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Absolutely (r, p, q)-summing in
lusionsbyCarsten Mi
hels (Oldenburg)Abstra
t. As a 
ontinuation of the work of Bennett and Carl for the 
ase q = ∞, we
onsider absolutely (r, p, q)-summing in
lusion maps between Minkowski sequen
e spa
es,
1 ≤ p, q ≤ 2. Using these results we dedu
e parts of the limit orders of the 
orrespond-ing operator ideals and an in
lusion theorem between the ideals of (u, s, t)-nu
lear andof absolutely (r, p, q)-summing operators, whi
h gives a new proof of a result of Carl onS
hatten 
lass operators. Furthermore, we also 
onsider in
lusions between arbitrary Ba-na
h sequen
e spa
es and in
lusions between �nite-dimensional S
hatten 
lasses. Finally,appli
ations to Hilbert numbers of in
lusions are given.1. Introdu
tion and basi
 tools. Let 1 ≤ r, p, q ≤ ∞ be su
h that
1/p + 1/q ≥ 1/r. A

ording to Piets
h [31, 17.1.1℄, an operator T : X → Ybetween Bana
h spa
es X and Y is 
alled absolutely (r, p, q)-summing ifthere exists a 
onstant C > 0 su
h that for any 
hoi
e of x1, . . . , xn ∈ X and
y′1, . . . , y

′
n ∈ Y ′, the inequality

( n∑

k=1

|y′k(Txk)|r
)1/r

≤ C sup
x′∈BX′

( n∑

k=1

|x′(xk)|p
)1/p

sup
y∈BY

( n∑

k=1

|y′k(y)|q
)1/q

holds. We put πr,p,q(T ) := inf C with C as above. In this way, we obtain themaximal Bana
h operator ideal (Πr,p,q, πr,p,q). Let us list the most prominentspe
ial 
ases whi
h have been dealt with in the literature so far:
• Πr,p := Πr,p,∞, the ideal of all absolutely (r, p)-summing operators;
• Πp := Πp,p = Πp,p,∞, the ideal of all absolutely p-summing operators;
• Dp,q := Πr,p,q with r, p, q su
h that 1/r = 1/p + 1/q, the ideal of all

(p, q)-dominated operators;
• Dp := Dp,p = Π1,p,p′ , the ideal of all p-dominated operators.In this paper we deal with the ideal Πr,p,q where 1 ≤ p, q ≤ 2. For thespe
ial 
ase r = p = 1 and q = 2, this ideal has be
ome of interest re-
ently in an arti
le of Bu [4℄, where the author has shown that a Bana
h2000 Mathemati
s Subje
t Classi�
ation: 47B10, 46M35, 47B06.Key words and phrases: absolutely summing operators, S
hatten 
lasses, limit orders,Hilbert numbers, interpolation. [19℄



20 C. Mi
helsspa
e X of 
otype 2 is a G.T. spa
e (i.e., L(X, ℓ2) = Π1(X, ℓ2)) if and onlyif X ⊗̃ε ℓ1 ⊆ X ⊗̃π ℓ2, i.e., the identity map on X is absolutely (1, 1, 2)-summing.Bennett [2℄ and Carl [6℄ independently su

essfully investigated underwhi
h assumptions on the indi
es involved the in
lusion mapping id : ℓu →֒ ℓvis in Πq,p. In this arti
le, we present analogs of their results for the Bana
hoperator ideal Πr,p,q and then derive in parts the limit order of these ideals.This 
an also be used to give an alternative proof of a result due to Carl[5℄ on S
hatten 
lass operators. Furthermore, in the spirit of [13℄ and [16℄,we also 
onsider in
lusions E →֒ F , E and F arbitrary Bana
h sequen
espa
es, and Snu →֒ Snv . Finally, we give appli
ations to Hilbert numbers ofin
lusions.We start with some basi
 notations. For 1 ≤ p ≤ ∞, its 
onjugate number
p′ is de�ned by 1/p+1/p′ = 1. For two real sequen
es (an) and (bn) we meanby an ≺ bn that there exists C > 0 su
h that an ≤ Cbn for all n ∈ N, andby an ≻ bn that bn ≺ an. If an ≺ bn and an ≻ bn simultaneously, then wewrite an ≍ bn.We shall use standard notation and notions from Bana
h spa
e theory,as presented e.g. in [10, 19℄. If X is a Bana
h spa
e, then BX is its (
losed)unit ball and X ′ its dual. As usual L(X,Y ) denotes the Bana
h spa
e of all(bounded linear) operators from X into Y endowed with the operator norm
‖ · ‖, where X and Y are Bana
h spa
es, and N (X,Y ) the Bana
h spa
e ofall nu
lear operators endowed with the nu
lear norm N(·). By X ⊗ε Y and
X ⊗π Y we denote their inje
tive and proje
tive tensor produ
ts, respe
-tively, and by X ⊗̃ε Y and X ⊗̃π Y the respe
tive 
ompletions. If one of thespa
es involved is �nite-dimensional, we 
an identify L(X,Y ) = X ′⊗εY and
N (X,Y ) = X ′ ⊗π Y isometri
ally. Furthermore, if X is �nite-dimensional,the tensor norm∆2 on ℓ2⊗X is given by the identi�
ation ℓ2⊗∆2

X = ℓ2(X),where the latter is as usual the 
orresponding Köthe�Bo
hner spa
e. Forthis and more information on tensor produ
ts of Bana
h spa
es we referto [10℄.For 1 ≤ r <∞ we denote by Sr the Bana
h spa
e of all 
ompa
t operators
T : ℓ2 → ℓ2 for whi
h the sequen
e of singular numbers is in ℓr. We put
S∞ := L(ℓ2).Standard te
hniques (see, e.g., [19℄ or [10℄) allow us to formulate thefollowing useful 
hara
terization.Proposition 1.1. Let 1 ≤ p, q, r ≤ ∞ su
h that 1/r ≤ 1/p+ 1/q. Thenfor an operator T : X → Y between Bana
h spa
es X and Y , the followingare equivalent :(i) T is absolutely (r, p, q)-summing ;



Absolutely (r, p, q)-summing in
lusions 21(ii) the bilinear mappings ϕn : X ⊗ε ℓ
n
p × Y ′ ⊗ε ℓ

n
q → ℓnr , de�ned by

ϕn((x1, . . . , xn), (y
′
1, . . . , y

′
n)) := (y′1(Tx1), . . . , y

′
n(Txn)), are uni-formly bounded.In this 
ase, πr,p,q(T ) = supn ‖ϕn‖. If r = 1, then the above is equivalent to(iii) the mappings T ⊗ idnpq′ : X ⊗ε ℓ

n
p → Y ⊗π ℓ

n
q′ are uniformly bounded.In this 
ase, π1,p,q(T ) = supn ‖T ⊗ idnpq′‖.The following in
lusion 
an be found in [31, 17.1.4℄.Proposition 1.2. Let r0 ≤ r1, p0 ≤ p1 and q0 ≤ q1. Suppose that

0 ≤ 1/p0 + 1/q0 − 1/r0 ≤ 1/p1 + 1/q1 − 1/r1. Then Πr0,p0,q0 ⊆ Πr1,p1,q1 .2. Interpolation of summing norms. Basi
s on interpolation theoryof Bana
h spa
es 
an be found in [3℄. Let us just introdu
e our notation forthe 
omplex interpolation method. For a given 
ompatible Bana
h 
ouple
(X0, X1) and 0 < θ < 1, we denote by [X0, X1]θ the resulting 
omplexinterpolation spa
e. We will frequently use the fa
t that for 1 ≤ p0, p1 ≤ ∞and 0 < θ < 1 one has(2.1) [ℓp0, ℓp1 ]θ = ℓp,where p is determined by 1/p = (1 − θ)/p0 + θ/p1. The following 
ru
ialinterpolation tool is due to Kouba [25℄.Proposition 2.1. Let 1 ≤ p0, p1, q0, q1 ≤ 2, 0 < θ < 1 and 1 ≤ p, q ≤ 2with 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1. Then [ℓp0 ⊗̃ε ℓq0 ,
ℓp1 ⊗̃ε ℓq1 ]θ = ℓp ⊗̃ε ℓq. In parti
ular ,

sup
n,m

‖ℓmp ⊗ε ℓ
n
q →֒ [ℓmp0 ⊗ε ℓ

n
q0 , ℓ

m
p1 ⊗ε ℓ

n
q1 ]θ‖ <∞.The following one-sided interpolation formula 
an be found in [29℄.Proposition 2.2. Let 1 ≤ p0 < p1 < 2, 1 ≤ r < p′1, 0 < θ < 1 and

1 ≤ p < p1 with 1/p = (1−θ)/p0+θ/p1. Then [ℓr ⊗̃εℓp0 , ℓr ⊗̃ε ℓp1 ]θ = ℓr ⊗̃εℓp.In parti
ular ,
sup
n,m

‖ℓmr ⊗̃ε ℓ
n
p →֒ [ℓmr ⊗̃ε ℓ

n
p0 , ℓ

m
r ⊗̃ε ℓ

n
p1 ]θ‖ <∞.To simplify our statements, we denote for 1 ≤ u ≤ v ≤ ∞ the in
lusionmap id : ℓu →֒ ℓv by iduv, and by idnuv the �nite-dimensional in
lusion mapid : ℓnu →֒ ℓnv (for u and v not ne
essarily ordered as above).Lemma 2.3. Let 1 ≤ u0, u1 ≤ 2, u0 ≤ v0 ≤ ∞, u1 ≤ v1 ≤ ∞, 1 ≤

r0, r1 ≤ ∞ and 1 ≤ s0, s1, t0, t1 ≤ 2. Then for all 0 < θ < 1, there exists
C > 0 su
h that

πr,s,t(idnuv) ≤ Cπr0,s0,t0(idnu0v0)
1−θπr1,s1,t1(idnu1v1)

