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The path space of a higher-rank graph

by

Samuel B. G. Webster (Wollongong)

Abstract. We construct a locally compact Hausdorff topology on the path space of
a finitely aligned k-graph Λ. We identify the boundary-path space ∂Λ as the spectrum of
a commutative C∗-subalgebra DΛ of C∗(Λ). Then, using a construction similar to that

of Farthing, we construct a finitely aligned k-graph eΛ with no sources in which Λ is
embedded, and show that ∂Λ is homeomorphic to a subset of ∂ eΛ. We show that when

Λ is row-finite, we can identify C∗(Λ) with a full corner of C∗( eΛ), and deduce that DΛ
is isomorphic to a corner of D eΛ. Lastly, we show that this isomorphism implements the
homeomorphism between the boundary-path spaces.

1. Introduction. Cuntz and Krieger’s work [2] on C∗-algebras associ-
ated to (0, 1)-matrices and its subsequent interpretation by Enomoto and
Watatani [4] were the foundation of the field we now call graph algebras.
Directed graphs and their higher-rank analogues provide an intuitive frame-
work for the analysis of this broad class of C∗-algebras; there is an explicit
relationship between the dynamics of a graph and various properties of its as-
sociated C∗-algebra. Kumjian and Pask in [7] introduced higher-rank graphs
(or k-graphs) as analogues of directed graphs in order to study Robertson
and Steger’s higher-rank Cuntz–Krieger algebras [18] using the techniques
previously developed for directed graphs. Higher-rank graph C∗-algebras
have received a great deal of attention in recent years, not least because
they extend the already rich and tractable class of graph C∗-algebras to
include all tensor products of graph C∗-algebras (and thus many Kirchberg
algebras whose K1 contains torsion elements [7]), as well as (up to Morita
equivalence) the irrational rotation algebras and many other examples of
simple AT-algebras with real rank zero [8].

Although the definition of a k-graph (see Definition 2.1) is not quite as
straightforward as that of a directed graph, k-graphs are a natural general-
isation of directed graphs: Kumjian and Pask show in [7, Example 1.3] that
1-graphs are precisely the path-categories of directed graphs. Like directed
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graph C∗-algebras, higher-rank graph C∗-algebras were first studied using
groupoid techniques. Kumjian and Pask defined the k-graph C∗-algebra
C∗(Λ) to be the universal C∗-algebra for a set of Cuntz–Krieger relations
among partial isometries associated to paths of the k-graph Λ. Using direct
analysis, they proved a version of the gauge-invariant uniqueness theorem
for k-graph algebras. They then constructed a groupoid GΛ from each k-
graph Λ, and used the gauge-invariant uniqueness theorem to prove that
the groupoid C∗-algebra C∗(GΛ) is isomorphic to C∗(Λ). This allowed them
to make use of Renault’s theory of groupoid C∗-algebras to analyse C∗(Λ).
The unit space G(0)

Λ of GΛ, which must be locally compact and Hausdorff,
is a collection of paths in the graph: for a row-finite graph with no sources,
G(0)
Λ is the collection of infinite paths in Λ (the definition of an infinite path

in a k-graph is not straightforward, see Remark 2.4). For more complicated
graphs, the infinite paths are replaced with boundary paths (Definition 2.9).

In [12], Raeburn, Sims and Yeend developed a “bare-hands” analysis
of k-graph C∗-algebras. They found a slightly weaker alternative to the no-
sources hypothesis from Kumjian and Pask’s theorems, called local convexity
(Definition 2.7). The same authors later introduced finitely aligned k-graphs
in [13], and gave a direct analysis of their C∗-algebras. This remains the
most general class of k-graphs to which a C∗-algebra has been associated
and studied in detail.

Many results for row-finite directed graphs with no sources can be ex-
tended to arbitrary graphs via a process called desingularisation. Given an
arbitrary directed graph E, Drinen and Tomforde show in [3] how to con-
struct a row-finite directed graph F with no sources by adding vertices and
edges to E in such a way that the C∗-algebra associated to F contains the
C∗-algebra associated to E as a full corner. The modified graph F is now
called a Drinen–Tomforde desingularisation of E. Although no analogue of
a Drinen–Tomforde desingularisation is currently available for higher-rank
graphs, Farthing provided a construction in [5] analogous to that in [1] for
removing the sources in a locally convex, row-finite higher-rank graph. The
statements of the results of [5] do not contain the local convexity hypothesis,
but Farthing alerted us to an issue in the proof of [5, Theorem 2.28] (see
Remark 6.2), which arises when the graph is not locally convex.

The goal of this paper is to explore the path spaces of higher-rank graphs
and investigate how these path spaces interact with desingularisation pro-
cedures such as Farthing’s.

In Section 2, we recall the definitions and standard notation for higher-
rank graphs. In Section 3, following the approach of [9], we build a topology
on the path space of a higher-rank graph, and show that the path space is
locally compact and Hausdorff under this topology.
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In Section 4, given a finitely aligned k-graph Λ, we construct a k-graph
Λ̃ with no sources which contains a subgraph isomorphic to Λ. Our con-
struction is modelled on Farthing’s construction in [5], and the reader is
directed to [5] for several proofs. The crucial difference is that our construc-
tion involves extending elements of the boundary-path space ∂Λ, whereas
Farthing extends paths from a different set Λ≤∞ (see Remark 2.10). Inter-
estingly, although ∂Λ and Λ≤∞ are potentially different when Λ is row-finite
and not locally convex (Proposition 2.12), our construction and Farthing’s
yield isomorphic k-graphs except in the non-row-finite case (Example 4.10
and Proposition 4.12). We follow Robertson and Sims’ notational refinement
[17] of Farthing’s desourcification: we construct a new k-graph in which the
original k-graph is embedded, whereas Farthing’s construction adds bits onto
the existing k-graph. This simplifies many arguments involving Λ̃; however,
the main reason for modifying Farthing’s construction is that Λ≤∞ is not
as well-behaved topologically as ∂Λ (see Remark 3.5), and in particular, no
analogue of Theorem 5.1 holds for Farthing’s construction.

In Section 5, we prove that given a row-finite k-graph Λ, there is a
natural homeomorphism from the boundary-path space of Λ onto the space
of infinite paths in Λ̃ with range in the embedded copy of Λ. We provide
examples and discussion showing that the topological basis constructed in
Section 3 is the one we want.

In Section 6 we recall the definition of the Cuntz–Krieger algebra C∗(Λ)
of a higher-rank graph Λ. We show that if Λ is a row-finite k-graph and
Λ̃ is the graph with no sources obtained by applying the construction of
Section 4 to Λ, then the embedding of Λ in Λ̃ induces an isomorphism π of
C∗(Λ) onto a full corner of C∗(Λ̃).

Section 7 contains results about the diagonal C∗-subalgebra of a k-graph
C∗-algebra: the C∗-algebra generated by range projections associated to
paths in the k-graph. We identify the boundary-path space of a finitely
aligned higher-rank graph with the spectrum of its diagonal C∗-algebra. We
then show that the isomorphism π of Section 6 restricts to an isomorphism
of diagonals which implements the homeomorphism of Section 5.

2. Preliminaries

Definition 2.1. Given k ∈ N, a k-graph is a pair (Λ, d) consisting of
a countable category Λ = (Obj(Λ),Mor(Λ), r, s) together with a functor
d : Λ → Nk, called the degree map, which satisfies the factorisation prop-
erty : for every λ ∈ Mor(Λ) and m,n ∈ Nk with d(λ) = m + n, there are
unique elements µ, ν ∈ Mor(Λ) such that λ = µν, d(µ) = m and d(ν) = n.
Elements λ ∈ Mor(Λ) are called paths. We follow the usual abuse of notation
and write λ ∈ Λ to mean λ ∈ Mor(Λ). For m ∈ Nk we define Λm := {λ ∈ Λ :
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d(λ) = m}. For subsets F ⊂ Λ and V ⊂ Obj(Λ), we write V F :=
{λ ∈ F : r(λ) ∈ V } and FV := {λ ∈ F : s(λ) ∈ V }. If V = {v}, we
drop the braces and write vF and Fv. A morphism between two k-graphs
(Λ1, d1) and (Λ2, d2) is a functor f : Λ1 → Λ2 which respects the degree
maps. The factorisation property allows us to identify Obj(Λ) with Λ0. We
refer to elements of Λ0 as vertices.

Remark 2.2. To visualise a k-graph we draw its 1-skeleton: a directed
graph with vertices Λ0 and edges

⋃k
i=1 Λ

ei . To each edge we assign a colour
determined by the edge’s degree. We tend to use 2-graphs for examples, and
we draw edges of degree (1, 0) as solid lines, and edges of degree (0, 1) as
dashed lines.

Example 2.3. For k ∈ N and m ∈ (N∪{∞})k, we define k-graphs Ωk,m
as follows. Set Obj(Ωk,m) = {p ∈ Nk : pi ≤ mi for all i ≤ k},

Mor(Ωk,m) = {(p, q) : p, q ∈ Obj(Ωk,m) and pi ≤ qi for all i ≤ k},
r(p, q) = p, s(p, q) = q and d(p, q) = q − p, with composition given by
(p, q)(q, t) = (p, t). If m = (∞)k, we drop m from the subscript and write Ωk.
The 1-skeleton of Ω2,2 is depicted in Figure 1.

(0, 1)

(0, 0) (1, 0)

(1, 1)

(2, 2)

(2, 1)

(1, 2)

(2, 0)

(0, 2)

Fig. 1. The 2-graph Ω2,2

Remark 2.4. The graphs Ωk,m provide an intuitive model for paths:
every path λ of degree m in a k-graph Λ determines a k-graph morphism
xλ : Ωk,m → Λ. To see this, let p, q ∈ Nk be such that p ≤ q ≤ m. Define
xλ(p, q) = λ′′, where λ = λ′λ′′λ′′′, and d(λ′) = p, d(λ′′) = q− p and d(λ′′′) =
m−q. In this way, paths in Λ are often identified with the graph morphisms
xλ : Ωk,m → Λ. We refer to the segment λ′′ of λ (as factorised above) as
λ(p, q), and for n ≤ m, we refer to the vertex r(λ(n,m)) = s(λ(0, n)) as
λ(n). By analogy, for m ∈ (N ∪ {∞})k we define Λm := {x : Ωk,m → Λ :
x is a graph morphism}. For clarity of notation, if m = (∞)k we write Λ∞.

Define
WΛ :=

⋃
n∈(N∪{∞})k

Λn.
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We call WΛ the path space of Λ. We drop the subscript when confusion is
unlikely.

For m,n ∈ Nk, we denote by m ∧ n the coordinate-wise minimum, and
by m∨n the coordinate-wise maximum. With no parentheses, ∨ and ∧ take
priority over the group operation: a− b ∧ c means a− (b ∧ c).

Since finite and infinite paths are fundamentally different, that one can
compose them is not immediately obvious.

Lemma 2.5 ([19, Proposition 3.0.1.1]). Let Λ be a k-graph. Suppose λ ∈
Λ and suppose that x ∈W satisfies r(x) = s(λ). Then there exists a unique
k-graph morphism λx : Ωk,d(λ)+d(x) → Λ such that (λx)(0, d(λ)) = λ and
(λx)(d(λ), n+ d(λ)) = x(0, n) for all n ≤ d(x).

