STUDIA MATHEMATICA 178 (1) (2007)

Absolutely (r,p, ¢)-summing inclusions
by

CARSTEN MICHELS (Oldenburg)

Abstract. As a continuation of the work of Bennett and Carl for the case ¢ = oo, we
consider absolutely (7, p, ¢)-summing inclusion maps between Minkowski sequence spaces,
1 < p,q < 2. Using these results we deduce parts of the limit orders of the correspond-
ing operator ideals and an inclusion theorem between the ideals of (u, s,t)-nuclear and
of absolutely (r,p, g)-summing operators, which gives a new proof of a result of Carl on
Schatten class operators. Furthermore, we also consider inclusions between arbitrary Ba-
nach sequence spaces and inclusions between finite-dimensional Schatten classes. Finally,
applications to Hilbert numbers of inclusions are given.

1. Introduction and basic tools. Let 1 < r,p,q < oo be such that
1/p+1/q > 1/r. According to Pietsch [31, 17.1.1], an operator T: X — Y
between Banach spaces X and Y is called absolutely (r,p,q)-summing if
there exists a constant C' > 0 such that for any choice of z1,...,z, € X and
Yl ..,y €Y' the inequality

o 1/r = 1/p - 1/q

(Y lwiTe)r) " = s (S @ol) " sw (Y Ihw)l?)
k=1 m/EBX/ k=1 yeEBy k=1

holds. We put 7,5, ,(T) := inf C with C as above. In this way, we obtain the

maximal Banach operator ideal (I, 4, 7rpq). Let us list the most prominent

special cases which have been dealt with in the literature so far:

o II, ) := I, , the ideal of all absolutely (r, p)-summing operators;

o I, :=1II,, = II,, ~, the ideal of all absolutely p-summing operators;

e D, 4 = II,,, with 7, p,q such that 1/r = 1/p + 1/q, the ideal of all
(p, q)-dominated operators;

e D, :=1D,, = Il ,,, the ideal of all p-dominated operators.

In this paper we deal with the ideal II, ), where 1 < p,q < 2. For the
special case r = p = 1 and ¢ = 2, this ideal has become of interest re-
cently in an article of Bu [4], where the author has shown that a Banach
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space X of cotype 2 is a G.T. space (i.e., L(X,¥2) = II1(X, ¢2)) if and only
if X ®.¢1 C X @y lo, ie., the identity map on X is absolutely (1,1,2)-
summing,.

Bennett [2] and Carl [6] independently successfully investigated under
which assumptions on the indices involved the inclusion mapping id : £,, — £,
is in I, ;. In this article, we present analogs of their results for the Banach
operator ideal I, ), , and then derive in parts the limit order of these ideals.
This can also be used to give an alternative proof of a result due to Carl
[5] on Schatten class operators. Furthermore, in the spirit of [13] and [16],
we also consider inclusions F — F, E and F' arbitrary Banach sequence
spaces, and S, — S;'. Finally, we give applications to Hilbert numbers of
inclusions.

We start with some basic notations. For 1 < p < oo, its conjugate number
p is defined by 1/p+1/p’ = 1. For two real sequences (a,) and (b,) we mean
by a, < b, that there exists C' > 0 such that a,, < Cb,, for all n € N, and
by a, > b, that b, < a,. If a,, < b, and a, > b, simultaneously, then we
write a, < by,.

We shall use standard notation and notions from Banach space theory,
as presented e.g. in [10, 19]. If X is a Banach space, then By is its (closed)
unit ball and X’ its dual. As usual £(X,Y) denotes the Banach space of all
(bounded linear) operators from X into Y endowed with the operator norm
| - |I, where X and Y are Banach spaces, and N (X,Y) the Banach space of
all nuclear operators endowed with the nuclear norm N(). By X ®. Y and
X ®: Y we denote their injective and projective tensor products, respec-
tively, and by X ®. Y and X ®, Y the respective completions. If one of the
spaces involved is finite-dimensional, we can identify £(X,Y) = X'®.Y and
N(X,Y) = X' ®, Y isometrically. Furthermore, if X is finite-dimensional,
the tensor norm As on f2® X is given by the identification lo®@ A, X = l2(X),
where the latter is as usual the corresponding K&éthe-Bochner space. For
this and more information on tensor products of Banach spaces we refer
to [10].

For 1 < r < oo we denote by S, the Banach space of all compact operators
T : {5 — ly for which the sequence of singular numbers is in ¢,. We put
Soo := L(¢2).

Standard techniques (see, e.g., [19] or [10]) allow us to formulate the
following useful characterization.

PROPOSITION 1.1. Let 1 < p,q,r < 0o such that 1/r <1/p+1/q. Then
for an operator T : X — Y between Banach spaces X and Y, the following
are equivalent:

(i) T is absolutely (r,p, q)-summing;
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(ii) the bilinear mappings ¢, @ X ®: £y x Y' @ by — £}, defined by
on((x1, .. yxn), Wiy uh) = Wi (Txy),...,y,(Txy)), are uni-
formly bounded.

In this case, mypq(T) = sup, ||enl|- If 7 = 1, then the above is equivalent to

(iii) the mappings T ®idy, : X @€y — Y @x g are uniformly bounded.

In this case, m1pq(T) = sup, |T @id,||.
The following inclusion can be found in [31, 17.1.4].

PROPOSITION 1.2. Let rg < r1, po < p1 and qo < qi. Suppose that
0<1/po+1/q0—1/ro < 1/p1+1/q1 — 1/r1. Then Iy, po.q0 © Iy py g, -

2. Interpolation of summing norms. Basics on interpolation theory
of Banach spaces can be found in [3]. Let us just introduce our notation for
the complex interpolation method. For a given compatible Banach couple
(X0,X1) and 0 < 6 < 1, we denote by [Xp, X1]g the resulting complex
interpolation space. We will frequently use the fact that for 1 < pg,p1 < o0
and 0 < § < 1 one has

(2.1) [Kpoagpl]e = lp,
where p is determined by 1/p = (1 — 0)/po + 0/p1. The following crucial
interpolation tool is due to Kouba [25].

PROPOSITION 2.1. Let 1 < pg,p1,q0, 1 <2,0< 8 <1andl <p,qg<2
with 1/p=(1—0)/po+0/p1 and 1/q = (1 —0)/qo + 0/q1. Then [ly, ®c Lgy,
Uy, ®Re by lg = Uy @c Ly. In particular,

sup |6 ®¢ £y — [0 @ Lo £ @ L7 o] < o0.
n,m

The following one-sided interpolation formula can be found in [29].

PROPOSITION 2.2. Let 1 < py <p1 < 2,1 <r <pj,0<6<1 and
1 <p<piwithl/p=(1-0)/po+60/p1. Then [l,R:Lp,, lr Dby, |g = br Dclp.
In particular,

sup |6 ® 0 — [0 @2 £ 07 @ 07 Jo]| < oo
n,m

To simplify our statements, we denote for 1 < u < v < oo the inclusion
map id : ¢, — ¢, by id,,, and by id, the finite-dimensional inclusion map
id : £} — ¢} (for u and v not necessarily ordered as above).