θ,



22 C. Mi
helswhere 1/u = (1−θ)/u0+θ/u1, 1/v = (1−θ)/v0+θ/v1, 1/r = (1−θ)/r0+θ/r1,
1/s = (1− θ)/s0 + θ/s1 and 1/t = (1− θ)/t0 + θ/t1, in ea
h of the following
ases:(i) 2 ≤ v0, v1 ≤ ∞;(ii) v = v0 = v1 and t = t0 = t1;(iii) max(t0, t1) < v = v0 = v1.In parti
ular , in all of these 
ases, idu0v0 ∈ Πr0,s0,t0 and idu1v1 ∈ Πr1,s1,t1imply iduv ∈ Πr,s,t.Proof. We de�ne the bilinear mappings

ψn,m : K
n ⊗ K

m × K
n ⊗ K

m → K
m, ((xk), (y

′
k)) 7→ (y′k(xk)).Then the mappings

ψn,m : ℓnui ⊗ε ℓ
m
si × ℓnv′i

⊗ε ℓ
m
ti → ℓmriare bounded from above by πri,si,ti(idnuivi), i = 0, 1. Thus, by bilinear inter-polation (see, e.g., [3, 4.4.1℄), the mappings

ψn,m : [ℓnu0
⊗ε ℓ

m
s0 , ℓ

n
u1

⊗ε ℓ
m
s1 ]θ × [ℓnv′

0

⊗ε ℓ
m
t0 , ℓ

n
v′
1

⊗ε ℓ
m
t1 ]θ → [ℓmr0 , ℓ

m
r1]θare bounded from above by πr0,s0,t0(idnu0v0)

1−θπr1,s1,t1(idnu1v1)
θ. Clearly, by(2.1) we have [ℓmr0, ℓ

m
r1 ]θ = ℓmr isometri
ally. By Proposition 2.1,

sup
n,m

‖id : ℓnu ⊗ε ℓ
m
s →֒ [ℓnu0

⊗ε ℓ
m
s0 , ℓ

n
u1

⊗ε ℓ
m
s1 ]θ‖ <∞and by [3, 4.5.2℄ together with Proposition 2.1 in 
ase (i), [3, 4.2.1(
)℄ in
ase (ii), and Proposition 2.2 in 
ase (iii),

sup
n,m

‖id : ℓnv′ ⊗ε ℓ
m
t →֒ [ℓnv′

0

⊗ε ℓ
m
t0 , ℓ

n
v′
1

⊗ε ℓ
m
t1 ]θ‖ <∞.Thus, the mappings

ψn,m : ℓnu ⊗ε ℓ
m
s × ℓnv′ ⊗ε ℓ

m
t → ℓmrhave norm less than or equal to Cπr0,s0,t0(idnu0v0)

1−θπr1,s1,t1(idnu1v1)
θ for some

C > 0 not depending on m and n. The �nal assertion then follows by themaximality of the operator ideal Πr,s,t and by density.3. Absolutely summing in
lusion maps. To apply the above lemma,we need some extreme 
ases.Lemma 3.1. The following hold true:(i) id22 ∈ Π1,1,1;(ii) id1∞ ∈ Π1,2,2;(iii) id12 ∈ Π1,1,2 ∩Π1,2,1;(iv) id2∞ ∈ Π1,1,2 ∩Π1,2,1.



Absolutely (r, p, q)-summing in
lusions 23Proof. (i) is 
lear as Π1,1,1 = L. This means that
sup
n,m

‖id⊗ id : ℓm2 ⊗ε ℓ
n
1 → ℓm2 ⊗π ℓ

n
∞‖ = 1,whi
h also gives id1∞ ∈ Π1,2,2. Furthermore, by Grothendie
k, id12 ∈ Π2implies id12 ∈ Π1, i.e.,

sup
n,m

‖id⊗ id : ℓn1 ⊗ε ℓ
m
1 → ℓn2 ⊗π ℓ

m
1 ‖ <∞.Thus, by fa
torization,

sup
n,m

‖id⊗ id : ℓn1 ⊗ε ℓ
m
1 → ℓn2 ⊗π ℓ

m
2 ‖ <∞,whi
h yields id12 ∈ Π1,1,2 and id2∞ ∈ Π1,2,1 (by duality).By [31, 22.4.8℄ it is known that π2(idn12) = π2,2,∞(idn12) = 1, i.e.,

sup
n,m

‖id⊗ id : ℓm2 ⊗ε ℓ
n
1 → ℓm2 ⊗∆2

ℓn2‖ = 1.Sin
e εt = ε, and ∆t
2 = ∆2 on the tensor produ
t of two Hilbert spa
es, italso follows that

sup
n,m

‖id⊗ id : ℓm1 ⊗ε ℓ
n
2 → ℓm2 ⊗∆2

ℓn2‖ = 1.Furthermore, by duality,
sup
n,m

‖id⊗ id : ℓm2 ⊗∆2
ℓn2 → ℓm2 ⊗π ℓ

n
∞‖ = 1.Thus, by fa
torization,

sup
n,m

‖id⊗ id : ℓm1 ⊗ε ℓ
n
2 → ℓm2 ⊗π ℓ

n
∞‖ = 1,whi
h gives id12 ∈ Π1,2,1 and id2∞ ∈ Π1,1,2.Theorem 3.2. Let 1 ≤ p, q ≤ 2 and 1 ≤ u ≤ 2 ≤ v ≤ ∞ with 1/u −

1/v ≥ 2 − 1/p− 1/q. Then iduv ∈ Π1,p,q.Proof. We start by applying Lemma 2.3(i) for r = r0 = r1 and usingLemma 3.1 to obtain more extreme 
ases. Fix 1 ≤ q ≤ 2 and de�ne 1 ≤ q̃ ≤
2 ≤ q ≤ ∞ by 1/q̃ = 3/2 − 1/q and 1/q = 1/q − 1/2. Then we obtain thefollowing (taking θ := 2/q in Lemma 2.3(i) whenever 1 < q < 2):

u0 v0 u1 v1 s0 t0 s1 t1

1 2 1 2 1 2 2 1 id12 ∈Π1,q̃,q (i)
2 ∞ 2 ∞ 1 2 2 1 id2∞ ∈Π1,q̃,q (ii)
1 2 2 2 1 2 1 1 idq̃2 ∈Π1,1,q (iii)
2 ∞ 2 2 1 2 1 1 id2q ∈Π1,1,q (iv)
1 ∞ 2 ∞ 2 2 2 1 idq̃∞ ∈Π1,2,q (v)
1 ∞ 1 2 2 2 2 1 id1q ∈Π1,2,q (vi)



24 C. Mi
helsComing to the parameter p, we have to 
onsider two 
ases, where we useagain Lemma 2.3(i) (taking θ = q̃′/u′0, θ = q/v0, θ = q′(1/u1 − 1/2) and
θ = q′(1/2 − 1/v1), respe
tively) together with the results from the abovetable:

• 1 ≤ p < q̃: (i) and (iii) giveidu02 ∈ Π1,p,q, where 1/u0 = 5/2 − 1/p− 1/q,and (ii) and (iv) giveid2v0 ∈ Π1,p,q, where 1/v0 = 1/p+ 1/q − 3/2.

• q̃ ≤ p ≤ 2: (ii) and (v) giveidu1∞ ∈ Π1,p,q, where 1/u1 = 2 − 1/p− 1/q,and (i) and (vi) giveid1v1 ∈ Π1,p,q, where 1/v1 = 1/p+ 1/q − 1.If we take s0 = s1 = p and t0 = t1 = q, Lemma 2.3(i) applied to these 
asesfor all 0 < θ < 1 gives iduv ∈ Π1,p,q for all those 1 ≤ u ≤ 2 ≤ v ≤ ∞ su
hthat 1/u− 1/v = 2 − 1/p− 1/q. The rest is 
lear by fa
torization.The above 
an be extended to the general 
ase of absolutely (r, p, q)-summing operators. When 
onsidering limit orders in the next se
tion, wewill see that the assumption 1/u−1/v ≥ 1+1/r−1/p−1/q in the 
orollarybelow 
annot be weakened.Corollary 3.3. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u ≤ 2 ≤ v ≤ ∞with 1/u− 1/v ≥ 1 + 1/r − 1/p− 1/q ≥ 0. Then iduv ∈ Πr,p,q.Proof. The idea is to �nd p0 ≤ p and q0 ≤ q su
h that 1/p0 + 1/q0 − 1 =
1/p + 1/q − 1/r. Then 2 − 1/p0 − 1/q0 = 1/u, so that the above theoremtogether with Proposition 1.2 givesiduv ∈ Π1,p0,q0 ⊆ Πr,p,q.We have to 
onsider several 
ases, for whi
h we simply list our 
hoi
es of
p0, q0 and leave the veri�
ation to the reader:

• r ≥ max(p, q): q0 = 1 and p0 su
h that 1/p0 = 1/p+ 1/q − 1/r;
• r ≤ q: p0 = p and q0 su
h that 1/q0 = 1 − 1/r + 1/q;
• r ≤ p: q0 = q and p0 su
h that 1/p0 = 1 − 1/r + 1/p.The situation in the 
ases other than 1 ≤ u ≤ 2 ≤ v ≤ ∞ seems to bemore 
ompli
ated. We 
an give the following partial result for 1 ≤ u ≤ v ≤ 2.It will turn out later on that (i) is optimal in the 
ase q = 2 and that (ii)is almost optimal in the 
ase p = 1 (that is, the only improvement possiblein this 
ase is to repla
e �>� by �≥�). However, (iii) shows that (i) is notoptimal in general.



