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Quasi-constricted linear operators on Banach spaces

by

Eduard Yu. Emel’yanov (Novosibirsk and Tübingen) and
Manfred P. H. Wolff (Tübingen)

Abstract. Let X be a Banach space over C. The bounded linear operator T on X
is called quasi-constricted if the subspace X0 := {x ∈ X : limn→∞ ‖Tnx‖ = 0} is closed
and has finite codimension. We show that a power bounded linear operator T ∈ L(X)
is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness
χ‖·‖1 (A) < 1 for some equivalent norm ‖·‖1 on X. Moreover, we characterize the essential
spectral radius of an arbitrary bounded operator T by quasi-constrictedness of scalar
multiples of T . Finally, we prove that every quasi-constricted operator T such that λT is
mean ergodic for all λ in the peripheral spectrum σπ(T ) of T is constricted and power
bounded, and hence has a compact attractor.

1. Introduction. Let (X, ‖ · ‖) be a Banach space over the field C of
complex numbers. We denote the space of all bounded linear operators on
X by L(X). Let T ∈ L(X). A subset A ⊆ X is called an attractor for T if
limn→∞ dist(Tnx,A) = 0 for each x ∈ BX , where BX is the closed unit ball
of X and dist(y,A) denotes the distance inf{‖y−z‖ : z ∈ A} from y to A. We
will denote the set of all attractors for T by Attr‖·‖(T ). It was established
by many authors (see, for example, [LLY], [Ba], [Si]) that a power bounded
operator T ∈ L(X) has a compact attractor iff there exists a decomposition
X := X0 ⊕ Xr of the Banach space X into T -invariant subspaces X0 and
Xr such that X0 = {x ∈ X : limn→∞ ‖Tnx‖ = 0} and dim(Xr) < ∞.
Operators of this type are called constricted.

Here we will study bounded linear operators T on X which satisfy the
weaker condition that the subspace X0 := {x ∈ X : limn→∞ ‖Tnx‖ = 0}
of X is closed and has finite codimension. We call these operators quasi-
constricted. Our first main result (Theorem 1) characterizes these operators
in the following way: a power bounded T ∈ L(X) is quasi-constricted iff
there exists an attractor for T which has Hausdorff measure of noncompact-
ness χ‖·‖1(A) < 1 for some equivalent norm ‖ · ‖1 on X. Moreover, we show
that for each ε > 0 there exists an ε-T -invariant subspace complementary
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to X0. Here a subspace Y is called ε-T -invariant if for every y ∈ Y we have
dist(Ty, Y ) ≤ ε‖Ty‖.

We study the spectrum of a quasi-constricted operator and conclude that
for such an operator T , limn→∞ dist(Tnx,X0) = 0 always implies x ∈ X0.
Moreover, we characterize the essential spectral radius ress(T ) of an arbi-
trary bounded operator T by the quasi-constrictedness of scalar multiples
of T .

Let T be quasi-constricted. Then T need not be constricted as easy
examples show. However, in Theorem 7 we show that if the operators λT
are mean ergodic for all λ in the peripheral spectrum σπ(T ) of T then T
must be power bounded and constricted.

2. Quasi-constricted operators and their attractors

Theorem 1. Let X be a Banach space and let T ∈ L(X) be a power
bounded operator. Then the following conditions are equivalent :

(i) T is quasi-constricted.
(ii) For every ε > 0 there exists a finite-dimensional ε-T -invariant sub-

space Y with X = X0 ⊕ Y .
(iii) For every finite-dimensional subspace Y with X = X0 ⊕ Y and

for every ε > 0 there exists n ∈ N such that Tn(Y ) is ε-T -invariant and
X = X0 ⊕ Tn(Y ).

(iv) For every ε > 0 there exists an equivalent norm ‖ · ‖ε on X and
Aε ∈ Attr‖·‖ε(T ) such that its Hausdorff measure χ‖·‖ε (Aε) ≤ ε.

(v) There exists an equivalent norm ‖ · ‖1 on X and A ∈ Attr‖·‖1(T )
such that χ‖·‖1 (A) < 1.

Proof. (i)⇒(iv). Take some ε > 0 and let P0 be a projection of X onto
X0. Let P := I − P0. Define M := ‖P0‖ supn∈N ‖Tn‖ and consider the
equivalent norm ‖ · ‖ε on X:

‖y‖ε := ‖Py‖+ εM−1‖P0y‖ (y ∈ X).

