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Quasi-constricted linear operators on Banach spaces
by

EDUARD Yu. EMEL'YANOV (Novosibirsk and Tiibingen) and
MANFRED P. H. WoOLFF (Tiibingen)

Abstract. Let X be a Banach space over C. The bounded linear operator T" on X
is called quasi-constricted if the subspace X¢ := {z € X : limp—o ||T"z|| = 0} is closed
and has finite codimension. We show that a power bounded linear operator 7' € L(X)
is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness
X|-|l, (A) < 1 for some equivalent norm ||-||; on X. Moreover, we characterize the essential
spectral radius of an arbitrary bounded operator T' by quasi-constrictedness of scalar
multiples of T. Finally, we prove that every quasi-constricted operator T such that AT is
mean ergodic for all A in the peripheral spectrum o (T) of T is constricted and power
bounded, and hence has a compact attractor.

1. Introduction. Let (X, || - ||) be a Banach space over the field C of
complex numbers. We denote the space of all bounded linear operators on
X by L(X). Let T € L(X). A subset A C X is called an attractor for T if
lim,, oo dist(7"z, A) = 0 for each x € Bx, where Bx is the closed unit ball
of X and dist(y, A) denotes the distance inf{||y—z|| : z € A} from y to A. We
will denote the set of all attractors for 7' by Attr). (7). It was established
by many authors (see, for example, [LLY], [Ba], [Si]) that a power bounded
operator T' € L(X) has a compact attractor iff there exists a decomposition
X := Xy ® X, of the Banach space X into T-invariant subspaces Xy and
X, such that Xo = {z € X : lim, . [|[T"z| = 0} and dim(X,) < oc.
Operators of this type are called constricted.

Here we will study bounded linear operators 7" on X which satisfy the
weaker condition that the subspace X := {z € X : lim, . ||[T"z| = 0}
of X is closed and has finite codimension. We call these operators quasi-
constricted. Our first main result (Theorem 1) characterizes these operators
in the following way: a power bounded T' € L(X) is quasi-constricted iff
there exists an attractor for 7' which has Hausdorff measure of noncompact-
ness x|.|, (4) < 1 for some equivalent norm | - [|; on X. Moreover, we show
that for each ¢ > 0 there exists an e-T-invariant subspace complementary
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to Xo. Here a subspace Y is called e-T-invariant if for every y € Y we have
dist(Ty,Y) < | Ty].

We study the spectrum of a quasi-constricted operator and conclude that
for such an operator T, lim,, . dist(T"x, Xy) = 0 always implies x € Xj.
Moreover, we characterize the essential spectral radius 7ess(7") of an arbi-
trary bounded operator T by the quasi-constrictedness of scalar multiples
of T.

Let T be quasi-constricted. Then T need not be constricted as easy
examples show. However, in Theorem 7 we show that if the operators AT
are mean ergodic for all A in the peripheral spectrum o, (T) of T then T
must be power bounded and constricted.

2. Quasi-constricted operators and their attractors

THEOREM 1. Let X be a Banach space and let T € L(X) be a power
bounded operator. Then the following conditions are equivalent:

(i) T is quasi-constricted.

(ii) For every e > 0 there exists a finite-dimensional e-T-invariant sub-
space Y with X = Xo @Y.

(iii) For every finite-dimensional subspace Y with X = Xo @Y and
for every € > 0 there exists n € N such that T™(Y') is e-T-invariant and
X=XoT"(Y).

(iv) For every € > 0 there exists an equivalent norm || - || on X and
Ac € Attr) ) (T) such that its Hausdorff measure x,,_(A:) < e.

(v) There exists an equivalent norm || - |1 on X and A € Attr),(T)
such that x,, (A) <1.

Proof. (i)=-(iv). Take some € > 0 and let P be a projection of X onto
Xo. Let P := I — Py. Define M := || Py||sup,cy ||T"] and consider the
equivalent norm || - || on X:

lylle = 1Pyl + M~ Poyll (y € X).

Take y € X, ||yl < 1. Then PT"Py € PT"(Bx) C MP(Bx) for alln € N.
Consequently,

Tim disty.(I"y, MP(Bx)) < Tim |T"y - PT"Py|.
= lim |T"Py— PT"Pyl.
= n@o | PoT" Pylle =eM ™! n@o [ PoT™ Pyl
<e|Pyll <elyle <e.