Absolutely (r, p, q)-summing in
lusions 25Proposition 3.4. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u < v ≤ 2.(i) iduv ∈ Πr,p,q whenever 1/r ≤ 1/p− v′/u′q′;(ii) iduv ∈ Πp,p,q whenever 1/u− 1/v > 1/q′;(iii) iduv ∈ Πr,p,q whenever v > q and 1/r < 1/p − (v′/q′)(1/q′ + 1/v −
1/u).Proof. (i) Sin
e id11 ∈ Π1,1,2, it follows that id1v ∈ Π1,1,2 ⊆ Π1,1,q ⊆

Πp,p,q. Furthermore, idvv ∈ Πr̃,p,q, where 1/r̃ = 1/p+1/q−1. Set θ := v′/u′.Then 1/u = (1−θ)/1+θ/v. Now Lemma 2.3(ii) implies iduv ∈ Πr,p,q, where
1

r
=

1 − θ

p
+
θ

p
+
θ

q
− θ =

1

p
− θ

q′
=

1

p
− v′

u′q′
.(ii) Let t < v be arbitrary. Then as above, id1v ∈ Π1,1,t and idtv ∈ Π1,1,1.Set θ := t′/u′; then 1/u = (1 − θ)/1 + θ/t. Now Lemma 2.3(iii) impliesiduv ∈ Π1,1,q, where

1

q
=

1 − θ

t
+
θ

1
=

1

t
+
θ

t′
=

1

t
+

1

u′
>

1

v
+

1

u′
.The 
laim for p arbitrary follows by Proposition 1.2.(iii) Let ũ < u be su
h that 1/ũ > 1/q′ + 1/v. Then (ii) implies idũv ∈

Πp,p,q, and on
e again idvv ∈ Πr̃,p,q with 1/r̃ = 1/p + 1/q − 1. Set θ =
v′(1/ũ − 1/u); then 1/u = (1 − θ)/ũ + θ/v. Now Lemma 2.3(ii) impliesiduv ∈ Πr,p,q, where

1

r
=

1 − θ

p
+
θ

p
+
θ

q
− θ =

1

p
− v′

q′

(
1

ũ
− 1

u

)
<

1

p
− v′

q′

(
1

q′
+

1

v
− 1

u

)
,whi
h gives the 
laim.4. Limit orders. We 
ontinue with a result on limit orders. For thede�nition and basi
 fa
ts mentioned subsequently, we refer to [31, 14.4℄.Let 1 ≤ u, v ≤ ∞ and σ = (σn) ∈ ℓ∞ be su
h that the diagonal operator

Dσ : ℓu → ℓv, (xn) 7→ (σnxn), is de�ned (and 
ontinuous). Then for a Bana
hoperator ideal (A,A), its limit order λ(A, u, v) is de�ned by
λ(A, u, v) := inf{1/r ≥ 0; Dσ ∈ A(ℓu, ℓv) for all σ ∈ ℓr}.Very useful in 
omputing spe
ial limit orders is the following formula:
λ(A, u, v) = inf{λ ≥ 0; ∃̺ ≥ 0 su
h that A(idnuv) ≤ ̺nλ}.König [24℄ in a famous paper proved an important 
onne
tion to embeddingmaps of Sobolev spa
es and weakly singular integral operators (see also [31,22.7℄).Before stating our partial result for the limit order of Πr,p,q, we prove aminor lemma �rst.Lemma 4.1. Let 1 ≤ r ≤ p ≤ 2. Then πr,p,2(idn11) ≺ n1/r−1/p.



26 C. Mi
helsProof. We start with the 
ase r = 1. Sin
e L(ℓ1, ℓ2) = Π1(ℓ1, ℓ2) byGrothendie
k (see, e.g., [31, 22.4.4℄), we have id12 ∈ Π1, hen
e
‖id⊗ id : ℓ1 ⊗ε ℓ

n
1 → ℓ2 ⊗π ℓ

n
1‖ ≤ π1(id12) ≺ 1,whi
h gives id11 ∈ Π1,1,2. Furthermore, π2(idn12) = 1, and π2(idn∞2) = n1/2(see, e.g., [31, 22.4.9℄), hen
e,

‖id⊗ id : ℓ2 ⊗ε ℓ
n
1 → ℓ2 ⊗∆2

ℓn2‖ = 1and (by duality)
‖id⊗ id : ℓ2 ⊗∆2

ℓn2 → ℓ2 ⊗π ℓ
n
1‖ ≤ n1/2.Thus, by fa
torization,

‖id⊗ id : ℓ2 ⊗ε ℓ
n
1 → ℓ2 ⊗π ℓ

n
1‖ ≤ n1/2,whi
h gives π1,2,2(idn11) ≤ n1/2. The 
laim for 1 < p < 2 now follows byLemma 2.3(ii) with r0 = r1 = 1, s0 = 1, s1 = 2, s = p and θ = 2/p′.Coming to the general 
ase r ≤ p, we observe that Π1,1,2 ⊆ Πp,p,2 byProposition 1.2. Hen
e, id11 ∈ Πp,p,2, whi
h implies πp,p,2(idn11) ≺ 1. Bythe above, π1,p,2(idn11) ≺ n1−1/p. Thus, Lemma 2.3(ii) with r0 = 1, r1 = p,

s0 = s1 = p and θ = p′/r′ gives the 
laim.We now get the following partial result for the limit order of Πr,p,q:Theorem 4.2. Let 1 ≤ r ≤ p, q ≤ 2 with 1/p + 1/q ≤ 1/2 + 1/r.Then Πr,p,q(idnuv) ≍ nαr,p,q(u,v), where αr,p,q(u, v) is given by the following(in
omplete) diagram:

�
�

�
��

0

1 + 1
r − 1

q − 1
p

+1
v − 1

u

1 + 1
r − 1

p − 1
u

1
r + 1

v

−1
q

?

1 + 1
r − 1

p − 1
q

1
q

1
p + 1

q − 1
r

1
p′

1/v

1/uIn parti
ular , λ(Πr,p,q, u, v) = αr,p,q(u, v). In the 
ase r = 1, the diagram
an be 
ompleted by substituting �1� for �?� in the upper left quadrant. Inparti
ular ,
π1,p,q(idnuv) ≍ ‖id⊗ id : ℓnu ⊗ε ℓ

n
p → ℓnv ⊗π ℓ

n
q′‖ ≍ max

(
1,
N(idnv′q′)
‖idnu′p‖ )

for all 1 ≤ u, v ≤ ∞ whenever 1 ≤ p, q ≤ 2 are su
h that 1/p+ 1/q ≤ 3/2.



Absolutely (r, p, q)-summing in
lusions 27Proof. Consider the standard unit ve
tors e1, . . . , en in ℓnu and ℓnv′ , re-spe
tively. Then
sup

x′∈Bℓ′u

( n∑

k=1

|x′(ek)|p
)1/p

= ‖idnu′p‖, sup
y∈Bℓv

( n∑

k=1

|ek(y)|q
)1/q

= ‖idnq′v′‖and
( n∑

k=1

|ek(iduv(ek))|r)1/r
= n1/r.Thus,

πr,p,q(idnuv) ≥ max

(
1,

n1/r

‖idnu′p‖ ‖idnq′v′‖)
,whi
h gives the lower estimates.Con
erning the upper ones, Corollary 3.3 gives the part of the diagramwhere we have a �0�, so we are left with the remaining four parts. Sin
e

(N ,N) is the smallest operator ideal, we have Πr,p,q(idnuv) ≤ N(idnuv) ≤ n,whi
h gives the exa
t estimate in the 
ase r = 1 for the �?�-part. The upperestimates for the part above the �0� follow by fa
torization from Corol-lary 3.3. For the last two parts, observe that by Lemma 4.1,
πr,p,q(idn11) ≤ πr,p,2(idn11) ≺ n1/r−1/p,and by duality,
πr,p,q(idn∞∞) = πr,q,p(idn11) ≺ n1/r−1/q.The remaining estimates then follow by fa
torization from these 
orner
ases.Remark 4.3.(a) For the 
ase 1 ≤ p, q ≤ 2 and 1/p+ 1/q > 3/2, the same te
hniquesgive the following in
omplete pi
ture for the limit order of Π1,p,q:
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1/u

?
?



28 C. Mi
hels(b) Apart from the gaps in the above (whi
h, as we 
onje
ture, may be�lled a

ording to the �rst diagram), there is not mu
h hope thatthe �easy� formula
π1,p,q(ℓ

n
u →֒ ℓnv ) ≍ max(1,N(idnv′q′)/‖idnu′p‖)or the (weaker) formula for the limit order hold whenever one ofthe indi
es p and q is stri
tly greater than 2; e.g., they do nothold for the ideals Dp = Π1,p,p′ whenever p 6= 2 (see, e.g., [31,22.5℄).An immediate 
onsequen
e of the above 
onsiderations (the 
ase r = 1)for the norms of tensor produ
t identities is the following:Corollary 4.4. Let 1 ≤ p, q ≤ 2 ≤ r, s ≤ ∞. Then

‖id⊗ id : ℓnp ⊗ε ℓ
m
q → ℓnr ⊗π ℓ

m
s ‖ ≍ min(n,m)max(0,1−1/p−1/q+1/r+1/s).Let Hr and Hr,∞ denote the operator ideals of all operators T with

(hn(T )) ∈ ℓr and (hn(T )) ∈ ℓr,∞, respe
tively (for the de�nition of Hilbertnumbers and the fa
ts mentioned here we refer to the very last se
tion).By the fa
t that Πr,2,2 is the largest extension of Sr and by (8.1) we knowthat Hr ⊆ Πr,2,2 ⊆ Hr,∞, hen
e for all 1 ≤ u, v, r ≤ ∞ it follows that
λ(Hr, u, v) = λ(Πr,2,2, u, v). Thus, the diagrams for the limit order of Hrgiven in [20℄ give the following ones for Πr,2,2:
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2 < r <∞Πr,2,2

Note that the spe
ial 
ase iduv ∈ Πr,2,2 whenever 1 ≤ u < v ≤ 2 and
1/r ≤ (v′/2)(1/u− 1/v) has also been proved in Proposition 3.4(i).Proposition 3.4 
an be used to give more results for the limit order of
Πr,p,q; as an example we will validate the following two diagrams, whi
h maygive some impression how diverse the limit orders of Πr,p,q may be:
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Π2,2,q1 < q < 2