Definition 2.6. For λ, µ ∈ Λ, write

Λmin(λ, µ) := {(α, β) ∈ Λ× Λ : λα = µβ, d(λα) = d(λ) ∨ d(µ)}
for the collection of pairs which give minimal common extensions of λ and µ,
and denote the set of minimal common extensions by

MCE(λ, µ) := {λα : (α, β) ∈ Λmin(λ, µ)} = {µβ : (α, β) ∈ Λmin(λ, µ)}.
Definition 2.7. A k-graph Λ is row-finite if for each v ∈ Λ0 and

m ∈ Nk, the set vΛm is finite; Λ has no sources if vΛm 6= ∅ for all v ∈ Λ0

and m ∈ Nk.
We say that Λ is finitely aligned if Λmin(λ, µ) is finite (possibly empty)

for all λ, µ ∈ Λ.
As in [12, Definition 3.1], a k-graph Λ is locally convex if for all v ∈ Λ0, all

i, j ∈ {1, . . . , k} with i 6= j, all λ ∈ vΛei and all µ ∈ vΛej , the sets s(λ)Λej
and s(µ)Λei are non-empty. Roughly speaking, local convexity stipulates
that Λ contains no subgraph resembling

u

v

µ

w
λ

Definition 2.8. For v ∈ Λ0, a subset E ⊂ vΛ is exhaustive if for every
µ ∈ vΛ there exists a λ ∈ E such that Λmin(λ, µ) 6= ∅. We denote the set of
all finite exhaustive subsets of Λ by FE(Λ).

Definition 2.9. An element x ∈W is a boundary path if for all n ∈ Nk
with n ≤ d(x) and for all E ∈ x(n)FE(Λ) there exists m ∈ Nk such that
x(n,m) ∈ E. We write ∂Λ for the set of all boundary paths.

Define the set Λ≤∞ as follows. A k-graph morphism x : Ωk,m → Λ is an
element of Λ≤∞ if there exists nx ≤ d(x) such that for n ∈ Nk satisfying
nx ≤ n ≤ d(x) and ni = d(x)i, we have x(n)Λei = ∅.
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Remark 2.10. Raeburn, Sims and Yeend introduced Λ≤∞ to construct
a non-zero Cuntz–Krieger Λ-family [13, Proposition 2.12]. Farthing, Muhly
and Yeend introduced ∂Λ in [6]; in order to construct a groupoid to which
Renault’s theory of groupoid C∗-algebras [15] applied, they required a path
space which was locally compact and Hausdorff in an appropriate topology,
and Λ≤∞ did not suffice. The differences between ∂Λ and Λ≤∞ can be easily
seen if Λ contains any infinite receivers (e.g. any path in a 1-graph Λ with
source an infinite receiver is an element of ∂Λ \ Λ≤∞), but can even show
themselves in the row-finite case if Λ is not locally convex.

Example 2.11. Suppose Λ is the 2-graph with the skeleton pictured
below:

•

v0

•

•

v1

•

•

v2

•

•

v3

•

x0

ω0

f0

x1

ω1

f1

x2

ω2

f2 f3 . . .

. . .
ω3

Consider the paths x = x0x1 . . . , and ωn = x0x1 . . . xn−1ωn for n =
0, 1, 2, . . . . Observe that x /∈ Λ≤∞: for each n ∈ N, we have d(x)2 = 0 =
(n, 0)2, and x((n, 0))Λe2 = vnΛ

e2 6= ∅.
We claim that x ∈ ∂Λ. Fix m ∈ N and E ∈ vmFE(Λ). Since E is exhaus-

tive, for each n ≥ m, there exists λn ∈ E such that MCE(λn, xm . . . xn−1ωn)
is non-empty. Since E is finite, it cannot contain xm . . . xn−1ωn for every
n ≥ m, so it must contain xm . . . xp for some p ∈ N. So x((m, 0), (m+ p)) =
xm . . . xp belongs to E.

The 2-graph of Example 2.11 first appeared in Robertson’s honours the-
sis [16] to illustrate a subtlety arising in Farthing’s procedure [5] for removing
sources in k-graphs when the k-graphs in question are not locally convex. It
was for this reason that only locally convex k-graphs were considered in the
main results of [16, 17].

Proposition 2.12. Suppose Λ is a finitely aligned k-graph. Then
Λ≤∞ ⊂ ∂Λ. If Λ is row-finite and locally convex, then Λ≤∞ = ∂Λ.

To prove this we use the following lemma.

Lemma 2.13. Let Λ be a row-finite, locally convex k-graph, and suppose
that v ∈ Λ0 satisfies vΛei 6= ∅ for some i ≤ k. Then vΛei ∈ vFE(Λ).

Proof. Since Λ is row-finite, vΛei is finite. To see that it is exhaustive, let
µ ∈ vΛ. If d(µ)i > 0, then g = µ(0, ei) ∈ vΛei implies that Λmin(µ, g) 6= ∅.
Suppose that d(µ)i = 0. Let µ = µ1 . . . µn be a factorisation of µ such that
|d(µj)| = 1 for each j ≤ n. Since Λ is locally convex, s(µ)Λei = s(µn)Λei 6= ∅.
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Fix g ∈ s(µ)Λei . Let f := (µg)(0, ei). Then f ∈ vΛei . Since d(µi) = 0,
we have d(µg) = d(µ) ∨ d(f). Hence (g, (µg)(ei, d(µg))) ∈ Λmin(µ, f) as
required.

Proof of Proposition 2.12. Fix x ∈ Λ≤∞, m ≤ d(x) and E ∈ x(m)FE(Λ).
Define t ∈ Nk by

ti :=

{
d(x)i if d(x)i <∞,
max
λ∈E

(nx ∨ (m+ d(λ)))i if d(x)i =∞.

Then x(m, t) ∈ x(m)Λ, so there exists λ ∈ E such that Λmin(x(m, t), λ) is
non-empty. Let (α, β) ∈ Λmin(x(m, t), λ). We first show that d(α) = 0. Since
x ∈ Λ≤∞ and nx ≤ t ≤ d(x), if d(x)i < ∞ then x(t)Λei = ∅. So for each i
such that d(x)i <∞, we have d(α)i = 0. Now suppose that d(x)i =∞. Then
d(x(m, t))i = ti −mi ≥ d(λ)i. So d(x(m, t)α)i = max{d(x(m, t))i, d(λ)i} =
d(x(m, t))i, giving d(α)i = 0. Hence x(m, t) = λβ, so x(m,m+ d(λ)) = λ.

Now suppose that Λ is row-finite and locally convex. We want to show
∂Λ ⊂ Λ≤∞. Fix x ∈ ∂Λ, and n ∈ Nk such that n ≤ d(x) and ni = d(x)i.
It suffices to show that x(n)Λei = ∅. Since ni = d(x)i, we have x(n)Λei /∈
x(n)FE(Λ). Lemma 2.13 then implies that x(n)Λei = ∅.

3. Path space topology. Following the approach of Paterson and
Welch in [9], we construct a locally compact Hausdorff topology on the
path space W of a finitely aligned k-graph Λ. The cylinder set of µ ∈ Λ is
Z(µ) := {ν ∈ W : ν(0, d(µ)) = µ}. Define α : W → {0, 1}Λ by α(w)(y) = 1
if w ∈ Z(y) and 0 otherwise. For a finite subset G ⊂ s(µ)Λ we define

(3.1) Z(µ \G) := Z(µ) \
⋃
ν∈G
Z(µν).

Our goals for this section are the following two theorems. The basis we end
up with is slightly different to that in [9, Corollary 2.4], revealing a minor
oversight of the authors.

Theorem 3.1. Let Λ be a finitely aligned k-graph. Then the collection{
Z(µ \G) : µ ∈ Λ and G ⊂

k⋃
i=1

(s(µ)Λei) is finite
}

is a base for the initial topology on W induced by {α}.
Theorem 3.2. Let Λ be a finitely aligned higher-rank graph. With the

topology described in Theorem 3.1, W is a locally compact Hausdorff space.

Let F be a set of paths in a k-graph Λ. A path β ∈ W is a common
extension of the paths in F if for each µ ∈ F , we can write β = µβµ for some
βµ ∈ W . If in addition d(β) =

∨
µ∈F d(µ), then β is a minimal common

extension of the paths in F . We denote the set of all minimal common
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extensions of the paths in F by MCE(F ). Since MCE({µ, ν}) = MCE(µ, ν),
this definition is consistent with Definition 2.6.

Remark 3.3. If F ⊂ Λ is finite, then
⋂
µ∈F Z(µ) =

⋃
β∈MCE(F )Z(β).

Proof of Theorem 3.1. We first describe the topology on {0, 1}Λ. Given
disjoint finite subsets F,G ⊂ Λ and µ ∈ Λ, define sets UF,Gµ to be {1} if
µ ∈ F , {0} if µ ∈ G and {0, 1} otherwise. Then the sets N(F,G) :=∏
µ∈Λ U

F,G
µ , where F,G range over all finite disjoint pairs of subsets of Λ,

form a base for the topology on {0, 1}Λ.
Clearly, α is a homeomorphism onto its range, so the sets α−1(N(F,G))

are a base for a topology on W . Routine calculation shows that

α−1(N(F,G)) =
( ⋃
µ∈MCE(F )

Z(µ)
)
\
( ⋃
ν∈G
Z(ν)

)
,

so the sets Z(µ) \
⋃
ν∈GZ(µν) = Z(µ \G) are a base for our topology.

To finish the proof, it suffices to show that for µ ∈ Λ, a finite subset G ⊂
s(µ)Λ and λ ∈ Z(µ \G), there exist α ∈ Λ and a finite F ⊂

⋃k
i=1(s(α)Λei)

such that λ ∈ Z(α \ F ) ⊂ Z(µ \ G). Let N := (
∨
ν∈G d(µν)) ∧ d(λ) and

α = λ(0, N). To define F , we first define a set Fν associated to each ν ∈ G,
then take F =

⋃
ν∈G Fν . Fix ν ∈ G. We consider the following cases:

(1) If N ≥ d(µν) or MCE(α, µν) = ∅, let Fν = ∅.
(2) If N � d(µν) and MCE(α, µν) 6= ∅, define Fν as follows: Since

N � d(µν), there exists jν ≤ k such that Njν < d(µν)jν . Hence
each γ ∈ MCE(α, µν) satisfies d(γ)jν = (N ∨ d(µν))jν > Njν . Define
Fν = {γ(N,N + ejν ) : γ ∈ MCE(α, µν)}. Since Λ is finitely aligned,
Fν is finite.

We now show that λ ∈ Z(α \ F ). We have λ ∈ Z(α) by choice of α.
If F = ∅ we are done. If not, then fix ν ∈ G such that Fν 6= ∅, and fix
e ∈ Fν . Then e = γ(N,N + ejν ) for some γ ∈ MCE(α, µν). Therefore
d(λ)jν = Njν < (N + ejν )jν = d(αe)jν . So λ /∈ Z(αe), hence λ ∈ Z(α \ F ).

We now show that Z(α \ F ) ⊂ Z(µ \ G). Fix β ∈ Z(α \ F ). Since
α ∈ Z(µ), we have β ∈ Z(µ). Fix ν ∈ G. We show that β /∈ Z(µν) in cases:

(1) Suppose that N ≥ d(µν). Since β ∈ Z(α) = Z(λ(0, N)) and λ /∈
Z(µν), it follows that β /∈ Z(µν).

