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On upper and lower bounds of the numerical radius

and an equality condition

by

Takeaki Yamazaki (Yokohama)

Abstract. We give an inequality relating the operator norm of T and the numerical
radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius
than Kittaneh’s result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition
for the numerical radius to be equal to half the operator norm.

1. Introduction. For a bounded linear operator T on a complex Hilbert
space H, we denote the operator norm and the numerical radius of T by ‖T‖
and w(T ), respectively. It is well known that w(T ) is an equivalent norm of
T , since (see [5, Theorem 1.3-1])

(1.1)
1

2
‖T‖ ≤ w(T ) ≤ ‖T‖.

Concerning the second inequality, Kittaneh [8] has shown the following pre-
cise estimate of w(T ) by using several norm inequalities and ingenious tech-
niques:

(1.2) w(T ) ≤ 1

2
‖T‖ +

1

2
‖T 2‖1/2.

Obviously, (1.2) is sharper than the right inequality of (1.1). We remark
that we cannot compare w(T ) with ‖T 2‖1/2, generally. In fact, if T =

(0 1
0 0

)
,

then 0 = ‖T 2‖1/2 < w(T ) = 1/2; but if

T =




0 1 0

0 0 1

0 0 0


 ,

then 1/
√

2 = w(T ) < ‖T 2‖1/2 = 1.
We obtain a sufficient condition for w(T ) = 1

2‖T‖ to hold from (1.1),

(1.2) and [8]: if T 2 = 0, then w(T ) = 1
2‖T‖. But this condition is not
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necessary: if T = 1⊕
(

0 2
0 0

)
, then w(T ) = 1

2‖T‖ = 1, but T 2 6= 0. We remark

that some (necessary or sufficient) conditions for w(T ) = 1
2‖T‖ to hold are

given in [5, Theorems 1.3-4 and 1.3-5], but no equivalent condition has been
known yet.

Let T = U |T | be the polar decomposition of T . The Aluthge transform

T̃ of T is defined by T̃ = |T |1/2U |T |1/2 (see [1]). The following properties of

T̃ are well known:

(i) ‖T̃‖ ≤ ‖T‖,
(ii) w(T̃ ) ≤ w(T ),

(iii) r(T̃ ) = r(T ).

The first and last properties are easy by the definition of T̃ , and the second
one is shown in [7], [9] and [11]. Moreover for a non-negative integer n, we

denote the nth Aluthge transform by T̃n, i.e.,

T̃n = ˜̃T n−1 and T̃0 = T.

This was first considered in [7] and [10], independently.

In this paper, first, we obtain a more precise estimate than (1.2). In the

inequality, we use a bigger term, ‖T‖, and a smaller one, w(T̃ ), than w(T ).
Moreover the proof is very simple and needs only a generalized polarization
identity. Next, we give a condition equivalent to w(T ) = 1

2‖T‖.

2. An inequality sharper than Kittaneh’s. In this section, we prove
a sharper estimate of w(T ) than Kittaneh’s [8], as follows:

Theorem 2.1. For any T ∈ B(H), w(T ) ≤ 1
2‖T‖ + 1

2w(T̃ ).

We remark that by the Heinz inequality [6], ‖ArXBr‖≤‖AXB‖r‖X‖1−r

for A, B ≥ 0 and r ∈ [0, 1], we have

(2.1) w(T̃ ) ≤ ‖T̃‖ = ‖ |T |1/2U |T |1/2‖ ≤ ‖ |T |U |T |‖1/2‖U‖1/2 = ‖T 2‖1/2,

i.e., Theorem 2.1 is sharper than (1.2).

To prove Theorem 2.1, we use the following famous formula which is
called the generalized polarization identity:

Theorem A (Generalized Polarization Identity). For each T ∈ B(H)
and x, y ∈ H,

〈Tx, y〉 = 1
4(〈T (x + y), x + y〉 − 〈T (x − y), x − y〉)
+ 1

4 i(〈T (x + iy), x + iy〉 − 〈T (x − iy), x − iy〉).
(2.2)

Proof of Theorem 2.1. First of all, we note that

(2.3) w(T ) = sup
θ∈R

‖Re(eiθT )‖,
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since

sup
θ∈R

Re{eiθ〈Tx, x〉} = |〈Tx, x〉|

and

sup
θ∈R

‖Re(eiθT )‖ = sup
θ∈R

w(Re(eiθT )) = w(T ).

Let T = U |T | be the polar decomposition. Then by (2.2), we have

〈eiθTx, x〉 = 〈eiθ|T |x, U∗x〉
= 1

4(〈|T |(eiθ + U∗)x, (eiθ + U∗)x〉 − 〈|T |(eiθ − U∗)x, (eiθ − U∗)x〉)

+ 1
4 i(〈|T |(eiθ + iU∗)x, (eiθ + iU∗)x〉 − 〈|T |(eiθ − iU∗)x, (eiθ − iU∗)x〉).