By what has been done before, we 
an ex
lude the 
ase 1 ≤ u ≤ 2 ≤ v ≤ ∞.Now let 1 ≤ u < v ≤ 2. Then by Proposition 3.4(ii) we know that iduv ∈
Πp,p,q whenever 1/u− 1/v > 1/q′. This gives, by symmetry, the diagram for
Πq,q,q, and the right-hand side of the diagram for Π2,2,q. For the left-handside, 
onsider the ideal Π2,q,2. By Proposition 3.4(i) we have iduv ∈ Π2,q,2whenever 1 ≤ u < v ≤ 2 and 1/q′ ≤ (v′/2)(1/u − 1/v). By duality, thisgives iduv ∈ Π2,2,q whenever 2 ≤ u < v ≤ ∞ and 1/q′ ≤ (u/2)(1/u − 1/v).Fa
torization now gives the upper estimates for the left-hand side of the dia-gram for Π2,2,q, and the lower ones follow from the diagram for Πq′,2,2, sin
e
Π2,2,q ⊂ Πq′,2,2.5. Conne
tions to nu
lear operators and S
hatten 
lasses. Goingba
k to the de�nition, it is not 
lear (and very often false) whether for agiven Bana
h operator ideal (A,A) its limit order is attained, i.e., whether
Dσ ∈ A(ℓu, ℓv) for all σ ∈ ℓ1/λ(A,u,v). For spe
ial 
hoi
es of the indi
esinvolved, we 
an 
on�rm this. The proof goes along similar lines to the oneof [11, Lemma 3℄, but we give the details for the 
onvenien
e of the reader.Let us �rst re
all a result of [7, 1.4.3℄, for whi
h we introdu
e the followingtemporary notation: Let x1, . . . , xn ∈ ℓmu . Then for 1 ≤ p ≤ ∞ we set

wp(xi) := sup
x′∈Bℓm

u′

( n∑

i=1

|x′(xi)|p
)1/p

.

Lemma 5.1. Let 1 ≤ p, u ≤ ∞. Then there exists a 
onstant C > 0 su
hthat for all x1, . . . , xn, y1, . . . , yn ∈ ℓmu ,
wp(xi ⊗ yj ; ℓ

m2

u ) ≤ Cwp(xi; ℓ
m
u )wp(yj ; ℓ

m
u )whenever either 1 ≤ p′ ≤ u ≤ ∞, 1 ≤ u ≤ p′ = 2, or 1 ≤ u ≤ 2 < p′ ≤ ∞.In parti
ular , su
h a 
onstant exists for all u whenever p ∈ {2,∞}.Proposition 5.2. Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q ≥ 1/r. Then for

1 ≤ u, v ≤ ∞, the limit order λ(Πr,p,q, u, v) is attained whenever 1 ≤ u, p ≤ 2
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helsor 1 ≤ p′ ≤ u ≤ ∞, and 1 ≤ q ≤ 2 ≤ v ≤ ∞ or 1 ≤ v ≤ q ≤ ∞. Inparti
ular , it is attained for all u, v whenever p, q ∈ {2,∞}.Proof. First we show that under the given assumptions, there exists a
onstant C > 0 su
h that for all σ1, . . . , σm ∈ K,(5.1) πr,p,q(Dσ : ℓmu → ℓmv )2 ≤ Cπr,p,q(Dσ ⊗Dσ : ℓm
2

u → ℓm
2

v ).Let x1, . . . , xn ∈ ℓmu and y1, . . . , yn ∈ ℓmv′ . Then
(( n∑

k=1

|y′k(Dσxk)|r
)1/r)2

=
(( n∑

k=1

|y′k(Dσxk)|r
)2)1/r

=
( n∑

k,l=1

(|y′k(Dσxk)| |y′l(Dσxl)|)r
)1/r

=
( n∑

k,l=1

|(y′k ⊗ y′ℓ)(Dσ ⊗Dσ)(xk ⊗ xl)|r
)1/r

≤ πr,p,q(Dσ ⊗Dσ)wp(xk ⊗ xl; ℓ
m2

u )wq(y
′
k ⊗ y′l; ℓ

m2

v′ ).Thus, the assumptions together with the lemma above give (5.1).Now set λ := λ(Πr,p,q, u, v). Then for all ε > 0 su�
iently small and all
σ ∈ ℓ(λ+ε)−1 we have Dσ ∈ Πr,p,q(ℓu, ℓv), i.e.,

πr,p,q(Dσ : ℓu → ℓv) ≤ c(ε)‖σ‖(λ+ε)−1.Denote by D the set of all �nite-dimensional diagonal operators Dσ : K
m →

K
m, m arbitrary. Obviously, Dσ ⊗Dσ ∈ D for all σ ∈ K

m. De�ne on D twofun
tions A and B by
A(Dσ : K

m → K
m) := πr,p,q(Dσ : ℓmu → ℓmv ),

B(Dσ : K
m → K

m) := ‖σ‖ℓ
λ−1

.Then it follows from the above that for all σ ∈ K
m and ε > 0 su�
ientlysmall,

A(Dσ) ≤ c(ε)‖σ‖(λ+ε)−1 ≤ c̃(ε)mε‖σ‖λ−1 .Clearly, B(Dσ ⊗ Dσ) = B(Dσ)
2 and, by (5.1), A(Dσ)

2 ≤ CA(Dσ ⊗ Dσ).Hen
e, an appli
ation of [7, 1.3.1℄ yields, for all σ ∈ K
m,

πr,p,q(Dσ) = A(Dσ) ≤ CB(Dσ) = C‖σ‖λ−1 ,whi
h by an obvious 
ontinuity argument gives the 
laim.Corollary 5.3. Let 1 ≤ r ≤ ∞ and 1 ≤ p, q, u ≤ 2 ≤ v ≤ ∞, andde�ne 1 ≤ s ≤ ∞ by 1/s := max(0, 1 + 1/r − 1/q − 1/p+ 1/v − 1/u). Then
Dσ ∈ Πr,p,q(ℓu, ℓv) for all σ ∈ ℓs.



Absolutely (r, p, q)-summing in
lusions 31Proof. This is now a dire
t 
onsequen
e of Proposition 5.2 and our dia-grams in the previous se
tion.The above result for diagonal operators has deep 
onsequen
es for the
onne
tion to nu
lear operators. Let 0 < u ≤ ∞ and 1 ≤ s, t ≤ ∞ with
1+1/u ≥ 1/s+1/t. Then an operator T : X → Y between Bana
h spa
es Xand Y is 
alled (u, s, t)-nu
lear (shorthand: T ∈ Nu,s,t(X,Y )) if T fa
torizesthrough a diagonal operator Dσ : ℓt′ → ℓs with σ ∈ ℓu if u <∞, and σ ∈ c0if u = ∞ (see, e.g., [31, 18.1℄). We start by re
alling a useful in
lusion resultrelated to Proposition 1.2 (see, e.g., [31, 18.1.5℄).Proposition 5.4. Let 0 < u0 ≤ u1 ≤ ∞, 1 ≤ s0 ≤ s1 ≤ ∞ and
1 ≤ t0 ≤ t1 ≤ ∞ with 1/s0 + 1/t0 − 1/u0 ≤ 1/s1 + 1/t1 − 1/u1 ≤ 1. Then
Nu0,s0,t0 ⊆ Nu1,s1,t1.Proposition 5.5. Let 1 ≤ u, r ≤ ∞, and either 1 ≤ s, t ≤ 2 or 2 ≤
s, t ≤ ∞ or 1/min(s, t)−1/u ≤ 1/2, and either 1 ≤ p, q ≤ 2 or 2 ≤ p, q ≤ ∞or 1/r − 1/max(p, q) ≤ 1/2, and 0 ≤ 1/p+ 1/q − 1/r ≤ 1. Then

Nu,s,t ⊆ Πr,p,qwhenever 1/s+ 1/t− 1/u ≤ 1/p+ 1/q − 1/r.Proof. The 
ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ follows from the 
orollary aboveby de�nition.Now let 1 ≤ s, t ≤ 2. Choose u ≤ u0 ≤ ∞ su
h that 1/u0 = 1 + 1/u −
1/s− 1/t, i.e., 1/s+ 1/t− 1/u = 1/2 + 1/2− 1/u0. Then by Proposition 5.4we have Nu,s,t ⊆ Nu0,2,2. If 1 ≤ s ≤ 2 ≤ ∞ and 1/s− 1/u ≤ 1/2, then de�ne
u ≤ u0 by 1/u0 = 1/u+1/2−1/s. Proposition 5.4 then gives Nu,s,t ⊆ Nu0,2,t.The 
ase 1 ≤ t ≤ 2 ≤ s ≤ ∞ goes similarly.For 2 ≤ p ≤ q ≤ ∞, we let r ≤ r0 ≤ ∞ be de�ned by 1/r0 = 1 + 1/r −
1/p − 1/q, i.e., 1/2 + 1/2 − 1/r0 = 1/p + 1/q − 1/r. Thus, Proposition 1.2gives Πr0,2,2 ⊆ Πr,p,q. Now, if 1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1/r − 1/q ≤ 1/2,then we de�ne r0 ≤ r by 1/r0 = 1/r+ 1/2− 1/q. Proposition 1.2 then gives
Πr0,p,2 ⊆ Πr,p,q. The 
ase 1 ≤ q ≤ 2 ≤ p ≤ ∞ and 1/r − 1/p ≤ 1/2 goessimilarly.Combining all these observations with the 
ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞gives the 
laim.Our exposition now 
ulminates in the 
on�rmation of a result of [5℄ forabsolutely (r, p, q)-summing operators on ℓ2 as well as of a related result for
(u, s, t)-nu
lear operators on ℓ2 (see also [22, 2.7℄). It also shows that theabove in
lusion result in the 
ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ is optimal.Corollary 5.6. Let 1 ≤ u, r ≤ ∞ and 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ with
1/s+ 1/t− 1/u = 1/p+ 1/q − 1/r < 1. Then
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hels
Nu,s,t(ℓ2) = Πr,p,q(ℓ2) = Sv,where 1/v = 1 + 1/u− 1/s− 1/t = 1 + 1/r − 1/p− 1/q.Proof. By Propositions 5.4, 1.2 and 5.5,

Nv,2,2 ⊆ Nu,s,t ⊆ Πr,p,q ⊆ Πv,2,2.Thus, by [31, 17.5.2, 18.5.4℄,
Sv = Nv,2,2(ℓ2) ⊆ Nu,s,t(ℓ2) ⊆ Πr,p,q(ℓ2) ⊆ Πv,2,2(ℓ2) = Sv,whi
h gives the 
laim.