(2) If N � d(µν), then either

(a) MCE(α, µν) = ∅, in which case β ∈ Z(α) implies that β /∈
Z(µν); or

(b) MCE(α, µν) 6= ∅. Then for each γ ∈ MCE(α, µν), we know
β(N,N + ejν ) 6= γ(N,N + ejν ). Hence β /∈ Z(µν).
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Lemma 3.4. Let {ν(n)} be a sequence of paths in Λ such that

(i) d(ν(n+1)) ≥ d(ν(n)) for all n ∈ N,
(ii) ν(n+1)(0, d(ν(n))) = ν(n) for all n ∈ N.

Then there exists a unique ω ∈ W such that d(ω) =
∨
n∈N d(ν(n)) and

ω(0, d(ν(n))) = ν(n) for all n ∈ N.

Proof. Let m =
∨
n∈N d(ν(n)) ∈ (N ∪ {∞})k. Then

(3.2) For a∈Nk with a ≤ m, there exists Na∈N such that d(ν(Na)) ≥ a.

For each (p, q) ∈ Ωk,m apply (3.2) with a = q and define ω(p, q) = ν(Nq)(p, q).
Routine calculations using (3.2) show that ω : Ωk,m → Λ is a well-defined
graph morphism with the required properties.

Proof of Theorem 3.2. Fix v ∈ Λ0. We follow the strategy of [9, The-
orem 2.2] to show Z(v) is compact: since α is a homeomorphism onto
its range, and since {0, 1}Λ is compact, it suffices to prove that α(Z(v))
is closed in {0, 1}Λ. Suppose that (ω(n))n∈N is a sequence in Z(v) con-
verging to f ∈ {0, 1}Λ. We seek ω ∈ Z(v) such that f = α(ω). Define
A = {ν ∈ Λ : α(ω(n))(ν) → 1 as n → ∞}. Then A 6= ∅ since v ∈ A. Let
d(A) :=

∨
ν∈A d(ν).

Claim 3.2.1. There exists ω ∈ vΛd(A) such that:

• d(ω) ≥ d(µ) for all µ ∈ A,
• ω(0, n) ∈ A for all n ∈ Nk with n ≤ d(A).

Proof. To define ω we construct a sequence of paths and apply Lem-
ma 3.4. We first show that for each pair µ, ν ∈ A, MCE(µ, ν) ∩ A contains
exactly one element. Fix µ, ν ∈ A. Then for large enough n, there exist
βn ∈ MCE(µ, ν) such that ωn = βn(ωn)′. Since MCE(µ, ν) is finite, there
exists M such that ωn = βM (ωn)′ for infinitely many n. Define βµ,ν := βM .
Then βµ,ν ∈ A. For uniqueness, suppose that φ ∈ MCE(µ, ν) ∩ A. Then for
large n we have βµ,ν = ωn(0, d(µ) ∨ d(ν)) = φ.

Since A is countable, we can list A = {ν1, ν2, . . .}. Let y1 := ν1, and iter-
atively define yn = βyn−1,νn . Then d(yn) = d(yn−1) ∨ d(νn) ≥ d(yn−1), and
yn(0, yn−1) = yn−1. By Lemma 3.4, there exists a unique ω ∈ W satisfying
d(ω) = d(A) and ω(0, d(yn)) = yn for all n. It then follows from (3.2) that
ω(0, n) ∈ A for all n ≤ d(A). Claim

To see α(Z(v)) is closed, fix λ ∈ Λ. We show that α(ω(n))(λ)→ α(ω)(λ).
If α(ω)(λ) = 1, then λ = ω(0, d(λ)) ∈ A by Claim 3.2.1, and thus α(ω(n))(λ)
approaches 1 as n approaches ∞. Now suppose that α(ω)(λ) = 0. If d(λ) �
d(ω), then λ /∈ A by Claim 3.2.1, forcing α(ω(n))(λ) → 0. Suppose that
d(λ) ≤ d(ω). Since ω(0, d(λ)) ∈ A, we have ω(n)(0, d(λ)) = ω(0, d(λ)) for
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large n. Then α(ω)(λ) = 0 implies that ω(0, d(λ)) 6= λ. So for large enough n
we have ω(n)(0, d(λ)) 6= λ, forcing α(ω(n))(λ)→ 0.

Remark 3.5. It has been shown that ∂Λ is a closed subset of W [6,
Lemma 5.12]. Hence ∂Λ, with the relative topology, is a locally compact
Hausdorff space. Consider the 2-graph of Example 2.11. For each n ∈ N,
we have ωn ∈ Λ≤∞. Notice that ωn → x /∈ Λ≤∞. So Λ≤∞ is not closed in
general, and hence is not locally compact.

4. Removing sources

Theorem 4.1. Let Λ be a finitely aligned k-graph. Then there exists a
finitely aligned k-graph Λ̃ with no sources, and an embedding ι of Λ in Λ̃. If
Λ is row-finite, then so is Λ̃.

Definition 4.2. Define a relation ≈ on VΛ := {(x;m) : x∈ ∂Λ, m∈Nk}
by: (x;m) ≈ (y; p) if and only if

(V1) x(m ∧ d(x)) = y(p ∧ d(y)),
(V2) m−m ∧ d(x) = p− p ∧ d(y).

Definition 4.3. Define a relation ∼ on PΛ := {(x; (m,n)) : x ∈ ∂Λ,
m ≤ n ∈ Nk} by: (x; (m,n)) ∼ (y; (p, q)) if and only if

(P1) x(m ∧ d(x), n ∧ d(Px)) = y(p ∧ d(y), q ∧ d(y)),
(P2) m−m ∧ d(x) = p− p ∧ d(y),
(P3) n−m = q − p.
It is clear from the definitions that both ≈ and ∼ are equivalence rela-

tions.

Lemma 4.4. Suppose that (x; (m,n)) ∼ (y; (p, q)). Then n− n ∧ d(x) =
q − q ∧ d(y).

Proof. It follows from (P1) and (P3) that

n− n ∧ d(x)− (m−m ∧ d(x)) = q − q ∧ d(y)− (p− p ∧ d(y)).

The result is then a consequence of (P2).

Let P̃Λ := PΛ/∼ and ṼΛ := VΛ/≈. The class in P̃Λ of (x; (m,n)) ∈ PΛ is
denoted [x; (m,n)], and similarly the class in ṼΛ of (x;m) ∈ VΛ is denoted
[x;m].

To define the range and source maps, observe that if (x; (m,n)) ∼
(y; (p, q)), then (x;m) ≈ (y; p) by definition of ∼, and (x;n) ≈ (y; q) by
Lemma 4.4. We define range and source maps as follows.

Definition 4.5. Define r̃, s̃ : P̃Λ → ṼΛ by

r̃([x; (m,n)]) = [x;m] and s̃([x; (m,n)]) = [x, n].
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We now define composition. For each m ∈ Nk, we define the shift map
σm :

⋃
n≥m Λ

n → Λ by σm(λ)(p, q) = λ(p+m, q +m).

Proposition 4.6. Suppose that Λ is a k-graph, and that [x; (m,n)] and
[y; (p, q)] are elements of P̃Λ satisfying [x;n] = [y; p]. Let z := x(0, n ∧
d(x))σp∧d(y)y. Then

(1) z ∈ ∂Λ,
(2) m ∧ d(x) = m ∧ d(z) and n ∧ d(x) = n ∧ d(z),
(3) x(m∧d(x), n∧d(x)) = z(m∧d(z), n∧d(z)) and y(p∧d(y), q∧d(y)) =

z(n ∧ d(z), (n+ q − p) ∧ d(z)).

Proof. Part (1) follows from [6, Lemma 5.13], and (2) and (3) can be
proved as in [5, Proposition 2.11].

Fix [x; (m,n)], [y; (p, q)] ∈ P̃Λ such that [x;n] = [y; p], and let z = x(0, n∧
d(x))σp∧d(y)y. That the formula

(4.1) [x; (m,n)] ◦ [y; (p, q)] = [z; (m,n+ q − p)]
determines a well-defined composition follows from Proposition 4.6.

Define id : ṼΛ → P̃Λ by id[x;m] = [x; (m,m)].

Proposition 4.7 ([5, Lemma 2.19]). Λ̃ := (ṼΛ, P̃Λ, r̃, s̃, ◦, id) is a cate-
gory.

Definition 4.8. Define d̃ : Λ̃ → Nk by d̃(v) = ? for all v ∈ ṼΛ, and
d̃([x; (m,n)]) = n−m for all [x; (m,n)] ∈ P̃Λ.

Proposition 4.9 ([5, Theorem 2.22]). The map d̃ defined above has
the factorisation property. Hence with Λ̃ as in Proposition 4.7, (Λ̃, d̃) is a
k-graph with no sources.

Example 4.10. If we allow infinite receivers, our construction yields a
different k-graph to Farthing’s construction in [5, §2]: consider the 1-graph
E with an infinite number of loops fi on a single vertex v:

v

fi

...

Here we have E≤∞ = ∅, so Farthing’s construction yields a 1-graph E ∼= E.
Since v belongs to every finite exhaustive set in E, we have ∂E = E. Fur-
thermore [fj ; p] = [fi; p] = [v; p] for all i, j, p ∈ N, and

[fj ; (p, q)] = [fi; (p, q)] = [v; (p− 1, q − 1)]
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for all i, j, p, q such that 1 < p ≤ q. Thus there is exactly one path between
any two of the added vertices, resulting in a head at v, yielding the graph
illustrated below:

v

fi

...

It is intriguing that following Drinen and Tomforde’s desingularisation,
a head is also added at infinite receivers like this, and then the ranges of the
edges fi are distributed along this head—we cannot help but wonder whether
this might suggest an approach to a Drinen–Tomforde desingularisation for
k-graphs.

4.1. Row-finite 1-graphs. While one expects this style of desourci-
fication to agree with adding heads to a row-finite 1-graph as in [1], this
appears not to have been checked anywhere.

Proposition 4.11. Let E be a row-finite directed graph and F be the
graph obtained by adding heads to sources, as in [1, p. 4]. Let Λ be the 1-graph
associated to E. Then Λ̃ ∼= F ∗, where F ∗ is a the path-category of F .

Proof. Define η′ : PΛ → F ∗ as follows. Fix x ∈ ∂E and m,n ∈ N.
Then either x ∈ E∞, or x ∈ E∗ and s(x) is a source in E. If x ∈ E∞,
define η′((x; (m,n))) = x(m,n). For x ∈ E∗, let µx be the head added to
s(x), and define η′((x; (m,n))) = (xµx)(m,n). It is straightforward to check
that η′ respects the equivalence relation ∼ on PΛ. Define η : Λ̃ → F ∗ by
η([x; (m,n)]) = η′((x; (m,n))). Easy but tedious calculations show that η is
a graph morphism.

We now construct a graph morphism ξ : F ∗ → Λ̃. Let ν ∈ F ∗. To define ξ
we first need some preliminary notation. We will define ξ casewise, broken
up as follows:

(i) ν ∈ E∗,
(ii) r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗, or

(iii) r(ν), s(ν) ∈ F ∗ \ E∗.

If ν ∈ E∗, fix αν ∈ s(ν)∂E. If ν has r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗,
let pν = max{p ∈ N : ν(0, p) ∈ E∗}. Then ν(pν) is a source in E∗, and
ν(0, pν) ∈ ∂E. If ν ∈ F ∗ \ E∗, then ν is a segment of a head µν added to a
source in E∗, and we let qν be such that ν = µν(qν , qν + d(µ)).



The path space of a higher-rank graph 167

We then define ξ by

ξ(ν) =


[ναν ; (0, d(ν))] if ν ∈ E∗,
[ν(0, pν); (0, d(ν))] if r(ν) ∈ E∗ and s(ν) /∈ E∗,
[r(µν); (qν , qν + d(ν))] if r(ν), s(ν) ∈ F ∗ \ E∗.

