On upper and lower bounds of the numerical radius
and an equality condition

by

TAKEAKI YAMAZAKI (Yokohama)

Abstract. We give an inequality relating the operator norm of T and the numerical radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius than Kittaneh’s result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition for the numerical radius to be equal to half the operator norm.

1. Introduction. For a bounded linear operator T on a complex Hilbert space H, we denote the operator norm and the numerical radius of T by $\|T\|$ and $w(T)$, respectively. It is well known that $w(T)$ is an equivalent norm of T, since (see [5, Theorem 1.3-1])

\begin{equation}
\frac{1}{2} \|T\| \leq w(T) \leq \|T\|.
\end{equation}

Concerning the second inequality, Kittaneh [8] has shown the following precise estimate of $w(T)$ by using several norm inequalities and ingenious techniques:

\begin{equation}
w(T) \leq \frac{1}{2} \|T\| + \frac{1}{2} \|T^2\|^{1/2}.
\end{equation}

Obviously, (1.2) is sharper than the right inequality of (1.1). We remark that we cannot compare $w(T)$ with $\|T^2\|^{1/2}$, generally. In fact, if $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, then $0 = \|T^2\|^{1/2} < w(T) = 1/2$; but if

\[T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \]

then $1/\sqrt{2} = w(T) < \|T^2\|^{1/2} = 1$.

We obtain a sufficient condition for $w(T) = \frac{1}{2} \|T\|$ to hold from (1.1), (1.2) and [8]: if $T^2 = 0$, then $w(T) = \frac{1}{2} \|T\|$. But this condition is not

2000 Mathematics Subject Classification: Primary 47A12; Secondary 47A30, 47A20.

Key words and phrases: numerical radius, Aluthge transform, normaloid operators.
necessary: if \(T = 1 \oplus \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \), then \(w(T) = \frac{1}{2} \|T\| = 1 \), but \(T^2 \neq 0 \). We remark that some (necessary or sufficient) conditions for \(w(T) = \frac{1}{2} \|T\| \) to hold are given in [5, Theorems 1.3-4 and 1.3-5], but no equivalent condition has been known yet.

Let \(T = U|T| \) be the polar decomposition of \(T \). The Aluthge transform \(\tilde{T} \) of \(T \) is defined by \(\tilde{T} = |T|^{1/2}U|T|^{1/2} \) (see [1]). The following properties of \(\tilde{T} \) are well known:

(i) \(\|\tilde{T}\| \leq \|T\| \),
(ii) \(w(\tilde{T}) \leq w(T) \),
(iii) \(r(\tilde{T}) = r(T) \).

The first and last properties are easy by the definition of \(\tilde{T} \), and the second one is shown in [7], [9] and [11]. Moreover for a non-negative integer \(n \), we denote the \(n \)th Aluthge transform by \(\tilde{T}_n \), i.e.,

\[
\tilde{T}_n = \tilde{T}_{n-1} \quad \text{and} \quad \tilde{T}_0 = T.
\]

This was first considered in [7] and [10], independently.

In this paper, first, we obtain a more precise estimate than (1.2). In the inequality, we use a bigger term, \(\|T\| \), and a smaller one, \(w(\tilde{T}) \), than \(w(T) \). Moreover the proof is very simple and needs only a generalized polarization identity. Next, we give a condition equivalent to \(w(T) = \frac{1}{2} \|T\| \).

2. An inequality sharper than Kittaneh’s. In this section, we prove a sharper estimate of \(w(T) \) than Kittaneh’s [8], as follows:

THEOREM 2.1. For any \(T \in B(\mathcal{H}) \), \(w(T) \leq \frac{1}{2} \|T\| + \frac{1}{2} w(\tilde{T}) \).

We remark that by the Heinz inequality [6], \(\|A^rXB^r\| \leq \|AXB\|^r \|X\|^{1-r} \) for \(A, B \geq 0 \) and \(r \in [0, 1] \), we have

\[
w(\tilde{T}) \leq \|\tilde{T}\| = \|T\|^{1/2}U|T|^{1/2} \|U\|^{1/2} = \|T^2\|^{1/2},
\]

i.e., Theorem 2.1 is sharper than (1.2).

