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An invariance principle for the law of the iterated logarithm
for some Markov chains

by

W. Bołt, A. A. Majewski and T. Szarek (Gdańsk)

Abstract. Strassen’s invariance principle for additive functionals of Markov chains
with spectral gap in the Wasserstein metric is proved.

1. Introduction. Suppose that (E, ρ) is a Polish space. We denote by
B(E) the family of all Borel sets in E, by M1 the space of all probability
Borel measures on E, and we let π : E ×B(E)→ [0, 1] be a transition prob-
ability on E. The Markov operator P is defined by Pf(x) =

	
E f(y)π(x, dy)

for every bounded Borel measurable function f on E. The same formula
defines Pf for any Borel measurable function f ≥ 0 which need not be fi-
nite. Denote by Bb(E) the set of all bounded Borel measurable functions
equipped with the supremum norm and let Cb(E) be its subset consisting
of all bounded continuous functions. The connection of the Markov operator
to the topology is usually given by the Feller property P (Cb(E)) ⊂ Cb(E).

Suppose that (Xn)n≥0 is an E-valued Markov chain, given over some
probability space (Ω,F ,P), with transition probability π and initial distribu-
tion µ0. Denote by E the expectation corresponding to P. We shall denote by
µP the associated transfer operator describing the evolution of the law ofXn.
To be precise, µP is defined by the formula

	
E f(x)µP (dx) =

	
E Pf(x)µ(dx)

for any f ∈ Bb(E) and µ ∈M1. To simplify the notation we shall write 〈f, µ〉
instead of

	
E f(y)µ(dy).

Given a Lipschitz function ψ : E → R we define

Sn(ψ) := ψ(X0) + ψ(X1) + · · ·+ ψ(Xn) for n ≥ 0.

Our aim is to find conditions under which Sn(ψ) satisfies the law of the
iterated logarithm (LIL). This natural question is raised when central limit
theorems (CLT) are verified. Since 1986 when Kipnis and Varadhan [12]
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proved the central limit theorem for additive functionals of stationary re-
versible ergodic Markov chains, there has been a huge amount of reviving
attempts to do this in various settings and under different conditions (see
[16, 17]). A common factor of those results was that they were established
with respect to the stationary probability law of the chain. In [2, Theorem
IV.8.1] Gordin and Lifshits answered the question about the validity of the
CLT with respect to the law of the Markov chain starting at some point x.
Namely, they proved that for coboundaries the CLT holds for almost every
x with respect to the invariant initial distribution (see also [6, 7]). On the
other hand, Guivarc’h and Hardy [9] proved the CLT for a class of Markov
chains associated with the transfer operator having spectral gap. Recently
Komorowski and Walczuk [13] studied Markov processes with the transfer
operator having spectral gap in the Wasserstein metric and proved the CLT
in the non-stationary case. Other interesting results under similar assump-
tions were obtained by S. Kuksin and A. Shirikyan (see [14, 21]).

The LIL we study in this note was also considered in many papers. There
are several results governing, for instance, Harris recurrent chains [3, 4, 18].
Similarly CLT results are formulated mostly for stationary ergodic chains
(see for instance [1, 5, 19, 26, 27]). In the case when one is able to find a
solution to the Poisson equation h = f+Ph, the problem may be reduced to
the martingale case [8] (see also [18]). But the LIL for martingales was care-
fully examined in many papers (see [11, 10, 23, 24]) and a lot of satisfactory
results were obtained.

Our note is aimed at proving the LIL for Markov chains that have the
spectral gap property in the Wasserstein metric. It is worth mentioning here
that many Markov chains enjoy this property, e.g. Markov chains associ-
ated with iterated function systems or with stochastic differential equations
disturbed by Poisson noise (see [15]).

Our result is based upon the LIL for martingales due to Heyde and Scott
(see Theorem 1 in [11]).

2. Assumptions and auxiliary results. For every measure ν ∈ M1

the law of the Markov chain (Xn)n≥0 with transition probability π and initial
distribution ν is the probability measure Pν on (EN,B(E)⊗N) such that

Pν [Xn+1 ∈ A |Xn = x] = π(x,A) and Pν [X0 ∈ A] = ν(A),

where x ∈ E and A ∈ B(E). The expectation with respect to Pν is denoted
by Eν . For ν = δx, the Dirac measure at x ∈ E, we write just Px and Ex.