LEMMA 2.3. Let 1 < ug,u; < 2, ug < vg <00, up <wvg <oo, 1<

ro,71 < 00 and 1 < sg,s1,t0,t1 < 2. Then for all 0 < 0 < 1, there exists
C > 0 such that

Tr,s,t (idZv) < CWTO,So,to (idZOvo ) 1_671-7"1 ,81,t1 (idﬁm )97
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where 1/u = (1—0) /ug+0/u1, 1/v = (1-0) /vg+0/v1, 1 /7 = (1-0) /ro+0 /11,
1/s=(1-0)/so+0/s1 and 1/t = (1 —0)/to+ 0/t1, in each of the following

cases:

(i) 2 < v, v1 < 00;
(il) v =v9 =v1 and t =ty = ty;
(iii) max(to,t1) < v =1wv9 = v;.

In particular, in all of these cases, idygw, € Iy sty and idy v, € Il s 1y
imply idyy € Iy .

Proof. We define the bilinear mappings

Unn K" @K™ x K" @K™ = K™, ((z), (W) = (i (zx)-
Then the mappings
Unym Uy, ®e lg! X EZ; ®c by — 47
are bounded from above by 7, s, +,(idy.,.), 4 = 0, 1. Thus, by bilinear inter-
polation (see, e.g., [3, 4.4.1]), the mappings
Y (€3, e £, 03, ¢ 7)o X (€1, ®¢ L1, 0% ®: €] — [0, 07

are bounded from above by 7., s, .t (12, ) 707 514, (I, )Y, Clearly, by

uoVo Uu1v1
(2.1) we have [£2, ]9 = £} isometrically. By Proposition 2.1,
sup [[id : £ © £5" — [l ®e Lig, Ly, Qe £3loll < 00
n,m

and by [3, 4.5.2] together with Proposition 2.1 in case (i), [3, 4.2.1(c)] in
case (ii), and Proposition 2.2 in case (iii),

sup |[id : £} ®c 4" — [526 ®e Ly, Ly e )]0 < 00
n,m

!
to) “v]

Thus, the mappings

Yt 07 @ 07 X A% @ O — (T

PN 1-0 PN 0
have norm less than or equal to CTyg s to (idyyp0 )~ 7ry 51,60 (id3, ) for some

C > 0 not depending on m and n. The final assertion then follows by the
maximality of the operator ideal II, ;; and by density. =

3. Absolutely summing inclusion maps. To apply the above lemma,
we need some extreme cases.

LEMMA 3.1. The following hold true:
(i) idgg € Ul,l,l;

(ii) idioo € 1 ,2,2;

(iii) idig € IIh12N I 215

(iv) idoco € IT1 12 N 111 21.
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Proof. (i) is clear as I1y,1,; = £. This means that

sup [[id @ id : £ @2 0 — €5 @ L] = 1,
n,m

23

which also gives idio € II122. Furthermore, by Grothendieck, idis € I3

implies id1o € 114, i.e.,

sup [[id @ id : £7 @ " — £y @ ('] < o0.
n,m

Thus, by factorization,

sup [[id @ id : £] @ 7" — £y @ £5']| < o0,
n,m

which yields idi2 € H17172 and idoy, € U17271 (by duality).

By [31, 22.4.8] it is known that ma(id]y) = m22,00(id]5) = 1, i.e.,

sup [[id ®id : 5" @ 07 — 15" @, (5] = 1.
n,m

Since ! = ¢, and AL = A, on the tensor product of two Hilbert spaces, it

also follows that

sup [[id @ id : £7" @ £y — €5 @, O3] = 1.
n,m

Furthermore, by duality,

sup ||id ®id : £5' @, l5 — 05 @ o || = 1.
n,m

Thus, by factorization,

sup [id ® id : 47" ®. €y — 15" @ Lo || =1,
n,m

which gives idio € HLQ’l and ido € HLLQ. [ ]
THEOREM 3.2. Let 1 < p,g<2and1 <u<2<wv < oo withl/u—

1/v>2—-1/p—1/q. Then idy, € II1 p4.

Proof. We start by applying Lemma 2.3(i) for r = rop = r; and using
Lemma, 3.1 to obtain more extreme cases. Fix 1 < ¢ < 2 and define 1 < ¢ <
2<g<oobyl/Gg=3/2—1/qand 1/qg =1/q— 1/2. Then we obtain the
following (taking # := 2/q in Lemma 2.3(i) whenever 1 < ¢ < 2):

Up Vo U1 v1 So to s1 11

1 2 1 2 1 2 2 1 idip €44 ()
2 o0 2 oo 1 2 2 1 idao€lig,q (ii)
1 2 2 2 1 2 1 1 idgp €I, (i)
2 o0 2 2 1 2 1 1 ideg €11, (iv)
1 oo 2 o0 2 2 2 1 idge€llipg (v)
1 oo 1 2 2 2 2 1 idig €24 (Vi)
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Coming to the parameter p, we have to consider two cases, where we use
again Lemma 2.3(i) (taking 6 = ¢ /uj, 0 = g/vo, 0 = ¢'(1/u1 — 1/2) and
6 = ¢'(1/2 — 1/v1), respectively) together with the results from the above
table:

o1 <p<g: (i)and (iii) give
idyy2 € IT1 g, where 1/ug=5/2—-1/p—1/q,
and (ii) and (iv) give
idoy, € 1114, where 1/vg=1/p+1/q—3/2.
e §<p<2: (ii) and (v) give
idy,00 € II1 4, where 1/u3 =2-1/p—1/q,
and (i) and (vi) give
idyy, € Iy p g, where 1/v; =1/p+1/q—1.
If we take sg = s = p and ty = t; = ¢, Lemma 2.3(i) applied to these cases

for all 0 < 6 < 1 gives idy, € II1 4 for all those 1 < u < 2 < v < oo such
that 1/u—1/v=2—1/p —1/q. The rest is clear by factorization. m

The above can be extended to the general case of absolutely (r,p,q)-
summing operators. When considering limit orders in the next section, we
will see that the assumption 1/u—1/v > 141/r—1/p—1/q in the corollary
below cannot be weakened.

COROLLARY 3.3. Let 1 <p,g<2, 1<r<owandl <u<2<v<o0
with 1/u—1/v>1+1/r—1/p—1/q> 0. Then idy, € I, 4.

Proof. The idea is to find pg < p and gy < g such that 1/pp+1/q0—1 =
1/p+1/q—1/r. Then 2 —1/py — 1/q0 = 1/u, so that the above theorem
together with Proposition 1.2 gives

idyy € 11 po,q0 € Hrpg-

We have to consider several cases, for which we simply list our choices of
Do, go and leave the verification to the reader:

e 7 > max(p,q): qo = 1 and pg such that 1/pg=1/p+1/q—1/r;
e r < q: po=pand g such that 1/qgo =1—1/r + 1/g;
e r < p:qo=gqand pgsuch that 1/pg =1—1/r+1/p. =

The situation in the cases other than 1 < u < 2 < v < 0o seems to be
more complicated. We can give the following partial result for 1 < u < v < 2.
It will turn out later on that (i) is optimal in the case ¢ = 2 and that (ii)
is almost optimal in the case p = 1 (that is, the only improvement possible
in this case is to replace “>” by “>”). However, (iii) shows that (i) is not
optimal in general.
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PROPOSITION 3.4. Let 1 <p,q <2, 1<r<ococandl <u<wv<2.