To prove Theorem 2.1, we use the following famous formula which is called the generalized polarization identity:

THEOREM A (Generalized Polarization Identity). For each \(T \in B(\mathcal{H}) \) and \(x, y \in \mathcal{H} \),

\[
\langle Tx, y \rangle = \frac{1}{4}(\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle) + \frac{1}{4}i(\langle T(x+iy), x+iy \rangle - \langle T(x-iy), x-iy \rangle).
\]

Proof of Theorem 2.1. First of all, we note that

\[
w(T) = \sup_{\theta \in \mathbb{R}} \|\text{Re}(e^{i\theta}T)\|,
\]

\[
\|\|T\|^{1/2}U|T|^{1/2} \|U\|^{1/2} = \|T^2\|^{1/2},
\]

\[
w(\tilde{T}) \leq \|\tilde{T}\| = \|T\|^{1/2}U|T|^{1/2} \|U\|^{1/2} = \|T^2\|^{1/2},
\]

i.e., Theorem 2.1 is sharper than (1.2).
Bounds of the numerical radius

\[\sup_{\theta \in \mathbb{R}} \text{Re}\{e^{i\theta} \langle Tx, x \rangle\} = |\langle Tx, x \rangle| \]

and

\[\sup_{\theta \in \mathbb{R}} \|\text{Re}(e^{i\theta}T)\| = \sup_{\theta \in \mathbb{R}} w(\text{Re}(e^{i\theta}T)) = w(T). \]

Let \(T = U|T| \) be the polar decomposition. Then by (2.2), we have

\[\langle e^{i\theta}Tx, x \rangle = \langle e^{i\theta}|T|x, U^*x \rangle \]

\[= \frac{1}{4}(\langle |T|(e^{i\theta} + U^*)x, (e^{i\theta} + U^*)x \rangle - \langle |T|(e^{i\theta} - U^*)x, (e^{i\theta} - U^*)x \rangle) \]

\[+ \frac{1}{4}i(\langle |T|(e^{i\theta} + iU^*)x, (e^{i\theta} + iU^*)x \rangle - \langle |T|(e^{i\theta} - iU^*)x, (e^{i\theta} - iU^*)x \rangle). \]

Note that the inner products on the right hand side are all positive since \(|T| \) is positive. Hence we have

\[\text{Re}\langle e^{i\theta}Tx, x \rangle \]

\[= \frac{1}{4}(\langle (e^{-i\theta} + U)|T|(e^{i\theta} + U^*)x, x \rangle - \langle (e^{-i\theta} - U)|T|(e^{i\theta} - U^*)x, x \rangle) \]

\[\leq \frac{1}{4}\|\langle (e^{-i\theta} + U)|T|(e^{i\theta} + U^*)x, x \rangle \| \]

\[\leq \frac{1}{4}\|\langle (e^{-i\theta} + U)|T|(e^{i\theta} + U^*) \| \]

\[= \frac{1}{4}\| |T|^{1/2}(e^{i\theta} + U^*)(e^{-i\theta} + U)|T|^{1/2} \| \quad (\text{since } \|X^*X\| = \|XX^*\|) \]

\[= \frac{1}{4}\|2|T| + e^{i\theta}\tilde{T} + e^{-i\theta}(\tilde{T})^* \| \]

\[= \frac{1}{2}\| |T| + \text{Re}(e^{i\theta}\tilde{T}) \| \]

\[\leq \frac{1}{2}\| |T| \| + \frac{1}{2}\|\text{Re}(e^{i\theta}\tilde{T}) \| \]

\[\leq \frac{1}{2}\| |T| \| + \frac{1}{2}w(\tilde{T}) \quad (\text{by (2.3)).} \]

Hence we have the desired inequality. ■

Corollary 2.2. If \(\tilde{T} = 0 \), then \(w(T) = \frac{1}{2}\| |T| \|. \)

Proof. The proof is easy by Theorem 2.1 and (1.1). ■

Remark.

(i) In Corollary 2.2, the conditions \(\tilde{T} = 0 \) and \(w(T) = \frac{1}{2}\| |T| \| \) are not equivalent: if \(T = 1 \oplus \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right) \), then \(w(T) = \frac{1}{2}\| |T| \| = 1 \), but \(\tilde{T} = 1 \oplus 0 \neq 0 \).

(ii) The conditions \(\tilde{T} = 0 \) and \(T^2 = 0 \) are equivalent. Indeed, let \(T = U|T| \) be the polar decomposition. If \(\tilde{T} = 0 \), then

\[T^2 = U|T|U|T| = U|T|^{1/2}\tilde{T}|T|^{1/2} = 0. \]