Take y ∈ X, ‖y‖ε ≤ 1. Then PTnPy ∈ PTn(BX) ⊆MP (BX) for all n ∈ N.
Consequently,

lim
n→∞

dist‖·‖ε(T
ny,MP (BX)) ≤ lim

n→∞
‖Tny − PTnPy‖ε

= lim
n→∞

‖TnPy − PTnPy‖ε
= lim

n→∞
‖P0T

nPy‖ε = εM−1 lim
n→∞

‖P0T
nPy‖

≤ ε‖Py‖ ≤ ε‖y‖ε ≤ ε.
The set MP (BX) is compact, since dim(P (X)) < ∞. So we deduce that
Aε := MP (BX) + {y ∈ X : ‖y‖ε ≤ ε} is an attractor for T that satisfies
χ‖·‖ε (Aε) ≤ ε.
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(iv)⇒(v). Obvious.
(v)⇒(i). Without loss of generality we assume that ‖ · ‖1 is the initial

norm ‖ · ‖ on X. Take a free ultrafilter U on N and consider the bounded
ultrapower XU := `∞(X)/cU(X), where `∞(X) := {(xn) ∈ XN : sup{‖xn‖ :
n ∈ N} < ∞} and cU (X) := {(xn) ∈ XN : limU ‖xn‖ = 0}. Then XU
is a Banach space with respect to the norm ‖(̂xn)‖ := limU ‖xn‖. We
will identify X with the subspace in XU of all equivalence classes of con-
stant sequences. Consider the linear operator T : X → XU defined by
T x := ̂(Tnx) for all x ∈ X and let Z := T (X). Take a real δ > 0 such
that (1 + δ)α < 1 where χ(A) < α < 1 and let the set {ai}pi=1 ⊆ X satisfy
A ⊆ ⋃pi=1 B(ai, α).

Take an arbitrary x = T y ∈ BZ . Then {n : ‖Tny‖ < 1 + δ/2} ∈ U , and
consequently, there exists some m ∈ N that satisfies ‖Tmy‖ < 1+δ/2. Since

lim
n→∞

dist
(
TnTmy,

p⋃

i=1

B
(
bi, (1 + δ/2)α

)
= 0

where bi := (1 + δ/2)ai, there exists ix ∈ 1, p such that

{k ∈ N : ‖T ky − bix‖ < (1 + δ)α} ∈ U .

So, we have ‖x− bix‖ ≤ (1 + δ)α in XU . Consequently,

BZ ⊆
p⋃

i=1

B(bi, (1 + δ)α)).

Now [LT, Lemma 2.c.8] implies that dimZ <∞, since (1 + δ)α < 1.
Since the operator T is power bounded, we may assume without loss of

generality that ‖T‖ ≤ 1. Therefore for each x ∈ X the (nonnegative) se-
quence (‖Tnx‖)∞n=1 is decreasing, and hence converges. Assume that
limU ‖Tnx‖ = 0. Since the limit of a sequence according to an ultrafilter
is a limit point of the sequence and since the sequence (‖T nx‖)∞n=1 con-
verges, it follows that limn→∞ ‖Tnx‖ = 0, which proves that ker T ⊆ X0 :=
{x ∈ X : limn→∞ ‖Tnx‖ = 0}. The inverse inclusion is trivial. The equality
X0 = ker T implies that X0 is closed and that codim (X0) = dimZ < ∞.
Consequently, T is quasi-constricted.

(iii)⇒(ii)⇒(i). Obvious.
(i)⇒(iii). Let XU and T : X → XU be defined as in part (v)⇒(i) of the

proof. Let Y be an arbitrary algebraic complement of X0 in X. Obviously,
Tn(Y )⊕X0 = X for all n ∈ N.

Now let ε > 0. If the assertion does not hold then for every n ∈ N there
exists a normalized yn ∈ Y such that dist(T (Tnyn), Tn(Y )) ≥ ε‖Tn+1yn‖.
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The unit sphere of Y is compact, so limU yn = y exists. But then

lim
U

dist(Tn+1y, Tn(Y )) = lim
U

dist(Tn+1yn, T
n(Y ))

≥ ε lim
U
‖Tn+1yn‖ = ε lim

U
‖Tn+1y‖ > 0,

since T is power bounded and since y 6∈ X0 = ker T . We define T̂ on XU by
T̂ (̂xn) = ̂(Txn) and obtain

dist(T̂T y, T (Y )) ≥ lim
U

dist(Tn+1y, Tn(Y )) > 0.