Note that the inner products on the right hand side are all positive since
|T | is positive. Hence we have

Re〈eiθTx, x〉
= 1

4(〈(e−iθ + U)|T |(eiθ + U∗)x, x〉 − 〈(e−iθ − U)|T |(eiθ − U∗)x, x〉)

≤ 1
4〈(e

−iθ + U)|T |(eiθ + U∗)x, x〉

≤ 1
4‖(e

−iθ + U)|T |(eiθ + U∗)‖

= 1
4‖|T |1/2(eiθ + U∗)(e−iθ + U)|T |1/2‖ (since ‖X∗X‖ = ‖XX∗‖)

= 1
4‖2|T | + eiθT̃ + e−iθ(T̃ )∗‖

= 1
2‖ |T | + Re(eiθT̃ )‖

≤ 1
2‖T‖ + 1

2‖Re(eiθT̃ )‖

≤ 1
2‖T‖ + 1

2w(T̃ ) (by (2.3)).

Hence we have the desired inequality.

Corollary 2.2. If T̃ = 0, then w(T ) = 1
2‖T‖.

Proof. The proof is easy by Theorem 2.1 and (1.1).

Remark.

(i) In Corollary 2.2, the conditions T̃ = 0 and w(T ) = 1
2‖T‖ are not

equivalent: if T = 1 ⊕
(

0 2
0 0

)
, then w(T ) = 1

2‖T‖ = 1, but T̃ = 1 ⊕ 0
6= 0.

(ii) The conditions T̃ = 0 and T 2 = 0 are equivalent. Indeed, let T =

U |T | be the polar decomposition. If T̃ = 0, then

T 2 = U |T |U |T | = U |T |1/2T̃ |T |1/2 = 0.

Conversely, if T 2 = 0, then by (2.1) we have ‖T̃‖ ≤ ‖T 2‖1/2 = 0.



86 T. Yamazaki

Corollary 2.3. For T ∈ B(H),

w(T ) ≤
∞∑

n=1

1

2n
‖T̃n−1‖.

Proof. By using Theorem 2.1 several times, we have

w(T ) ≤ 1
2‖T‖ + 1

2w(T̃ ) ≤ 1
2‖T‖ + 1

2

{
1
2‖T̃‖ + 1

2w(T̃2)
}

= 1
2‖T‖ + 1

4‖T̃‖ + 1
4w(T̃2)

≤ 1
2‖T‖ + 1

4‖T̃‖ + 1
8‖T̃2‖ + 1

8w(T̃3) ≤ · · · ≤
∞∑

n=1

1

2n
‖T̃n−1‖.

Let

s(T ) =
∞∑

n=1

1

2n
‖T̃n−1‖.

By (2.1), ‖Ã‖ ≤ ‖A2‖1/2 ≤ ‖A‖ for any A ∈ B(H), and we obtain

(2.4) r(T ) ≤ w(T ) ≤ 1
2‖T‖ + 1

2w(T̃ ) ≤ s(T ) ≤ 1
2‖T‖ + 1

2‖T
2‖1/2 ≤ ‖T‖,

where r(T ) means the spectral radius of T .
It is well known that T is normaloid (i.e., ‖T‖ = r(T )) if and only if

‖T‖ = w(T ). Here we give other conditions of normaloidity of T :

Corollary 2.4. The following conditions are equivalent :

(i) T is normaloid ,
(ii) ‖T‖ = s(T ),

(iii) r(T ) = 1
2‖T‖ + 1

2w(T̃ ),

(iv) s(T ) = s(T̃ ).

Remark.

(i) In Corollary 2.4, condition (ii) cannot be replaced by the weaker
condition ‖T‖ = 1

2‖T‖ + 1
2‖T 2‖1/2. For example, let

T =




0 1 0

0 0 1

0 0 0


 .

Then ‖T‖ = 1
2‖T‖ + 1

2‖T 2‖1/2 = 1 but 0 = r(T ) < ‖T‖.
(ii) In Corollary 2.4, condition (iii) cannot be replaced by the weaker

condition r(T ) = w(T ) either. In fact, let T = 1 ⊕
(

0 2
0 0

)
. Then

1 = r(T ) = w(T ) < ‖T‖ = 2. (We call an operator satisfying r(T ) =
w(T ) spectraloid.)

To prove Corollary 2.4, the following formula will be used.

Theorem B ([10]). For any T ∈ B(H), limn→∞ ‖T̃n‖ = r(T ).
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Proof of Corollary 2.4. (i)⇒ (ii), (iii) and (iv) are obvious by (2.4) and

r(T ) = r(T̃ ) ≤ s(T̃ ) ≤ s(T ) ≤ ‖T‖.
(ii)⇒(i). By the definition of s(T ),

(2.5) s(T ) = 1
2‖T‖ + 1

2s(T̃ ).