We will make the following assumption:

(H0) the Markov operator has the Feller property, i.e. P (Cb(E))⊂Cb(E).
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We shall denote byM1,1 the space of all probability measures with finite
first moment, i.e. ν ∈ M1,1 iff ν ∈ M1 and

	
E ρ(x0, x) ν(dx) < ∞ for some

(thus all) x0 ∈ E. For abbreviation we shall write ρx0(x) = ρ(x0, x). Observe
that every Lipschitz function (even unbounded) is integrable with respect to
each ν inM1,1. We assume that:

(H1) for any ν ∈M1,1 we have νP ∈M1,1.

It may be proved thatM1,1 is a complete metric space when equipped with
the Wasserstein metric

d(ν1, ν2) = sup{|〈f, ν1〉− 〈f, ν2〉| : f : E → R,Lip f ≤ 1} for ν1, ν2 ∈M1,1.

Here Lip f denotes the Lipschitz constant of f . Convergence in the Wasser-
stein metric is equivalent to weak convergence plus convergence of the first
moment (see e.g. [25, Theorem 6.9]). The main assumption made in our note
is that the Markov operator P is contractive with respect to the Wasserstein
metric, i.e.

(H2) there exist γ ∈ (0, 1) and c > 0 such that

(2.1) d(ν1P
n, ν2P

n) ≤ cγnd(ν1, ν2) forn ≥ 1, ν1, ν2 ∈M1,1.

Assumption (H2) is called the spectral gap property. Let µ ∈M1,1. From
now on we assume that the initial distribution of (Xn)n≥0 is µ. Moreover,

(H3) there exist x0 ∈ E and δ > 0 such that

(2.2) sup
n≥0

Eµρ2+δx0 (Xn) = sup
n≥0

�
ρ2+δx0 d(µPn) <∞.

It is easy to prove that under assumptions (H0)–(H2) there exists a
unique invariant (ergodic) measure µ∗ ∈ M1. In particular, µ∗ ∈ M1,1.
The proof in [13] was given for Markov processes with continuous time but
it still remains valid in the discrete case. In the stationary case, (H3) means
that ρ2+δx0 is in L1(µ∗).

Let n0 ≥ 2 be such that
γ0 = c2γn0 < 1.

We start this part of the paper with a rather technical lemma.

Lemma 2.1. Let gn,k : E2(k+n) → R, for arbitrary k, n ≥ 1, be Lipschitz
continuous functions in each variable with the same Lipschitz constant L.
Then there exists a constant L̃, depending only on L, such that the function

(2.3)
Hn,k(x) =

�

E

π1(x, dy1)
�

E

π2(y1, dy2) · · ·
�

E

π2(k+n)−1(y2(k+n)−2, dy2(k+n)−1)

×
�

E

π2(k+n)(y2(k+n)−1, dy2(k+n)) gn,k(y1, . . . , y2(k+n)),
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where πl(yl−1, dyl) = δyl−1
P kl(dyl), kl ≥ 1 and additionally kl ≥ n0 − 1 for

all even l, is Lipschitzean with Lipschitz constant L̃.

Proof. Define the functions gj : Ej → R by the formula

gj(y0, y1, . . . , yj−1) =
�

E

πj(yj−1, dyj)
�

E

πj+1(yj , dyj+1)× · · ·

×
�

E

π2(k+n)(y2(k+n)−1, dy2(k+n)) gn,k(y1, . . . , y2(k+n)) for j = 1, . . . , 2(k + n).

Let Lj,l for j = 1, . . . , 2(k + n) and l = 0, . . . , j − 1 denote the Lipschitz
constant of gj with respect to yl. Then the Lipschitz constant of Hn,k is
equal to L1,0. It is obvious that Lj,l ≤ L for 0 ≤ l < j−1, j > 1. To evaluate
Lj,j−1 fix y0, y1, . . . , yj−2 and ỹj−1, ŷj−1. Then we have

gj(y0, y1, . . . , yj−2, ŷj−1)− gj(y0, y1, . . . , yj−2, ỹj−1)

=
�

E

πj(ŷj−1, dyj) gj+1(y0, y1, . . . , ŷj−1, yj)

−
�

E

πj(ỹj−1, dyj) gj+1(y0, y1, . . . , ỹj−1, yj)

=
�

E

πj(ŷj−1, dyj) (gj+1(y0, y1, . . . , ŷj−1, yj)− gj+1(y0, y1, . . . , ỹj−1, yj))

+
�

E

πj(ŷj−1, dyj) gj+1(y0, y1, . . . , ỹj−1, yj)