Conversely, if \(T^2 = 0 \), then by (2.1) we have \(\|\tilde{T}\| \leq \|T^2\|^{1/2} = 0. \)
Corollary 2.3. For $T \in B(\mathcal{H})$,

$$w(T) \leq \sum_{n=1}^{\infty} \frac{1}{2^n} \|\tilde{T}_{n-1}\|.$$

Proof. By using Theorem 2.1 several times, we have

$$w(T) \leq \frac{1}{2} \|T\| + \frac{1}{2} w(\tilde{T}) \leq \frac{1}{2} \|T\| + \frac{1}{2} \left\{ \frac{1}{2} \|\tilde{T}\| + \frac{1}{2} w(\tilde{T}_2) \right\}$$

$$= \frac{1}{2} \|T\| + \frac{1}{4} \|	ilde{T}\| + \frac{1}{4} w(\tilde{T}_2)$$

$$\leq \frac{1}{2} \|T\| + \frac{1}{4} \|	ilde{T}\| + \frac{1}{8} \|	ilde{T}_2\| + \frac{1}{8} w(\tilde{T}_3) \leq \cdots \leq \sum_{n=1}^{\infty} \frac{1}{2^n} \|	ilde{T}_{n-1}\|.$$

Let

$$s(T) = \sum_{n=1}^{\infty} \frac{1}{2^n} \|	ilde{T}_{n-1}\|.$$

By (2.1), $\|\tilde{A}\| \leq \|A^2\|^{1/2} \leq \|A\|$ for any $A \in B(\mathcal{H})$, and we obtain

(2.4) $r(T) \leq w(T) \leq \frac{1}{2} \|T\| + \frac{1}{2} w(\tilde{T}) \leq s(T) \leq \frac{1}{2} \|T\| + \frac{1}{2} \|T^2\|^{1/2} \leq \|T\|$,

where $r(T)$ means the spectral radius of T.

It is well known that T is normaloid (i.e., $\|T\| = r(T)$) if and only if $\|T\| = w(T)$. Here we give other conditions of normaloidity of T:

Corollary 2.4. The following conditions are equivalent:

(i) T is normaloid,

(ii) $\|T\| = s(T)$,

(iii) $r(T) = \frac{1}{2} \|T\| + \frac{1}{2} w(\tilde{T})$,

(iv) $s(T) = s(\tilde{T})$.

Remark.

(i) In Corollary 2.4, condition (ii) cannot be replaced by the weaker condition $\|T\| = \frac{1}{2} \|T\| + \frac{1}{2} \|T^2\|^{1/2}$. For example, let

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then $\|T\| = \frac{1}{2} \|T\| + \frac{1}{2} \|T^2\|^{1/2} = 1$ but $0 = r(T) < \|T\|$.

(ii) In Corollary 2.4, condition (iii) cannot be replaced by the weaker condition $r(T) = w(T)$ either. In fact, let $T = 1 \oplus \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$. Then $1 = r(T) = w(T) < \|T\| = 2$. (We call an operator satisfying $r(T) = w(T)$ spectraloid.)

To prove Corollary 2.4, the following formula will be used.

Theorem B ([10]). For any $T \in B(\mathcal{H})$, $\lim_{n \to \infty} \|\tilde{T}_n\| = r(T)$.
Proof of Corollary 2.4. (i)⇒ (ii), (iii) and (iv) are obvious by (2.4) and $r(T) = r(T) \leq s(T) \leq s(T) \leq \|T\|$.

(ii)⇒(i). By the definition of $s(T)$,

\begin{equation}
(2.5) \quad s(T) = \frac{1}{2} \|T\| + \frac{1}{2} s(T).
\end{equation}

Hence (ii) yields $s(T) = \|T\|$. Since $\|\tilde{T}\| \leq \|T\|$, this gives $s(T) \leq \|\tilde{T}\| \leq \|T\| = s(T)$, and so $s(T) = \|\tilde{T}\| = \|T\|$. By using the same technique, we have $\|T\| = \|\tilde{T}_n\|$ for all $n \in \mathbb{N}$. Hence by Theorem B, we have $\|T\| = \lim_{n \to \infty} \|\tilde{T}_n\| = r(T)$, that is, T is normaloid.

(iii)⇒(i). Since $r(T) = r(T)$, by (iii) we have

$$r(T) = \frac{1}{2} \|T\| + \frac{1}{2} w(T) \geq \frac{1}{2} \|T\| + \frac{1}{2} r(T) = \frac{1}{2} \|T\| + \frac{1}{2} r(T),$$

that is, $r(T) \geq \|T\|$ and so $r(T) = \|T\|$.

(iv)⇒(ii). Evident by (2.5). ■

In [2], Ando shows that the equality $W(T) = W(T)$ of numerical ranges is equivalent to $co \sigma(T) = W(T)$ (i.e., T is convexoid) for any matrix T, where $co \sigma(T)$ means the convex hull of the spectrum of T. We think that this result is parallel to the equivalence between (i) and (iv). So we expect that $s(T)$ has some interesting properties.