6. In
lusions between arbitrary sequen
e spa
es. In this se
tionwe need to extend the de�nition of absolutely (r, p, q)-summing operators.For te
hni
al reasons we will only 
onsider the 
ase p = q = 2, and the
r-norm repla
ed by a sequen
e spa
e norm.We refer to [26℄ for all notation and information on symmetri
 Bana
hsequen
e spa
es and re
all only brie�y the notions needed here. For a sym-metri
 Bana
h sequen
e spa
e E, its fundamental sequen
e (λE(n)) is de�nedby λE(n) := ‖∑n

i=1 ei‖E , where ei is the ith standard unit ve
tor. The spanof the �rst n standard unit ve
tors, equipped with the norm indu
ed by E, isdenoted by En. If E× denotes the Köthe dual of E, then λE×(n) = n/λE(n).For two symmetri
 Bana
h sequen
e spa
es E and F , we de�ne the spa
e ofmultipliers M(E,F ) by
M(E,F ) := {λ ∈ ℓ∞; λµ ∈ F for all µ ∈ E},equipped with the norm ‖λ‖M(E,F ) := sup‖µ‖E≤1 ‖λµ‖F . If E is 2-
on
aveand F is 2-
onvex (for these notions, we refer to [26℄), then the followinghold (see, e.g., [18, 2.1℄):

‖id : ℓn2 →֒ En‖ ≍ λE(n)/
√
n;(6.1)

‖id : Fn →֒ ℓn2‖ ≍ √
n/λF (n);(6.2)

λM(F,E)(n) ≍ λE(n)/λF (n).(6.3)For a symmetri
 Bana
h sequen
e spa
e E we denote by SE the Bana
hspa
e of all 
ompa
t operators T : ℓ2 → ℓ2 for whi
h the sequen
e ofsingular numbers is 
ontained in E, equipped with the norm ‖T‖SE :=
‖∑∞

i=1 si(T )ei‖E . By SnE we denote the spa
e L(ℓn2 ) equipped with the norm
‖T‖Sn

E
:= ‖∑n

i=1 si(T )ei‖E .Let E be a maximal symmetri
 Bana
h sequen
e spa
e. We 
all an opera-tor T : X → Y between Bana
h spa
esX and Y absolutely (E, 2, 2)-summingif there exists a 
onstant C > 0 su
h that for any 
hoi
e of x1, . . . , xn ∈ X
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lusions 33and y′1, . . . , y′n ∈ Y ′, the inequality
∥∥∥

n∑

k=1

y′k(Txk)ek

∥∥∥
E
≤ C sup

x′∈BX′

( n∑

k=1

|x′(xk)|2
)1/2

sup
y∈BY

( n∑

k=1

|y′k(y)|2
)1/2

holds. We put πE,2,2(T ) := inf C with C as above. In this way, we obtainthe maximal Bana
h operator ideal (ΠE,2,2, πE,2,2).Lemma 6.1. Let E0 and E1 be symmetri
 Bana
h sequen
e spa
es and
F an exa
t interpolation fun
tor. Then

F(ΠE0,2,2(X,Y ), ΠE1,2,2(X,Y )) ⊆ ΠF(E0,E1),2,2(X,Y )for any �xed pair of Bana
h spa
es X and Y .Proof. Fix x1, . . . , xn ∈ X, y′1, . . . , y′n ∈ Y ′. For T ∈ L(X,Y ) 
onsiderthe mapping ψn(T ) := (y′1(Tx1), . . . y
′
n(Txn)). Then by de�nition

‖ψn : ΠEi,2,2(X,Y ) → Ei‖ ≤ w2(xk)w2(y
′
k), i = 0, 1.Thus, interpolation and the de�nition give the 
laim.The following result for operators on a Hilbert spa
e is an extension of[31, 17.5.2℄.Proposition 6.2. Let E be a maximal symmetri
 Bana
h sequen
e spa
esu
h that E 6= ℓ∞. Then ΠE,2,2(ℓ2) = SE. Moreover , ΠE,2,2 is the largestBana
h operator ideal extending SE to the 
lass of all Bana
h spa
es.Proof. By Mityagin [30℄ (see also [24, 1.b.10℄) there exists an exa
t in-terpolation fun
tor F su
h that E = F(ℓ1, ℓ∞). Sin
e S1 = Π1,2,2(ℓ2) and

S∞ ⊆ Π∞,2,2(ℓ2), the above lemma together with [1℄ yields
SE = F(S1,S∞) ⊆ F(Π1,2,2(ℓ2), Π∞,2,2) ⊆ ΠE,2,2(ℓ2).Conversely, we have πE,2,2(idn22) ≥ λE(n). Thus, id22 6∈ ΠE,2,2. Now pro
eedas in [31, 17.5.2℄ to obtain ΠE,2,2(ℓ2) ⊆ SE . For the last part, note thatby [31, 15.6℄ an operator T : X → Y belongs to the largest extension of

SE whenever RTS ∈ SE for all S ∈ L(ℓ2, X) and R ∈ L(Y, ℓ2). By thede�nition of ΠE,2,2 it follows that su
h an operator T also belongs to ΠE,2,2.Sin
e ΠE,2,2(ℓ2) = SE by the above, the 
laim follows.We now fo
us again on in
lusion maps. As before, we denote for simpli
ityby idEF the identity map id : E →֒ F whenever E and F are symmetri
Bana
h sequen
e spa
es su
h that E is 
ontinuously embedded in F . If E =
ℓp (F = ℓp, respe
tively), we write idpF (idEp, respe
tively) instead of idℓpF(idEℓp , respe
tively).Lemma 6.3. Let E and F be symmetri
 Bana
h sequen
e spa
es both notisomorphi
 to ℓ2 su
h that E is 2-
on
ave, and F is maximal and 2-
onvex.Then SM(F,ℓ2) ◦ SM(ℓ2,E) ⊆ SM(F,E).
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helsProof. Simply imitate the �rst part of the proof of [19, 6.3℄.This now gives the following more general result.Proposition 6.4. Let E and F be symmetri
 Bana
h sequen
e spa
essu
h that E is 2-
on
ave, and F is maximal and 2-
onvex. Then idEF ∈
ΠM(F,E),2,2.Proof. If F = ℓ2, then by [13℄ it is known that idE2 ∈ ΠM(ℓ2,E),2 ⊆
ΠM(ℓ2,E),2,2. If E = ℓ2, then idF×2 ∈ ΠM(ℓ2,F×),2 ⊂ ΠM(F,ℓ2),2,2, hen
e byduality also id2F ∈ ΠM(F,ℓ2),2,2. Thus assume that both spa
es involved arenot isomorphi
 to ℓ2. The proof is then only a slight modi�
ation of one in[15℄, but we give the details for the 
onvenien
e of the reader. It is su�
ientto show that R◦idEF ◦S ∈ SM(F,E) whenever R ∈ L(F, ℓ2) and S ∈ L(ℓ2, E).By [13℄ it is known that idE2 ∈ ΠM(ℓ2,E),2, thus idE2 ◦ S ∈ ΠM(ℓ2,E),2(ℓ2) =
SM(ℓ2,E). Similarly, idF×2◦R′ ∈ SM(ℓ2,F×). Hen
e, R◦ id2F ∈ SM(F,ℓ2). Thus,by the lemma above, R ◦ idEF ◦ S = R ◦ id2F ◦ idE2 ◦ S ∈ SM(F,E), whi
hgives the 
laim.This result is best possible in the following sense: Let G be a symmetri
Bana
h sequen
e spa
e su
h that idEF ∈ ΠG,2,2, where E and F are asabove. Then λG(n) ≺ λM(F,E)(n). Indeed, as in the proof of Theorem 4.2and with the help of (6.1)�(6.3), we dedu
e that

πG,2,2(idEF ) ≥ λG(n)

‖idn2E‖ ‖idnF2‖
≻ λG(n)

λE(n)
λF (n)

≥ λG(n)

λM(F,E)(n)
.