But T̂T y = ̂(Tn+1y) = T Ty ∈ T (X) = T (Y ), a contradiction.

Let us give some easy examples of power bounded quasi-constricted op-
erators which are not constricted:

Example 1. Let X := C[0, 1]. Define T : X → X by Tf(t) := tf(t).
Then X0 := {f ∈ C[0, 1] : limn→∞ ‖Tnf‖ = 0} = {f ∈ C[0, 1] : f(1) = 0}
has codimension 1. So, T is quasi-constricted but not constricted, since it
has no nontrivial eigenvectors.

Example 2 ([EW, p. 217]). Let X = c0 with sup-norm ‖ · ‖. Denote by
ek the element of X whose kth coordinate is 1, and all other coordinates are
zero. Fix a real α ≥ 0 and define the operator Sα : X → X by

Sα(ek) =
{
e1 + αe2 if k = 1,
ek+1 else,

and let Tα := (I + Sα)/2. It was shown in [EW, Lemma 2.3] that X0 =
{x ∈ X : limn→∞ ‖Tnαx‖ = 0} = {x ∈ c0 : x1 = 0}, and consequently,
codim (X0) = 1. So, the operator Tα is quasi-constricted. More exactly,
Tα has an attractor Aα := [−e1, e1] + αBX such that χ(Aα) = α, and
for every A ∈ Attr‖·‖(Tα) we have χ(A) ≥ α, since the sequence T nα (e1) is
increasing and its supremum in `∞ is easily determined as (1, α, α, . . .). This
also implies that when α > 0 and λ ∈ C, |λ| = 1, then the operator λTα is
mean ergodic if and only if λ 6∈ σπ(Tα) = {1}. In particular, the operator
Tα is not constricted for α > 0.

Take some real β > 0 and consider the equivalent norm ‖ · ‖β on c0
defined by the formula

‖x‖β := sup{|x1|, β‖x− x1e1‖}.
It is easy to see that χ‖·‖β (A) ≥ αβ for every A ∈ Attr‖·‖β (Tα). In particular,
for β = 1/α the operator Tα has no attractor A satisfying χ‖·‖β (A) < 1. It
should be noted that the operator Tα is a contraction with respect to the
norm ‖ · ‖β whenever β ≤ 1/α.

Example 3. The same example can also be considered on `2(N) where
it is an example of a quasi-constricted operator which is neither power
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bounded nor constricted. As we shall see later on, as a consequence of The-
orem 7 quasi-constricted power bounded operators on a Hilbert space are
constricted.

Example 4. Here we consider a generalization of Example 2. Let 0 6=
S ∈ L(X) be a power bounded operator such that codim (I − S)X < ∞.
Without any restriction we may assume that ‖S‖ = 1. Take some real
α ∈ (0, 1) and consider the operator Tα := αI + (1− α)S. The result from
Foguel and Weiss [FW, Lemma 2.1] implies

‖Tn+1
α − Tnα ‖ = ‖Tnα (Tα − I)‖ = ‖(1− α)Tnα (I − S)‖ → 0.

Then (I − S)X ⊆ X0 := {x ∈ X : limn→∞ ‖Tnαx‖ = 0}. So, codim (X0) ≤
codim (I − S)X <∞. Consequently, Tα is quasi-constricted.

3. On the spectrum of quasi-constricted operators. Let T be a
quasi-constricted operator. Let X = X0 ⊕ Y where Y is an arbitrary finite-
dimensional complement of X0. Let P be the projection from X onto Y with
kernel X0 and define Q = I − P , U = QTQ, V = QTP , and W = PTP .
Since X0 is invariant under T , we have PTQ = 0, hence T = U + V + W .
More precisely, identifying X with X0 × Y we obtain the following matrix
representation of T :

(1) T =
(
U V
0 W

)
.

Then Tn is represented by the matrix

(2) Tn =
(
Un

∑n−1
k=0 U

kVWn−1−k

0 Wn

)
.

