N)), d(A) = p(d(m(p)), d(p))-
Let 2,y € 0A be such that A\ = [z; (0, ()\))] and g = [y; (0,d(p))]. Let
X = Md(m(X)), d(N) = [ (d(A) A d(x), d(N)],
= p(d(r(p), d(p) = [y; (d( )Ad( ), d(p))].

We claim that A = p/. Condition (Pf2) is trivially satisfied, and (Pfl) and
(P3) follow from the vertex equivalence [z;d(A)] = 5(X) = $(p) = [y; d(w)].
Hence \ = y/.

CrLaM 6.3.1. Let Gy == U {a € s(r(\)(A)% : MCE(a, X) = 0}.

Then
txty = ] Gsrony — tats)-
a€G)y

Proof. Lemma implies that G U {\'} is finite exhaustive, so (CKH4)
implies

I Gy —tath) = 0.

BEGAUIN}

Furthermore,

I o) —tsts) = ( I Gsirony — tJZ))(ts(n(A)) —tyty)
BEGAU{N} aEGy,

= ( IT ooy - tat?l)) - (txti/ IT ooy - tat?}))-
aeG)y acG)y
Fix oo € Gy. By [13, Lemma 2.7(i)],
txti(tsmo) — talh) =ty — Y tyth =tyt}.

~EMCE(N )

0= J] oy —tth) = [[ Gstriny — tats) — tath ®Claim
BEGAU{N} aEG)y
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Now we put the pieces together:

* *
pt}\tup - t)\t/j,

= tr(ny It by (6.2)
a€eGy

This is an element of A since m(\), 7(u), € «(A) for all & € Gy. So A =

pC*(A)p. =

7. The diagonal and the spectrum. For a k-graph A, we call
C*{sus;, : p € A}y C C*(A) the diagonal C*-algebra of A and denote it by
D, dropping the subscript when confusion is unlikely. For a commutative
C*-algebra A, denote by A(A) the spectrum of A. Given a homomorphism
m: A — B of commutative C*-algebras, denote by 7* the induced map from
A(B) to A(A) such that 7*(f)(y) = f(n(y)) for all f € A(B) and y € A.

THEOREM 7.1. Let A be a row-finite higher-rank graph. Let p € M (C*(A))
and ¢ : C*(A) 2 pC*(A)p be from Theorem . Then the restrictions|p, =: p
is an isomorphism of Dy onto pDzp. Let m : WA A= — L(DA) be the
homeomorphism from Theorem b.1} Then there exist homeomorphisms hy :
A — A(Dy) and n : 1(A°) A — A(pD 3p) such that the following diagram
commutes:

(A0 A — 1(04)

Wl JhAOL’1

ApDzp) L5 A(Dy)

As in [11], for a finite subset F' C A, define
VF = | J MCE@) = | {)\e M nA:d\) = \/ d(u)}.
GCF GCF pneG neq

LEMMA 7.2. Let A be a finitely aligned k-graph and let F be a finite
subset of A. Suppose that r(\) € F for each A € F. For u € F, define

VF . * * *
4, = sus, H (808}, = Sy’ Syt )-
' eVI\{u}

Then the qXF are mutually orthogonal projections in span{susz i € VF}
and for each v € VF,

@y wi= Y gk

vv'eVE
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Proof. Since
* * * _ * o *
Susp H (Susy = Sy Su) = 55, H (Sr() = Sppr' )
pi' €VE\{p} pp EVE, d(p')#0

[11, Proposition 8.6] says precisely that the qXF are mutually orthogonal

projections. That
SuS;, = Z Qz\//5
vv'eVF
is established in the proof of [I1, Proposition 8.6] on page 421. u

REMARK 7.3. We have

o =5 T (uw —swsio)sie
' €s(p)A\{s(p)}
up' EVE

This follows from a straightforward induction on |VF|.

The following lemma can be verified through routine calculation. The
reader is referred to the author’s PhD thesis for details.

LEMMA 7.4 ([19, Lemma A.0.7]). Let A be a C*-algebra, let p be a pro-
jection in A, let QQ be a finite set of commuting subprojections of p and let
go be a non-zero subprojection of p. Then quQ(p — q) is a projection. If
qo 18 orthogonal to each q € Q, then qq quQ(p —q) = qo, so in particular,
[l,cop—a) #0.