Clearly, the above result in
ludes the 
ase iduv with 1 ≤ u ≤ 2 ≤ v ≤ ∞.The 
ase 1 ≤ u < v < 2 or 2 < u < v ≤ ∞ turned out to be more
ompli
ated, whi
h is also the 
ase in this more general setting.Proposition 6.5. Let E and F be 2-
on
ave symmetri
 Bana
h se-quen
e spa
es and F an exa
t interpolation fun
tor su
h that
sup
n,m

‖L(ℓm2 , E
n) →֒ F(L(ℓm2 , ℓ

n
1 ),L(ℓm2 , F

n))‖ <∞.Then idEF ∈ ΠF(ℓ2,ℓ∞),2,2.Proof. Fix y′1, . . . , y′m ∈ Fn and 
onsider the mappings
ψn,m : K

m ⊗ K
n → K

m, ψn,m((x1, . . . , xm)) := (y′1(x1), . . . , y
′
m(xm)).Sin
e id11 ∈ Π2,2,2, it follows that id1F ∈ Π2,2,2, thus

‖ψn,m : L(ℓm2 , ℓ
n
1 ) → ℓm2 ‖ ≤ Cw2(y

′
i)for some C > 0 independent of n and m. Trivially, idFF ∈ Π∞,2,2 with normequal to 1, that is,

‖ψn,m : L(ℓm2 , F
n) → ℓm∞‖ ≤ w2(y

′
i).
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lusions 35Then the assumption and interpolation give
‖ψn,m : L(ℓm2 , E

n) → F(ℓm2 , ℓ
m
∞)‖ ≤ C̃w2(y

′
i),where C̃ > 0 is some other 
onstant independent of n and m. This �nishesthe proof.We refer the reader to [26℄ for the proper de�nition of Lorentz and Orli
zsequen
e spa
es.Corollary 6.6.(i) Let 1 ≤ u < v < 2. Then iduv ∈ Πr,2,2, where 1/r = (v′/2)(1/u −

1/v).(ii) Let 1 < p < r < 2 and 1 ≤ q, s ≤ 2. Then idℓp,qℓr,s ∈ Πℓt,q̃,2,2, where
1/t = (r′/2)(1/p− 1/r) and 1/q̃ = 1/q − 1/2.(iii) Let ϕ and ψ be Orli
z fun
tions su
h that the fun
tions t 7→ ϕ(

√
t)and t 7→ ψ(

√
t) are equivalent to 
on
ave fun
tions. If ϕ−1(t) =

t̺(ψ−1(t)/t) for some 
ontinuous and 
on
ave fun
tion ̺ : [0,∞) →
[0,∞) whi
h is positive on (0,∞), then idℓϕℓψ ∈ Πλ,2,2, where λ−1(t)

= t1/2̺(t−1/2).Proof. (i) This is already in
luded in Proposition 3.4(i).(ii) In [28, 2.1℄ it was shown that under the assumptions above,
sup
n,m

‖L(ℓm2 , ℓ
n
p,q) →֒ (L(ℓm2 , ℓ

n
1 ),L(ℓm2 , ℓ

n
r ))θ,q̃‖ <∞,where θ = r′/p′. A qui
k inspe
tion of the proof shows that ℓnr 
an be repla
edby ℓnr,s. Thus, the above proposition applies with the interpolation fun
tor

F = (·, ·)θ,q̃. Furthermore, (ℓ2, ℓ∞)θ,q̃ = ℓt,q̃, whi
h gives the 
laim.(iii) The assumptions on ϕ and ψ ensure that ℓϕ and ℓψ are 2-
on
ave(see, e.g., [23℄). Let ̺ℓ be the lower Ov
hinnikov fun
tor asso
iated to ̺ (see,e.g., [14℄ for more details and referen
es). Then (see, e.g., [27, p. 179℄) wehave ̺ℓ(ℓ1, ℓψ) = ℓϕ, and by [14, Proposition 3℄,
sup
n,m

‖L(ℓm2 , ℓ
n
ϕ) →֒ ̺ℓ(L(ℓm2 , ℓ

n
1 ),L(ℓm2 , ℓ

n
ψ))‖ <∞.Thus, the above proposition applies, and ̺ℓ(ℓ2, ℓ∞) = ℓλ (see, e.g., [27,p. 178℄), whi
h gives the 
laim.7. In
lusions between �nite-dimensional S
hatten 
lasses. We�nally 
onsider in
lusions id : SnE →֒ SnF , where E and F are symmetri
Bana
h sequen
e spa
es. Sin
e both unitary ideals involved 
ontain ℓn2 , itfollows that

πr,p,q(id : SnE →֒ SnF ) ≥ πr,p,q(idn22) = nmax(0,1+1/r−1/p−1/q)and
πG,2,2(id : SnE →֒ SnF ) ≥ πG,2,2(idn22) = λG(n)
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helsfor all 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and every symmetri
 Bana
h sequen
espa
e G. To give an analogue of Corollary 3.3, we need some more interpo-lation formulas.Proposition 7.1. Let 1 ≤ p0, p1, q0, q1 ≤ 2, 0 < θ < 1 and 1 ≤ p, q ≤ 2with 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1. Then
sup
n,m

‖ℓmp ⊗ε Snq →֒ [ℓmp0 ⊗ε Snq0 , ℓmp1 ⊗ε Snq1 ]θ‖ <∞and
sup
n,m

‖Snp ⊗ε Smq →֒ [Snp0 ⊗ε Smq0 ,Snp1 ⊗ε Smq1 ]θ‖ <∞.Proof. This follows from the 
ases q0 = q1 = q = 2 (Proposition 2.1) and
p0 = p1 = p = 2 ([16, 4.3℄) by applying [17, Lemma 9℄ together with Pisier'sfa
torization theorem as in [17, p. 450℄.Lemma 7.2. Let 1 ≤ u0, u1 ≤ 2 ≤ v0, v1 ≤ ∞, 1 ≤ r0, r1 ≤ ∞ and
1 ≤ s0, s1, t0, t1 ≤ 2. Then for all 0 < θ < 1,
πr,s,t(id : Snu →֒ Snv ) ≤ πr0,s0,t0(id : Snu0

→֒ Snv0)1−θπr1,s1,t1(id : Snu1
→֒ Snv1)θ,where 1/u = (1−θ)/u0+θ/u1, 1/v = (1−θ)/v0+θ/v1, 1/r = (1−θ)/r0+θ/r1,

1/s = (1 − θ)/s0 + θ/s1 and 1/t = (1 − θ)/t0 + θ/t1.Proof. The proof goes along similar lines to the one of Lemma 2.3(i),using the above proposition.As before, we have to verify some extreme 
ases.Lemma 7.3. The following hold true:(i) π1,1,1(id : Sn2 →֒ Sn2 ) = 1;(ii) π1,2,2(id : Sn1 →֒ Sn∞) = n;(iii) π1,2,1(id : Sn1 →֒ Sn2 ) = π1,1,2(id : Sn2 →֒ Sn∞) ≍ √
n;(iv) π1,1,2(id : Sn1 →֒ Sn2 ) = π1,2,1(id : Sn2 →֒ Sn∞) ≍ √
n.Proof. (i) is 
lear as Π1,1,1 = L. Sin
e π2(id : Sn1 →֒ Sn2 ) =

√
n (see, e.g.,[16, 5.2℄), we have(7.1) sup

m
‖id⊗ id : Sn1 ⊗ε ℓ

m
2 → ℓn

2m
2 ‖ =

√
n.Thus, by duality,

sup
m

‖id⊗ id : ℓn
2m

2 → Sn∞ ⊗π ℓ
m
2 ‖ =

√
n.Hen
e, by fa
torization,

sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
2 → Sn∞ ⊗π ℓ

m
2 ‖ = n,whi
h means π1,2,2(id : Sn1 →֒ Sn∞) = n. Next, the identity map idS2

isabsolutely (2, 1)-summing, that is,(7.2) sup
m

‖id⊗ id : Sn2 ⊗ε ℓ
m
1 → ℓn

2m
2 ‖ <∞.
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lusions 37By duality and fa
torization, this together with (7.1) yields
sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
2 → Sn2 ⊗π ℓ

m
∞‖ ≍ √

n,whi
h gives π1,2,1(id : Sn1 →֒ Sn2 ) ≍ π1,1,2(id : Sn2 →֒ Sn∞) ≍ √
n. Finally,sin
e Π1(X,Y ) = Π2(X,Y ) whenever X is of 
otype 2, we have π1(id :

Sn1 →֒ Sn2 ) ≍ π2(id : Sn1 →֒ Sn2 ) ≍ √
n. Thus,

sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
1 → Sn2 ⊗π ℓ

m
1 ‖ ≍ √

n,whi
h by fa
torization gives
sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
1 → Sn2 ⊗π ℓ

m
2 ‖ ≍ √

n.Hen
e, π1,1,2(id : Sn1 →֒ Sn2 ) ≍ π1,2,1(id : Sn2 →֒ Sn∞) ≍ √
n, whi
h �nishesthe proof.Proposition 7.4. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u ≤ 2 ≤ v ≤ ∞with 1/u− 1/v = 1 + 1/r − 1/p− 1/q. Then

πr,p,q(id : Snu →֒ Snv ) ≍ n1/u−1/v.Proof. As in the proof of Theorem 3.2, we �x 1 ≤ q ≤ 2 and de�ne q̃and q a

ordingly. Using Lemmas 7.2 and 7.3, we arrive at the following six
ases (ordered a

ording to the proof of Theorem 3.2):
• π1,q̃,q(id : Sn1 →֒ Sn2 ) ≍ π1,q̃,q(id : Sn2 →֒ Sn∞) ≍ √

n;
• π1,1,q(id : Snq̃ →֒ Sn2 ) ≍ π1,1,q(id : Sn2 →֒ Snq ) ≍ n1/q′ ;
• π1,2,q(id : Snq̃ →֒ Sn∞) ≍ π1,2,q(id : Sn1 →֒ Snq ) ≍ n1/q̃.Then pro
eed by interpolation as in the proof of Theorem 3.2 to obtain thestatement in the 
ase r = 1. The general 
ase then follows as in the proof ofCorollary 3.3.Corollary 7.5. Let 1 ≤ p, q ≤ 2 and 1 ≤ r ≤ ∞ with 1/p+ 1/q − 1/r

≤ 1. Then for all 1 ≤ u ≤ 2 ≤ v ≤ ∞,
πr,p,q(id : Snu →֒ Snv ) ≍ n1+1/r−1/p−1/qπr,p,q(id : ℓnu →֒ ℓnv ).Moreover , for 2 ≤ r, s ≤ ∞,