The set M P(Bx) is compact, since dim(P(X)) < oo. So we deduce that
A: == MP(Bx)+{y € X : |jy|lc < €} is an attractor for T that satisfies

X (Ae) < &
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(iv)=-(v). Obvious.

(v)=(i). Without loss of generality we assume that || - ||; is the initial
norm || - || on X. Take a free ultrafilter & on N and consider the bounded
ultrapower Xy, := £>°(X)/cy(X), where £>°(X) := {(z,) € XN : sup{||an] :
n € N} < oo} and cy(X) := {(z,,) € XV : limy ||2,]| = 0}. Then Xy
is a Banach space with respect to the norm H(a:/n\)H = limy ||z,]]. We
will identify X with the subspace in X of all equivalence classes of con-
stant sequences. Consider the linear operator 7 : X — Xy defined by
Tx := (Tnx) for all z € X and let Z := T(X). Take a real 6 > 0 such
that (14 0)a < 1 where x(A) < a < 1 and let the set {a;}}_; C X satisfy
A - U?:l B(ai, Od).

Take an arbitrary z = Ty € Bz. Then {n: [|[T"y| < 1+ /2} € U, and
consequently, there exists some m € N that satisfies [|T™y| < 1+d/2. Since

p
lim dist (T"Tmy, U B(bi, (1+ 5/2)a) ~0
where b; := (1 + §/2)a;, there exists i, € 1,p such that
{(keN:|TFy — b || < (1+d)a} eld.

So, we have ||z — b; || < (1 + J)a in Xz Consequently,

-

=1

Now [LT, Lemma 2.c.8] implies that dim Z < oo, since (1 4 0)a < 1.

Since the operator T' is power bounded, we may assume without loss of
generality that | T|| < 1. Therefore for each # € X the (nonnegative) se-
quence (||7™x|)$2; is decreasing, and hence converges. Assume that
limy, [|[T" x| = 0. Since the limit of a sequence according to an ultrafilter
is a limit point of the sequence and since the sequence (||7"z|)22; con-
verges, it follows that lim,,_,~ |[|7"z|| = 0, which proves that ker 7 C X :=
{z € X : lim,,_, ||T"z|| = 0}. The inverse inclusion is trivial. The equality
Xo = ker 7 implies that Xy is closed and that codim (Xy) = dim Z < oo.
Consequently, T is quasi-constricted.

(iii)=(ii)=-(i). Obvious.

(i)=-(iii). Let Xz and 7 : X — Xy be defined as in part (v)=(i) of the
proof. Let Y be an arbitrary algebraic complement of Xy in X. Obviously,
T"(Y)® Xo = X for all n € N.

Now let € > 0. If the assertion does not hold then for every n € N there
exists a normalized y,, € Y such that dist(T(T"y,), T"(Y)) > | Ty,



172 E. Yu. Emel’yanov and M. P. H. Wolff

The unit sphere of Y is compact, so limy, i, = y exists. But then
lim dist(T" 1y, T™(Y)) = lim dist(T" 1y, T"(Y))

> eli [Tyl = <lign |77y > 0,

since T' is power bounded and since y ¢ Xy = ker 7. We define T on Xy by
T(xz,) = (Tx,) and obtain

dist(TTy, T(Y)) > lim dist(T"* 1y, T"(Y) > 0.

But 7Ty = (Tﬁy) =TTy e T(X)=T7(Y), a contradiction. m

Let us give some easy examples of power bounded quasi-constricted op-
erators which are not constricted:

EXAMPLE 1. Let X := C[0,1]. Define T : X — X by Tf(t) := tf(t).
Then Xo := {f € C[0,1] : lim,,o |T"f]| = 0} = {f € C[0,1] : f(1) =0}
has codimension 1. So, T' is quasi-constricted but not constricted, since it
has no nontrivial eigenvectors.

ExXAMPLE 2 ([EW, p. 217]). Let X = ¢ with sup-norm || - ||. Denote by
er the element of X whose kth coordinate is 1, and all other coordinates are
zero. Fix a real a > 0 and define the operator S, : X — X by

e1+aey if k=1,
Salex) = {ek+1 else,

and let T, := (I + S»)/2. It was shown in [EW, Lemma 2.3] that X, =
{z € X : im0 |[T22| = 0} = {z € ¢p : 1 = 0}, and consequently,
codim (X(y) = 1. So, the operator T, is quasi-constricted. More exactly,
T, has an attractor A, := [—e1,e1] + aBx such that y(4,) = «, and
for every A € Attr).|(To) we have x(A) > a, since the sequence T (e1) is
increasing and its supremum in £ is easily determined as (1, a, v, . ..). This
also implies that when o > 0 and A € C, |A\| = 1, then the operator AT, is
mean ergodic if and only if A & 0,(T,) = {1}. In particular, the operator
T., is not constricted for o« > 0.