−
�

E

πj(ỹj−1, dyj) gj+1(y0, y1, . . . , ỹj−1, yj),

and consequently

|gj(y0, y1, . . . , ŷj−1)− gj(y0, y1, . . . , ỹj−1)|

≤ Lj+1,j−1ρ(ŷj−1, ỹj−1)
�

E

πj(ŷj−1, dyj) + |〈P kj g̃j+1, δŷj 〉 − 〈P
kj g̃j+1, δỹj 〉|

≤ Lρ(ŷj−1, ỹj−1) + cjLj+1,jρ(ŷj−1, ỹj−1),

where cj = cγ if j odd, cj = cγn0−1 if j even, and

g̃j+1(·) = gj+1(y0, y1, . . . , yj−2, ỹj−1, ·).
Hence

Lj,j−1 ≤ L+ cjLj+1,j for j = 1, . . . , 2(k + n)− 1.

Since L2(k+n),2(k+n)−1 ≤ L, an easy computation shows that

L1,0 ≤
L(cγ + 1)

1− γ0
.

This completes the proof.
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3. The law of the iterated logarithm

3.1. A martingale result. We start by recalling a classical result due
to C. C. Heyde and D. J. Scott [11]. Let {Mn,Fn : n ≥ 0} be a martingale
on the probability space (Ω,F ,P) where F0 = {Ω, ∅} and Fn is the σ-field
generated by M1, . . . ,Mn for n > 0. Let Z0 = M0 = 0 P-a.s. and Zn =
Mn −Mn−1 for n ≥ 1. Further, let s2n = EM2

n <∞.
We consider the metric space (C, ρ̃) of all real-valued continuous functions

on [0, 1] with

ρ̃(x, y) = sup
0≤t≤1

|x(t)− y(t)| for x, y ∈ C.

LetK be the set of absolutely continuous functions x ∈ C such that x(0) = 0

and
	1
0(x
′(t))2 dt ≤ 1.

Define a real function g on [0,∞) by g(s) = sup{n : s2n ≤ s}. We define
a sequence of real random functions ηn on [0, 1], for n > g(e), by

ηn(t) =
Mk + (s2nt− s2k)(s2k+1 − s2k)−1Zk+1√

2s2n log log s
2
n

if s2k ≤ s2nt ≤ s2k+1, k = 1, . . . , n− 1, and

ηn(t) = 0 for n ≤ g(e).

Proposition 3.1 (Theorem 1 in [11]). Under the above notations for
the square integrable martingale (Mn), if s2n →∞ and

∞∑
n=1

s−4n E[Z4
n1{|Zn|<γsn}] <∞ for some γ > 0,(3.1)

∞∑
n=1

s−1n E[|Zn|1{|Zn|≥εsn}] <∞ for all ε > 0,(3.2)

s−2n

n∑
k=1

Z2
k → 1 P-a.s. as n→∞,(3.3)

then (ηn)n≥1 is relatively compact in C and the set of its limit points coincides
with K.

3.2. Application to Markov chains. Let (E, ρ) be a Polish space,
(Xn) a Markov chain with state space E, transition operator P satisfying
conditions (H0)–(H2), and initial probability µ satisfying (H3). Let ψ : E→R
be a Lipschitz function with Lipschitz constant L > 0 such that 〈ψ, µ∗〉 = 0
(otherwise we could consider ψ̃ = ψ − 〈ψ, µ∗〉).
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For every n and any Lipschitz function ψ, Minkowski’s inequality in
L2+δ(µP

n) and (H3) yield

(Eµ[|ψ(Xn)|2+δ])1/(2+δ) =
( �

E

|ψ(x)|2+δ d(µPn)
)1/(2+δ)

(3.4)

≤ |ψ(x0)|+ L
( �

E

ρ2+δx0 d(µPn)
)1/(2+δ)

<∞

and consequently supn≥0 Eµ[|ψ(Xn)|2+δ] <∞.
We have
∞∑
i=0

|P iψ(x)| =
∞∑
i=0

|〈ψ, δxP i〉 − 〈ψ, µ∗P i〉| ≤ cd(δx, µ∗)
∞∑
i=0

γi <∞,

by (H2). Thus we may define the function

χ(x) :=

∞∑
i=0

P iψ(x) for x ∈ E.

We easily check that χ is a Lipschitz function (see Lemma 4.5 of [13]) and
satisfies the Poisson equation χ− Pχ = ψ.