(i) idyy € Il g whenever 1/r < 1/p —v'/u'q/;
(i) idyy € Hppq whenever 1/u—1/v > 1/¢;
(iii) idyy € II,p q whenever v >q and 1/r < 1/p— (V'/¢)(1/¢ + 1/v —
1/u).
Proof. (1) Since idy; € HLLQ, it follows that idq, € HLLQ - HLLQ -
II, , 4. Furthermore, idy, € II5 p 4, where 1/7 = 1/p+1/g—1. Set 0 := v /u/.
Then 1/u = (1—-6)/1+6/v. Now Lemma 2.3(ii) implies idy, € II, 4, where

1 1-6 6 0 1 6 1 v
=t o= =
r p p q P q p ugq
(ii) Let t < v be arbitrary. Then as above, idy, € Iy, and idy, € I11 1 1.
Set 6 := t'/u’; then 1/u = (1 — 6)/1 + 0/t. Now Lemma 2.3(iii) implies
idyy € II1,1,4, where

1 1-6 6 1 6 1 1 1 1
g t +1_t+t/_t+u’>v+u"
The claim for p arbitrary follows by Proposition 1.2.

(iii) Let @ < u be such that 1/a > 1/¢' + 1/v. Then (ii) implies idg, €
II, ;4. and once again idy, € Il;,, with 1/7 = 1/p+1/q — 1. Set 6 =
v'(1/a — 1/u); then 1/u = (1 — 0)/u + 6/v. Now Lemma 2.3(ii) implies
idyy € 11, p 4, where

1 1-6 6 0 1 o1 1\ 1 o(1 1 1
=Tt 0= e <o oo )
rp P g p d\i u) p ¢\¢ v wu

which gives the claim. =

4. Limit orders. We continue with a result on limit orders. For the
definition and basic facts mentioned subsequently, we refer to [31, 14.4].

Let 1 <wu,v < oo and 0 = (0y,) € foo be such that the diagonal operator
D, : by, — 4y, (x) — (0nxy), is defined (and continuous). Then for a Banach
operator ideal (A, A), its limit order A\(A,u,v) is defined by

AMA, u,v) :=1inf{1/r > 0; D, € A(ly,l,) for all o € £,}.
Very useful in computing special limit orders is the following formula:
AA, u,v) = inf{\ > 0; 3o > 0 such that A(id",) < on}.

Konig [24] in a famous paper proved an important connection to embedding
maps of Sobolev spaces and weakly singular integral operators (see also [31,
22.7]).

Before stating our partial result for the limit order of 11, ,,, we prove a
minor lemma first.

LEMMA 4.1. Let 1 <r <p <2. Then mp2(id};) < nl/r=1/p.
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Proof. We start with the case r = 1. Since L(¢1,02) = II1(¢1,¢2) b

Grothendieck (see, e.g., [31, 22.4.4]), we have id;2 € II;, hence
Hid ®id : 1 ®. 6711 — fy Qp K?H < 7T1(id12) <1,
which gives idy; € ITy 1 9. Furthermore, mo(id}y) = 1, and ma(id%,) = n'/?
(see, e.g., [31, 22.4.9]), hence,
lid ®id : by @ 4] — la@n, 5] =1

and (by duality)

id ®id : lo @, 1§ — by @ £7]] < n/?
Thus, by factorization,

lid ®@id : £y @ 07 — by @, 7] < n'/?
which gives m 22(id};) < n'/2. The claim for 1 < p < 2 now follows by
Lemma 2.3(ii) with ro =71 =1, s =1,81 =2,s =pand § = 2/p'.

Coming to the general case » < p, we observe that II1 12 C Il,,2 by
Proposition 1.2. Hence, idy; € II,,2, which implies m,,2(id};) < 1. By
the above, my 2(id?;) < n!~!/P. Thus, Lemma 2.3(ii) with ro = 1,7 = p,
sp =s1 =pand 0 = p'/r’ gives the claim. w

We now get the following partial result for the limit order of I, ) 4

THEOREM 4.2. Let 1 < r < p,q < 2 with 1/p+1/q < 1/2 4 1/r.
Then I, 4(idy,) =< n@rpa(W0) where arpq(u,v) is given by the following
(incomplete) diagram:

1/v
R e
1
q
It —g—3
1 1 1 1 1
;t; +i-1 »ta
q
0
1 1 1 1
o 1+F_5_E 1/U

In particular, X(II,pq, u,v) = 0y q(u,v). In the case r = 1, the diagram
can be completed by substituting “1” for “?” in the upper left quadrant. In
particular,

N(id;,
7ngﬁ&h)>ﬂhd®id:&I®54§—»a}®W€}H>:maX( w !R>

for all 1 < u,v < oo whenever 1 < p,q < 2 are such that 1/p+1/q < 3/2.
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mn

Proof. Consider the standard unit vectors ei,...,e, in £ and £7,, re-
spectively. Then
- 1/p . - 1/q .
sup (1 (en)l) " = lid . sup (Y len(w)l) = flidg,
v'€By, =1 v€By, N
and
n 1/r
(Z ’ek(iduv(ek)”r) =nl/".
k=1
Thus,

nt/r
ﬂr,P,Q(l uv) = maX( ’ Hle/pH Hidg/v/H>7

which gives the lower estimates.

Concerning the upper ones, Corollary 3.3 gives the part of the diagram
where we have a “0”, so we are left with the remaining four parts. Since
(NV,N) is the smallest operator ideal, we have II,,,(id},) < N(id},) < n,
which gives the exact estimate in the case r = 1 for the “?’-part. The upper
estimates for the part above the “0” follow by factorization from Corol-
lary 3.3. For the last two parts, observe that by Lemma 4.1,

Trpg(idly) < T po(idfy) < n/m=1/P,
and by duality,
WT,p,q(idgoOO) = 7Tr7q7p(id’111) =< nl/T—l/q.

The remaining estimates then follow by factorization from these corner
cases. m

REMARK 4.3.

(a) For the case 1 < p,q <2 and 1/p+ 1/q > 3/2, the same techniques
give the following incomplete picture for the limit order of II , 4:

1/v

DN [

S =
+
QY

1/u

S
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(b) Apart from the gaps in the above (which, as we conjecture, may be
filled according to the first diagram), there is not much hope that
the “easy” formula

T () < £2) = max(1, N(idZhy )/, )

or the (weaker) formula for the limit order hold whenever one of
the indices p and ¢ is strictly greater than 2; e.g., they do not
hold for the ideals D, = II;,, whenever p # 2 (see, e.g., [31,
22.5]).

An immediate consequence of the above considerations (the case r = 1)
for the norms of tensor product identities is the following:

COROLLARY 4.4. Let1 <p,q<2<7r,s<o00. Then

lid ®@id : £ @ £7" — £ @ €3]] < min(n, m)mex(0,1=1/p=1/q+1/r+1/s)

Let $, and ), denote the operator ideals of all operators 7T with
(hn(T)) € ¢, and (h,(T)) € ¢y, respectively (for the definition of Hilbert
numbers and the facts mentioned here we refer to the very last section).
By the fact that I, 55 is the largest extension of S, and by (8.1) we know
that 9, C Il,22 C $,00, hence for all 1 < u,v,7 < oo it follows that
A($r,u,v) = AT, 22,u,v). Thus, the diagrams for the limit order of ),
given in [20] give the following ones for II, 5 o:

1<r<2 I, 29 2<r<oo
22
wr 2 1,1
11,1 vr Tuty
rooou "2
2
vr ity
2 1,111 1
l_|_l_l ur u+vF_ﬂ
T v u +l
1.1 _1 v
r v 2 0
0

Note that the special case id,, € I, 22 whenever 1 < u < v < 2 and
1/r < (v'/2)(1/u — 1/v) has also been proved in Proposition 3.4(i).