PROPOSITION 7.5. Let A be a finitely aligned k-graph. Then D =
span{s,s;, : 4 € A}, and for each x € OA there exists a unique h(x) € A(D)

such that )
« L if o=,

h(x)(s,s’) =
(@) g M) {O otherwise.

Moreover, x — h(x) is a homeomorphism h : 0A — A(D).

Proof. Let p,v € A. It follows from (CKJ) that
(susp)(susp) = Y sash
AeMCE((u,v)
hence D = span{s,s;, : p € A}.
Fix x € 0A and }_ - busus), € span{s,s;, : p € A}. By setting extra
coefficients to zero we can assume that each path in F' has its range in F',

and write
* *
E bus#su = E bﬂsusu.
HEF HEVE

Let n = \/{p € N¥: 2(0,p) € VF}. Since VF is a finite set of finite paths, n is
finite. Since VF' is closed under minimal common extensions, z(0,n) € VF.
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Furthermore, since x € 9A, we have

Fp = {y € x(n)A\{z(n)} : 2(0,n)y’ € VF} ¢ x(n)FE(A).
So there exists v € x(n)A such that for each p/ € F,, MCE(v, /) = 0.
Then sys;sursz, = 0 for all ¢/ € F,. Applying Lemma . with p = s;(n),
Qo = sus;, and Q@ = {sys7, + ' € Fy}, we have [ ,cp (So(n) — Sws)) # 0.
So
qf(ovn) = Sz(0n) H (Sut(n) Su’s /)8, (0,n) # 0.

pweFy,
We have
VF
IS sl - | (3 | v
veVF  pev
VGZ(M)
= max ‘ b ‘
{uevF gy F#0} #g;F .
vEZ(p)
> ’ Z b“’ since q¥£7n) #0
neEVE
(0,n)EZ (1)
:’ Z bu‘ since b, =0 for p € VF \ F.
HeEF
(0,n)eZ(1)

Hence the formula

(7.2) B (D bususi) = D0 b

peF HEF
€2 (1)

determines a norm-decreasing linear map on Span{susz cpu € A}
To see that h(x) is a homomorphism, it suffices to show that

(7.3) h(:ﬂ)(SMSZSaSZ) = h(m)(sus::) h(z)(sas})-
Calculating the right-hand side of ([7.3)) yields

eI = {0 E0E

Calculating the left-hand side of ([7.3|) gives
Ba)(suspsass) =h@) (Y sash).
AEMCE (1,)

There exists at most one A € MCE(p, «) such that z € Z()). Such a X exists
if and only if z € Z(u) N Z(«), so

h(w)(sus7,5055) = {1 if o € Z(a) N Z(n),

0 otherwise.
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Thus we have established (7.3), hence h(z) is a homomorphism, and thus
extends uniquely to a non-zero homomorphism h(z): D — C.

We claim the map h : 04 — A(D) is a homeomorphism. The trickiest
part is to show h is onto:

CrAM 7.5.1. The map h is surjective.
Proof. Fix ¢ € A(D). We seek z € 0A such that h(x) = ¢. For each
n € NF the {sus}, + d(u) = n} are mutually orthogonal projections. It

follows that for each n € NF there exists at most one v™ € A" such that
d(synsin) = 1. Let S denote the set of n for which such v™ exist. If v = p/
and ¢(sys}) =1, then

L= ¢(sus;) = d(susysus,,) = d(su5,)P(sus,) = Psus),)-
This implies that if n € S and m < n, then m € S and v™ = v™(0,m). Set
N := VS, and define z : 2, v — A by z(p, q) = v4(p, q). Then since each v
is a k-graph morphism, so is x.