Again, tedious but straightforward calculations show that ξ is a well-defined
graph morphism, and that ξ ◦ η = 1 eΛ and η ◦ ξ = 1F ∗ .

When Λ is row-finite and locally convex, Proposition 2.12 implies that
Λ≤∞ = ∂Λ. In this case our construction is essentially the same as that of
Farthing [5, §2], with notation as in [17]. If Λ is row-finite but not locally
convex, then Λ≤∞ ⊂ ∂Λ (Example 2.11 shows that this may be a strict
containment). Thus it is reasonable to suspect that our construction could
result in a larger path space than Farthing’s. Interestingly, this is not the
case.

Proposition 4.12. Let Λ be a row-finite k-graph. Suppose that x ∈
∂Λ\Λ≤∞ and m ≤ n ∈ Nk. Then there exists y ∈ Λ≤∞ such that (x; (m,n))
∼ (y; (m,n)).

Proof. Since x /∈ Λ≤∞, there exists q ≥ n ∧ d(x) and i ≤ k such that
q ≤ d(x), qi = d(x)i, and x(q)Λei 6= ∅. Let

J := {i ≤ k : qi = d(x)i and x(q)Λei 6= ∅}.
Since x ∈ ∂Λ, for each E ∈ x(q)FE(Λ) there exists t ∈ Nk such that
x(q, q + t) ∈ E. Since qi = d(x)i for all i ∈ J , the set

⋃
i∈J x(q)Λei contains

no such segments of x, and thus cannot be finite exhaustive. Since Λ is
row-finite,

⋃
i∈J x(q)Λei is finite, so

⋃
i∈J x(q)Λei is not exhaustive. Thus

there exists µ ∈ x(q)Λ such that MCE(µ, ν) = ∅ for all ν ∈
⋃
i∈J x(q)Λei . By

[13, Lemma 2.11], s(µ)Λ≤∞ 6= ∅. Let z ∈ s(µ)Λ≤∞, and define y := x(0, q)µz.
Then y ∈ Λ≤∞ by [13, Lemma 2.10].

Now we show that (x; (m,n)) ∼ (y; (m,n)). Condition (P3) is trivially
satisfied. To see that (P1) and (P2) hold, it suffices to show that n∧ d(x) =
n∧d(y). Firstly, let i ∈ J . If d(µz)i 6= 0, then (µz)(0, d(µ)+ei) ∈ MCE(µ, ν)
for ν = (µz)(0, ei) ∈ r(µ)Λei = x(q)Λei , a contradiction. So for each i ∈ J ,
we have d(µz)i = 0, and hence d(y)i = d(x)i. Now suppose that i /∈ J .
Then either x(q)Λei = ∅ or qi < d(x)i. If x(q)Λei = ∅ then d(y)i = d(x)i. So
suppose that qi < d(x)i. Since n ∧ d(x) ≤ q, it follows that ni < d(x)i and
ni ≤ qi ≤ d(y)i, hence (n∧d(x))i = ni = (n∧d(y))i. So n∧d(x) = n∧d(y).

The following result allows us to identify Λ with a subgraph of Λ̃.

Proposition 4.13. Suppose that Λ is a k-graph, and that λ ∈ Λ. Then
s(λ)∂Λ 6= ∅. If x, y ∈ s(λ)∂Λ, then λx, λy ∈ ∂Λ and (λx; (0, d(λ))) ∼
(λy; (0, d(λ))). Moreover, there is an injective k-graph morphism ι : Λ→ Λ̃
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such that for λ ∈ Λ,

ι(λ) = [λx; (0, d(λ))] for any x ∈ s(λ)∂Λ.

Proof. By [6, Lemma 5.15], we have v∂Λ 6= ∅ for all v ∈ Λ0. In particular,
s(λ)∂Λ 6= ∅. Let x, y ∈ s(λ)∂Λ. Then [6, Lemma 5.13(ii)] says that λx, λy
∈ ∂Λ. It follows from the definition of ∼ that (λx; (0, d(λ))) ∼ (λy; (0, d(λ))).
Then straightforward calculations show that ι is an injective k-graph mor-
phism.

We want to extend ι to an injection of WΛ into W eΛ. The next proposition
shows that any injective k-graph morphism defined on Λ can be extended
to WΛ.

Proposition 4.14. Let Λ, Γ be k-graphs and φ : Λ → Γ be a k-graph
morphism. Let x ∈WΛ\Λ. Then φ(x) : Ωk,d(x) →WΓ defined by φ(x)(p, q) =
φ(x(p, q)) belongs to WΓ .

Proof. This follows from φ being a k-graph morphism.

In particular, we can extend ι to paths with non-finite degree. We need
to know that composition works as expected for non-finite paths.

Proposition 4.15. Let Λ, Γ be k-graphs and φ : Λ → Γ be a k-graph
morphism. Let λ ∈ Λ, x ∈ s(λ)WΛ, and suppose that n ∈ Nk satisfies
n ≤ d(x). Then

(1) φ(λ)φ(x) = φ(λx),
(2) σn(φ(x)) = φ(σn(x)).

Proof. Again this follows from φ being a k-graph morphism.

Remark 4.16. We deduce that the extension of an injective k-graph
morphism to WΛ is also injective. In particular, the map ι : Λ → Λ̃ has an
injective extension ι : WΛ →W eΛ.

We need to be able to ‘project’ paths from Λ̃ onto the embedding ι(Λ)
of Λ. For y ∈ ∂Λ define

(4.2) π([y; (m,n)]) = [y; (m ∧ d(y), n ∧ d(y))].

Straightforward calculations show that π is a surjective functor, and is a pro-
jection in the sense that π(π([y; (m,n)])) = π([y; (m,n)]) for all [y; (m,n)]
∈ Λ̃. In particular, π|ι(Λ) = idι(Λ).

Lemma 4.17. Let Λ be a k-graph. Suppose that λ, µ∈Λ̃, and that λ∈Z(µ).
Then π(λ) ∈ Z(π(µ)). If d(π(λ))i > d(π(µ))i for some i ≤ k, then d(µ)i =
d(π(µ))i.
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Proof. Write λ = [x; (m,m+ d(λ))]. Then µ = [x; (m,m+ d(µ))], so

π(λ) = [x; (m ∧ d(x), (m+ d(λ)) ∧ d(x))],
π(µ) = [x; (m ∧ d(x), (m+ d(µ)) ∧ d(x))].

Since d(λ) ≥ d(µ), it follows that π(λ) ∈ Z(π(µ)).
If d(π(λ))i > d(π(µ))i, then d(x)i > mi + d(µ)i, so

d(π(µ))i = mi + d(µ)i −mi = d(µ)i.

Lemma 4.18. Let Λ be a k-graph and µ, ν ∈ Λ̃. Then

π(MCE(µ, ν)) ⊂ MCE(π(µ), π(ν)).

Proof. Suppose that λ ∈ MCE(µ, ν). By Lemma 4.17 we have π(λ) ∈
Z(π(µ)) ∩ Z(π(ν)), hence d(π(λ)) ≥ d(π(µ)) ∨ d(π(ν)).

It remains to prove that d(π(λ)) = d(π(µ)) ∨ d(π(ν)). Suppose, for a
contradiction, that i ≤ k is such that d(π(λ))i > max{d(π(µ))i, d(π(ν))i}.
By Lemma 4.17 we then have d(π(µ))i = d(µ)i and d(π(ν))i = d(ν)i. So
d(λ)i ≥ d(π(λ))i > max{d(µ)i, d(ν)i}, contradicting λ ∈ MCE(µ, ν).

Lemma 4.19. Let Λ be a k-graph, and let µ, λ ∈ ι(Λ0)Λ̃ be such that
d(λ) = d(µ) and π(λ) = π(µ). Then λ = µ.

Proof. Since µ, λ ∈ ι(Λ0)Λ̃ and d(λ) = d(µ), we can write λ = [x; (0, n)]
and µ = [y; (0, n)] for some x, y ∈ ∂Λ and n ∈ Nk. We will show that
(x; (0, n)) ∼ (y; (0, n)). Conditions (P2) and (P3) are trivially satisfied. Since

[x; (0, n ∧ d(x))] = π(λ) = π(µ) = [y; (0, n ∧ d(y))],

we have (x; (0, n ∧ d(x))) ∼ (y; (0, n ∧ d(y))). Hence x(0, n ∧ d(x)) =
y(0, n ∧ d(y)), and (P1) is satisfied.

Proof of Theorem 4.1. The existence of Λ̃ follows from Proposition 4.9,
and the embedding from Proposition 4.13.

To check that Λ̃ is finitely aligned, fix µ, ν ∈ Λ̃, and α ∈ ι(Λ0)Λ̃r(µ).
Then |MCE(µ, ν)| = |MCE(αµ, αν)|. We know that |MCE(π(αµ), π(αν))|
is finite since Λ is finitely aligned. We will show that |MCE(αµ, αν)| =
|MCE(π(αµ), π(αν))|.

It follows from Lemma 4.18 that

|MCE(αµ, αν)| ≥ |MCE(π(αµ), π(αν))|.
For the opposite inequality, suppose that λ and β are distinct elements of
MCE(αµ, αν). Then d(λ) = d(β). Since r(αµ), r(αν) ∈ ι(Λ0), Lemma 4.19
implies that π(λ) 6= π(β). So |MCE(αµ, αν)| = |MCE(π(αµ), π(αν))|.

For the last part of the statement, we prove the contrapositive. Sup-
pose that Λ̃ is not row-finite. Let [x;m] ∈ Λ̃0 and i ≤ k be such that
|[x;m]Λ̃ei |=∞. Then for each [y; (n, n + ei)] ∈ [x;m]Λ̃ei we have [y;n] =
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[x;m], so [x; (m,m+ ei)] 6= [y; (n, n+ ei)] only if (P1) fails. That is,

(4.3) x(m ∧ d(x), (m+ ei) ∧ d(x)) 6= y(n ∧ d(y), (n+ ei) ∧ d(y)).

Since |[x;m]Λ̃ei | = ∞, there are infinitely many [y; (n, n + ei)] ∈ [x;m]Λ̃ei
satisfying (4.3). Hence |x(m ∧ d(x))Λei | =∞.

Remark 4.20. Suppose that Λ is a finitely aligned k-graph, that x ∈ ∂Λ
and that E ⊂ x(0)Λ. Since ι : Λ→ ι(Λ) is a bijective k-graph morphism, we
have E ∈ x(0)FE(Λ) if and only if ι(E) ∈ [x; 0]FE(ι(Λ)).

The following results show how sets of minimal common extensions and
finite exhaustive sets in a k-graph Λ relate to those in Λ̃.

Proposition 4.21 ([5, Lemma 2.25]). Suppose that Λ is a finitely aligned
k-graph, and that v ∈ ι(Λ0). Then E ∈ vFE(ι(Λ)) implies that E ∈ vFE(Λ̃).

Lemma 4.22. Let Λ be a finitely aligned k-graph and let µ, ν ∈ ι(Λ).
Then MCEι(Λ)(µ, ν) = MCE eΛ(µ, ν).

Proof. Since ι(Λ) ⊂ Λ̃, we have MCEι(Λ)(µ, ν) ⊂ MCE eΛ(µ, ν). Suppose
that λ ∈ MCE eΛ(µ, ν). It suffices to show that λ ∈ ι(Λ). Write µ = [x; (0, n)],
ν = [y; (0, q)] and λ = [z; (0, n ∨ q)]. Then λ ∈ Z(µ) ∩ Z(ν) implies that
d(z) ≥ n ∨ q, hence λ ∈ ι(Λ).