Let %(S) denote the resolvent set C \ σ(S) of the operator S. Then an easy
calculation shows that for λ ∈ %(U) ∩ %(W ),

(λ− T )−1 =
(

(λ− U)−1 (λ− U)−1V (λ−W )−1

0 (λ−W )−1

)
.

In particular, σ(T ) ⊂ σ(U) ∪ σ(W ).
The following elementary proposition shows a close connection between

the essential spectral radius ress(T ) and the property of being quasi-con-
stricted.

Proposition 2. Let T ∈ L(X).

(i) If ress(T ) < 1 then T is constricted.
(ii) If T is quasi-constricted then ress(T ) ≤ 1.

Proof. (i) Let ress(T ) < 1. Let β = inf{|λ| : λ ∈ σ(T ), |λ| ≥ 1}, δ =
sup{|λ| : λ ∈ σ(T ), |λ| < 1}, and
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γ =
{

1 if β > 1,
(1 + δ)/2 otherwise.

Then the circle K := {z : |z| = γ} is in the resolvent set of T and the projec-
tion P = I − (2πi)−1

�
K

(z − T )−1 dz maps X onto P (X) which is invariant
under T and finite-dimensional because σ(T ) ∩ {λ : |λ| > δ} consists only
of finitely many Riesz points of σ(T ). Moreover, σ(T |P (X)) ⊂ {λ : |λ| ≥ 1}.
The space (I − P )(X) =: Z is also invariant under T and by construction
r(T |Z) < 1 hence Z = X0, and (i) is proved.

(ii) Using the notation of (1) we have Un → 0 strongly. Therefore, by
the Uniform Boundedness Principle, U is power bounded, hence r(U) ≤ 1.
So if λ ∈ σ(T ) satisfies |λ| > 1 then λ ∈ σ(W ), and since the subspace Y
on which W acts is finite-dimensional, λ is an isolated point of σ(T ). Let
L be the spectral projection corresponding to the spectral set {λ} and set
Z = L(X). Then Z is T -invariant and σ(T |Z) = {λ}. This in turn yields
Z ∩X0 = {0}, so dim(Z) <∞ and hence λ is a Riesz point of T . Therefore
ress(T ) ≤ 1.

Now we use this result in order to give a new characterization of the
essential spectral radius of an arbitrary bounded operator T on the Banach
space X. For T ∈ L(X) we let

αc(T ) := inf{α ∈ R+ : α−1T is constricted},
αq(T ) := inf{α ∈ R+ : α−1T is quasi-constricted}.

Then our proposition yields the following characterization of the essential
spectral radius of the operator T .

Corollary 3. Let T ∈ L(X). Then αc(T ) = αq(T ) = ress(T ).

Proof. Obviously, αq(T ) ≤ αc(T ). To finish the proof we show that:

(I) ress(T ) ≤ αq(T ), and
(II) αc(T ) ≤ ress(T ).

(I) Let ε > 0. Then T/(αq(T )+ε) is quasi-constricted, hence its essential
spectral radius is less than or equal to 1 by the proposition. This in turn
yields ress(T ) ≤ αq(T ) + ε and the assertion follows.

(II) Assume ress(T ) < αc(T ) and choose ress(T ) < β < αc(T ). Then
ress(T/β) < 1. By the proposition T/β is constricted, a contradiction.

Now we turn to another property of quasi-constricted operators which is
a corollary of the next proposition about the spectrum of the operator W
(see (1)).

Proposition 4. Let T be quasi-constricted and let X = X0 ⊕ Y be an
arbitrary decomposition. For W as in the matrix representation (1) above,
σ(W ) ⊂ {λ : |λ| ≥ 1}.
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Proof. Suppose that the assertion fails. Since Y is finite-dimensional
there exists an eigenvalue λ of W of absolute value strictly less than 1. Let
e be a corresponding eigenvector. Then by (2) we obtain

Tn(e) = λne+
n−1∑

k=0

λn−1−kUkV e.