Take some real § > 0 and consider the equivalent norm || - ||g on ¢y
defined by the formula

[#]|g := sup{|z1], Bllz — z1e1|}-
It is easy to see that x|, (A) > af for every A € Attr.|,(T). In particular,
for 8 = 1/a the operator T;, has no attractor A satisfying x.,(4) < 1. It
should be noted that the operator T, is a contraction with respect to the
norm | - |3 whenever 3 <1/a.

EXAMPLE 3. The same example can also be considered on ¢?(N) where
it is an example of a quasi-constricted operator which is neither power



Quasi-constricted linear operators 173

bounded nor constricted. As we shall see later on, as a consequence of The-
orem 7 quasi-constricted power bounded operators on a Hilbert space are
constricted.

EXAMPLE 4. Here we consider a generalization of Example 2. Let 0 #
S € L(X) be a power bounded operator such that codim (I —S)X < oc.
Without any restriction we may assume that ||S|| = 1. Take some real
a € (0,1) and consider the operator T, := ol + (1 — «)S. The result from
Foguel and Weiss [FW, Lemma 2.1] implies

178 = Tl = T2 (Ta = D] = |1 = )T5(I = S)|| — 0.

Then (I = S)X C Xy :={x € X : lim,_ [|[T2x| = 0}. So, codim (Xj) <
codim (I — S)X < oo. Consequently, T, is quasi-constricted.

3. On the spectrum of quasi-constricted operators. Let T be a
quasi-constricted operator. Let X = X @Y where Y is an arbitrary finite-
dimensional complement of Xg. Let P be the projection from X onto Y with
kernel Xy and define Q =1 — P, U = QTQ,V = QTP, and W = PTP.
Since Xj is invariant under 7', we have PT'(Q) = 0, hence T =U +V + W.
More precisely, identifying X with Xy X Y we obtain the following matrix
representation of T

u Vv
o (U0
Then T™ is represented by the matrix
n (U™ Z;é Ukywn—1-k
(2) T = ( 0 W .

Let 0(S) denote the resolvent set C\ o(S) of the operator S. Then an easy
calculation shows that for A € o(U) N o(W),

ey (=0T A=)V A=W
(A=T) _( 0 (= W)~ :
In particular, o(T) C o(U) U o(W).
The following elementary proposition shows a close connection between

the essential spectral radius ress(7") and the property of being quasi-con-
stricted.

PROPOSITION 2. Let T € L(X).

(1) If ress(T) <1 then T is constricted.
(ii) If T is quasi-constricted then ress(T) < 1.

Proof. (i) Let ress(T) < 1. Let f = inf{|A\| : A € o(T), |A\| > 1}, 6 =
sup{|A| : A € o(T), |\ < 1}, and
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(1 if 3> 1,
7= (14+9)/2 otherwise.

Then the circle K := {z : |z| = v} is in the resolvent set of T" and the projec-
tion P =TI — (2mi)~'§, (2 —T)~' dz maps X onto P(X) which is invariant
under 7" and finite-dimensional because o(7T) N {A : |A\| > 0} consists only
of finitely many Riesz points of o(T"). Moreover, o(T'|p(x)) C {A: |A] > 1}.
The space (I — P)(X) =: Z is also invariant under T" and by construction
r(T|z) < 1 hence Z = Xy, and (i) is proved.

(ii) Using the notation of (1) we have U™ — 0 strongly. Therefore, by
the Uniform Boundedness Principle, U is power bounded, hence r(U) < 1.
So if A € o(T) satisfies |[A| > 1 then A € (W), and since the subspace Y
on which W acts is finite-dimensional, A is an isolated point of o(T'). Let
L be the spectral projection corresponding to the spectral set {\} and set
Z = L(X). Then Z is T-invariant and o(7T|z) = {A}. This in turn yields
Z N Xy = {0}, so dim(Z) < oo and hence A is a Riesz point of T'. Therefore
Tess(T) < 1. m

Now we use this result in order to give a new characterization of the
essential spectral radius of an arbitrary bounded operator T on the Banach
space X. For T € L(X) we let

ae(T) := inf{a € Ry : a T is constricted},

aq(T) := inf{a € Ry : ™ 'T is quasi-constricted}.
Then our proposition yields the following characterization of the essential
spectral radius of the operator T

COROLLARY 3. Let T € L(X). Then ac(T) = aq(T) = ress(T).