Proposition 3.4 can be used to give more results for the limit order of
I, , 4; as an example we will validate the following two diagrams, which may
give some impression how diverse the limit orders of I, , , may be:
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g4 1<g<2 Il 4
1
? 1-3 ? 1-1
1 1 1 1_1
1 7 uTy ) . 7 | u
v q/—u—5+5 +5
0 0

By what has been done before, we can exclude the case 1 < u <2 <wv < o0.
Now let 1 < u < v < 2. Then by Proposition 3.4(ii) we know that id,, €
II, , o whenever 1/u—1/v > 1/q’. This gives, by symmetry, the diagram for
11, 4.4, and the right-hand side of the diagram for Il ,. For the left-hand
side, consider the ideal II5 4 2. By Proposition 3.4(i) we have idy, € Iz 42
whenever 1 < u < v < 2 and 1/¢" < (v/2)(1/u — 1/v). By duality, this
gives idy, € Iz 24 whenever 2 < u < v < oo and 1/¢' < (u/2)(1/u — 1/v).
Factorization now gives the upper estimates for the left-hand side of the dia-
gram for Il3 3 4, and the lower ones follow from the diagram for 11 s o, since
H2’27q C Hq/g’g.

5. Connections to nuclear operators and Schatten classes. Going
back to the definition, it is not clear (and very often false) whether for a
given Banach operator ideal (A, A) its limit order is attained, i.e., whether
D, € A(ly,t,) for all o € £1/)\(4u,). For special choices of the indices
involved, we can confirm this. The proof goes along similar lines to the one
of [11, Lemma 3|, but we give the details for the convenience of the reader.
Let us first recall a result of [7, 1.4.3], for which we introduce the following
temporary notation: Let z1,...,x, € £I'. Then for 1 < p < oo we set

- 1/p
wp(ei) = swp (Jo ' ()l”)
TEBm =1

LEMMA 5.1. Let 1 < p,u < o0o. Then there exists a constant C > 0 such
that for all x1,...,%n,y1,...,Yn € L1,
2
wp(xi @ 5 6y ) < Cwp(ws; 6, )wp(yy; £')
whenever either 1 <p <u<oo,1<u<p =2,0rl1<u<2<yp <o
In particular, such a constant exists for all u whenever p € {2,00}.

PROPOSITION 5.2. Let 1 < p,q,r < oo with 1/p +1/q > 1/r. Then for
1 <wu,v < oo, the limit order \(I1,; 4, u,v) is attained whenever 1 < u,p <2
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orl <p <u<oo,andl <g<2<v<oc0orl<uv<gqg<oo In
particular, it is attained for all u,v whenever p,q € {2,00}.

Proof. First we show that under the given assumptions, there exists a
constant C > 0 such that for all oq,...,0,, € K,

(5.1) Trpg(Do i 0" — 1) < Oy o(Dy @ Dy : €77 — 7).
Let x1,...,2, € ) and y1,...,yn € £;}. Then
n /T‘ n /T
(X lwh(omyr) ") = ((Z\yzwamwf)l
k=1
1/r

(Z (10 (Do) A (Do)

(Z (Y1 @ yp)( U®DJ)($k®xl)|T)1/r

2 2
< T p,g(Do @ Do )wp(wr @ 213 0, )wa(yh @ yi; )
Thus, the assumptions together with the lemma above give (5.1).
Now set A := A(II}p 4, u,v). Then for all € > 0 sufficiently small and all
0 € l(rre)-1 we have Dy € Iy o(€u, by), i€
Trp,q(Do by — £y) < 0(5)HU||(>\+5)—1

Denote by D the set of all finite-dimensional diagonal operators D, : K™ —
K™, m arbitrary. Obviously, D, ® D, € D for all ¢ € K. Define on D two
functions A and B by

A(Dy : K™ — K™) := 7y o(Do : £ — £'),
B(D, : K™ - K™) := HO’”[}\_I.

Then it follows from the above that for all o € K™ and ¢ > 0 sufficiently
small,

A(Dy) < c(e)||ollasey-1 < ele)mlo[x-1.

Clearly, B(D, ® D,) = B(D,)? and, by (5.1), A(D,)? < CA(D, ® D,).
Hence, an application of |7, 1.3.1] yields, for all ¢ € K™,

Trpq(Do) = A(Dg) < CB(Dg) = Cllo|[y-1,
which by an obvious continuity argument gives the claim. m

COROLLARY 5.3. Let 1 <r < oo and 1l < p,q,u <2 < v < 00, and
define 1 < s<oo byl/s:=max(0,1+1/r—1/g—1/p+1/v—1/u). Then

Dy € Iy p g(by, by)  for all o € 4.
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Proof. This is now a direct consequence of Proposition 5.2 and our dia-
grams in the previous section. m

The above result for diagonal operators has deep consequences for the
connection to nuclear operators. Let 0 < © < oo and 1 < s,t < oo with
1+1/u > 1/s+1/t. Then an operator T': X — Y between Banach spaces X
and Y is called (u, s, t)-nuclear (shorthand: T' € N, 5+(X,Y")) if T factorizes
through a diagonal operator D, : £y — £ with o € £, if u < 00, and o € ¢
if u = oo (see, e.g., [31, 18.1]). We start by recalling a useful inclusion result
related to Proposition 1.2 (see, e.g., [31, 18.1.5]).

PROPOSITION 5.4. Let 0 < ug < u; < 00, 1 < 59 < 51 < o0 and
1 <ty <t1 < oo with 1/80 + 1/t0 — 1/UO < 1/51 + 1/t1 — 1/U1 < 1. Then
Nu0750,t0 gNul,Sl,tl'

PROPOSITION 5.5. Let 1 < u,r < 0o, and either 1 < s,t < 2 or 2 <
s,t < oo or1/min(s,t)—1/u < 1/2, and either 1 < p,q <2 or2 <p,q <0
or 1/r —1/max(p,q) <1/2, and 0 < 1/p+1/q—1/r < 1. Then

Nu,s,t Cpg
whenever 1/s+ 1/t —1/u<1/p+1/q—1/r.

Proof. The case 1 < p,q <2 < s,t < oo follows from the corollary above
by definition.

Now let 1 < s,¢ < 2. Choose u < ug < oo such that 1/ug =1+ 1/u —
1/s—1/t,ie,1/s+1/t—1/u=1/2+1/2—1/up. Then by Proposition 5.4
we have Ny st C Nyg22.- If1 <s<2<ooand 1/s—1/u < 1/2, then define
u < wug by 1/ug = 1/u+1/2—1/s. Proposition 5.4 then gives NV, s+ C Ny, 2+.
The case 1 <t <2 < s < o0 goes similarly.

For 2 < p < g < oo, we let r < rg < oo be defined by 1/rg =1+ 1/r —
1/p—1/q,ie., 1/24+1/2—1/rg = 1/p+ 1/q — 1/r. Thus, Proposition 1.2
gives Il 29 C I, 4. Now, if 1 <p<2<¢g<ooandl/r—1/¢ <1/2,
then we define ro < r by 1/r9 =1/r+1/2—1/q. Proposition 1.2 then gives
Iy p2 C Iy pg The case 1 < ¢ <2 <p<ooand 1/r—1/p <1/2 goes
similarly.

Combining all these observations with the case 1 < p,q <2 < s,t < 00
gives the claim. =

Our exposition now culminates in the confirmation of a result of [5] for
absolutely (r, p, ¢)-summing operators on {9 as well as of a related result for
(u, s,t)-nuclear operators on ¢y (see also [22, 2.7]). It also shows that the
above inclusion result in the case 1 < p,q <2 < s,t < 00 is optimal.