It is well known (see e.g. [8]) that

Mn = χ(Xn)− χ(X0) +
n−1∑
i=0

ψ(Xi) for n ≥ 0

is a martingale on the space (EN,B(E)⊗N,Pµ) with respect to the natural
filtration; its square integrable martingale differences are of the form

Zn = χ(Xn)− χ(Xn−1) + ψ(Xn−1) for n ≥ 1.

Observe that Eµ∗Z2
1 < ∞. Indeed, we easily check that x 7→ Ex(Z2

1 ∧ k)
is a bounded continuous function for any k ≥ 1. Further, as EµPn(Z2

1 ∧ k)
=

	
E Ex(Z2

1 ∧ k)µPn(dx) → Eµ∗(Z2
1 ∧ k) for any k ≥ 1 as n → ∞ and

supn≥0 EµPn(Z2
1 ) <∞, we conclude that Eµ∗(Z2

1 ) <∞.
Set

σ2 := Eµ∗Z2
1 .

We have

(3.5) lim
n→∞

EµZ2
n = lim

n→∞
EµPnZ2

1 = σ2.

Remark. The variance σ2 defined above and the variance which appears
as the variance of the limiting normal distribution in the CLT (see eg. [6]
and [8]) are the same. One can prove that the function χ which solves the
Poisson equation for ψ is in L2(µ∗), just as we proved Eµ∗(Z2

1 ) <∞. By [8]
the martingale differences are in fact Zn = χ(Xn) − Pχ(Xn−1), and it can
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be easily computed that

σ2 = Eµ∗(Z
2
1 ) = Eµ∗ [χ(X1)− Pχ(X0)]

2(3.6)

=
�

E

χ2 dµ∗ −
�

E

(Pχ)2 dµ∗;

the last term is precisely the variance of the limiting normal distribution
given in [8]. The fact that χ is in L2(µ∗) also yields for µ∗-almost every x
the CLT in (Ω,F ,Px), by [2, Theorem IV.8.1].

In fact, since χ and ψ are Lipschitzean, we have supn≥1 Eµ|Zn|2+δ <∞,
by Minkowski’s inequality and (3.4). Further, observe that

sup
n≥1

Eµ(Z2
n1{|Zn|2≥k}) ≤ k

−δ/2 sup
n≥1

Eµ|Zn|2+δ → 0

as k →∞. Therefore, condition (3.5) follows from the fact that EµPn(Z2
1 ∧k)

→ Eµ∗(Z2
1 ∧k) as n→∞ for any k ≥ 1. Finally, we obtain, by orthogonality

of the martingale differences,

lim
n→∞

s2n
n

= lim
n→∞

EµM2
n

n

= lim
n→∞

∑n
i=1 EµZ2

i

n
= σ2.

Lemma 3.2. The square integrable martingale differences (Zn)n≥1 satisfy

(3.7)
1

n

n∑
l=1

Z2
l → σ2 Pµ-a.s. as n→∞,

and consequently condition (3.3) holds if σ2 > 0.

Proof. First observe that it is enough to show that for any i ∈ {1, . . . , n0}
we have

1

n

n∑
l=1

Z2
i+ln0

→ σ2 Pµ-a.s. as n→∞.

If we show that both the functions

x 7→ Ex
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
and

x 7→ Ex
(∣∣∣∣lim sup

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
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are continuous, we shall be done. Indeed, then we have

Eµ
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)

=
�

E

Ex
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
µ(dx)

=
�

E

Ex
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
µP i+mn0(dx)

→ Eµ∗
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
as m→∞, since µP i+mn0 converges weakly to µ∗ as m→∞. On the other
hand, from the Birkhoff individual ergodic theorem we have

Eµ∗
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
= 0

and consequently

Eµ
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
− σ2

∣∣∣∣ ∧ 1

)
= 0,

which, in turn, gives

lim inf
n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
= σ2 Pµ-a.s.

Analogously we may show that

lim sup
n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)
= σ2 Pµ-a.s.

The remainder of the proof is devoted to showing the continuity of the
relevant functions. Again, we restrict to the first function, since the proof for
the second one goes in almost the same manner.