Remark 4.23. Since there is a bijection from Λmin(µ, ν) onto MCE(µ, ν),
it follows from Lemma 4.22 that Λ̃min(µ, ν) = ι(Λ)min(µ, ν) for all µ, ν ∈ ι(Λ).

5. Topology of path spaces under desourcification. We extend the
projection π defined in (4.2) to the set of infinite paths in Λ̃, and prove that
its restriction to ι(Λ0)Λ̃∞ is a homeomorphism onto ι(∂Λ). For x ∈ ι(Λ0)Λ̃∞,
let px =

∨
{p ∈ Nk : x(0, p) ∈ ι(Λ)}, and define π(x) to be the composition

of x with the inclusion of Ωk,px in Ωk,d(x). Then π(x) is a k-graph morphism.
Our goal for this section is the following theorem.

Theorem 5.1. Let Λ be a row-finite k-graph. Then π : ι(Λ0)Λ̃∞ → ι(∂Λ)
is a homeomorphism.

We first show that the range of π is a subset of ι(∂Λ).

Proposition 5.2. Let Λ be a finitely aligned k-graph. Let x ∈ ι(Λ0)Λ̃∞.
Suppose that {yn : n ∈ Nk} ⊂ ∂Λ satisfy [yn; (0, n)] = x(0, n). Then

(1) limn∈Nk ι(yn) = π(x) in W eΛ,
(2) there exists y ∈ ∂Λ such that π(x) = ι(y), and for m,n ∈ Nk with

m ≤ n ≤ px we have π(x)(m,n) = ι(y(m,n)).

Proof. For part (i), fix a basic open set Z(µ \ G) ⊂ W eΛ containing
π(x). Fix n ≥ N :=

∨
ν∈G d(µν). We first show that ι(yn) ∈ Z(µ). Since

π(x) ∈ Z(µ), we have µ ∈ ι(Λ). Since n ≥ d(µ), we have [yn; (0, d(µ))] = µ.
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Let α= ι−1(µ) and z ∈ s(α)∂Λ. Then [yn; (0, d(µ))] = µ= [αz; (0, d(µ))],
and (P1) gives ι(yn(0, d(µ) ∧ d(yn))) = ι((αz)(0, d(µ))) = ι(α) = µ. So
ι(yn) ∈ Z(µ).

We now show that ι(yn) /∈
⋃
ν∈GZ(µν). Fix ν ∈ G. If d(yn) � d(µν),

then trivially we have ι(yn) /∈ Z(µν). Suppose that d(yn) ≥ d(µν). Since
n ≥ d(µν), we have

x(0, d(µν)) = [yn; (0, n)](0, d(µν)) = ι(yn)(0, d(µν)) ∈ ι(Λ).

So ι(yn)(0, d(µν)) = x(0, d(µν)) = π(x)(0, d(µν)) 6= µν.
For part (ii), recall that ι is injective, hence we can define y : Ωk,px → Λ

by ι(y(m,n)) = π(x)(m,n). So ι(y) = π(x). To see that y ∈ ∂Λ, fix m ∈ Nk
such that m ≤ d(y) and fix E ∈ y(m)FE(Λ). We seek t ∈ Nk such that
y(m,m+t) ∈ E. Let p := m+

∨
µ∈E d(µ). Then since m ≤ d(y) = px, we get

[yp; (0,m)] = x(0,m) = π(x)(0,m) = ι(y(0,m)) = [y(0,m)y′; (0,m)]

for some y′ ∈ y(m)∂Λ. So (yp; (0,m)) ∼ (y(0,m)y′; (0,m)), hence

yp(0,m ∧ d(yp)) = (y(0,m)y′)(0,m ∧ d(y(0,m)y′)) = y(0,m)

by (P1). In particular, this implies that yp(m) = y(m). Since yp ∈ ∂Λ, there
exists t ∈ Nk such that yp(m,m+ t) ∈ E. So m+ t ≤ p, and we have

ι(yp(m,m+ t)) = [yp; (0, p)](m,m+ t) = x(0, p)(m,m+ t) = x(m,m+ t).

So x(m,m+ t) ∈ ι(Λ), giving

ι(yp(m,m+ t)) = x(m,m+ t) = π(x)(m,m+ t) = ι(y(m,m+ t)).

Finally, injectivity of ι gives y(m,m+ t) = yp(m,m+ t) ∈ E.

The next few results ensure that our definition of π on Λ̃∞ is compatible
with (4.2) when we regard finite paths as k-graph morphisms. The following
lemma is also crucial in showing that π is injective on ι(Λ0)Λ̃∞.

Lemma 5.3. Let Λ be a finitely aligned k-graph. Let x ∈ ι(Λ0)Λ̃∞. Sup-
pose that w ∈ ∂Λ satisfies π(x) = ι(w). Then x(0, n) = [w; (0, n)] for all
n ∈ Nk.

Proof. Fix n ∈ Nk. Let z ∈ ∂Λ be such that x(0, n) = [z; (0, n)]. We
aim to show that (z; (0, n)) ∼ (w; (0, n)). That (P2) and (P3) hold follows
immediately from their definitions. It remains to verify condition (P1):

(5.1) z(0, n ∧ d(z)) = w(0, n ∧ d(ω)).

Since π(x) = ι(w) we have d(w) = px. Thus

[w; (0, n ∧ px)] = ι(w(0, n ∧ px)) = x(0, n ∧ px) = [z; (0, n ∧ px)].

So (w; (0, n ∧ px)) ∼ (z; (0, n ∧ px)). It then follows from (P1) that

(5.2) w(0, n ∧ px) = z(0, n ∧ px).
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Hence n ∧ d(z) ≥ n ∧ px. Furthermore,

x(0, n ∧ d(z)) = [z; (0, n ∧ d(z))] = ι(z(0, n ∧ d(z))) ∈ ι(Λ)

implies that n∧px ≥ n∧d(z). So n∧d(z) = n∧px, and (5.2) becomes (5.1),
as required.

Remark 5.4. Suppose that Λ is a finitely aligned k-graph, and that
y ∈ ∂Λ and m,n ∈ Nk satisfy m ≤ n ≤ d(y). Then

[y; (m,n)] = [σm(y); (0, n−m)] = ι(σm(y)(0, n−m)) = ι(y(m,n)),

so [y; (m,n)] = ι(y(m,n)).

The next proposition shows that our definitions of π for finite and infinite
paths are compatible:

Proposition 5.5. Let Λ be a finitely aligned k-graph. Suppose that
x ∈ Λ̃∞, and m ≤ n ∈ Nk. Then π(x(m,n)) = π(x)(m ∧ px, n ∧ px).

Proof. Fix y ∈ ∂Λ such that π(x) = ι(y). Then

(x(m,n)) = π([y; (m,n)]) by Lemma 5.3
= [y; (m ∧ px, n ∧ px)] since d(y) = px

= ι(y(m ∧ px, n ∧ px)) by Remark 5.4
= π(x)(m ∧ px, n ∧ px) by Proposition 5.2(ii).

We can now show that π restricts to a homeomorphism of ι(Λ0)Λ̃∞

onto ι(∂Λ). We first show that it is a bijection, then show it is continuous.
Openness is the trickiest part, and the proof of it completes this section.

Proposition 5.6. Let Λ be a finitely aligned k-graph. Then the map
π : ι(Λ0)Λ̃∞ → ι(∂Λ) is a bijection.

Proof. That π is injective follows from Lemma 5.3. To see that π is onto
ι(∂Λ), let w ∈ ∂Λ and define x : Ωk → Λ̃ by x(p, q) = [w; (p, q)]. Then
px = d(w), and r(x) ∈ ι(Λ). To see that π(x) = ι(w), fix m,n ∈ Nk with
m ≤ n ≤ d(w). Then

(x)(m,n) = x(m,n) by Proposition 5.5
= [w; (m,n)] by Lemma 5.3
= ι(w(m,n)) by Remark 5.4
= ι(w)(m,n) by Proposition 4.14.

Proposition 5.7. Let Λ be a finitely aligned k-graph. Then π : ι(Λ0)Λ̃∞

→ ι(∂Λ) is continuous.

Proof. Fix a basic open set Z(µ \ G) ⊂ W eΛ. If Z(µ \ G) ∩ ι(∂Λ) = ∅,
then π−1(Z(µ\G)∩ ι(∂Λ)) = ∅ is open. Suppose that Z(µ\G)∩ ι(∂Λ) 6= ∅,
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and fix y ∈ Z(µ \G) ∩ ι(∂Λ). Let F = G ∩ ι(Λ). We will show that

(5.3) π−1(y) ∈ Z(µ \ F ) ∩ (Λ̃∞ ∩ r−1(ι(Λ))) ⊂ π−1(Z(µ \G) ∩ ι(∂Λ)).

Since y ∈ Z(µ), we have π−1(y) ∈ Z(µ). To see that π−1(y) /∈
⋃
β∈F Z(µβ),

fix β ∈ F . First suppose that d(µβ) � d(y). Then π−1(y)(0, d(µβ)) /∈
ι(Λ). Since µβ ∈ ι(Λ), we have π−1(y)(0, d(µβ)) 6= µβ. Now suppose that
d(µβ) ≤ d(y); then

π−1(y)(0, d(µβ)) = y(0, d(µβ)) 6= µβ.

We now show that Z(µ \ F ) ∩ ι(Λ0)Λ̃∞ ⊂ π−1(Z(µ \ G) ∩ ι(∂Λ)). Let
z ∈ Z(µ \ F ) ∩ ι(Λ0)Λ̃∞. It suffices to show that π(z) ∈ Z(µ \ G). Firstly,
π(z)(0, d(µ)) = z(0, d(µ)) = µ ∈ ι(Λ). To see that π(z) /∈

⋃
ν∈GZ(µν),

fix ν ∈ G. If d(µν) � d(π(z)), then trivially π(z) /∈ Z(µν). Suppose that
d(µν) ≤ d(π(z)). If ν /∈ ι(Λ), then π(z)(0, d(µν)) 6= µν. Otherwise, ν ∈ ι(Λ),
so ν ∈ F and we have π(z)(0, d(µν)) = z(0, d(µν)) 6= µν.

Proposition 5.8. Let Λ be a row-finite k-graph. Then π : ι(Λ0)Λ̃∞ →
ι(∂Λ) is open.

Proof. Fix π(y) ∈ π(Z(µ \ G) ∩ ι(Λ0)Λ̃∞). Let ω ∈ ∂Λ be such that
π(y) = ι(ω). Define λ := y(0,

∨
ν∈G d(µν)), and

F :=
⋃
{s(π(λ))ι(Λei) : d(λ)i > d(π(y))i}.

We claim that

π(y) ∈ Z(π(λ) \ F ) ∩ ι(∂Λ) ⊂ π(Z(µ \G) ∩ ι(Λ0)Λ̃∞).

First we show that π(y) ∈ Z(π(λ)). It follows from Lemma 5.3 that
π(λ) = [ω; (0, d(λ) ∧ d(ω))]. Since d(ω) = d(π(y)), Proposition 5.5 implies
that

π(y)(0, d(π(λ))) = π(y)(0, d(λ) ∧ d(ω)) = π(y(0, d(λ))) = π(λ).