COROLLARY 5.6. Let 1 < u,r <ocoandl < p,q <2 < s,t < oo with
1/s+1/t—1/u=1/p+1/q—1/r < 1. Then
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Nusit(la) = I p 4 (£2) = Sy,
where 1/v=1+1/u—1/s—=1/t=1+1/r—1/p—1/q.
Proof. By Propositions 5.4, 1.2 and 5.5,
No22 C Nyt CIypg C Iyoo.
Thus, by [31, 17.5.2, 18.5.4],
Sy =Ny22(02) C Nysi(la) C I, g(b2) C Iy22(la) = Sy,

which gives the claim. =

6. Inclusions between arbitrary sequence spaces. In this section
we need to extend the definition of absolutely (r,p,q)-summing operators.
For technical reasons we will only consider the case p = ¢ = 2, and the
r-norm replaced by a sequence space norm.

We refer to [26] for all notation and information on symmetric Banach
sequence spaces and recall only briefly the notions needed here. For a sym-
metric Banach sequence space E, its fundamental sequence (Ag(n)) is defined
by Ag(n) := || > i, €illg, where e; is the ith standard unit vector. The span
of the first n standard unit vectors, equipped with the norm induced by F, is
denoted by E™. If E* denotes the Kéthe dual of E, then Agx (n) = n/Ag(n).
For two symmetric Banach sequence spaces E and F', we define the space of
multipliers M (E, F) by

M(E,F) :={\ € lx; \p € F for all 4 € E},

equipped with the norm [[Al|la (g F) = supy <1 |AullF. If E is 2-concave
and F' is 2-convex (for these notions, we refer to [26]), then the following
hold (see, e.g., [18, 2.1]):

(6.1) lid : 65 — E"|| < Ag(n)/ Vi
(6.2) lid : F™ — 63 = vt/ Ap(n);
(6.3) M) (n) = Ap(n) /Ap(n).

For a symmetric Banach sequence space E we denote by Sg the Banach
space of all compact operators T : ¢o — fo for which the sequence of
singular numbers is contained in F, equipped with the norm ||T|s, =
15222, si(T)ei|| g- By SE we denote the space £(¢4) equipped with the norm
1T sp == 1| 225z si(Teil -

Let F be a maximal symmetric Banach sequence space. We call an opera-
tor T': X — Y between Banach spaces X and Y absolutely (E, 2, 2)-summing
if there exists a constant C' > 0 such that for any choice of x1,...,2, € X
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and y,...,y, €Y', the inequality

Hkilym)eku]igc (iu«mp)”}e@ (iwz)“

I’EBX/

holds. We put 7 22(T) := inf C' with C as above. In this way, we obtain
the maximal Banach operator ideal (IIg22,7E22).

LEMMA 6.1. Let Ey and E1 be symmetric Banach sequence spaces and
F an ezxact interpolation functor. Then

f(HEO,ZQ(Xv Y)7 HE1,272 (X7 Y)) - HF(EO,E1)72,2(X7 Y)
for any fized pair of Banach spaces X and Y .

Proof. Fix z1,...,2, € X, ¥4,...,y, € Y. For T € L(X,Y) consider
the mapping ¥, (T) := (v} (Tx1), ...y, (Txy,)). Then by definition

[¥n : Mp,22(X,Y) — Ei|| < wa(ap)wa(yg), =01
Thus, interpolation and the definition give the claim. =

The following result for operators on a Hilbert space is an extension of
[31, 17.5.2].

PROPOSITION 6.2. Let E' be a maximal symmetric Banach sequence space
such that E # lo. Then Il o9(ls) = Sg. Moreover, Il 29 is the largest
Banach operator ideal extending Sg to the class of all Banach spaces.

Proof. By Mityagin [30] (see also [24, 1.b.10]) there exists an exact in-
terpolation functor F such that £ = F(¢1,{). Since S; = II; 22(¢2) and
Soo € Il 2,2(€2), the above lemma together with [1] yields

Sg =F(81,8x) C F(II122(42), IToc 22) C I 22(¢2).

Conversely, we have mg 2 2(id5,) > Ag(n). Thus, idos € I1g 22. Now proceed
as in [31, 17.5.2] to obtain IIg22(f2) C Sg. For the last part, note that
by [31, 15.6] an operator T : X — Y belongs to the largest extension of
Sk whenever RT'S € Sg for all S € L(l3,X) and R € L(Y,{3). By the
definition of I1g 2 o it follows that such an operator 1" also belongs to I1g 2 5.
Since IIg22(¢2) = Sg by the above, the claim follows. =

We now focus again on inclusion maps. As before, we denote for simplicity
by idgp the identity map id : £ — F whenever E and F' are symmetric
Banach sequence spaces such that F is continuously embedded in F. If E =
p (F' = £}, respectively), we write id,r (idg)y, respectively) instead of idy,r
(idge, , respectively).

LEMMA 6.3. Let E and F be symmetric Banach sequence spaces both not
isomorphic to {5 such that E is 2-concave, and F is mazimal and 2-convez.

Then Snr(re,) © SM(ts,8) € SM(FE)-
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Proof. Simply imitate the first part of the proof of [19, 6.3]. =
This now gives the following more general result.

PROPOSITION 6.4. Let EE and F be symmetric Banach sequence spaces
such that E is 2-concave, and F' is mazrimal and 2-convex. Then idgp €

IIv(rE)22-

Proof. If F' = (3, then by [13] it is known that idgs € Iy, p)2 C
HM(E27E)72,2' If E = {5, then idpxy € HM(£27F><)’2 C UM(F,Zg),Q,Qa hence by
duality also idap € IIp;(p,)2,2- Thus assume that both spaces involved are
not isomorphic to £2. The proof is then only a slight modification of one in
[15], but we give the details for the convenience of the reader. It is sufficient
to show that RoidgroS € Sy (r ) whenever R € L(F,{2) and S € L({2, E).
By [13] it is known that idgy € UM(Zg,E),Qa thus idgg 0 S € HM(K%E)Q(EQ) =
Sn(ty,p)- Similarly, idpxgo R' € Syp(g, px)- Hence, Roidap € Syy(py,)- Thus,
by the lemma above, Roidgr oS = Roidp oidgs 0 S € Sy(pg), which
gives the claim.

This result is best possible in the following sense: Let G be a symmetric
Banach sequence space such that idgr € Ilg22, where E and I are as
above. Then Ag(n) < Ay(rgp)(n). Indeed, as in the proof of Theorem 4.2
and with the help of (6.1)—(6.3), we deduce that

Aa(n)  Ac(n) o Ac(n)

>
— |lid% id% Ap(n) = )\ ’
lid5 gl [[idps || Ai(n) M(F,E)(”)

Clearly, the above result includes the case idy, with 1 <u <2 < v < oo.
The case 1 < u < v < 2o0r 2 < u < v < oo turned out to be more
complicated, which is also the case in this more general setting.

7G2.2(dEr)

PROPOSITION 6.5. Let E and F be 2-concave symmetric Banach se-
quence spaces and F an exact interpolation functor such that

sup [[£(65", B") — F(L(E5 ), £(¢5', F)| < ox.

Then idgr € I F@,..)2:2-
Proof. Fix yi,...,y,, € F™ and consider the mappings
Unm K" QK" = K", Ypm(z1,. .y 2m)) == (W1 (x1)s -+, Yo (Tm))-
Since idy1 € Il22 2, it follows that idyr € Il 2, thus
[¥nm « LU, 07) — 03] < Cwa(y;)

for some C' > 0 independent of n and m. Trivially, idpr € Il 22 With norm
equal to 1, that is,

[t m = LOE5", F™) — L] < wa(yi)-
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Then the assumption and interpolation give

Wonm = L0 E™) — F(E5, 62| < Cwa(yh),

where C' > 0 is some other constant independent of n and m. This finishes
the proof. m

We refer the reader to [26] for the proper definition of Lorentz and Orlicz
sequence spaces.