Proof. Obviously, aq(T) < a.(T). To finish the proof we show that:

(I) ress(T") < aq(T'), and

(I1) e(T) < ress(T).

(I) Let € > 0. Then T'/(aq(T") +€) is quasi-constricted, hence its essential
spectral radius is less than or equal to 1 by the proposition. This in turn
yields 7ess(T) < aq(T) + € and the assertion follows.

(IT) Assume 7ess(T) < (1) and choose 7ess(T) < [ < ac(T). Then
ress(T'/3) < 1. By the proposition T/ is constricted, a contradiction. m

Now we turn to another property of quasi-constricted operators which is
a corollary of the next proposition about the spectrum of the operator W

(see (1)).
PROPOSITION 4. Let T be quasi-constricted and let X = Xqg @Y be an

arbitrary decomposition. For W as in the matriz representation (1) above,
o(W)cC{\:|\ >1}.
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Proof. Suppose that the assertion fails. Since Y is finite-dimensional
there exists an eigenvalue A of W of absolute value strictly less than 1. Let
e be a corresponding eigenvector. Then by (2) we obtain

n—1
T"(e) = \"e+ » A" RURVe,
k=0
Now Ve € X, implies that for every ¢ > 0 there exists n(e) such that
lU™Ve|| < e for all n > n(e). Moreover, U is power bounded on Xy by
the Uniform Boundedness Principle. So set M = sup{||[U"|| : n € N}. Set
N =n(e) and let p > 1. Then

N+p—1 N—1 P
D ANtRIEghye = N ANFolkphye 4N ke
k=0 k=0 k=1
implies
N+p—1

H Z )\NerflkakVeH
k=0

N—1 P

<D VIR TRV + Y AP [UN Ve
k=0 k=1

M||Vel €

L—[Al (A= [A])

which yields lim,,_,., T"e = 0, i.e. ¢ € Xg, a contradiction. m

< AP

COROLLARY 5. Let T be a quasi-constricted operator on the Banach
space X and let Z be the quotient space X/Xo. Then the operator T in-
duced by T on Z satisfies o(T) C {\ : |A\| > 1}. Moreover, let X denote
the polar of Xy in the dual space X*. Then XOL 1s T* -invartant, isomorphic
to the dual space Z* of Z and o(T"|x+) = o(T).

Proof. We use the notation which led to (1). Suppose that the assertion
fails. Then there exists an eigenvector € corresponding to an eigenvalue A of
absolute value strictly less than 1. Since € # 0 there exists e € Y such that
e = e+ Xg. But then We = MAe, a contradiction to the proposition above.
The remainder is an elementary exercise on polars (see e.g. [Sch2], Chapt.
IV, Sect. 1 and 2). =

COROLLARY 6. Let T be a quasi-constricted operator on the Banach
space X. Then lim,, o dist(T"z, Xo) = 0 always implies v € X.

Proof. The hypothesis implies lim, .o 7"% = 0 where the ~ denotes
the corresponding objects in Z = X /X (see the foregoing corollary). Since
o(T) C{A: |\ > 1} and dim(Z) < oo we obtain 7 =0. =
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Quasi-constricted operators need not be power bounded (see Example 3).
However, it is easy to see that for the result of Corollary 6 to hold the
operator T need not be quasi-constricted if it is power bounded. For, X
is then obviously closed. Moreover, lim,, _, dist(7"z, Xy) = 0 implies the
existence of a sequence (y,, ), in Xo satisfying lim,, o [|T"z — y,|| = 0. The
inequality

1T | < T8 - 1T = yall + 1Tyl
yields limsup,, | T*z| < M||T"x — y,|| for fixed n since y, is in Xg. So
x € Xop.

On the other hand, let T" be an arbitrary bounded linear operator on
the Banach space X such that X = {x : lim,,_,oo T"2 = 0} is closed. Then
lim,, o dist(T"z, Xo) = 0 does not in general imply lim, ., 7"z = 0 as
the following example shows.

