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On an orthonormal polynomial basis in the space C[−1, 1]

by

Krzysztof Woźniakowski (Warszawa)

Abstract. We show that in the space C[−1, 1] there exists an orthogonal algebraic
polynomial basis with optimal growth of degrees of the polynomials.

1. Introduction. The purpose of this work is to prove the following
theorem:

Theorem 1. For every ε > 0 in the space C[−1, 1] there exists a basis
which consists of orthogonal algebraic polynomials tn such that deg tn ≤
(1 + ε)n. The orthogonality is with respect to the Lebesgue measure.

The classical negative result stating that for a polynomial basis (tn)
in the space C[−1, 1] we cannot have deg tn = n is due to Faber [2] and
had been obtained before the notion of Banach space was introduced into
modern analysis. Then much later A. A. Privalov [9] showed that the system
(tn) cannot satisfy the inequality deg tn ≤ (1 + εn)n with εn → 0. In this
respect our result is optimal. On the other hand analogous problems for
trigonometric polynomials have been solved earlier. The above mentioned
paper of Privalov also dealt with the trigonometric case—actually the main
ingredient of the proof used properties of trigonometric polynomials. The
review of the work done on this problem before 1990 is contained in [13].

The trigonometric case is now completely understood. Some more recent
partial positive results in this case were obtained in [10], [11], [16] and [8],
and then the complete solutions (with orthogonality property) were given in
[7] and [17]. The former work was based on [8] and used the wavelet theory
techniques, the latter was based on very close ideas. There were however
some problems with transference of these constructions to the algebraic case.
It was possible to get bases in the space C[−1, 1] satisfying the condition
deg tn ≤ (1 + ε)n but orthogonal with respect to some weights (see [5], [4]
and [3]). We overcome this difficulty and get orthogonality with respect to
Lebesgue measure. After the research presented in this note was completed
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I learned about the preprint [12] where Theorem 1 is proved by a different
method.

The main idea of our work is to start with an appropriate basis of even
trigonometric polynomials in C[−π, π] and perform the orthonormalization
procedure with respect to the weight sinx. Thus up to the last moment we
will work with trigonometric polynomials.

2. Basis of even polynomials. Let us introduce functions which will
serve as an estimate of decay. For s > 0, N = 1, 2, . . . and z ∈ R we define
a function F (s,N, z)(·) by the formula

(1) F (s,N, z)(x) =
{√

N for |x− z| < N−1,
N1/2−s|x− z|−s for |x− z| ≥ N−1.

In this section we prove the following result which is the starting point of
the construction of an algebraic polynomial basis.

Theorem 2. For every ε > 0 in the space C[0, π] there exists a system
(un)∞n=0 of real trigonometric polynomials of the form

∑
aj cos jt such that :

(i) The system (un)∞n=0 is orthonormal with respect to the Lebesgue
measure and dense in the space C[0, π].

(ii) We have deg un ≤ (1 + ε)n,
(iii) The functions (un)∞n=0 can be reordered as ((ulm)a(l)−1

m=0 )∞l=0 for ap-
propriate integers a(l) so that for some s > 3 we have

|ulm| ≤ C(s)F (s, a(l), µlm)

where µlm = πm/a(l) for m = 0, . . . , a(l)− 1.
(iv) There exist orthogonal trigonometric polynomials (f lm)b(l)m=0 where

b(l) =
∑l
k=0 a(k) such that

span(f lm)b(l)−1
m=0 = span((ukm)a(k)−1

m=0 )lk=0,

‖f lm‖2 = 1,

|f lm(x)| ≤ C(s)F (s, b(l), νlm)(x),

where νlm = πm/b(l) for m = 0, . . . , b(l)−1. Moreover there exists a constant
C such that for every l we have b(l) ≤ Ca(l).

Philosophically we take an appropriate basis of trigonometric polynomi-
als in C(T) and by suitable simple linear combinations we get a basis in the
subspace of even functions in C[−π, π]. Many bases of trigonometric poly-
nomials have been constructed (see e.g. [17] and [7]). Also bases of algebraic
polynomials are known (see e.g. [3], [4] and earlier [5]). The trouble is that
those bases do not have sufficient decay. Only for ε > 5/3 (actually > 1)
we can start with polynomials ψj,k(x) described in Section 8.4 of [15] and
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note that uj,k = ψj,k + ψj,2j−k−1 are even functions. One also easily checks
that uj,k with j = 0, 1, . . . and k = 0, 1, . . . , 2j−1 − 1 form an orthogonal
basis in the space of even functions satisfying all requirements of Theorem 2.
Thus we will provide a proof of this theorem. Since its main ideas follow the
construction from [16] we will be rather brief.