Now V e ∈ X0 implies that for every ε > 0 there exists n(ε) such that
‖UnV e‖ < ε for all n ≥ n(ε). Moreover, U is power bounded on X0 by
the Uniform Boundedness Principle. So set M = sup{‖Un‖ : n ∈ N}. Set
N = n(ε) and let p ≥ 1. Then

N+p−1∑

k=0

λN+p−1−kUkV e =
N−1∑

k=0

λN+p−1−kUkV e+
p∑

k=1

λp−1−kUkV e

implies
∥∥∥
N+p−1∑

k=0

λN+p−1−kUkV e
∥∥∥

≤
N−1∑

k=0

|λ|N+p−1−k‖UkV e‖+
p∑

k=1

|λ|p−1−k‖UN+kV e‖

≤ |λ|pM‖V e‖
1− |λ| +

ε

|λ|(1− |λ|) ,

which yields limn→∞ Tne = 0, i.e. e ∈ X0, a contradiction.

Corollary 5. Let T be a quasi-constricted operator on the Banach
space X and let Z be the quotient space X/X0. Then the operator T̃ in-
duced by T on Z satisfies σ(T̃ ) ⊂ {λ : |λ| ≥ 1}. Moreover , let X⊥0 denote
the polar of X0 in the dual space X∗. Then X⊥0 is T ∗-invariant , isomorphic
to the dual space Z∗ of Z and σ(T ∗|X⊥0 ) = σ(T̃ ).

Proof. We use the notation which led to (1). Suppose that the assertion
fails. Then there exists an eigenvector ẽ corresponding to an eigenvalue λ of
absolute value strictly less than 1. Since ẽ 6= 0 there exists e ∈ Y such that
ẽ = e + X0. But then We = λe, a contradiction to the proposition above.
The remainder is an elementary exercise on polars (see e.g. [Sch2], Chapt.
IV, Sect. 1 and 2).

Corollary 6. Let T be a quasi-constricted operator on the Banach
space X. Then limn→∞ dist(Tnx,X0) = 0 always implies x ∈ X0.

Proof. The hypothesis implies limn→∞ T̃nx̃ = 0 where the ˜ denotes
the corresponding objects in Z = X/X0 (see the foregoing corollary). Since
σ(T̃ ) ⊂ {λ : |λ| ≥ 1} and dim(Z) <∞ we obtain x̃ = 0.
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Quasi-constricted operators need not be power bounded (see Example 3).
However, it is easy to see that for the result of Corollary 6 to hold the
operator T need not be quasi-constricted if it is power bounded. For, X0

is then obviously closed. Moreover, limn→∞ dist(Tnx,X0) = 0 implies the
existence of a sequence (yn)n in X0 satisfying limn→∞ ‖Tnx− yn‖ = 0. The
inequality

‖T k+nx‖ ≤ ‖T k‖ · ‖Tnx− yn‖+ ‖T kyn‖
yields lim supk ‖T kx‖ ≤ M‖Tnx − yn‖ for fixed n since yn is in X0. So
x ∈ X0.

On the other hand, let T be an arbitrary bounded linear operator on
the Banach space X such that X0 = {x : limn→∞ Tnx = 0} is closed. Then
limn→∞ dist(Tnx,X0) = 0 does not in general imply limn→∞ Tnx = 0 as
the following example shows.

Example 5. Let H be a separable Hilbert space. Define an operator
T ∈ L(H) as follows:

T (ei,j) =
{
αiei+1,1 + ei,2, j = 1,
(ei,j + ei,j+1)/2, j > 1,

where {ei,j}∞i,j=1 is an orthonormal basis of H and

αi =
( i∑

l=1

l−1
)1/3( i+1∑

l=1

l−1
)−1/3

for all i ∈ N. By use of the inequality

2−2l
l∑

k=0

(
l

k

)2

≥ 1
4l
,

which holds for each l ∈ N, we obtain

‖Tn+1(ei,1)‖ ≥
∥∥∥∥
( n+i−2∏

ξ=i

αξ

) n−1∑

l=1

2−l
l∑

k=0

(
l

k

)
en+i−l−1,2+k

∥∥∥∥

≥
( n−1∑

l=1

2−2l
l∑

k=0

(
l

k

)2)1/2 n+i−2∏

ξ=i

αξ ≥
(

1
4

n−1∑

l=1

l−1
)1/2 n−1∏

ξ=1

αξ

=
1
2

( n−1∑

l=1

l−1
)1/2( n∑

l=1

l−1
)−1/3

≥ 1
4

( n∑

l=1

l−1
)1/6

for all n ≥ 2 and i ≥ 1. Since ‖Tnx‖ ≥ |xi,1| · ‖Tn(ei,1)‖ for i ∈ N, we have
limn→∞ ‖Tnx‖ =∞ whenever xi,1 6= 0 for some i ∈ N. On the other hand,
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it can be shown that

(∀x ∈ H)[[(∀i ∈ N)[xi,1 = 0]]⇒ lim
n→∞

‖Tnx‖ = 0].