COROLLARY 6.6.
(i) Let 1 < u < v < 2. Then idy, € II, 22, where 1/r = (v'/2)(1/u —
1/v).
(ii) Let 1 <p<r<2and1<gq,s<2. Thenidy, ,, €y, 22, where
1/t=("/2)1/p—1/r) and 1/G=1/q —1/2.
(iii) Let ¢ and ¢ be Orlicz functions such that the functions t — (p(\/_)

and t — (\/t) are equivalent to concave functions. If ~1(t) =
to(v=1(t)/t) for some continuous and concave function o : [0, 00) —
[0, 00) which is positive on (0,00), then idy,¢, € Iy 22, where A~ L(t)

— t1/2 ( 1/2).

Proof. (i) This is already included in Proposition 3.4(i).
(ii) In [28, 2.1] it was shown that under the assumptions above,

supHE( 2 pq) — (E( gbvﬁll)’£( gbv 77}))9@” < o0,

where § = r’/p . A quick inspection of the proof shows that ¢]' can be replaced
by ;. Thus, the above proposition applies with the interpolation functor
F = (-,-)o,4- Furthermore, ({2, ¢ )p 4 = ¢+ 4, which gives the claim.

(ili) The assumptions on ¢ and @ ensure that ¢, and £, are 2-concave
(see, e.g., [23]). Let gy be the lower Ovchinnikov functor associated to g (see,
e.g., [14] for more details and references). Then (see, e.g., [27, p. 179]) we
have g;(¢1,%y) = £, and by [14, Proposition 3|,

sup [[£(65',€3) > en(£(65',69). L5, £3)) ]| < oe.

Thus, the above proposition applies, and 0y(f2, o) = £ (see, e.g., [27,
p. 178]), which gives the claim. m

7. Inclusions between finite-dimensional Schatten classes. We
finally consider inclusions id : SE < Sp, where E and F' are symmetric
Banach sequence spaces. Since both unitary ideals involved contain /3, it
follows that
and

TG 22(id 1 S — Sp) = ma2,2(1dys) = Aa(n)
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for all 1 < p,g < 2,1 < r < oo and every symmetric Banach sequence
space G. To give an analogue of Corollary 3.3, we need some more interpo-
lation formulas.
ProrosITION 7.1. Let 1 < pg,p1,90,q1 <2,0<0 <1 andl1 <p,qg<2

with 1/p=(1—-0)/po+0/p1 and 1/qg=(1—0)/q0+ 0/q1. Then

sup [|[£," ®@: S5 = [ @e Sg» by @e Sy loll < 00

n,m
and

sup ||y ®e S — [Spr @e Sgs Spy @e Sqilall < oo
n,m

Proof. This follows from the cases ¢y = ¢g1 = ¢ = 2 (Proposition 2.1) and
po=p1 =p =2 ([16, 4.3]) by applying [17, Lemma 9] together with Pisier’s
factorization theorem as in [17, p. 450]. =

LEMMA 7.2. Let 1 < ug,up < 2 < vg,v1 < o0, 1 < 19,71 < 00 and
1 <sg,81,t0,t1 < 2. Then for all0 < 0 < 1,

7T7‘737t(id : S’ZLL — SZ)’L) S 71-7'0750,1‘/0 (ld : S’Z}O — 517;10)1_671-7_1781’1‘/1 (ld : 5’171 — 5’171)6?
where 1/u = (1—0) /uo+0/u1, 1/v = (1-0) /vg+0/v1, 1 /7 = (1-0) /ro+0 /71,
1/s=(1—-0)/so+0/s1 and 1/t = (1 —0)/to+6/t;.

Proof. The proof goes along similar lines to the one of Lemma 2.3(i),
using the above proposition. =

As before, we have to verify some extreme cases.
LEMMA 7.3. The following hold true:
(i) ma2(id = 83 — S8F) = 1;
(ii) 7T17272(id . S{L — Sgo) =N,
(111) 7T1’271(id . Sil — Sg) = 7T171’2(id . 851 — Sgo) = \/ﬁ;
(iV) 7T1’172(id : S{l — Sg) = 7T172’1(id : Sg’ — Sc?o) = \/’ﬁ
Proof. (i) is clear as IT; ;1 = L. Since ma(id : S} — SF) = /n (see, e.g.,
[16, 5.2]), we have
(7.1) sup [lid ® id : 87 @ 3 — 05°™|| = /n.
m
Thus, by duality,
sup ||id ® id : 5327" — S @, 03| = /n.
m
Hence, by factorization,
sup [id ® id : 87 ®¢ 05" — S& ®@x 03] = n,
m
which means 71 29(id : S} — SI) = n. Next, the identity map ids, is
absolutely (2, 1)-summing, that is,
(7.2) sup [[id ® id : S} @, 7" — 2" < oo.
m
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By duality and factorization, this together with (7.1) yields
sup id © id - S} @ £ — SF @y 7] = Vi1
m

which gives mj21(id : S — §F) < m12(d : 8§ — SL) =< /n. Finally,
since I11(X,Y) = II5(X,Y) whenever X is of cotype 2, we have (id :
Sp — 8F) < mo(id : S — S%) < y/n. Thus,

sup [id @ id : S} @ 7" — SY @, 07| < V/n,
m
which by factorization gives

sup [id ® id : 8] @ 17" — SF @, 15| < V/n.
m

Hence, 7,1 2(id : S} — 8%) =< mi2.1(id : 8§ — S) =< \/n, which finishes
the proof. m

PROPOSITION 7.4. Let 1 <p,¢q<2,1<r<ooandl <u<2<v<00

with 1/u—1/v=1+1/r —1/p—1/q. Then
Trpq(id : ST < ST) < pl/u=1/v,

Proof. As in the proof of Theorem 3.2, we fix 1 < ¢ < 2 and define ¢
and q accordingly. Using Lemmas 7.2 and 7.3, we arrive at the following six
cases (ordered according to the proof of Theorem 3.2):

o T gq(id: ST = 83) X m1ge(id : S5 — S%) < V/n;

o mi14(id : S — SY) < mi1,4(d: S — Sg) = nl/7,

o 7T1,27q(id : Sg — Sgo) = 7T172,q(id i S{l — Sg) = nl/"i.

Then proceed by interpolation as in the proof of Theorem 3.2 to obtain the

statement in the case r = 1. The general case then follows as in the proof of
Corollary 3.3. =

COROLLARY 7.5. Let 1 <p,q<2and 1 <r <oo with1/p+1/q—1/r
< 1. Then for all 1 <u <2 <v < o0,
Trpg(id 1 ST e SI) < A Vr=1p=Vag  (id . 47 s (7).
Moreover, for 2 < r,s < oo,
||1d ®id : S; ®e 632 R S;l & 622” — n2—1/p—1/q+max(0,2—1/p—1/q+1/7’+1/8).