The proof of the theorem is done in two steps. We start with an elemen-
tary proposition which now belongs to the folklore:

Proposition 1. There exists a function α : R→ R+ such that

(i) α ∈ C∞(R),
(ii) α(x) = 0 when x ≤ 0; α(x) = 1 when x ≥ 1 and α(x) > 0 when

x ∈ (0, 1),
(iii) α2(1− x) + α2(x) = 1 for x ∈ R.
Proof. Take any function α̃ : R→ R+ such that conditions (i)–(ii) hold.

Then

α(x) =
α̃(x)√

α̃2(1− x) + α̃2(x)

is our required function.

We define the function W (x) (we drop the index k for convenience) on
R by the formula

W (x) =





α(4x− 1) for x ∈ [1/4, 1/2],
α(2− 2x) for x ∈ [1/2, 1],
(−1)kW (−x) for x ∈ [−1,−1/4],
0 otherwise.

and the function V (x) by the formula

V (x) =





α(2x− 1/2) for x ∈ [1/4, 3/4],
α(5/2− 2x) for x ∈ [3/4, 5/4],
(−1)kV (−x) for x ∈ [−5/4,−1/4],
0 otherwise.

To make further formulas more readable for l ∈ N let us put

dw(l) = 3 · 2l−1, dv(l) = 2l+1,

Dw(l) = 3 · 2l, Dv(l) = 2l+2.

Now we define the families of functions wlj and vlj on T (assuming that the
same k is used for any given family) in the following way: for l > 0 we put

ŵl0(n) = W (n/2l+1),

and then

(2)
wlj(t) = wl0(t− xlj), j = 1, . . . , dw(l)− 1, where

xlj = 2πj/dw(l).
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To define families vlj we first put

v̂l0(n) = V (n/2l+1),

and then

(3)
vlj(t) = vl0(t− ylj), j = 1, . . . , dv(l)− 1, where

ylj = 2πj/dv(l).

Let us also introduce the Riesz projections. For f =
∑∞
n=−∞ ane

int we
define

R+(f)(t) =
∞∑

n=1

ane
int,(4)

R−(f)(t) =
1∑

n=−∞
ane

int.(5)

We have the following proposition, part of which is a particular case of
Lemma 1.4 from [16].

Proposition 2. The functions (wlj) and (vlj) have the following proper-
ties:

(i) If l > 0 then wl0 and vl0 are trigonometric polynomials, even and real
for k even and odd and purely imaginary if k is odd.

(ii) We have ‖wlj‖2 = dw(l), ‖vlj‖2 = dv(l) and

|R−(wlj)(t)|, |R+(wlj)(t)|, |wlj(t)| ≤ C(s)F (s, 2l, xlj),

|R−(vlj)(t)|, |R+(vlj)(t)|, |vlj(t)| ≤ C(s)F (s, 2l, ylj).

(iii) For every l both families (wlj) and (vlj) consist of orthogonal polyno-
mials.

(iv) We have

span(wlj)
dw(l)−1
j=0 = W 0

l ⊕W 1
l ,(6)

span(vlj)
dv(l)−1
j=0 = V 0

l ⊕ V 1
l ,(7)

where

W 0
l = span{eintα((n+ 2l+1)/2l)(8)

+ (−1)kei(n+Dw(l))tα((−n− 2l)/2l)}−2l−1
n=−2l+1 ,

W 1
l = span{eintα((−n+ 2l−1)/2l−1)(9)

+ (−1)kei(n+dw(l)tα((2l + n)/2l−1)}−2l−1−1
n=−2l ,

V 0
l = span{eintα((5 · 2l−1 + n)/2l)(10)

+ (−1)kei(n+2l+2)tα((−3 · 2l−1 − n)/2l)}−3·2l−1−1
n=−5·2l−1 ,
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V 1
l = span{eintα((−n− 2l−1)/2l)(11)

+ (−1)kei(n+2l+1)tα((3 · 2l−1 + n)/2l)}−2l−1−1
n=−3·2l−1 .