Now we show that π(y) /∈
⋃
f∈F Z(π(λ)f). Fix f ∈ F ; say d(f) = ei. Then

by definition of F , d(λ)i > d(π(y))i = d(ω)i, and thus

d(π(λ))i = min{d(λ)i, d(ω)i} = d(ω)i = d(π(y))i.

So d(π(y)) � d(π(λ)f), and hence π(y) /∈ Z(π(λ)f) as required.
Now we show that Z(π(λ) \ F ) ∩ ι(∂Λ) ⊂ π(Z(µ \ G) ∩ ι(Λ0)Λ̃∞). Let

π(β) ∈ Z(π(λ) \ F ) ∩ ι(∂Λ). We aim to show that β ∈ Z(µ \ G). Since
Z(λ) ⊂ Z(µ\G), it suffices to show that β ∈ Z(λ). Clearly β ∈ Z(π(λ)\F ).
If d(λ) = d(π(λ)) then π(λ) = λ and we are done. Suppose that d(λ) >
d(π(λ)), and let τ = β(d(π(λ)), d(λ)). We know that β ∈ Z(π(λ)). We aim
to use Lemma 4.19 to show that τ = λ(d(π(λ)), d(λ)). Fix i ≤ k such that
d(λ)i > d(π(λ))i. Then since d(π(λ)) = d(λ)∧d(ω), we have d(λ)i > d(ω)i =
d(π(y))i. Now β ∈ Z(π(λ) \ F ) implies that τ(0, ei) /∈ F . In particular,
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τ(0, ei) /∈ ι(Λ). We claim that d(π(τ)) = 0. Suppose, for a contradiction,
that d(π(τ))j > 0 for some j ≤ k. Then π(τ)(0, ej) = τ(0, ej) /∈ ι(Λ). But
π(τ) ∈ ι(Λ) by definition of π. So we must have d(π(τ)) = 0, which implies
that

π(τ) = r(τ) = s(π(λ)) = π(λ(d(π(λ)), d(λ))).

Now Lemma 4.19 implies that τ = λ(d(π(λ)), d(λ)). Then

β(0, λ) = β(0, d(π(λ)))τ = π(λ)λ(d(π(λ)), d(λ)) = λ.

Example 5.9. We can see that π is not open for non-row-finite graphs
by considering the 1-graph E from Example 4.10 with ‘desourcifica-
tion’ Ẽ. Observe that Z(µ1) ∩ ι(E0)Λ̃∞ = {µ1µ2 · · · } is open in Ẽ, and
π(Z(µ1) ∩ ι(E0)Ẽ∞) = {v}. Since ∂E = E, any basic open set in ∂E con-
taining v is of the form Z(v \G) for some finite G ⊂ E1. Since E1 is infinite,
there is no finite G ⊂ E1 such that Z(v \G) ⊂ {v}. Hence {v} is not open
in E, and π is not an open map.

Proof of Theorem 5.1. Propositions 5.6, 5.7 and 5.8 say precisely that π
is a bijection, is continuous, and is open.

Remark 5.10. Although π|
ι(Λ0) eΛ∞ is open for all row-finite k-graphs,

it behaves particularly well with respect to cylinder sets for locally convex
k-graphs. The following discussion and example arose in preliminary work
on a proof that π is open when Λ is row-finite and locally convex. We have
retained this example since it helps illustrate some of the issues surrounding
the map π.

Denote our standard topology for a finitely k-graph by τ1. The collection
{Z(µ) : µ ∈ Λ} of cylinder sets also forms a base for a topology: they
cover WΛ, and if x ∈ Z(λ) ∩ Z(ν), then x ∈ Z(x(0, d(λ) ∨ d(ν))) ⊂ Z(λ) ∩
Z(ν). This topology, denoted τ2, is not necessarily Hausdorff: we cannot
separate any edge from its range: if r(f) ∈ Z(µ) then µ = r(f), and thus
f ∈ Z(µ).

It may seem reasonable to expect that {Z(µ)∩ ∂Λ : µ ∈ Λ} is a base for
the restriction of τ1 to ∂Λ. However, this is not so. To see why, consider the
2-graph of Example 2.11. Let y be the boundary path beginning with f0.
So x, y ∈ ∂Λ. Let µ be such that x ∈ Z(µ). Then µ = x0 . . . xn for some
n ∈ N, so y ∈ Z(µ) as well. So the topology τ1 is not Hausdorff even when
restricted to ∂Λ. In the topology τ2, it is easy to see how to separate these
two points: y ∈ Z(f0)∩ ∂Λ and x ∈ Z(r(x) \ {f0})∩ ∂Λ, and these two sets
are disjoint.

If we restrict ourselves to locally convex k-graphs, τ1 and τ2 do restrict to
the same topology on ∂Λ: certainly, for each µ ∈ Λ, we can realise a cylinder
set Z(µ) as a set of the form Z(µ \G) by taking G = ∅. Now suppose that
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x ∈ Z(µ \G) ∩ ∂Λ. We claim that with

νx := x
(

0,
( ∨
α∈G

d(µα)
)
∧ d(x)

)
,

we have x ∈ Z(νx)∩∂Λ ⊂ Z(µ\G)∩∂Λ. Clearly x ∈ Z(νx)∩∂Λ. The contain-
ment requires a little more work. Clearly y ∈ Z(µ). Fix α ∈ G. We will show
that y /∈ Z(µα). If d(y) � d(µα), then trivially y /∈ Z(µα). Suppose that
d(y) ≥ d(µα). We claim that d(x) ≥ d(µα). Suppose, for a contradiction,
that d(x) � d(µα). Then there exists i ≤ k such that d(x)i < d(µα)i. Then
d(x)i = d(νx)i. Since x ∈ ∂Λ, we must have x(d(νx))Λei /∈ x(d(νx))FE(Λ).
Since Λ is locally convex, Lemma 2.13 implies that y(d(νx))Λei = x(d(νx))Λei
= ∅. So d(y)i = d(νx)i = d(x)i < d(µα)i, a contradiction. Hence d(x) ≥
d(µα). This implies that d(νx) ≥ d(µα). So

y(0, d(µα)) = vx(0, d(µα)) = x(0, d(µα)) 6= µα.

Proposition 5.11. Suppose that Λ is a row-finite, locally convex k-
graph, and let µ ∈ ι(Λ0)Λ̃. Then π(Z(µ) ∩ ι(Λ0)Λ̃∞) = Z(π(µ)) ∩ ι(∂Λ).
In particular, π is open.

Proof. We first show that π(Z(µ)∩ι(Λ0)Λ̃∞) ⊂ Z(π(µ))∩ι(∂Λ). Suppose
that π(y) ∈ π(Z(µ \ G) ∩ ι(Λ0)Λ̃∞). Trivially π(y) ∈ ι(∂Λ). We will show
that π(y) ∈ Z(π(µ) \ π(G)). Since y(0, d(µ)) = µ, we have

π(µ) = π(y(0, d(µ))) = π(y)(0, d(µ) ∧ d(π(y))).

So π(y) ∈ Z(π(µ)). Furthermore, d(π(µ)) = d(µ) ∧ d(π(y)).
Fix ν ∈ G. We will show that π(y) /∈ Z(π(µν)). Since y ∈ Z(µ \ G),

we have y(0, d(µν)) 6= µν. Since d(y(0, d(µν))) = d(µν) and r(y) = r(µν) ∈
ι(Λ0), Lemma 4.19 implies that

π(µν) 6= π(y(0, d(µν))) = π(y)(0, d(µν) ∧ d(π(y))).

So π(Z(µ \G) ∩ ι(Λ0)Λ̃∞) ⊂ Z(π(µ) \ π(G)) ∩ ι(∂Λ).
Now suppose that ι(ω) ∈ Z(π(µ)) ∩ ι(∂Λ), and let y = π−1(ι(ω)). We

show that y ∈ Z(µ). Write µ = [z; (0, d(µ))]. Then π(µ) = [z; (0, d(µ)∧d(z))]
and y(0, d(µ)) = [ω; (0, d(µ))]. We claim that (z; (0, d(µ))) ∼ (ω; (0, d(µ))).
That (P2) and (P3) hold follows immediately from their definition. To show
that (P1) is satisfied, we must show that z(0, d(µ)∧d(z)) = w(0, d(µ)∧d(w)).
Since π(y) ∈ Z(π(µ)), we have y ∈ Z(π(µ)). Then

[ω; (0, d(π(µ)))] = y(0, d(π(µ))) = π(µ) = [z; (0, d(µ) ∧ d(z))].

So (ω; (0, d(π(µ)))) ∼ (z; (0, d(µ) ∧ d(z))). Therefore (P1) implies that

ω(0, d(π(µ))) = ω(0, d(π(µ)) ∧ d(ω)) = z(0, d(µ) ∧ d(z)),

and d(π(µ)) = d(µ) ∧ d(z). We will show d(µ) ∧ d(w) = d(π(µ)). Fix i ≤ k.
We argue the following cases separately:
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(1) If d(π(µ))i = d(µ)i, we have d(w) ≥ d(π(µ)) = d(µ)i. It follows that
(d(µ) ∧ d(w))i = d(µ)i = d(π(µ))i.

(2) If d(π(µ))i < d(µ)i, it requires a little more work: Since d(µ)i >
d(π(µ))i = min{d(µ)i, d(z)i}, we have d(π(µ))i = d(z)i. So z ∈ ∂Λ im-
plies that z(d(π(µ)))Λei /∈ z(d(π(µ)))FE(Λ). By Lemma 2.13, we have
z(d(π(µ)))Λei = ∅, and hence ω(d(π(µ)))Λei = ∅. So d(ω)i = d(π(µ))i<d(µ)i,
giving (d(µ) ∧ d(ω))i = d(ω)i = d(π(µ))i.

6. High-rank graph C∗-algebras

Definition 6.1. Let Λ be a finitely aligned k-graph. A Cuntz–Krieger
Λ-family in a C∗-algebra B is a collection {tλ : λ ∈ Λ} of partial isometries
satisfying

(CK1) {sv : v ∈ Λ0} is a set of mutually orthogonal projections,
(CK2) sµsν = sµν whenever s(µ) = r(ν),
(CK3) s∗µsν =

∑
(α,β)∈Λmin(µ,ν) sαs

∗
β for all µ, ν ∈ Λ,

(CK4)
∏
µ∈E(sv − sµs∗µ) = 0 for all v ∈ Λ0 and E ∈ vFE(Λ).

The C∗-algebra C∗(Λ) of a k-graph Λ is the universal C∗-algebra gener-
ated by a Cuntz–Krieger Λ-family {sλ : λ ∈ Λ}.

Remark 6.2. The following theorem appears as [5, Theorem 2.28]. Far-
thing alerted us to an issue in the proof of the theorem. It contains a claim
which is proved in cases, and in the proof of Case 1 of the claim (on page 189),
there is an error when i0 is such that mi0 = d(x)i0 + 1. Then ai0 = d(x)i0 ,
and [5, equation (2.13)] gives ti0 ≤ d(z)i0 ; not ti0 ≥ d(z)i0 as stated.

Theorem 6.3. Let Λ be a row-finite k-graph. Let C∗(Λ) and C∗(Λ̃) be
generated by the Cuntz–Krieger families {sλ : λ ∈ Λ} and {tλ : λ ∈ Λ̃}. Then
the sum

∑
v∈ι(Λ0) tv converges strictly to a full projection p ∈ M(C∗(Λ̃))

such that pC∗(Λ̃)p = C∗({tι(λ) : λ ∈ Λ}), and sλ 7→ tι(λ) determines an
isomorphism ς : C∗(Λ) ∼= pC∗(Λ̃)p.