Then H0 := {x ∈ H : limn→∞ ‖Tnx‖ = 0} = {x ∈ H : (∀i ∈ N)[xi,1 = 0]} is
a closed subspace of H. At the same time

lim
n→∞

dist(Tnx,H0) = lim
n→∞

( ∞∑

p=1

( p+n−1∏

i=p

αi

)
|xp,1|2

)1/2
= 0

for all x ∈ H.

4. When are quasi-constricted operators constricted? Our last
result presents a sufficient condition for quasi-constricted operators to be
constricted. Let us remark that, for example, a normal quasi-constricted
operator on a Hilbert space is always constricted, as is easily seen by use of
the spectral measure of the operator.

Theorem 7. Let X be a Banach space and let T ∈ L(X) be such that
λT is mean ergodic for all λ ∈ σπ(T ). Then the following conditions are
equivalent :

(i) T is quasi-constricted.
(ii) T is constricted and power bounded.
(iii) T has an attractor A that satisfies χ‖·‖1(A) < 1 for some equivalent

norm ‖ · ‖1 on X.

Proof. Let us recall that whenever the bounded operator T is mean
ergodic then (Tn/n)n converges strongly to 0 (see [Kr], p. 72). Then by the
Uniform Boundedness Principle the sequence is uniformly bounded, which
yields in turn r(T ) ≤ 1. In fact, for r(T ) < 1 the assertion of the theorem is
trivial. So without loss of generality we assume r(T ) = 1.

(i)⇒(ii). A unimodular eigenvalue for T is obviously also an eigenvalue

for T̃ on the space Z defined in Corollary 5. Hence there are only finitely
many unimodular eigenvalues {λi}pi=1. Let Fλi(T ) be the subspace of all
eigenvectors corresponding to λi. Finally, let E(T ) be the linear span of all
Fλi(T ). Since X0 is closed and has finite codimension and since Fλi(T ) ∩
X0 = {0}, the space E(T ) is finite-dimensional, hence closed, and E(T ) ∩
X0 = {0}. Moreover, each Fλi(T ) is the space of fixed vectors of the opera-
tor λiT .

Now let G = X⊥0 . Since T ∗ is weak∗-mean ergodic and G is T ∗-invariant
and finite-dimensional, T ∗|G is uniformly mean ergodic, which by Corollary 5
implies that G is the span of all eigenspaces corresponding to unimodular
eigenvalues of T ∗ (see e.g. exercise 6 on p. 43 of [Sch1]), or in other terms,
that G = E(T ∗) (see the preceding paragraph). By Sine’s famous ergodic
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theorem (see [Kr], p. 74), Fλi(T ) separates points in Fλi(T
∗), hence E(T )

separates points in E(T ∗), which in turn implies dim(E(T )) ≥ dim(G) =
codim (X0). So we obtain X = X0 ⊕E(T ) and (ii) follows.

(ii)⇒(iii) and (iii)⇒(i) follow from Theorem 1.

Corollary 8. Let T be a bounded linear operator on the Banach space
X and assume that the semigroup {Tn}∞n=0 is weakly almost periodic. The
following assertions are equivalent :

(i) T is constricted and power bounded.
(ii) T has a compact attractor.
(iii) T has an attractor A which satisfies χ‖·‖1(A) < 1 for some equivalent

norm ‖ · ‖1.
(iv) T is quasi-constricted.

Proof. One only needs to notice that the semigroup {(λT )n}∞n=0 is
weakly almost periodic for all λ ∈ C, |λ| = 1. Then λT is mean ergodic
by the Eberlein theorem [Kr, p. 76] for all λ ∈ C, |λ| = 1. The corollary
follows immediately from Theorem 7.

Corollary 9. Let T be a power bounded operator on the Banach space
X and assume that X is reflexive. Then T is quasi-constricted if and only
if T is constricted.

Proof. The semigroup generated by T is weakly almost periodic since
the unit ball of X is weakly compact.
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