Observe that

Ex
(∣∣∣∣lim inf

n→∞

(
1

n

n∑
l=1

Z2
i+ln0

)− σ2
∣∣∣∣ ∧ 1

)

= lim
n→∞

lim
k→∞

Ex
(∣∣∣∣min

{
1

n

n∑
l=1

Z2
i+ln0

− σ2, . . . , 1

n+ k

n+k∑
l=1

Z2
i+ln0

− σ2
}∣∣∣∣ ∧ 1

)
= lim

n→∞
lim
k→∞

Hn,k(x),
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where

Hn,k(x) = Ex
(∣∣∣∣min

{
1

n

( n∑
l=1

Z2
i+ln0

∧ n(1 + σ2)
)
− σ2, . . . ,

1

n+ k

(n+k∑
l=1

Z2
i+ln0

∧ (n+ k)(1 + σ2)− σ2
)}∣∣∣∣ ∧ 1

)

= Ex
(∣∣∣∣min

{
1

n

( n∑
l=1

(χ(Xi+ln0)−χ(Xi−1+ln0)+ψ(Xi−1+ln0))
2∧n(1+σ2)

)
−σ2,

. . . ,
1

n+ k

( n+k∑
l=1

(χ(Xi+ln0)− χ(Xi−1+ln0) + ψ(Xi−1+ln0))
2

∧ (n+ k)(1 + σ2)− σ2
)}∣∣∣∣ ∧ 1

)
.

Set

gn,k(y1, . . . , y2(n+k))

=

∣∣∣∣min

{
1

n

( n∑
l=1

(χ(y2l)− χ(y2l−1) + ψ(y2l−1))
2 ∧ n(1 + σ2)

)
− σ2, . . . ,

1

n+ k

(n+k∑
l=1

(χ(y2l)− χ(y2l−1) + ψ(y2l−1))
2 ∧ (n+ k)(1 + σ2)− σ2

)}∣∣∣∣ ∧ 1

so that

Hn,k(x) = Ex(gn,k(Xi+n0−1, Xi+n0 , Xi+2n0−1, Xi+2n0 , . . . , Xi+2(n+k)n0
)).

Observe that Hn,k is given by formula (2.3). If we show that there exists L
such that gn,k is Lipschitz continuous in each variable with Lipschitz con-
stant L (independent of n, k), then all Hn,k are Lipschitzean with the same
Lipschitz constant L̃, by Lemma 1. Consequently, limn→∞ limk→∞Hn,k is
Lipschitzean and in particular continuous. Since the minimum of any finite
family of functions which are Lipschitz continuous in each variable with Lip-
schitz constant L is Lipschitz continuous in each variable with the same
Lipschitz constant, to finish the proof it is enough to observe that the func-
tion

(y1, . . . , y2p) 7→
1

p

( p∑
l=1

(χ(y2l)− χ(y2l−1) + ψ(y2l−1))
2 ∧ p(1 + σ2)

)
− σ2

is Lipschitz continuous in each variable with Lipschitz constant L for some
fixed L > 0. On the other hand, each term in the above sum is Lipschitz
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continuous in each variable with Lipschitz constant
(1/p)(Lipχ+ Lipψ)2p(1 + σ2) = 2(Lipχ+ Lipψ)(1 + σ2).

Observe that each variable appears in one term in the above sum. Hence
L ≤ 2(Lipχ+ Lipψ)(1 + σ2), which finishes the proof.

Note that following the proof of the previous lemma we could show
that the Markov chain considered satisfies the strong law of large numbers
(SLLN). This, however, follows directly from Theorem 2.1 in [20].

Lemma 3.3. Let σ2 > 0. Under assumptions (H0)–(H3) the square inte-
grable martingale differences (Zn)n≥1 satisfy conditions (3.1), (3.2).

Proof. Since supn≥1 Eµ|Zn|2+δ < ∞, where δ is the constant given in
(H3), we have

∞∑
n=1

s−4n Eµ[Z4
n1{|Zn|<γsn}] ≤

∞∑
n=1

s−4n γ2−δs2−δn Eµ|Zn|2+δ

≤ γ2−δ sup
n≥1

Eµ|Zn|2+δ
∞∑
n=1

s−2−δn .

On the other hand, the condition s2n/n → σ2 as n → ∞ gives
∑∞

n=1 s
−2−δ
n

<∞, which completes the proof of condition (3.1).
To show condition (3.2) observe that
∞∑
n=1

s−1n Eµ[|Zn|1{|Zn|≥εsn}] ≤
∞∑
n=1

s−1n Eµ[|Zn|2+δ/(εsn)1+δ]

≤ ε−1−δ sup
n≥1

Eµ|Zn|2+δ
∞∑
n=1

s−2−δn <∞.