Proof. Appropriate factorizations give the upper estimates. For the lower
estimates observe first that

Trpq(id 0 Sy — 8)) = 7 p o(id3s) = ”I/ta

where 1/t = 1+ 1/r — 1/p — 1/q. By (8.1) and the lower estimate from
Corollary 8.8 below,
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Trpglid s S 87) 2 maa(id : S = 87) 2 mf )(id : ST — &)
> n?/th,2(id : ST — ST
- n2/tn1/v—1/u _ n2+2/r—2/p—2/q+1/v—1/u.
This calculation also gives the last part of the statement on taking r = 1. u

Mathematical routine lets us formulate and prove an analogue of Corol-
lary 4.4:
PROPOSITION 7.6. Let 1 <p,q <2<7r,s<o0o. Then
[id®id : S ®: S — S @ S¢ || < nllid®@id : £ ®: €' — £ @ L.
Proof. We have to show that
lid@id : 8} @. 87 — SI @ V|| = pLmax(0,1-1/p—1/q+1/r+1/s)
Again, we first establish the cases where the norm is asymptotically equiva-
lent to n—note that this behaviour is best possible, since all spaces involved
contain /7.
By [18, 11.4],
lid ®id : S ®. Sy — S¥’|| < v/n.
Thus, by duality and factorization the following identities have norms asymp-
totically equivalent to n:
d®id: 87 ®: 8§ — St @, 8y, 1d®id: ST ®: 8§ — S @, Sk.
Furthermore, by [18, 11.3] we have
id®id : ST ®: ST — 83 @ Sy|| < n
and, by duality,
llid®id : S8 ®: Sy — S @ SL|| < n.
Now an interpolation strategy similar to the one in the proof of Theorem 3.2
together with Proposition 7.1 establishes
[id®id : S ®: S — &' @ S| = n
whenever 1/p +1/q —1/r —1/s = 1. The upper estimates now follow by

appropriate factorizations. For the lower ones, recall that by [10, p. 35] we
have N(idg) = dim E for all finite-dimensional Banach spaces E. Thus,

2
1. _nt 141 /r+1)
N(Gd: S — S) > s = n A
Hence,
N@id: S — S7)
lid: Sy — Spll ~

which together with the general lower bound n gives the claim.

lid ®id : Sy ®: S — S ®r S| > n?—l/P—l/fH-l/T-l—l/s’
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To formulate an analogue of Proposition 6.4 causes some problems. So
far, we are only able to state the following; the proof is similar to the one of
Proposition 6.4. We leave the details to the reader.

PROPOSITION 7.7. Let Ey, E1 be 2-concave symmetric Banach sequence
spaces such that

)\Ei (n)
\/’r_l )
- )‘Eo (n))\El (n)

M n n
N — = .
TM(ES E0),22(d  SE, SElx) n

(73) 7TM(£27Ei)72(id : ngz — Sg) =

i=0,1.

Then

In [16, 5.3] the following examples of spaces satisfying (7.3) were given:

e (,, where 1 < p < 2;

® (4 where 1 <p<2and1<qg<2;

e /,, where ¢(t) is a submultiplicative Orlicz function not equivalent to
t? in a neighbourhood of zero, such that the function ¢ — @(v/1) is
equivalent to a concave function in a neighbourhood of zero.

However, they also gave examples of Lorentz and Orlicz sequence spaces
that are 2-concave but do not satisfy (7.3), which makes it impossible to
state a more general result in the spirit of Proposition 6.4.

8. Applications to Hilbert numbers. We refer to [24] and [32] for
the general theory of s-numbers of operators. For an operator T : X — Y
between Banach spaces X and Y recall the definition of its kth approzimation
number

ap(T) := inf{||T — S||; S € L(X,Y) with ||S|| < 1 and rank S < k},
and its kth Hilbert number
hi(T) = sup{a(RTS); R € L(Y, l2),S € L(L2, X), |IS]], | RI| < 1}

It is clear from the definition that a1 (7)) > a2(T) > --- > 0 and (1) >
ho(T) > --- > 0. Furthermore, for a compact operator between Hilbert
spaces, the sequences of approximation and Hilbert numbers coincide with
the sequence of singular numbers.

An important inequality due to Konig (see, e.g., [24, 2.a.3|) states that
kY72 (T) < mp9(T) for all T € II,.5, where x3(T) denotes the kth Weyl
number of T" (see, e.g., [32]). We now provide an analogue for Hilbert numbers
and (F,2,2)-summing operators.

For an operator 7" denote by 771(;)272(T) the (E,2,2)-summing norm of T’
computed with at most k vectors x1,. ..,z and k vectors y/,...,y,.
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PROPOSITION 8.1. Let E be a maximal symmetric sequence space. Then
k
(8.1) Ap(R)h(T) < i o(T)
for all operators T € L.
Proof. Let T € L(X,Y) where X and Y are Banach spaces. By Bau-

hardt’s characterization of Hilbert numbers (see, e.g., [31, 11.4.3]) there exist
operators S : /5 — X and R:Y — ¢§ such that ||S||, ||R| <1 and

RTS = (14 ¢) *hy(T)idk,.

Equivalently, this means that there exist z1,...,2z; € X and 9{,...,y, € Y’
such that wa(z;) < 1, wa(y!) < 1and yi(Tx;) = (1+¢) thi(T),i=1,...,k.
Then by the definition of WgC)Q o(T),

k
(1+9) " he(DAs (k) = || Y luh (Tl
i=1

(k)
<
5 STE22 (1),

which gives the claim. =

For a symmetric Banach sequence space F, denote by A\(F) and m(FE) the
Lorentz and Marcinkiewicz spaces associated to the fundamental function A g
of E, respectively, in the sense of [12, p. 59]. Furthermore, for a scale s of
s-numbers in the sense of [32] and a symmetric Banach sequence space F,
we define L%, to be the class of all operators " between Banach spaces such
that (s,(T")) € F, equipped with the norm sp(T) := |[(s,(T))||r, T € L.
In [12, 3.1] the authors proved the following:

For every symmetric Banach sequence space E such that {9 — FE, we
have Il o — Efn(E). If in addition E is an interpolation space with respect
to the couple (l2,0), then Li(E) — Ilgs.

Moreover, for r > 2 Pietsch [32, 2.7.5] showed that £, C II,2 C L, .
The above proposition together with Proposition 6.2 now yields the following
analogue for the scale of Hilbert numbers and (F, 2, 2)-summing operators:

COROLLARY 8.2. Let E # l be a mazimal symmetric Banach sequence
space. Then

L — Hpp2 = Loy p)-
A first application to inclusion maps is the following:

ProroOSITION 8.3. Let E and F be symmetric Banach sequence spaces
such that E is 2-concave, and F' is 2-convex and maximal. Then
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Proof. We have hy(id5,) = 1, hence by factorization,
: : lidSpl _ Ar(k)
hi(idpr) > hi(idpp) > - = :
lidksl — An(k)
Conversely, by Proposition 6.4 we know that idgr € Il p)2.2- Thus,
the proposition above gives hy(idgr) < 1/Ay(pE)(k). By [18], we have
Mvi(re) (k) < Ag(k)/Ar(k), which gives the claim. u
Now the above and the results from the previous section give the following
examples. We guess that (i) is already known; however, we have not found
a source where it is written up in this form.

COROLLARY 8.4.
(i) Let 1 <u <wv < oo. Then
/D v=1u) ) <y <y < 2
ku/2)(/o=1/u) 9 < < ¢ < oo

hi(idyy) < § EY/v—1/u, 1<u<2<v< o0
k12 u=v=1 or u=v=o;
1, l<u=v<o0.