Before proving Theorem 6.3, we need the following results.

Proposition 6.4 ([5, Theorem 2.26]). Let Λ be a finitely aligned k-
graph. If {tλ : λ ∈ Λ̃} is a Cuntz–Krieger Λ̃-family, then {tλ : λ ∈ ι(Λ)} is
a Cuntz–Krieger ι(Λ)-family.

Remark 6.5. Let Λ be a finitely aligned k-graph. It follows from the
universal properties of C∗(Λ) and C∗(ι(Λ)) that C∗(Λ) ∼= C∗(ι(Λ)).

Proposition 6.6 ([5, Theorem 2.27]). Let Λ be a finitely aligned k-
graph, and let {tλ : λ ∈ Λ̃} be the universal Cuntz–Krieger Λ̃-family which
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generates C∗(Λ̃). Then C∗(Λ) is isomorphic to the subalgebra of C∗(Λ̃) gen-
erated by {tλ : λ ∈ ι(Λ)}.

Lemma 6.7. Suppose that Λ is a finitely aligned k-graph. Let λ ∈ Λ̃, and
let λ′ = λ(d(π(λ)), d(λ)). Suppose that x ∈ ∂Λ satisfies ι(r(x)) = r(λ′) and
d(x) ∧ d(λ′) = 0. Then λ′ = [x; (0, d(λ′))].

Proof. Write λ = [y; (0, d(λ))] then λ′ = [y; (d(λ)∧d(y), d(λ))]. We must
show that (y; (d(λ) ∧ d(y), d(λ))) ∼ (x; (0, d(λ′))). That conditions (P2)
and (P3) hold follows immediately from their definitions. It remains to
show that (P1) is satisfied. Since d(x) ∧ d(λ′) = 0, it suffices to show that
y(d(λ) ∧ d(y)) = x(0). We have

ι(x(0)) = ι(r(x)) = r(λ′) = [y; d(λ) ∧ d(y)] = ι(y(d(λ) ∧ d(y))).

Injectivity of ι then gives y(d(λ) ∧ d(y)) = x(0).

Lemma 6.8. Let λ ∈ Λ̃. Let λ′ = λ(d(π(λ)), d(λ)) and define

Gλ :=
k⋃
i=1

{α ∈ s(π(λ))ι(Λ)ei : MCE(α, λ′) = ∅}.

Then Gλ ∪ {λ′} ∈ s(π(λ))FE(Λ̃).

Proof. Fix µ ∈ s(π(λ))Λ̃, and suppose that MCE(µ, α) = ∅ for all
α ∈ Gλ. We will show that MCE(µ, λ′) 6= ∅. Fix ν ∈ s(µ)Λ̃d(µ)∨d(λ′)−d(µ).
Then d(µν) ≥ d(λ′). It suffices to show that MCE(µν, λ′) 6= ∅. Write
µν = [z; (0, d(µν))].

We first show that d(λ′) ∧ d(π(µν)) = 0. Suppose for a contradiction
that d(λ′) ∧ d(π(µν)) > 0. So we have d(λ′) ∧ d(µν) ∧ d(z) > 0, hence there
exists i ≤ k such that d(λ′)i, d(µν)i, and d(z)i are all greater than zero.
Then (µν)(0, ei) = [z; (0, ei)] = ι(z)(0, ei) ∈ ι(Λ). Since π|ι(Λ) = idι(Λ) and
π(λ′) = s(π(λ)) 6= λ′, we have λ′ /∈ ι(Λ). This implies that (µν)(0, ei) 6=
λ′(0, ei). So MCE((µν)(0, ei), λ′) = ∅, and thus (µν)(0, ei) ∈ Gλ. But
MCE(µν(0, ei), µν) 6= ∅, which implies that MCE(µ, µν(0, ei)) 6= ∅. This
contradicts our supposition that MCE(µ, α) = ∅ for all α ∈ Gλ. So
d(λ′) ∧ d(π(µν)) = 0.

Since d(µν) ≥ d(λ′), we have

d(z) ∧ d(λ′) = d(z) ∧ d(µν) ∧ d(λ′) = d(π(µν)) ∧ d(λ′) = 0.

Since r(λ′) = r(µν) = ι(r(z)), it follows from Lemma 6.7 that λ′ =
[z; (0, λ′)]. Thus µν = [z; (0, µν)] ∈ MCE(µν, λ′).

Proof of Theorem 6.3. Let A := C∗({tλ : λ ∈ ι(Λ)}). Then A ∼= C∗(Λ)
by Proposition 6.6. We will show that A is a full corner of C∗(Λ̃).
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Following the argument of [10, Lemma 2.10], the sum
∑

v∈ι(Λ0) tv con-

verges strictly in M(C∗(Λ̃)) to a projection p satisfying

(6.1) ptλt
∗
µp =

{
tλt
∗
µ if r̃(λ), r̃(µ) ∈ ι(Λ0),

0 otherwise.

The standard argument shows that p is a full projection in M(C∗(Λ̃)). It
follows from (6.1) that A ⊂ pC∗(Λ̃)p. Now suppose that λ, µ ∈ ι(Λ0)Λ̃.
We will show that ptλt∗µp ∈ A. If s̃(λ) 6= s̃(µ), then (CK1) implies that
ptλt

∗
µp = 0 ∈ A. Suppose that s̃(λ) = s̃(µ). We first show

(6.2) λ(d(π(λ)), d(λ)) = µ(d(π(µ)), d(µ)).

Let x, y ∈ ∂Λ be such that λ = [x; (0, d(λ))] and µ = [y; (0, d(µ))]. Let

λ′ = λ(d(π(λ)), d(λ)) = [x; (d(λ) ∧ d(x), d(λ)],
µ′ = µ(d(π(µ)), d(µ)) = [y; (d(µ) ∧ d(y), d(µ))].

We claim that λ′ = µ′. Condition (P2) is trivially satisfied, and (P1) and
(P3) follow from the vertex equivalence [x; d(λ)] = s̃(λ) = s̃(µ) = [y; d(µ)].
Hence λ′ = µ′.

Claim 6.3.1. Let Gλ :=
⋃k
i=1{α ∈ s(π(λ))ι(Λ)ei : MCE(α, λ′) = ∅}.

Then
tλ′t
∗
λ′ =

∏
α∈Gλ

(ts(π(λ)) − tαt∗α).

Proof. Lemma 6.8 implies that Gλ ∪ {λ′} is finite exhaustive, so (CK4)
implies ∏

β∈Gλ∪{λ′}

(ts(π(λ)) − tβt∗β) = 0.

Furthermore,∏
β∈Gλ∪{λ′}

(ts(π(λ)) − tβt∗β) =
( ∏
α∈Gλ

(ts(π(λ)) − tαt∗α)
)

(ts(π(λ)) − tλ′t∗λ′)

=
( ∏
α∈Gλ

(ts(π(λ)) − tαt∗α)
)
−
(
tλ′t
∗
λ′

∏
α∈Gλ

(ts(π(λ)) − tαt∗α)
)
.

Fix α ∈ Gλ. By [13, Lemma 2.7(i)],

tλ′t
∗
λ′(ts(π(λ)) − tαt∗α) = tλ′t

∗
λ′ −

∑
γ∈MCE(λ′,α)

tγt
∗
γ = tλ′t

∗
λ′ .

So

0 =
∏

β∈Gλ∪{λ′}

(ts(π(λ)) − tβt∗β) =
∏
α∈Gλ

(ts(π(λ)) − tαt∗α)− tλ′t∗λ′ . Claim
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Now we put the pieces together:

ptλt
∗
µp = tλt

∗
µ

= tπ(λ)tλ′t
∗
λ′t
∗
π(µ) by (6.2)

= tπ(λ)

∏
α∈Gλ

(ts(π(λ)) − tαt∗α)t∗π(µ) by Claim 6.3.1.

This is an element of A since π(λ), π(µ), α ∈ ι(Λ) for all α ∈ Gλ. So A =
pC∗(Λ̃)p.

7. The diagonal and the spectrum. For a k-graph Λ, we call
C∗{sµs∗µ : µ ∈ Λ} ⊂ C∗(Λ) the diagonal C∗-algebra of Λ and denote it by
DΛ, dropping the subscript when confusion is unlikely. For a commutative
C∗-algebra A, denote by ∆(A) the spectrum of A. Given a homomorphism
π : A→ B of commutative C∗-algebras, denote by π∗ the induced map from
∆(B) to ∆(A) such that π∗(f)(y) = f(π(y)) for all f ∈ ∆(B) and y ∈ A.

Theorem 7.1. Let Λ be a row-finite higher-rank graph. Let p∈M(C∗(Λ̃))
and ς :C∗(Λ)∼= pC∗(Λ̃)p be from Theorem 6.3. Then the restriction ς|DΛ =: ρ
is an isomorphism of DΛ onto pD eΛp. Let π : ι(Λ0)Λ̃∞ → ι(∂Λ) be the
homeomorphism from Theorem 5.1. Then there exist homeomorphisms hΛ :
∂Λ→ ∆(DΛ) and η : ι(Λ0)Λ̃∞ → ∆(pD eΛp) such that the following diagram
commutes:

ι(Λ0)Λ̃∞

∆(pD eΛp)
η

ι(∂Λ)π

∆(DΛ)

hΛ◦ι−1

ρ∗

As in [11], for a finite subset F ⊂ Λ, define

∨F :=
⋃
G⊂F

MCE(G) =
⋃
G⊂F

{
λ ∈

⋂
µ∈G

µΛ : d(λ) =
∨
µ∈G

d(µ)
}
.

Lemma 7.2. Let Λ be a finitely aligned k-graph and let F be a finite
subset of Λ. Suppose that r(λ) ∈ F for each λ ∈ F . For µ ∈ F , define

q∨Fµ := sµs
∗
µ

∏
µµ′∈∨F\{µ}

(sµs∗µ − sµµ′s∗µµ′).

Then the q∨Fµ are mutually orthogonal projections in span{sµs∗µ : µ ∈ ∨F},
and for each ν ∈ ∨F ,

(7.1) sνs
∗
ν =

∑
νν′∈∨F

q∨Fνν′ .
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Proof. Since

sµs
∗
µ

∏
µµ′∈∨F\{µ}

(sµs∗µ − sµµ′s∗µµ′) = sµs
∗
µ

∏
µµ′∈∨F, d(µ′) 6=0

(sr(µ) − sµµ′s∗µµ′),

[11, Proposition 8.6] says precisely that the q∨Fµ are mutually orthogonal
projections. That

sνs
∗
ν =

∑
νν′∈∨F

q∨Fνν′

is established in the proof of [11, Proposition 8.6] on page 421.

Remark 7.3. We have

q∨Fµ = sµ

( ∏
µ′∈s(µ)Λ\{s(µ)}

µµ′∈∨F

(ss(µ) − sµ′s∗µ′)
)
s∗µ.

This follows from a straightforward induction on |∨F |.
The following lemma can be verified through routine calculation. The

reader is referred to the author’s PhD thesis for details.

Lemma 7.4 ([19, Lemma A.0.7]). Let A be a C∗-algebra, let p be a pro-
jection in A, let Q be a finite set of commuting subprojections of p and let
q0 be a non-zero subprojection of p. Then

∏
q∈Q(p − q) is a projection. If

q0 is orthogonal to each q ∈ Q, then q0
∏
q∈Q(p − q) = q0, so in particular,∏

q∈Q(p− q) 6= 0.