We now show that x € 9A. Fix n € N¥ such that n < d(z), and E €
x(n)FE(A). We seek m € N¥ such that xz(n,n +m) € E. Since E is finite
exhaustive, (CK4)) implies that []ycp(sz(n) — sas}) = 0. Multiplying on the
left by s,(0,,) and on the right by s;(om) yields

H (sx(O,n)s;‘;(O,n) - Sx(O,n)/\SZ(O,n)A) = 0.
AEE

Thus, since ¢ is a homomorphism, there exists A € E such that
0= ¢(Sx(0,n)3;(0,n)) - ¢(3x(0,n)A3;(o,n),\) = ¢(synsyn) — ¢(Sm(0,n)ASZ(O,n)A)
=1- ¢(3x(07n)/\3;(07n),\)-
S0 ¢(sz(0mr8s0mn) = 1. Thus 2(0,n)A = N = 2(0,n 4 d(N)), and

hence x € 0A.
Now we must show that h(x) = ¢. For each pu € A we have

P(sus,) =1 & d(p) € S and pAm =
& 2(0,d(w) = p
& h(x)(sus;,) = 1.
As @(sus),) and h(z)(sys},) take values in {0, 1}, we have h(z) = ¢. wClaim
To see that h is injective, suppose that h(x) = h(y). Then for each
n € N¥, we have
W) (82(0,nnd(2)) Sx(0.nnd(2))) = P(E) (Sz(0,nnd(@) S2(0mrd(e)) = 1-

Hence y(0,n A d(z)) = z(0,n A d(x)). By symmetry, we also have y(0,n A
d(y)) = z(0,n A d(y)) for all n. In particular, d(x) = d(y) and y(0,n) =
z(0,n) for all n < d(z). Thus z = y.
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Recall that A(D) carries the topology of pointwise convergence. For
openness, it suffices to check that h~! is continuous. Suppose that h(z™) —
h(x). Fix a basic open set Z(u) containing z, so h(z)(sus;) = 1. Since
h(z™)(sus;,) € {0,1} for all n, for large enough n we have h(z")(ss;,) = 1.
So z" € Z(u). For continuity, a similarly straightforward argument shows
that if 2" — z, then h(z")(sus),) — h(x)(sus),). This convergence ex-
tends to span{s,sj, : p € A} by linearity, and to D by an ¢/3 argu-
ment. m

We can now prove our main result.

Proof of Theorem . Let A be a row-finite k-graph, and A be the des-
ourcification described in Proposition Let {sy: A€ A} and {ty: A e A}
be universal Cuntz—Krieger families in C*(A) and C*(A). Let A be the C*-
subalgebra of C*(A) generated by {ty : A € 1(A)}, and define the diagonal
subalgebra of A by D4 := span{t,t} : A € t(A)}. Replacing txt}, with ¢t}
in the proof Theorem yields Dy = pD zp. Since A = C*(A), it follows
that D4 = Dy. Thus Dj = pD 7p as required.

We now construct 1 and show that it is a homeomorphism. That p com-
mutes with D ; implies that pD ;p is an ideal in D ;. Then [14, Propositions
A26(a) and A27(b)] imply that the map k : ¢ — ¢|,pp is a homeomor-
phism of {¢ € A(Djy) : dlppp # 0} onto A(pDzp). Since A is row-finite
with no sources, dA = A, Let h i A> — A(D 7) be the homeomorphism
obtained from Proposition Then hz(z) € dom(k) for all z € L(A0) A%,
Define n:=ko h/T|L(A0)/Too L (A0 A® — A(pD 3p).

We now show that hqot™' o7 = p* 0. Since p is an isomorphism, it
suffices to fix € 1(A°) A and p € A and show that

(7.4) (hao ™ om)(@)(susp) = (" o m)(@)(sp8,)-

Let w € 04 be such that m(z) = t(w). Then the left-hand side of (7.4)
becomes

(hpoit to m)(@)(susy) = ha(w)(sus),) = {
Since 7(x) € 1(A%), the right-hand side of (7.4) simplifies to
L (1 itre Zw),
L(u)) -

1 ifwe Z(p),

0 otherwise.

(0" om)(@)(sus,) = n(x)(p(susy)) = h (@)t 0 otherwise.

We claim that € Z(¢(p)) if and only if w € Z(u). Suppose that x €
Z(t(p)). Since p € A and w(z) = t(w), we have w(x(0,d(n))) = w(e(p)) =
t(p). So d(m(z(0,d(p)))) = d(u), and thus d(z) A d(w) > d(u). So d(w)



184 S. B. G. Webster

> d(p). Then we have
x € Z((p) < x(0,d(p) = (p) since ¢ preserves degree

& [w; (0,d(w))] = ¢(u) by Lemma
Uw(0,d(p))) = ¢(p) by Remark

< w(0,d(p) = p since ¢ is a injective

Swe Z(p).l

So equation ([7.4)) holds, and we are done. =
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