‖id⊗ id : Snp ⊗ε ℓ
n2

q → Snr ⊗π ℓ
n2

s ‖ ≍ n2−1/p−1/q+max(0,2−1/p−1/q+1/r+1/s).Proof. Appropriate fa
torizations give the upper estimates. For the lowerestimates observe �rst that
πr,p,q(id : Snu →֒ Snv ) ≥ πr,p,q(idn22) = n1/t,where 1/t = 1 + 1/r − 1/p − 1/q. By (8.1) and the lower estimate fromCorollary 8.8 below,
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hels
πr,p,q(id : Snu →֒ Snv ) ≥ πt,2,2(id : Snu →֒ Snv ) ≥ π

(n2)
t,2,2(id : Snu →֒ Snv )

≥ n2/thn2(id : Snu →֒ Snv )

≻ n2/tn1/v−1/u = n2+2/r−2/p−2/q+1/v−1/u.This 
al
ulation also gives the last part of the statement on taking r = 1.Mathemati
al routine lets us formulate and prove an analogue of Corol-lary 4.4:Proposition 7.6. Let 1 ≤ p, q ≤ 2 ≤ r, s ≤ ∞. Then
‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ n‖id⊗ id : ℓnp ⊗ε ℓ

m
q → ℓnr ⊗π ℓ

m
s ‖.Proof. We have to show that

‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ n1+max(0,1−1/p−1/q+1/r+1/s).Again, we �rst establish the 
ases where the norm is asymptoti
ally equiva-lent to n�note that this behaviour is best possible, sin
e all spa
es involved
ontain ℓn2 .By [18, 11.4℄,
‖id⊗ id : Sn1 ⊗ε Sn2 → Sn2

2 ‖ ≍ √
n.Thus, by duality and fa
torization the following identities have norms asymp-toti
ally equivalent to n:id⊗ id : Sn1 ⊗ε Sn2 → Sn∞ ⊗π Sn2 , id⊗ id : Sn1 ⊗ε Sn2 → Sn2 ⊗π Sn∞.Furthermore, by [18, 11.3℄ we have

‖id⊗ id : Sn1 ⊗ε Sn1 → Sn2 ⊗π Sn2 ‖ ≍ nand, by duality,
‖id⊗ id : Sn2 ⊗ε Sn2 → Sn∞ ⊗π Sn∞‖ ≍ n.Now an interpolation strategy similar to the one in the proof of Theorem 3.2together with Proposition 7.1 establishes
‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ nwhenever 1/p + 1/q − 1/r − 1/s = 1. The upper estimates now follow byappropriate fa
torizations. For the lower ones, re
all that by [10, p. 35℄ wehave N(idE) = dimE for all �nite-dimensional Bana
h spa
es E. Thus,N(id : Snr′ →֒ Sns ) ≥ n2

n1/r′−1/s
= n1+1/r+1/s.Hen
e,

‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≥ N(id : Snr′ →֒ Sns )

‖id : Snp′ →֒ Snq ‖
≥ n2−1/p−1/q+1/r+1/s,whi
h together with the general lower bound n gives the 
laim.



Absolutely (r, p, q)-summing in
lusions 39To formulate an analogue of Proposition 6.4 
auses some problems. Sofar, we are only able to state the following; the proof is similar to the one ofProposition 6.4. We leave the details to the reader.Proposition 7.7. Let E0, E1 be 2-
on
ave symmetri
 Bana
h sequen
espa
es su
h that(7.3) πM(ℓ2,Ei),2(id : SnEi →֒ Sn2 ) ≍ λEi(n)√
n

, i = 0, 1.Then
πM(E×

1
,E0),2,2(id : SnE0

→֒ Sn
E×

1

) ≍ λE0
(n)λE1

(n)

n
.In [16, 5.3℄ the following examples of spa
es satisfying (7.3) were given:

• ℓp, where 1 ≤ p ≤ 2;
• ℓp,q, where 1 < p < 2 and 1 ≤ q ≤ 2;
• ℓϕ, where ϕ(t) is a submultipli
ative Orli
z fun
tion not equivalent to
t2 in a neighbourhood of zero, su
h that the fun
tion t 7→ ϕ(

√
t) isequivalent to a 
on
ave fun
tion in a neighbourhood of zero.However, they also gave examples of Lorentz and Orli
z sequen
e spa
esthat are 2-
on
ave but do not satisfy (7.3), whi
h makes it impossible tostate a more general result in the spirit of Proposition 6.4.8. Appli
ations to Hilbert numbers. We refer to [24℄ and [32℄ forthe general theory of s-numbers of operators. For an operator T : X → Ybetween Bana
h spa
esX and Y re
all the de�nition of its kth approximationnumber

ak(T ) := inf{‖T − S‖; S ∈ L(X,Y ) with ‖S‖ ≤ 1 and rank S < k},and its kth Hilbert number
hk(T ) := sup{ak(RTS); R ∈ L(Y, ℓ2), S ∈ L(ℓ2, X), ‖S‖, ‖R‖ ≤ 1}.It is 
lear from the de�nition that a1(T ) ≥ a2(T ) ≥ · · · ≥ 0 and h1(T ) ≥

h2(T ) ≥ · · · ≥ 0. Furthermore, for a 
ompa
t operator between Hilbertspa
es, the sequen
es of approximation and Hilbert numbers 
oin
ide withthe sequen
e of singular numbers.An important inequality due to König (see, e.g., [24, 2.a.3℄) states that
k1/rxk(T ) ≤ πr,2(T ) for all T ∈ Πr,2, where xk(T ) denotes the kth Weylnumber of T (see, e.g., [32℄). We now provide an analogue for Hilbert numbersand (E, 2, 2)-summing operators.For an operator T denote by π(k)

E,2,2(T ) the (E, 2, 2)-summing norm of T
omputed with at most k ve
tors x1, . . . , xk and k ve
tors y′1, . . . , y′k.
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helsProposition 8.1. Let E be a maximal symmetri
 sequen
e spa
e. Then(8.1) λE(k)hk(T ) ≤ π
(k)
E,2,2(T )for all operators T ∈ L.Proof. Let T ∈ L(X,Y ) where X and Y are Bana
h spa
es. By Bau-hardt's 
hara
terization of Hilbert numbers (see, e.g., [31, 11.4.3℄) there existoperators S : ℓk2 → X and R : Y → ℓk2 su
h that ‖S‖, ‖R‖ ≤ 1 and

RTS = (1 + ε)−1hk(T )idk22.Equivalently, this means that there exist x1, . . . , xk ∈ X and y′1, . . . , y′k ∈ Y ′su
h that w2(xi) ≤ 1, w2(y
′
i) ≤ 1 and y′i(Txi) = (1+ε)−1hk(T ), i = 1, . . . , k.Then by the de�nition of π(k)
E,2,2(T ),

(1 + ε)−1hk(T )λE(k) =
∥∥∥

k∑

i=1

|y′i(Txi)|ei
∥∥∥
E
≤ π

(k)
E,2,2(T ),whi
h gives the 
laim.For a symmetri
 Bana
h sequen
e spa
e E, denote by λ(E) andm(E) theLorentz and Mar
inkiewi
z spa
es asso
iated to the fundamental fun
tion λEof E, respe
tively, in the sense of [12, p. 59℄. Furthermore, for a s
ale s of

s-numbers in the sense of [32℄ and a symmetri
 Bana
h sequen
e spa
e F ,we de�ne LsF to be the 
lass of all operators T between Bana
h spa
es su
hthat (sn(T )) ∈ F , equipped with the norm sF (T ) := ‖(sn(T ))‖F , T ∈ LsF .In [12, 3.1℄ the authors proved the following:For every symmetri
 Bana
h sequen
e spa
e E su
h that ℓ2 →֒ E, wehave ΠE,2 →֒ Lxm(E). If in addition E is an interpolation spa
e with respe
tto the 
ouple (ℓ2, ℓ∞), then Lxλ(E) →֒ ΠE,2.Moreover, for r > 2 Piets
h [32, 2.7.5℄ showed that Lr ⊆ Πr,2 ⊆ Lr,∞.The above proposition together with Proposition 6.2 now yields the followinganalogue for the s
ale of Hilbert numbers and (E, 2, 2)-summing operators:Corollary 8.2. Let E 6= ℓ∞ be a maximal symmetri
 Bana
h sequen
espa
e. Then
LhE →֒ ΠE,2,2 →֒ Lhm(E).A �rst appli
ation to in
lusion maps is the following:Proposition 8.3. Let E and F be symmetri
 Bana
h sequen
e spa
essu
h that E is 2-
on
ave, and F is 2-
onvex and maximal. Then
hk(idEF ) ≍ λF (k)

λE(k)
.