Proposition 7.5. Let Λ be a finitely aligned k-graph. Then D =
span{sµs∗µ : µ ∈ Λ}, and for each x ∈ ∂Λ there exists a unique h(x) ∈ ∆(D)
such that

h(x)(sµs∗µ) =
{

1 if x = µµ′,
0 otherwise.

Moreover, x 7→ h(x) is a homeomorphism h : ∂Λ→ ∆(D).

Proof. Let µ, ν ∈ Λ. It follows from (CK3) that

(sµs∗µ)(sνs∗ν) =
∑

λ∈MCE(µ,ν)

sλs
∗
λ,

hence D = span{sµs∗µ : µ ∈ Λ}.
Fix x ∈ ∂Λ and

∑
µ∈F bµsµs

∗
µ ∈ span{sµs∗µ : µ ∈ Λ}. By setting extra

coefficients to zero we can assume that each path in F has its range in F ,
and write ∑

µ∈F
bµsµs

∗
µ =

∑
µ∈∨F

bµsµs
∗
µ.

Let n =
∨
{p ∈ Nk : x(0, p) ∈ ∨F}. Since ∨F is a finite set of finite paths, n is

finite. Since ∨F is closed under minimal common extensions, x(0, n) ∈ ∨F .
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Furthermore, since x ∈ ∂Λ, we have

Fx := {µ′ ∈ x(n)Λ \ {x(n)} : x(0, n)µ′ ∈ ∨F} /∈ x(n)FE(Λ).

So there exists ν ∈ x(n)Λ such that for each µ′ ∈ Fx, MCE(ν, µ′) = ∅.
Then sνs

∗
νsµ′s

∗
µ′ = 0 for all µ′ ∈ Fx. Applying Lemma 7.4 with p = sx(n),

q0 = sνs
∗
ν and Q = {sµ′s∗µ′ : µ′ ∈ Fx}, we have

∏
µ′∈Fx(sx(n) − sµ′s∗µ′) 6= 0.

So
qFx(0,n) = sx(0,n)

∏
µ′∈Fx

(sx(n) − sµ′s∗µ′)s∗x(0,n) 6= 0.

We have∥∥∥ ∑
ν∈∨F

bµsµs
∗
µ

∥∥∥ =
∥∥∥ ∑
ν∈∨F

( ∑
µ∈∨F
ν∈Z(µ)

bµ

)
q∨Fν

∥∥∥ by (7.1)

= max
{ν∈∨F :q∨Fν 6=0}

∣∣∣ ∑
µ∈∨F
ν∈Z(µ)

bµ

∣∣∣
≥
∣∣∣ ∑

µ∈∨F
x(0,n)∈Z(µ)

bµ

∣∣∣ since q∨Fx(0,n) 6= 0

=
∣∣∣ ∑

µ∈F
x(0,n)∈Z(µ)

bµ

∣∣∣ since bµ = 0 for µ ∈ ∨F \ F .

Hence the formula

(7.2) h(x)
(∑
µ∈F

bµsµs
∗
µ

)
=

∑
µ∈F

x∈Z(µ)

bµ

determines a norm-decreasing linear map on span{sµs∗µ : µ ∈ Λ}.
To see that h(x) is a homomorphism, it suffices to show that

(7.3) h(x)(sµs∗µsαs
∗
α) = h(x)(sµs∗µ) h(x)(sαs∗α).

Calculating the right-hand side of (7.3) yields

h(x)(sµs∗µ)h(x)(sαs∗α) =
{

1 if x ∈ Z(µ) ∩ Z(α),
0 otherwise.

Calculating the left-hand side of (7.3) gives

h(x)(sµs∗µsαs
∗
α) = h(x)

( ∑
λ∈MCE(µ,α)

sλs
∗
λ

)
.

There exists at most one λ ∈ MCE(µ, α) such that x ∈ Z(λ). Such a λ exists
if and only if x ∈ Z(µ) ∩ Z(α), so

h(x)(sµs∗µsαs
∗
α) =

{
1 if x ∈ Z(α) ∩ Z(µ),
0 otherwise.
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Thus we have established (7.3), hence h(x) is a homomorphism, and thus
extends uniquely to a non-zero homomorphism h(x) : D → C.

We claim the map h : ∂Λ → ∆(D) is a homeomorphism. The trickiest
part is to show h is onto:

Claim 7.5.1. The map h is surjective.

Proof. Fix φ ∈ ∆(D). We seek x ∈ ∂Λ such that h(x) = φ. For each
n ∈ Nk, the {sµs∗µ : d(µ) = n} are mutually orthogonal projections. It
follows that for each n ∈ Nk there exists at most one νn ∈ Λn such that
φ(sνns∗νn) = 1. Let S denote the set of n for which such νn exist. If ν = µν ′

and φ(sνs∗ν) = 1, then

1 = φ(sνs∗ν) = φ(sνs∗νsµs
∗
µ) = φ(sνs∗ν)φ(sµs∗µ) = φ(sµs∗µ).

This implies that if n ∈ S and m ≤ n, then m ∈ S and νm = νn(0,m). Set
N := ∨S, and define x : Ωk,N → Λ by x(p, q) = νq(p, q). Then since each νq

is a k-graph morphism, so is x.
We now show that x ∈ ∂Λ. Fix n ∈ Nk such that n ≤ d(x), and E ∈

x(n)FE(Λ). We seek m ∈ Nk such that x(n, n + m) ∈ E. Since E is finite
exhaustive, (CK4) implies that

∏
λ∈E(sx(n)− sλs∗λ) = 0. Multiplying on the

left by sx(0,n) and on the right by s∗x(0,n) yields∏
λ∈E

(sx(0,n)s
∗
x(0,n) − sx(0,n)λs

∗
x(0,n)λ) = 0.

Thus, since φ is a homomorphism, there exists λ ∈ E such that

0 = φ(sx(0,n)s
∗
x(0,n))− φ(sx(0,n)λs

∗
x(0,n)λ) = φ(sνns∗νn)− φ(sx(0,n)λs

∗
x(0,n)λ)

= 1− φ(sx(0,n)λs
∗
x(0,n)λ).

So φ(sx(0,n)λs
∗
x(0,n)λ) = 1. Thus x(0, n)λ = νn+d(λ) = x(0, n + d(λ)), and

hence x ∈ ∂Λ.
Now we must show that h(x) = φ. For each µ ∈ Λ we have

φ(sµs∗µ) = 1 ⇔ d(µ) ∈ S and νd(µ) = µ

⇔ x(0, d(µ)) = µ

⇔ h(x)(sµs∗µ) = 1.

As φ(sµs∗µ) and h(x)(sµs∗µ) take values in {0, 1}, we have h(x) = φ. Claim

To see that h is injective, suppose that h(x) = h(y). Then for each
n ∈ Nk, we have

h(y)(sx(0,n∧d(x))s
∗
x(0,n∧d(x))) = h(x)(sx(0,n∧d(x))s

∗
x(0,n∧d(x))) = 1.

Hence y(0, n ∧ d(x)) = x(0, n ∧ d(x)). By symmetry, we also have y(0, n ∧
d(y)) = x(0, n ∧ d(y)) for all n. In particular, d(x) = d(y) and y(0, n) =
x(0, n) for all n ≤ d(x). Thus x = y.
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Recall that ∆(D) carries the topology of pointwise convergence. For
openness, it suffices to check that h−1 is continuous. Suppose that h(xn)→
h(x). Fix a basic open set Z(µ) containing x, so h(x)(sµs∗µ) = 1. Since
h(xn)(sµs∗µ) ∈ {0, 1} for all n, for large enough n we have h(xn)(sµs∗µ) = 1.
So xn ∈ Z(µ). For continuity, a similarly straightforward argument shows
that if xn → x, then h(xn)(sµs∗µ) → h(x)(sµs∗µ). This convergence ex-
tends to span{sµs∗µ : µ ∈ Λ} by linearity, and to D by an ε/3 argu-
ment.

We can now prove our main result.

Proof of Theorem 7.1. Let Λ be a row-finite k-graph, and Λ̃ be the des-
ourcification described in Proposition 4.9. Let {sλ : λ ∈ Λ} and {tλ : λ ∈ Λ̃}
be universal Cuntz–Krieger families in C∗(Λ) and C∗(Λ̃). Let A be the C∗-
subalgebra of C∗(Λ̃) generated by {tλ : λ ∈ ι(Λ)}, and define the diagonal
subalgebra of A by DA := span{tλt∗λ : λ ∈ ι(Λ)}. Replacing tλt∗µ with tλt

∗
λ

in the proof Theorem 6.3 yields DA
∼= pD eΛp. Since A ∼= C∗(Λ), it follows

that DA
∼= DΛ. Thus DΛ

∼= pD eΛp as required.
We now construct η and show that it is a homeomorphism. That p com-

mutes with D eΛ implies that pD eΛp is an ideal in D eΛ. Then [14, Propositions
A26(a) and A27(b)] imply that the map k : φ 7→ φ|pD eΛp is a homeomor-
phism of {φ ∈ ∆(D eΛ) : φ|pD eΛp 6= 0} onto ∆(pD eΛp). Since Λ̃ is row-finite
with no sources, ∂Λ̃ = Λ̃∞. Let h eΛ : Λ̃∞ → ∆(D eΛ) be the homeomorphism
obtained from Proposition 7.5. Then h eΛ(x) ∈ dom(k) for all x ∈ ι(Λ0)Λ̃∞.
Define η := k ◦ h eΛ|ι(Λ0) eΛ∞ : ι(Λ0)Λ̃∞ → ∆(pD eΛp).

We now show that hΛ ◦ ι−1 ◦ π = ρ∗ ◦ η. Since ρ is an isomorphism, it
suffices to fix x ∈ ι(Λ0)Λ̃∞ and µ ∈ Λ and show that

(7.4) (hΛ ◦ ι−1 ◦ π)(x)(sµs∗µ) = (ρ∗ ◦ η)(x)(sµs∗µ).

Let ω ∈ ∂Λ be such that π(x) = ι(ω). Then the left-hand side of (7.4)
becomes

(hΛ ◦ ι−1 ◦ π)(x)(sµs∗µ) = hΛ(w)(sµs∗µ) =
{

1 if ω ∈ Z(µ),
0 otherwise.

Since r(x) ∈ ι(Λ0), the right-hand side of (7.4) simplifies to

(ρ∗ ◦ η)(x)(sµs∗µ) = η(x)(ρ(sµs∗µ)) = h eΛ(x)(tι(µ)t
∗
ι(µ)) =

{
1 if x ∈ Z(ι(µ)),
0 otherwise.

We claim that x ∈ Z(ι(µ)) if and only if ω ∈ Z(µ). Suppose that x ∈
Z(ι(µ)). Since µ ∈ Λ and π(x) = ι(ω), we have π(x(0, d(µ))) = π(ι(µ)) =
ι(µ). So d(π(x(0, d(µ)))) = d(µ), and thus d(x) ∧ d(w) ≥ d(µ). So d(ω)
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≥ d(µ). Then we have

x ∈ Z(ι(µ))⇔ x(0, d(µ)) = ι(µ) since ι preserves degree
⇔ [ω; (0, d(µ))] = ι(µ) by Lemma 5.3
⇔ ι(ω(0, d(µ))) = ι(µ) by Remark 5.4
⇔ ω(0, d(µ)) = µ since ι is a injective
⇔ ω ∈ Z(µ).1

So equation (7.4) holds, and we are done.
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