Hence (ii) yields s(T̃ ) = ‖T‖. Since ‖T̃‖ ≤ ‖T‖, this gives

s(T̃ ) ≤ ‖T̃‖ ≤ ‖T‖ = s(T̃ ),

and so s(T̃ ) = ‖T̃‖ = ‖T‖. By using the same technique, we have ‖T‖ =

‖T̃n‖ for all n ∈ N. Hence by Theorem B, we have

‖T‖ = lim
n→∞

‖T̃n‖ = r(T ),

that is, T is normaloid.

(iii)⇒(i). Since r(T̃ ) = r(T ), by (iii) we have

r(T ) = 1
2‖T‖ + 1

2w(T̃ ) ≥ 1
2‖T‖ + 1

2r(T̃ ) = 1
2‖T‖ + 1

2r(T ),

that is, r(T ) ≥ ‖T‖ and so r(T ) = ‖T‖.
(iv)⇒(ii). Evident by (2.5).

In [2], Ando shows that the equality W (T ) = W (T̃ ) of numerical ranges
is equivalent to coσ(T ) = W (T ) (i.e., T is convexoid) for any matrix T ,
where coσ(T ) means the convex hull of the spectrum of T . We think that
this result is parallel to the equivalence between (i) and (iv). So we expect
that s(T ) has some interesting properties.

3. Condition equivalent to w(T ) = 1
2‖T‖. In Corollary 2.2, we have

obtained a sufficient condition for w(T ) = 1
2‖T‖ to hold. Some (necessary

or sufficient) conditions for w(T ) = 1
2‖T‖ to hold are given in [5, Theorems

1.3-4 and 1.3-5]. But no condition equivalent to w(T ) = 1
2‖T‖ has been

known. In this section, we give such a condition:

Theorem 3.1. Let T ∈ B(H). The following conditions are equivalent :

(i) w(T ) = 1
2‖T‖,

(ii) ‖T‖ = ‖Re(eiθT )‖ + ‖Im(eiθT )‖ for all θ ∈ R.

We remark that (ii) cannot be replaced by “‖T‖=‖Re(eiθT )‖+‖Im(eiθT )‖
for some θ ∈ R,” because if T is a non-zero self-adjoint operator, then
‖T‖ = ‖Re T‖ + ‖Im T‖ = ‖ReT‖, but w(T ) = ‖T‖ > 1

2‖T‖.
To prove Theorem 3.1, we need the following theorem:

Theorem C ([3]). Let A, B ∈ B(H) be non-zero. Then the equality

‖A + B‖ = ‖A‖ + ‖B‖ holds if and only if ‖A‖ ‖B‖ ∈ W (A∗B).
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Proof of Theorem 3.1. Let eiθT = Hθ + iKθ be the Cartesian decompo-
sition of eiθT . We remark that

(3.1) Kθ = Hθ−π/2,

because ei(θ−π/2)T = −ieiθT = Kθ − iHθ.
(i)⇒(ii). Since w(T ) = supθ∈R ‖Hθ‖ = supθ∈R ‖Kθ‖ by (2.3) and (3.1),

we have

‖T‖ = ‖eiθT‖ = ‖Hθ + iKθ‖ ≤ ‖Hθ‖ + ‖Kθ‖ ≤ w(T ) + w(T ) = ‖T‖,
proving (ii).

(ii)⇒(i). For any θ ∈ R, (ii) ensures ‖Hθ‖ ‖Kθ‖ ∈ W (H∗

θ (iKθ)) by The-

orem C, i.e., −i‖Hθ‖ ‖Kθ‖ ∈ W (HθKθ). Since −i‖Hθ‖‖Kθ‖ is a purely
imaginary number and Im(HθKθ) = Im(H0K0) for all θ ∈ R, we have

‖Hθ‖ ‖Kθ‖ = w(HθKθ) = ‖Im(HθKθ)‖ = ‖Im(H0K0)‖.
Thus for all θ ∈ R,

‖Hθ‖ + ‖Kθ‖ = ‖T‖, ‖Hθ‖ ‖Kθ‖ = ‖Im(H0K0)‖,
that is,

‖Hθ‖ =
‖T‖ +

√
‖T‖2 − 4‖Im(H0K0)‖

2
,

‖Kθ‖ =
‖T‖ −

√
‖T‖2 − 4‖Im(H0K0)‖

2
,

or the other way round. We remark that these values do not depend on
θ ∈ R. So the function ‖Hθ‖ of θ ∈ R takes only two values by (3.1). By an
easy calculation, we have

Hθ = H0 cos θ − K0 sin θ.

Hence by the continuity of the operator norm, the function ‖Hθ‖ is contin-
uous on θ ∈ R. Therefore it must be constant, i.e.,

‖Hθ‖ = ‖Kθ‖ = 1
2‖T‖.

Hence we have (i).
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