3.3. The law of the iterated logarithm for Markov chains

Theorem 3.4. Let (E, ρ) be a Polish space, (Xn) a Markov chain with
state space E, transition operator P satisfying conditions (H0)–(H2), and
initial probability µ satisfying (H3). If ψ is a Lipschitz function with 〈ψ, µ∗〉
= 0 and σ2 > 0, then Pµ-a.s. the sequence

θn(t) =

∑k
i=1 ψ(Xi) + (nt− k)ψ(Xk+1)

σ
√
2n log log n

for k ≤ nt ≤ k + 1, k = 1, . . . , n − 1 and t > 0, n > e, and θn(t) = 0
otherwise, is relatively compact in C and the set of its limit points coincides
with K.

Proof. First observe that since s2n/n→ σ2 > 0 as n→∞, we have√
2s2n log log s

2
n

σ
√
2n log log n

→ 1 as n→∞.



Law of the iterated logarithm 51

Consequently, from Lemmas 3.2 and 3.3 it follows that the sequence

ηn(t) =
Mk + (s2nt− s2k)(s2k+1 − s2k)−1Zk+1

σ
√
2n log logn

for s2k ≤ s2nt ≤ s2k+1, k = 1, . . . , n − 1 and t > 0, n > e, and ηn(t) = 0
otherwise, is relatively compact in C and the set of its limit points coincides
with K (see Heyde and Scott [11]). Let t ∈ (0, 1] and n ≥ 1. Observe that if
k ≤ nt ≤ k + 1, then

kσ2

s2k
s2k ≤

nσ2

s2n
ts2n ≤

(k + 1)σ2

s2k+1

s2k+1.

Set

η̂n(t) =
Mk + (nt− k)Zk+1

σ
√
2n log logn

,

where k ≥ 1 is such that k ≤ nt ≤ k + 1. Since nσ2/s2n → 1 as n → ∞, for
any ε > 0 we have

(1− ε)s2k ≤ (1 + ε)s2nt ≤ (1 + ε)2(1− ε)−1s2k+1

for all n large enough. Hence there is t∗ ∈ [t(1−ε)(1+ε)−1, t(1+ε)(1−ε)−1]
such that s2k ≤ s2nt∗ ≤ s2k+1. On the other hand, the diameter of the interval
[s2k/s

2
n, s

2
k+1/s

2
n] for a fixed k = 1, . . . , n − 1 converges to 0 as n → ∞.

Consequently, for any t > 0 and n > e there exists tn > 0 such that η̂n(t) =
ηn(tn) and tn → t as n → ∞. Since the sequence (ηn(t))n>e is relatively
compact in C and the set of its limit points coincides with K, the sequence
(η̂n(t))n>e is also relatively compact and has the same set of limit points.

Fix ε > 0. Define

An =

{
ω ∈ Ω :

|Mn −
∑n−1

i=1 ψ(Xi)|√
n

≥ ε/2
}

∪
{
ω ∈ Ω :

|Zn+1 − ψ(Xn)|√
n

≥ ε/2
}

for n ≥ 1.

Now we are going to show that
∑∞

n=1 Pµ(An) <∞. Indeed, keeping in mind
that χ is Lipschitzean, by the Chebyshev inequality we obtain

Pµ
({

ω ∈ Ω :
|Mn −

∑n−1
i=1 ψ(Xi)|√
n

≥ ε/2
})

= Pµ
({

ω ∈ Ω :
|χ(Xn)− χ(X0)|√

n
≥ ε/2

})
≤ c0

E(ρx0(Xn))
2+δ + E(ρx0(X0))

2+δ

n1+δ/2
≤ c̃

n1+δ/2
,

by (H3), for some constant c̃ > 0 independent of n.
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Analogously, we may check that there exists a positive constant C̃ (in-
dependent of n) such that

Pµ
({

ω ∈ Ω :
|Zn+1 − ψ(Xn)|√

n
≥ ε/2

})
= Pµ

({
ω ∈ Ω :

|χ(Xn+1)− χ(Xn)|√
n

≥ ε/2
})
≤ C̃

n1+δ/2
,

by (H3) and the Lipschitz property of χ. Thus the series
∑∞

n=1 Pµ(An) is
convergent.

Finally, from the Borel–Cantelli lemma it follows that Pµ-a.s.

lim sup
n→∞

sup
0≤t≤1

∣∣∣∣Mk + (nt− k)Zk+1

σ
√
2n log log n

−
∑k

i=1 ψ(Xi) + (nt− k)ψ(Xk+1)

σ
√
2n log log n

∣∣∣∣ < ε,

where k ≤ nt ≤ k + 1. Since ε > 0 was arbitrary, the proof is complete.
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