Proof. (i) This is obvious and follows directly from the definitions of the
functions W , wlj , V and vlj .

(ii) The first part of (ii) is elementary and follows from the definitions of
wlj , v

l
j and from Proposition 1(iii) using calculations with Fourier coefficients.

For the second part let us start with wl0. Using the Poisson Summation
Formula we get

(12) wl0(t) = 2l+1
∞∑

s=−∞
W∨((t+ 2πs)2l+1)

where ∨ is the inverse Fourier transform. From the definition of the functions
α and W it clearly follows that W ∈ C∞(R) so we have W∨(t) ≤ 1/ts for
t > t0(s) and of course |W∨| ≤ C. The same argument holds for vl0 and for
all Riesz projections. From this and (12) we easily get (ii).

(iii) For the family (wlj) this was shown in [16] using calculations with
Fourier coefficients, and the proof for the family (vlj) is fully analogous. It
also follows directly from the Poisson Summation Formula and the fact that

(W 2)∨(8πj/3) = (V 2)∨(2πj) = 0 for j ∈ Z \ {0}.
(iv) In [16] it has been shown that considering the sums

dw(l)−1∑

j=0

ein2πj/dw(l)wlj(t)

for n = −2l+1, . . . ,−2l−1 − 1 we can get all the functions in formulas (8)
and (9). Similarly using the sums

dv(l)−1∑

j=0

ein2πj/dv(l)vlj(t)

for n = −5 · 2l−1, . . . ,−2l−1 − 1 we can get all the functions in formulas
(10) and (11). Counting dimensions and taking into account that none of
the functions from (8)–(11) is equal to zero we get our claim.

Now consider the families of functions

{wl0} ∪ {wlj(t) + wldw(l)−j}
dw(l)/2−1
j=1 ∪ {wldw(l)/2},(13)

{vl0} ∪ {vlj(t) + vldv(l)−j}
dv(l)/2−1
j=1 ∪ {vldv(l)/2},(14)

{wlj(t)− wldw(l)−j}
dw(l)/2−1
j=1 ,(15)

{vlj(t)− vldv(l)−j}
dv(l)/2−1
j=1 .(16)

We have the elementary
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Proposition 3. If k is even (resp. odd) the functions in formulas (13)
and (14) are even (resp. odd) (i.e. cosine (resp. sine) polynomials) and
those in formulas (15) and (16) are odd (resp. even) (i.e. sine (resp. cosine)
polynomials). Moreover the functions in (13) and (15) (resp. (14) and (16))
are mutually orthogonal.

Proof. Observe that wlj(t) = wl0(t−xlj), wldw(l)−j(t) = wl0(t+xlj), v
l
j(t) =

vl0(t− ylj), vldv(l)−j(t) = vl0(t+ ylj) for all l > 0 and use Proposition 2(i). For
orthogonality use Proposition 2(iii).

Now for a given ε > 0 fix a sequence of integers (Nk)∞k=0 such that:

1 + ε/2 ≤ Nk+1/Nk ≤ 1 + ε,(17)

Nk+1 −Nk = 2l(k) for some l(k) ∈ N,(18)

Nk+1 −Nk = 2ε(k)(Nk −Nk−1).(19)

where ε(k) = 0, 1; one can easily see that this is possible. For any positive
integer l we introduce the operator

(20) S(l)(f) = e−iltR−(f) + eiltR+(f).

Using this operator and the above sequence of integers we define a new
system. For k ≥ 1, if in (19) we have ε(k) = 1 we define

(21) ũkj = S(Nk − 2l(k))wl(k)
j

and if in (19) we have ε(k) = 0 we define

(22) ũkj = S(Nk − 3 · 2l(k))vl(k)
j .

In both cases we have j = 0, 1, . . . , Nk+1 −Nk−1 − 1.
In addition we define functions (ũ0

j)
N0+N1−1
j=0 by setting

ũ0
j (t) =

{
eint if j = 2n,
e−i(n+1)t if j = 2n+ 1,

for 0 ≤ j ≤ 2N0−1, and for 2N0 ≤ j ≤ 2N0 +2l(0)−1 = N0 +N1−1 we set

ũ0
j (t) = eintα((n+N1)/2l(0)) + ei(n+N0+N1)tα(−(n+N0)/2l(0))

where n = j − 3N0 − 2l(0). We denote the spaces spanned by the above two
families by B1

0 and B0
0 respectively.