(i) Let 1 <p<r<ooand1<gq,s <oo. Then

k:(’"//2)(1/’"*1/p), l<p<r<2,p<qg<2and 1<s<r;

. E®/2AA/r=1/p) - 9« p<r<o00,2<q<p and r<s<oo;

hk(ldgpngns)x 1/ _1/

kTP l<p<2<r<ocoand 1<g<2<s<o00;
1, p=r and 1 <qg=s<00.

(i) Let 1 < p < 2 < ¢ < o0 and w be a Lorentz sequence such that

nw?/ 3P < Sy wiz/@_p). Then
hk(idd(w,p)d(w,q)) = (kwk)
(iv) Let ¢ and v be Orlicz functions such that t — @(\/t) and t — /1 (t)

are equivalent to concave and conver functions, respectively, and
satisfies the Ag-condition. Then
¢ (1/k)

hk(idgwgw) = m

(v) Let ¢ and 1 be Orlicz functions such that t — o(\/t) and t
Y (V1) are equivalent to concave functions, respectively. If p=1(t) =
to(yp=L(t)/t) for some continuous and concave function g : [0,00) —
[0,00) which is positive on (0,00), then

. o(k'/?)
hk(ldgw[w) < W

1/q=1/p
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Proof. (i) The case 1 < u < 2 < v < oo is contained in the above
proposition. Now let 1 < u < v < 2. Then the upper estimate follows from
(8.1) together with Corollary 6.6(i). For the lower estimate, choose m € N
such that m?/?' /2 < k < m?"". Now [20, Proposition (2)] gives

hk(lduv) > hk(ldm)) . ml/v—l/u > 2—116(1)’/2)(1/1)—1/11)7

which gives the lower estimate. The case 2 < u < v < oo then follows by
duality. Since idy; € I3 22, we have hy(idi1) < k=12 by (8.1); the lower esti-
mate follows by factorizing id5, through idy; (see also [32, 2.9.19]). The claim
for idooeo then follows by duality. Finally, any K-convex infinite-dimensional
Banach space (for this notion see, e.g., [19]) contains a complemented copy
of 15 (see, e.g., [19, 19.3]). Thus, hy(idyx) < 1 for any K-convex infinite-
dimensional Banach space X, in particular for X = /¢,, 1 < u < oo.

(ii) This follows as in (i) together with Corollary 6.6(ii)—mnote that A, _(k)
= k'/t—and the lower estimate for hy,(id,,) in (i).

(iii) The assumption on w implies that d(w, p) is 2-concave (see, e.g., [33]),
and d(w, q) for ¢ > 2 is always 2-convex (and maximal). Thus, the above
proposition gives the claim, if we take into account that A, (k) < (kawy) M/
for any 1 < r < oo.

(iv) The assumptions ensure that £, is 2-concave and that £y, is 2-convex
and maximal. Hence, the claim follows from the proposition above—note
that A, (k) =< 1/¢~1(1/k) for any Orlicz sequence space (.

(v) This follows from (8.1) together with Corollary 6.6(iii). m

We now show that one can even obtain all asymptotically exact upper
estimates for the Hilbert numbers of the finite-dimensional inclusions id],,
by using (8.1). The lower ones can be found in [20]. Note that the case
1 < v < v < oo follows from the one below by the duality of Hilbert
numbers.

PROPOSITION 8.5. Letl1 <u/' <v<oo and 1<k <n. Then
min(n!/v=1V/u pl/E=12 pk=l), 1 <W/ <0 <2,

he(id™ ) = min(n!/v=1u pl/vE=1/2), 2<v<u< oo,
U] =) in(R@/D/ 1w g op=1/2) 9 <y <y < oo,
ki/v=1/u 2 <y <ov< oo

Proof. Let 1 < u' < v < 2. Then ma92(id?,) =< n'/?, hence hy(id?,) <
n'/vk=1/2. Moreover, 71 2.2(id™,) =< n, which gives hy(id?,) < nk~'. Finally,
by the monotonicity of Hilbert numbers, hy(id?,) < hy(id?,) = n!/v=1/v,

Let 2 < u,v < oo. Then m22(id™,) < n'/?, and therefore hy(id?,) <
n'/?k=1/2_ 1f v < u, then as before hy,(id™,)) < hy(id?,) = nV/*= Vv If 4 < v,
then hy(id?,) < hp(idy,) < k®/2/v=1/4) a5 already seen in the above
corollary. The lower estimate in this special case also follows similarly to the
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above: if k£ < n2/“, then choose 1 < ¢ < m such that EQ/“/Z < k < (?/u,
Then again |20, Proposition (2)] gives

hi(id™,) > hy(id’,) = €1/07 1% > 91 (w/2)(1/v=1/u),

The estimate hy(id?,) = n'/?k=/2 for all n?/* < k < m from |20, Proposi-
tion (2)] gives the remaining lower estimate in this case.

Let 2 <u' <wv < oo. Then idy, € 2,2, where 1/r = 1/u — 1/v. Hence,
hi(id?,) < kY071 .

We finish with inclusions between finite-dimensional Schatten classes.
Since /3 is contained in both spaces involved, h4(id : SE — Sp) = 1 when-
ever F is continuously embedded into F, and 1 < k < n. Proposition 7.7
together with (8.1) gives the following upper estimate:

PROPOSITION 8.6. Let Ey, E1 be 2-concave symmetric Banach sequence
spaces satisfying (7.3). Then for n < k < n?,

) k Ag,(n)Ag, (n)
hi(id : Spp — STy) < — — =L~
o= S8, = S < S o) (F)
The situation for the lower estimate is more satisfactory. Here, for a
symmetric Banach sequence space G let Ag : [1,00) — [1,00) be a monotone
function extending A\g : N — [1, 00).

PROPOSITION 8.7. Let EE and F be symmetric Banach sequence spaces
such that E is 2-concave and F' is 2-conver. Then forn < k < n?,

Proof. We proceed similarly to the proof of |21, 4.2]. Choose 1 < h <n
such that nh — 1 < k < nh. Identify L£(¢3,¢5) and L(¢3,¢5) with the
sets of all n x h-matrices and n X n-matrices, respectively. Furthermore,
denote the space L(¢%,¢%) equipped with the Hilbert-Schmidt norm by
S (€5, %), and define Sp(¢3,¢4) likewise. Clearly, the natural injection iap :
So(£3,08) — S% has norm asymptotically equivalent to Ag(h)/vh. Now
let Pry @ Sp — Saf g,ﬁg) be the natural projection which cuts off the
last » — h 4 1 rows. Observe that any matrix in £(¢3,¢%) has at most h
nonzero singular values. Since sp(PraA) < sx(A) for all A € L({3), we have
| Pro : SE — Sp(£5,¢8)|| < 1. Hence, for A € L(¢3) and o = (071, . ..,0¢) the
nonzero singular values of Pro A, with £ < h,

Ar(h)
N

Thus, since idsg(zg,ég) = Ppoo(id : S} — Sj)oiag, it follows by the definition

1Pr2A| S2(65, E5)I| = l|oll2 < llidoll |o]| 7 < A | SEl-
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of hj that

ar(ids, ez ) Ap(h)
2 Ae(h)/Ar(h) — Ae(h) -

which gives the desired estimate. m

hi(id : S — Sp)

All the above together now gives the following examples. As usual, we

set S, =8 .
’ p,q
COROLLARY 8.8. Letn <k < n?.
(i) Let 1 <u<2<wv<oo. Then
hi(id : ST < 87 = (n/k)Y/ 1/,
(ii) Let l <u<2<v<ooand 1 <r<2<s<oo. Then
hi(id = ST, — Sy) = (n/k)/e=1/v,
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