3. Condition equivalent to $w(T) = \frac{1}{2} \|T\|$. In Corollary 2.2, we have obtained a sufficient condition for $w(T) = \frac{1}{2} \|T\|$ to hold. Some (necessary or sufficient) conditions for $w(T) = \frac{1}{2} \|T\|$ to hold are given in [5, Theorems 1.3-4 and 1.3-5]. But no condition equivalent to $w(T) = \frac{1}{2} \|T\|$ has been known. In this section, we give such a condition:

Theorem 3.1. Let $T \in B(H)$. The following conditions are equivalent:

(i) $w(T) = \frac{1}{2} \|T\|$,

(ii) $\|T\| = \|Re(e^{i\theta}T)\| + \|Im(e^{i\theta}T)\|$ for all $\theta \in \mathbb{R}$.

We remark that (ii) cannot be replaced by “$\|T\| = \|Re(e^{i\theta}T)\| + \|Im(e^{i\theta}T)\|$ for some $\theta \in \mathbb{R}$,” because if T is a non-zero self-adjoint operator, then $\|T\| = \|Re T\| + \|Im T\| = \|Re T\|$, but $w(T) = \|T\| > \frac{1}{2} \|T\|$.

To prove Theorem 3.1, we need the following theorem:

Theorem C ([3]). Let $A, B \in B(H)$ be non-zero. Then the equality $\|A + B\| = \|A\| + \|B\|$ holds if and only if $\|A\| \|B\| \in W(A^*B)$.
Proof of Theorem 3.1. Let $e^{i\theta}T = H_\theta + iK_\theta$ be the Cartesian decomposition of $e^{i\theta}T$. We remark that

(3.1) \[K_\theta = H_{\theta - \pi/2}, \]

because $e^{i(\theta - \pi/2)}T = -ie^{i\theta}T = K_\theta - iH_\theta$.

(i)\Rightarrow(ii). Since $w(T) = \sup_{\theta \in \mathbb{R}} \|H_\theta\| = \sup_{\theta \in \mathbb{R}} \|K_\theta\|$ by (2.3) and (3.1), we have

\[\|T\| = \|e^{i\theta}T\| = \|H_\theta + iK_\theta\| \leq \|H_\theta\| + \|K_\theta\| \leq w(T) + w(T) = \|T\|, \]

proving (ii).

(ii)\Rightarrow(i). For any $\theta \in \mathbb{R}$, (ii) ensures $\|H_\theta\| \|K_\theta\| \in \overline{W(H_\theta^* iK_\theta)}$ by Theorem C, i.e., $-i\|H_\theta\| \|K_\theta\| \in \overline{W(H_\theta K_\theta)}$. Since $-i\|H_\theta\| \|K_\theta\|$ is a purely imaginary number and $\text{Im}(H_\theta K_\theta) = \text{Im}(H_0 K_0)$ for all $\theta \in \mathbb{R}$, we have

\[\|H_\theta\| \|K_\theta\| = w(H_\theta K_\theta) = \|\text{Im}(H_\theta K_\theta)\| = \|\text{Im}(H_0 K_0)\|. \]

Thus for all $\theta \in \mathbb{R}$,

\[\|H_\theta\| + \|K_\theta\| = \|T\|, \quad \|H_\theta\| \|K_\theta\| = \|\text{Im}(H_0 K_0)\|, \]

that is,

\[\|H_\theta\| = \frac{\|T\| + \sqrt{\|T\|^2 - 4 \|\text{Im}(H_0 K_0)\|^2}}{2}, \]

\[\|K_\theta\| = \frac{\|T\| - \sqrt{\|T\|^2 - 4 \|\text{Im}(H_0 K_0)\|^2}}{2}, \]

or the other way round. We remark that these values do not depend on $\theta \in \mathbb{R}$. So the function $\|H_\theta\|$ of $\theta \in \mathbb{R}$ takes only two values by (3.1). By an easy calculation, we have

\[H_\theta = H_0 \cos \theta - K_0 \sin \theta. \]

Hence by the continuity of the operator norm, the function $\|H_\theta\|$ is continuous on $\theta \in \mathbb{R}$. Therefore it must be constant, i.e.,

\[\|H_\theta\| = \|K_\theta\| = \frac{1}{2} \|T\|. \]

Hence we have (i). ■

References

Department of Mathematics
Kanagawa University
Yokohama 221-8686, Japan
E-mail: yamazt26@kanagawa-u.ac.jp

Received April 7, 2006
Revised version September 25, 2006

(5894)