We also introduce the functions

Hk(x) =





1 for |t| ≤ 1,
α((Nk+1 − |x|Nk)2−l(k)) for |x| ∈ [1, Nk+1/Nk],
0 otherwise,

and the functions gk0 defined by the condition

ĝk0 (n) = Hk(n/Nk).
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Now if k is even we put
hk0 = gk0 ,

and if k is odd we put

hk0(t) = gk0 (t− π/(Nk+1 +Nk)).

Then in both cases we define hkj as

(23)
hkj (t) = hk0(t− zkj ), j = 1, . . . , Nk+1 +Nk − 1, where

zkj = 2πj/(Nk+1 +Nk).

We define the following families of functions:

• for k even

{hk0} ∪ {hkj + hk(Nk+1+Nk)−j}
(Nk+1+Nk)/2−1
j=1 ∪ {hk(Nk+1+Nk)/2},(24)

{hkj − hk(Nk+1+Nk)−j}
(Nk+1+Nk)/2−1
j=1 ,(25)

• for k odd

{hkj + hk(Nk+1+Nk)−j−1}
(Nk+1+Nk)/2−1
j=0 ,(26)

{hkj − hk(Nk+1+Nk)−j−1}
(Nk+1+Nk)/2−1
j=0 .(27)

We have the following proposition.

Proposition 4. (i) The operators S(l) map even (resp. odd) functions
into even (resp. odd) functions.

(ii) The functions given by (24) and (26) are even and the functions
given by (25) and (27) are odd.

(iii) The functions ũkj satisfy the estimate

|ũkj | ≤ C(s)F (s, 2l, ξkj )

where ξkj is equal to xlj or ylj , depending on the definition of ũkj (those points
are defined in (2) and (3)), and the functions hkj satisfy

|hkj (t)| ≤ C(s)F (s, 2l, zkj )

where the points zkj are defined in (23).
(iv) The functions (ũkj ) are mutually orthogonal.
(v) The functions (hkj ) are mutually orthogonal.
(vi) We have

(28) span(hkj )Nk+Nk+1−1
j=0 = span(ũ0

j)
N0+N1−1
j=0 ⊕ span((ũnj )Nn+1−Nn−1

j=0 )kn=1.

(vii) The system (ũkj ) can be rearranged into a sequence (ũn) such that
deg ũn ≤ (1/2 + ε)n.

(viii) The system (ũn) is dense in C[−π, π].
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Proof. (i) and (ii) are obvious.
(iii) This follows from Proposition 2(ii) and the definition of the operators

S(l).
(iv) When we apply the operators S(l(k)) to formulas (8)–(11) we see

that for k > 0,
span{ũkj }

Nk+1−Nk−1−1
j=0 = B0

k ⊕B1
k

where for k = 0 the spaces are defined above and for k ≥ 0 they are given
as

B0
k = span{γ(n)eint + (−1)lβ(m)eimt},

B1
k+1 = span{β(m)eint + (−1)k+1γ(n)eimt},

where m = n + Nk + Nk+1 with γ(n), β(m) given by the function α and
satisfying γ2(n) + β2(m) = 1. As it is obvious that ũkj ⊥ ũpi if |j − i| > 1
and B1

k ⊥ B0
k+1 we get orthogonality. Moreover by induction we get

(29)
k⊕

m=0

(B0
m ⊕B1

m) = span{eijt}Nk−1
j=−Nk ⊕B

0
k.

(v) The proof is analogous to the above proof of (iv).
(vi) Observe using (29) that hk0 ∈

⊕k
m=0(B0

m ⊕B1
m) and both spaces in

(28) are invariant with respect to rotations of T by ∆ = 2π/(Nk +Nk+1).
(vii) This follows immediately from the definition of the operator S and

the estimates for the degree of the functions vl0 and wl0 which are clear from
the definitions.

(viii) This follows immediately from (29).

Now for (f lm) in Theorem 2 we take all functions appearing in for-
mulas (24) and (26) restricted to [0, π]. For (ulm) we take the functions
ũkj + ũkNk+1−Nk−1−1−j also restricted to [0, π].

3. Orthogonalization. Let us start by recalling a general lemma about
matrices. Various versions of this lemma are known in the literature (see e.g.
[6]) but we will present the sharp version due to A. G. Baskakov [1].