Absolutely (r, p, q)-summing in
lusions 41Proof. We have hk(idk22) = 1, hen
e by fa
torization,
hk(idEF ) ≥ hk(idkEF ) ≥ ‖idk2E‖

‖idkF2‖
≍ λF (k)

λE(k)
.Conversely, by Proposition 6.4 we know that idEF ∈ ΠM(F,E),2,2. Thus,the proposition above gives hk(idEF ) ≺ 1/λM(F,E)(k). By [18℄, we have

λM(F,E)(k) ≍ λE(k)/λF (k), whi
h gives the 
laim.Now the above and the results from the previous se
tion give the followingexamples. We guess that (i) is already known; however, we have not founda sour
e where it is written up in this form.Corollary 8.4.(i) Let 1 ≤ u ≤ v ≤ ∞. Then
hk(iduv) ≍





k(v′/2)(1/v−1/u), 1 ≤ u < v < 2;

k(u/2)(1/v−1/u), 2 < u < v ≤ ∞;

k1/v−1/u, 1 ≤ u ≤ 2 ≤ v ≤ ∞;

k−1/2, u = v = 1 or u = v = ∞;

1, 1 < u = v <∞.(ii) Let 1 < p ≤ r <∞ and 1 ≤ q, s ≤ ∞. Then
hk(idℓp,qℓr,s)≍





k(r′/2)(1/r−1/p), 1<p<r < 2, p≤ q≤ 2 and 1≤ s≤ r;

k(p/2)(1/r−1/p), 2<p<r <∞, 2≤ q≤ p and r≤ s≤∞;

k1/r−1/p, 1<p< 2<r <∞ and 1≤ q≤ 2≤ s≤∞;

1, p= r and 1<q= s<∞.(iii) Let 1 < p < 2 ≤ q < ∞ and w be a Lorentz sequen
e su
h that
nw

2/(2−p)
n ≍ ∑n

i=1w
2/(2−p)
i . Then

hk(idd(w,p)d(w,q)) ≍ (kwk)
1/q−1/p.(iv) Let ϕ and ψ be Orli
z fun
tions su
h that t 7→ ϕ(

√
t) and t 7→ √

ψ(t)are equivalent to 
on
ave and 
onvex fun
tions, respe
tively , and ψsatis�es the ∆2-
ondition. Then
hk(idℓϕℓψ) ≍ ϕ−1(1/k)

ψ−1(1/k)
.(v) Let ϕ and ψ be Orli
z fun
tions su
h that t 7→ ϕ(

√
t) and t 7→

ψ(
√
t) are equivalent to 
on
ave fun
tions, respe
tively. If ϕ−1(t) =

t̺(ψ−1(t)/t) for some 
ontinuous and 
on
ave fun
tion ̺ : [0,∞) →
[0,∞) whi
h is positive on (0,∞), then

hk(idℓϕℓψ) ≺ ̺(k1/2)

k1/2
.
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helsProof. (i) The 
ase 1 ≤ u ≤ 2 ≤ v ≤ ∞ is 
ontained in the aboveproposition. Now let 1 ≤ u < v < 2. Then the upper estimate follows from(8.1) together with Corollary 6.6(i). For the lower estimate, 
hoose m ∈ Nsu
h that m2/v′/2 ≤ k ≤ m2/v′. Now [20, Proposition (2)℄ gives
hk(iduv) ≥ hk(idmuv) ≻ m1/v−1/u ≥ 2−1k(v′/2)(1/v−1/u),whi
h gives the lower estimate. The 
ase 2 < u < v ≤ ∞ then follows byduality. Sin
e id11 ∈ Π2,2,2, we have hk(id11) ≺ k−1/2 by (8.1); the lower esti-mate follows by fa
torizing idk22 through id11 (see also [32, 2.9.19℄). The 
laimfor id∞∞ then follows by duality. Finally, any K-
onvex in�nite-dimensionalBana
h spa
e (for this notion see, e.g., [19℄) 
ontains a 
omplemented 
opyof ℓk2 (see, e.g., [19, 19.3℄). Thus, hk(idX) ≍ 1 for any K-
onvex in�nite-dimensional Bana
h spa
e X, in parti
ular for X = ℓu, 1 < u <∞.(ii) This follows as in (i) together with Corollary 6.6(ii)�note that λℓt,q̃(k)

≍ k1/t�and the lower estimate for hk(idpr) in (i).(iii) The assumption on w implies that d(w, p) is 2-
on
ave (see, e.g., [33℄),and d(w, q) for q ≥ 2 is always 2-
onvex (and maximal). Thus, the aboveproposition gives the 
laim, if we take into a

ount that λd(w,r)(k) ≍ (kwk)
1/rfor any 1 < r <∞.(iv) The assumptions ensure that ℓϕ is 2-
on
ave and that ℓψ is 2-
onvexand maximal. Hen
e, the 
laim follows from the proposition above�notethat λℓϕ(k) ≍ 1/ϕ−1(1/k) for any Orli
z sequen
e spa
e ℓϕ.(v) This follows from (8.1) together with Corollary 6.6(iii).We now show that one 
an even obtain all asymptoti
ally exa
t upperestimates for the Hilbert numbers of the �nite-dimensional in
lusions idnuvby using (8.1). The lower ones 
an be found in [20℄. Note that the 
ase

1 ≤ v < u′ ≤ ∞ follows from the one below by the duality of Hilbertnumbers.Proposition 8.5. Let 1 ≤ u′ ≤ v ≤ ∞ and 1 ≤ k ≤ n. Then
hk(idnuv) ≍





min(n1/v−1/u, n1/vk−1/2, nk−1), 1 ≤ u′ ≤ v ≤ 2,
min(n1/v−1/u, n1/vk−1/2), 2 ≤ v ≤ u ≤ ∞,
min(k(u/2)(1/v−1/u), n1/vk−1/2), 2 ≤ u < v ≤ ∞,
k1/v−1/u, 2 ≤ u′ ≤ v ≤ ∞.Proof. Let 1 ≤ u′ ≤ v ≤ 2. Then π2,2,2(idnuv) ≍ n1/v, hen
e hk(idnuv) ≺

n1/vk−1/2. Moreover, π1,2,2(idnuv) ≍ n, whi
h gives hk(idnuv) ≺ nk−1. Finally,by the monotoni
ity of Hilbert numbers, hk(idnuv) ≤ h1(idnuv) = n1/v−1/u.Let 2 ≤ u, v ≤ ∞. Then π2,2,2(idnuv) ≍ n1/v, and therefore hk(idnuv) ≺
n1/vk−1/2. If v ≤ u, then as before hk(idnuv) ≤ h1(idnuv) = n1/v−1/u. If u < v,then hk(idnuv) ≤ hk(iduv) ≺ k(u/2)(1/v−1/u) as already seen in the above
orollary. The lower estimate in this spe
ial 
ase also follows similarly to the
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lusions 43above: if k ≤ n2/u, then 
hoose 1 ≤ ℓ ≤ m su
h that ℓ2/u/2 ≤ k ≤ ℓ2/u.Then again [20, Proposition (2)℄ gives
hk(idnuv) ≥ hk(idℓuv) ≻ ℓ1/v−1/u ≥ 2−1k(u/2)(1/v−1/u).The estimate hk(idnuv) ≻ n1/vk−1/2 for all n2/u ≤ k ≤ m from [20, Proposi-tion (2)℄ gives the remaining lower estimate in this 
ase.Let 2 ≤ u′ ≤ v ≤ ∞. Then iduv ∈ Πr,2,2, where 1/r = 1/u− 1/v. Hen
e,

hk(idnuv) ≺ k1/v−1/u.We �nish with in
lusions between �nite-dimensional S
hatten 
lasses.Sin
e ℓn2 is 
ontained in both spa
es involved, hk(id : SnE →֒ SnF ) = 1 when-ever E is 
ontinuously embedded into F , and 1 ≤ k ≤ n. Proposition 7.7together with (8.1) gives the following upper estimate:Proposition 8.6. Let E0, E1 be 2-
on
ave symmetri
 Bana
h sequen
espa
es satisfying (7.3). Then for n ≤ k ≤ n2,
hk(id : SnE0

→֒ Sn
E×

1

) ≺ k

n

λE0
(n)λE1

(n)

λE0
(k)λE1

(k)
.The situation for the lower estimate is more satisfa
tory. Here, for asymmetri
 Bana
h sequen
e spa
e G let λG : [1,∞) → [1,∞) be a monotonefun
tion extending λG : N → [1,∞).Proposition 8.7. Let E and F be symmetri
 Bana
h sequen
e spa
essu
h that E is 2-
on
ave and F is 2-
onvex. Then for n ≤ k ≤ n2,

hk(id : SnE →֒ SnF ) ≻ λF (k/n)

λE(k/n)
.Proof. We pro
eed similarly to the proof of [21, 4.2℄. Choose 1 ≤ h ≤ nsu
h that nh − 1 ≤ k ≤ nh. Identify L(ℓn2 , ℓ

h
2) and L(ℓn2 , ℓ

n
2 ) with thesets of all n × h-matri
es and n × n-matri
es, respe
tively. Furthermore,denote the spa
e L(ℓn2 , ℓ

h
2) equipped with the Hilbert�S
hmidt norm by

S2(ℓ
n
2 , ℓ

h
2), and de�ne SF (ℓn2 , ℓ

h
2) likewise. Clearly, the natural inje
tion i2E :

S2(ℓ
n
2 , ℓ

h
2) →֒ SnE has norm asymptoti
ally equivalent to λE(h)/

√
h. Nowlet PF2 : SnF → S2(ℓ

n
2 , ℓ

h
2) be the natural proje
tion whi
h 
uts o� thelast n − h + 1 rows. Observe that any matrix in L(ℓn2 , ℓ

h
2) has at most hnonzero singular values. Sin
e sk(PF2A) ≤ sk(A) for all A ∈ L(ℓn2 ), we have

‖PF2 : SnF → SF (ℓn2 , ℓ
h
2)‖ ≤ 1. Hen
e, for A ∈ L(ℓn2 ) and σ = (σ1, . . . , σℓ) thenonzero singular values of PF2A, with ℓ ≤ h,

‖PF2A | S2(ℓ
n
2 , ℓ

h
2)‖ = ‖σ‖2 ≤ ‖idhF2‖ ‖σ‖F ≤ λF (h)√

h
‖A | SnF ‖.Thus, sin
e idS2(ℓn

2
,ℓh

2
) = PF2◦(id : SnE →֒ SnF )◦i2E , it follows by the de�nition
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helsof hk that
hk(id : SnE →֒ SnF ) ≥

ak(idS2(ℓn
2
,ℓh

2
))

λE(h)/λF (h)
=
λF (h)

λE(h)
≥ 1

2

λF (k/n)

λE(k/n)
,whi
h gives the desired estimate.All the above together now gives the following examples. As usual, weset Snp,q := Snℓp,q .Corollary 8.8. Let n ≤ k ≤ n2.(i) Let 1 ≤ u ≤ 2 ≤ v ≤ ∞. Then

hk(id : Snu →֒ Snv ) ≍ (n/k)1/u−1/v.(ii) Let 1 < u < 2 < v <∞ and 1 ≤ r ≤ 2 ≤ s ≤ ∞. Then
hk(id : Snu,r →֒ Snv,s) ≍ (n/k)1/u−1/v.
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