EXAMPLE 5. Let H be a separable Hilbert space. Define an operator
T € L(H) as follows:

 Jaeip1 e, =1,
Tleis) = { (i +e€ij+1)/2, J>1,

is an orthonormal basis of H and

() ()™

where {em};?szl

for all i € N. By use of the inequality

2 () 4

which holds for each [ € N, we obtain
n+i—2

HTn—I—l 6 1 H > H( H Ozg) 22 Z( >€n+il1,2+k
=1
— l I 1/2 n4i—2 1 n—1 1/2n—1
(£ 0) s CE) T
=1 o \k £=i 1= e=1
NS V2 TSNS
=52 (2
=1 =1
1 /e \1/6
()

[
for all n > 2 and ¢ > 1. Since ||[T"x| > |z;1] - |7 (ei,1)]| for ¢ € N, we have
lim,, o || 7" || = oo whenever x; ;1 # 0 for some i € N. On the other hand,

v
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it can be shown that
(Ve € H)[[(Vi € N)[z;1 =0]] = lim [|[T"z| = 0].

Then Hy :={z € H :lim,, .o ||[T"z|| =0} = {z € H : (Vi € N)[z;1 = 0]} is
a closed subspace of H. At the same time

o) p+n—1

1/2
lim dist(T"z, Hp) = lim (Z( H ai)|93p,1|2) =0
n— 00 n—0oo =1 i=p
for all z € H.

4. When are quasi-constricted operators constricted? Our last
result presents a sufficient condition for quasi-constricted operators to be
constricted. Let us remark that, for example, a normal quasi-constricted
operator on a Hilbert space is always constricted, as is easily seen by use of
the spectral measure of the operator.

~ THEOREM 7. Let X be a Banach space and let T € L(X) be such that
AT is mean ergodic for all X\ € o.(T). Then the following conditions are
equivalent:

(i) T is quasi-constricted.
(ii) T is constricted and power bounded.
(iii) T' has an attractor A that satisfies x|, (A) < 1 for some equivalent
norm || - ||1 on X.

Proof. Let us recall that whenever the bounded operator T is mean
ergodic then (7" /n), converges strongly to 0 (see [Kr|, p. 72). Then by the
Uniform Boundedness Principle the sequence is uniformly bounded, which
yields in turn 7(7") < 1. In fact, for 7(T") < 1 the assertion of the theorem is
trivial. So without loss of generality we assume r(7") = 1.

(i)=(ii). A unimodular eigenvalue for 7" is obviously also an eigenvalue

for T on the space Z defined in Corollary 5. Hence there are only finitely
many unimodular eigenvalues {\;}_,. Let Fy,(T") be the subspace of all
eigenvectors corresponding to A;. Finally, let E(T) be the linear span of all
Fy,(T). Since X is closed and has finite codimension and since Fy,(T) N
Xo = {0}, the space E(T) is finite-dimensional, hence closed, and E(T") N
Xo = {0}. Moreover, each Fy,(T') is the space of fixed vectors of the opera-
tor \;7T.

Now let G = Xg . Since T* is weak*-mean ergodic and G is T*-invariant
and finite-dimensional, T*|¢ is uniformly mean ergodic, which by Corollary 5
implies that G is the span of all eigenspaces corresponding to unimodular
eigenvalues of T (see e.g. exercise 6 on p. 43 of [Schl]), or in other terms,
that G = E(T*) (see the preceding paragraph). By Sine’s famous ergodic
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theorem (see [Kr], p. 74), F,(T) separates points in Fy,(T™*), hence E(T)
separates points in E(T™), which in turn implies dim(E(7)) > dim(G) =
codim (Xy). So we obtain X = X¢ @ E(T') and (ii) follows.

(ii)=-(iii) and (iii)=(i) follow from Theorem 1. =

COROLLARY 8. Let T be a bounded linear operator on the Banach space
X and assume that the semigroup {T™}22, is weakly almost periodic. The
following assertions are equivalent:

(i) T is constricted and power bounded.
(ii) T has a compact attractor.
(iii) T has an attractor A which satisfies x|, (A) < 1 for some equivalent
norm || 1.
(iv) T is quasi-constricted.

n\1oo

Proof. One only needs to notice that the semigroup {(AT)"}22, is
weakly almost periodic for all A € C, |A\| = 1. Then AT is mean ergodic
by the Eberlein theorem [Kr, p. 76] for all A € C, |A| = 1. The corollary
follows immediately from Theorem 7. m

COROLLARY 9. Let T be a power bounded operator on the Banach space
X and assume that X is reflevive. Then T is quasi-constricted if and only
if T is constricted.

Proof. The semigroup generated by T is weakly almost periodic since
the unit ball of X is weakly compact. =
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