Lemma 5. Let A = A∗ = (ai,j)Ni,j=0 be a matrix for which

(30) ‖A‖2, ‖A−1‖2 ≤ C
and

(31) |ai,j | ≤ C1/(|i− j|+ 1)s

for some s > 1. (The symbol ‖A‖p denotes the norm of A as operator on
lN+1
p .) Then for A−1 = (ci,j)Ni,j=0 we have the estimate

|ci,j | ≤ C(C0, C1, s)/(|i− j|+ 1)s.
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In this section we will work in the following framework: We have a
sequence (ξn)Nn=0 of even trigonometric polynomials of degree ≤ CN , or-
thonormal on [0, π]. We have a sequence of points z0, z1, . . . , zN in the in-
terval [0, π] such that

(32) z−1 = 0 < z0 < z1 < . . . < zN < zN+1 = π

and

(33)
α

N + 1
≤ min
k=−1,...,N

(zk+1 − zk) ≤ max
k=−1,...,N

(zk+1 − zk) ≤ β

N + 1
for some 0 < α ≤ β independent of N . We assume that

(34) |ξn(x)| ≤ C F (s,N, zn)(x)

for some s > 3 and n = 0, 1, . . . , N (see (1)).

Lemma 6. With the above notation we have

(35)
π�

0

∣∣∣∣
ξi(x)√
sin zi

· ξj(x)√
sin zj

∣∣∣∣ sinx dx ≤ C(|i− j|+ 1)1/2−s.

Proof. Let ai,j denote the integral on the left hand side of (35). Let us
start with a simple property of the function F (s,N, y0). From the definition
of F it easily follows that

(36)
∞�

−∞
F (s,N, x0)(x)F (s,N, y0)(x) dx

≤ 2
∞�

(x0+y0)/2

F (s,N, x0)(x)F (s,N, y0)(x) dx

≤ 2F (s,N, x0)
(
x0 + y0

2

) ∞�

(x0+y0)/2

F (s,N, y0)(x) dx

≤ C√
N
F (s,N, x0)

(
x0 + y0

2

)
=

C√
N
F (s,N, 0)

(
x0 − y0

2

)

≤ C(s)√
N
F (s,N, 0)(x0 − y0).

From (34) we clearly have

(37) ai,j ≤
π�

0

F (s,N, zi)(x)F (s,N,N, zj)(x)√
sin zi

√
sin zj

sinx dx.

Since for x, z ∈ [0, π] we have sinx ≤ sin z + (x− z) cos z we get

(38)
F (s,N, z)(x)

√
sinx√

sin z
≤ F (s,N, z)

√
1 + |x− z| · |cot z|
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From (33) we infer that |cot zi| ≤ CN for i = 0, 1, . . . , N . Since

(39) F (s,N, zi)
√

1 + C N |x− zi| ≤ CF (s− 1/2, N, zi)

from the above observations we infer that

(40) ai,j ≤ C2
π�

0

F (s− 1/2, N, zi)(x)F (s− 1/2, N, zj)(x) dx

so from (36) we get the claim.

Proposition 7. For any sequence (an)Nn=0 of real numbers we have

(41)
π�

0

∣∣∣∣
N∑

n=0

an
ξn(x)√
sin zn

∣∣∣∣
2

sinx dx ∼
N∑

n=0

|an|2.

Proof. Define

(42) A(x) =
N∑

n=0

an
ξn(x)√
sin zn

.

We have

I :=
π�

0

A2(x) sinx dx(43)

≤
∑

i,j

|ai| · |aj |
π�

0

|ξi(x)| · |ξj(x)|√
sin zi

√
sin zj

sinx dx.

Using Lemma 6 we get

I ≤ C
∑

i,j

|ai| · |aj |(1 + |i− j|)−s+1/2 ≤ C(s)
∑

i

|ai|2

so we have the upper estimate in (41).
Now we need estimates from below. To get them, to every point zi,

i = 0, . . . , N , we assign an interval

(44) I(i,K) = [zi −K/N, zi +K/N ] ∩ [0, π],

where K is some constant to be specified later. We claim that

(45)
N∑

i=0

sin zi
�

I(i,K)

A2(x)dx ≤ C(K)
π�

0

A2(x) sinx dx.

Indeed, notice that if

(46) 0, π 6∈ I(i, 2K),
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which means that the interval I(i,K) is far from {0, π}, then sin zi ≤ 2 sinx
for x ∈ I(i,K) so

sin zi
�

I(i,K)

A2(x) dx ≤ 2
�

I(i,K)

A2(x) sinx dx.

This means that if we denote by J the set of integers i = 0, . . . , N for which
(46) holds, then

(47)
∑

j∈J
sin zj

�

I(j,K)

A2(x) dx ≤ 4K
π�

0

A2(x) sinx dx.

On the other hand if j 6∈ J then dist(zj , 0) ≤ 2Kβ/N or dist(zj , π) ≤
2Kβ/N so sin zj ≤ 2Kβ/N . Thus

(48) sin zj
�

I(j,K)

A2(x) dx ≤ 4
K2β

N2 ‖A
2(·)‖∞.

But from the definition of ξi we see that A(·) is an even trigonometric poly-
nomial and degA2(·) = 2 degA(·) ≤ CN . From the well known Bernstein
theorem (see e.g. [18]) we infer that

(A2(·))′ ≤ CN‖A2(·)‖∞.

So if A2(x0) = ‖A2(·)‖∞ then there exists an interval I0 3 x0 with |I0| ≥
(4CN)−1 such that A2(·)|I0 ≥ ‖A2(·)‖∞/2 and sin(·)|I0 ≥ cN−1. This im-
plies that

(49)
π�

0

A2(x) sinx dx ≥
�

I0

A2(x) sinx dx ≥ c

N2 ‖A
2(·)‖∞.

Since the number of j’s such that j 6∈ J is at most 5K/α, combining (48)
and (49) we get

(50)
∑

j 6∈J
sin zj

�

I(j,K)

A2(x) dx ≤ CK3
π�

0

A2(x) sinx dx.

If we put together (47) and (50) we get (45) with a constant C(K) ≤ CK3.
To end the proof it is now enough to estimate from below the expression

N∑

i=0

sin zi
�

I(i,K)

A2(x) dx.

We clearly have



192 K. Woźniakowski

(51)
N∑

i=0

sin zi
�

I(i,K)

A2(x) dx

=
N∑

i=1

sin zi
�

I(i,K)

(
ai

ξi(x)√
sin zi

+
∑

j=0
j 6=i

aj
ξj(x)√
sin zj

)2

dx

=
N∑

i=0

sin zi

( �

I(i,K)

a2
i

ξ2
i (x)

sin zi
dx

+ 2
�

I(i,K)

N∑

j=0
j 6=i

aiaj
ξi(x)√
sin zi

· ξj(x)√
sin zj

dx+
�

I(i,K)

∣∣∣∣
N∑

j=0
j 6=i

aj
ξj(x)√
sin zj

∣∣∣∣
2

dx

)

≥
N∑

i=0

a2
i

�

I(i,K)

ξ2
i (x) dx+ 2

N∑

i=0

N∑

j=0
j 6=i

aiaj
�

I(i,K)

ξi(x)ξj(x)
√

sin zi√
sin zj

dx.

Define

(52) di,j =
�

I(i,K)

ξi(x)ξj(x)
√

sin zi√
sin zj

dx.

When zj 6∈ I(i,K), from (38), (39) and (36) we get

|di,j | ≤
C(s)
|i− j|s ∗ (1 + |i− j|s) ≤ C(s)

|i− j|s−1/2
.

When zj ∈ I(i,K), i.e. |i − j| ≤ K, we use the orthogonality of the
system (ξi) to get

di,j =
�

[0,π]\I(i,K)

ξi(x)ξj(x)
√

sin zi√
sin zj

dx.

Estimating ξj(·) by its maximal value on [0, π] \ I(i,K) which is less than
C(s)N1/2/Ks, and

√
sin zi/

√
sin zj by K1/2 and � π0 |ξi(x)| dx by C/N1/2 we

see that in this case |di,j | ≤ 1/Ks−1/2. This gives

(53)
N∑

i=0

sin zi
�

I(i,K)

A2(x) dx ≥
N∑

i=0

a2
i

�

I(i,K)

ξ2
i (x) dx−2

N∑

i,j=0

|ai|·|aj|·|di,j|

and
|di,j | ≤

{
C|i− j|s′ for |i− j| > K,

C/Ks′ for |i− j| ≤ K.
From (34) and (44) it follows that if K →∞ then �

I(i,K) ξ
2
i (x) dx→ C > 0
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uniformly with respect to N . One easily checks that the matrix DK = (|di,j |)
maps `1 into itself and also c0 into itself. Moreover both norms tend to zero as
K →∞. By interpolation we get ‖DK‖2 → 0. We now see that it is possible
to take K for which the left-side expression of (53) is always greater than
c
∑N
i=0 |ai|2. This together with (45) ends the proof.

Proposition 8. Let (un)∞n=0 be the basis given by Theorem 2 and
apply to it the Gram–Schmidt orthogonalization procedure in the space
L2([0, π], sinx dx). Then the resulting system (ωn)∞n=0 is a Schauder basis
in the space C[0, π].

Proof. The only thing we really have to prove is that the operators

PNf(x) =
π�

0

KN (x, y)f(y) dy,

where

KN (x, y) =
N∑

n=0

ωn(x)ωn(y) sin y,

considered on the space C[0, π] have uniformly bounded norms. We will
actually repeat the proof of the fact that the Franklin system is a basis in
C[0, 1] (see e.g. [14]). To start we will represent the kernel KN in another,
more useful form. According to Theorem 2 we have

(54) span(un)Nn=0 = span(f lm)b(l)−1
m=0 ⊕ span(ul+1

m )sj=0,

for some numbers l and s. Let the functions on the right side of (54) be
called (ξn)Nn=0 and ordered in such a way that

(55) ξn(x) ≤ C(s)F (s,N, zn)(x)

where zn’s satisfy (33). This can be done because a(l) ∼ b(l) ∼ N , so we
really are in the framework described at the beginning of Section 3. From
the very definition of (ωn(x)) it follows that

(56) KN (x, y) =
N∑

i,j=0

ci,j
ξi(x)√
sin zi

ξj(y)√
sin zj

sin y

for some numbers ci,j .
We will estimate the kernel KN (x, y). First observe that Proposition 7

is equivalent to the statement that the self-adjoint matrix A = (ai,j)Ni,j=0
given by

ai,j =
π�

0

ξi(x)√
sin zi

ξj(x)√
sin zj

sinx dx

fulfills the estimates
‖A‖2, ‖A−1‖2 ≤ C.
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Since PN (ξi) = ξi for i = 0, 1, . . . , N we infer that ci,j ’s in (56) are equal
to the entries of the inverse matrix A−1. Now we are ready to estimate
supx � π0 |KN (x, y)| dy. Let us start with

π�

0

|ξj(y)| sin y dy ≤
π�

0

|ξj(y)[sin zj + cos zj(y − zj)] dy(57)

≤ sin zj√
N

+ C

π�

0

F (s,N, zj)(y)|y − zj | dy

≤ sin zj√
N

+
C

N3/2
≤ C sin zj√

N
.

Moreover we have

(58)
sin zi
sin zj

≤ CN |zi − zj |.

Thus we have

(59)
π�

0

|KN (x, y)| dy

≤
N∑

i,j=0

C

(1 + |i− j|)s−1/2
· |ξi(x)|√

sin zi
√

sin zj

π�

0

|ξj(y)| sin y dy

≤
N∑

i,j=0

C

(1 + |i− j|)s−1/2
· |ξi(x)|√

sin zi
√

sin zj

sin zj√
N

≤
N∑

i,j=0

C

(1 + |i− j|)s−1/2
· |ξi(x)|√

N

√
sin zj
sin zi

.

Using (58) and (33) we estimate this sum as

(60)
N∑

i,j=0

C
√
|i− j|√

N(1 + |i− j|)s−1/2
F (s,N, zi)(x) ≤ const.

If we insert (60) into (59) and use the well known formula for the norm
of an integral operator on C[−1, 1] we get the required estimate.

Completion of the proof of Theorem 1. Let I be the well known operator
defined for functions f : [0, π]→ R and s ∈ [−1, 1] by

If(s) = f(arccos s).

It is well known and easy that I is an isometry between C[0, π] and C[−1, 1]
and between L2([0, π], sinx) and L2([−1, 1]). Also I(cosnt) is a Chebyshev



A polynomial basis in C[−1, 1] 195

polynomial, in particular it is an algebraic polynomial of degree n. So from
Theorem 2 and Proposition 8 it follows that the system of functions

tn = ωn(arccos s)

is as described in Theorem 1.
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