Random ε-nets and embeddings in ℓ_{∞}^{N}

by
Y. Gordon (Haifa), A. E. Litvak (Edmonton), A. Pajor (Marne-la-Vallée) and N. Tomczak-Jaegermann (Edmonton)

Abstract

We show that, given an n-dimensional normed space X, a sequence of $N=(8 / \varepsilon)^{2 n}$ independent random vectors $\left(X_{i}\right)_{i=1}^{N}$, uniformly distributed in the unit ball of X^{*}, with high probability forms an ε-net for this unit ball. Thus the random linear map $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ defined by $\Gamma x=\left(\left\langle x, X_{i}\right\rangle\right)_{i=1}^{N}$ embeds X in ℓ_{∞}^{N} with at most $1+\varepsilon$ norm distortion. In the case $X=\ell_{2}^{n}$ we obtain a random $1+\varepsilon$-embedding into ℓ_{∞}^{N} with asymptotically best possible relation between N, n, and ε.

1. Introduction. Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an arbitrary n-dimensional normed space with unit ball K. It is well known that, for any $0<\varepsilon<1$, X can be $1+\varepsilon$-embedded into ℓ_{∞}^{N}, for some $N=N(\varepsilon, n)$, depending on ε and n, but independent of X. In this note we investigate $1+\varepsilon$-isomorphic embeddings which are random with respect to some natural measure, depending on K. We first show that for $N=(8 / \varepsilon)^{2 n}$, a sequence of N independent random vectors $\left(X_{i}\right)_{i=1}^{N}$, uniformly distributed in the unit ball K^{0} of the dual space X^{*}, forms an ε-net for K^{0} with high probability. Thus, with high probability, the random linear map $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ defined by $\Gamma x=\left(\left\langle x, X_{i}\right\rangle\right)_{i=1}^{N}$ embeds X in ℓ_{∞}^{N} with at most $1+\varepsilon$ norm distortion.

The important case is $X=\ell_{2}^{n}$. In this case it is more natural to consider random vectors X_{i} uniformly distributed on the sphere S^{n-1}. Such vectors also form an ε-net on the sphere, hence they determine a random $1+\varepsilon$ embedding Γ of ℓ_{2}^{n} into ℓ_{∞}^{N}. We also show that $\sqrt{n / N} \Gamma$ is a $1+\varepsilon$-isometry from ℓ_{2}^{n} into ℓ_{2}^{N}, with high probability.

The case $X=\ell_{2}^{n}$ is connected with Dvoretzky's theorem ([D]). Milman found a new proof ($[\mathrm{M}]$), using the Lévy isoperimetric inequality on the

[^0]sphere, that there exists a function $c(\varepsilon)>0$ such that for all $n \leq c(\varepsilon) \ln N$, ℓ_{2}^{n} can be $1+\varepsilon$-embedded into any normed space Y of dimension N. His proof gives $c(\varepsilon) \sim \varepsilon^{2} / \ln (2 / \varepsilon)$. Later a new approach was found in [G] by using random Gaussian embeddings. It implies that $c(\varepsilon) \sim \varepsilon^{2}$ is sufficient. Milman raised the question what is the best behavior of $c(\varepsilon)$, as $\varepsilon \rightarrow 0$, in the above estimates. Recently Schechtman showed in [S1] that one may take $c(\varepsilon) \sim \varepsilon /(\ln (2 / \varepsilon))^{2}$, however his approach is not random.

Since in this paper we deal with embeddings into ℓ_{∞}^{N}, we shall restrict our attention to this case only. When $Y=\ell_{\infty}^{N}$, it is well known that there exists an embedding with $c(\varepsilon) \sim 1 / \ln (2 / \varepsilon)$. It is also known that this behavior of $c(\varepsilon)$ as $\varepsilon \rightarrow 0$ cannot be improved. The standard embedding relies on the existence of ε-nets of appropriate cardinalities. It is therefore natural to ask whether this embedding can be randomized.

In this paper we provide a positive answer to this question. Namely, we show (in Theorems 4.1, 4.3) that for the random embedding Γ determined by independent uniformly distributed vectors on S^{n-1}, with large probability one may achieve $c(\varepsilon) \sim 1 / \ln (2 / \varepsilon)$, which is the best possible as mentioned above. We would like to note that such a result is not valid in the setting of the Haar measure on the Grassmann manifold (equivalently, for embeddings defined by Gaussian matrices). Indeed, Schechtman recently showed ([S2]) that if "most" $n=c^{\prime}(\varepsilon) \ln N$-dimensional subspaces of ℓ_{∞}^{N} are $1+\varepsilon$-Euclidean then $c^{\prime}(\varepsilon) \sim \varepsilon$.
2. Notation and preliminary results. We denote by $\langle\cdot, \cdot\rangle$ the scalar product of the canonical Euclidean structure on \mathbb{R}^{n} and by $|\cdot|$ the canonical Euclidean norm. The Euclidean ball is denoted by B_{2}^{n} and the Euclidean sphere is denoted by S^{n-1}.

By a convex body in \mathbb{R}^{n} we always mean a compact convex set with non-empty interior. A centrally symmetric body with respect to origin will be called symmetric. Given a convex body K in \mathbb{R}^{n} we denote by $|K|$ its volume and by $\|\cdot\|_{K}$ the Minkowski functional of K, i.e.

$$
\|x\|_{K}=\inf \{\lambda>0 \mid x \in \lambda K\}
$$

If K is symmetric then $\|\cdot\|_{K}$ is a norm with the unit ball K.
Given a finite set A we denote its cardinality by $|A|$.
Recall that if K is a symmetric convex body in \mathbb{R}^{n} then for every $0<\varepsilon \leq 1$ there exists an ε-net Λ in K with respect to the norm $\|\cdot\|_{K}$ of cardinality

$$
|\Lambda| \leq(1+2 / \varepsilon)^{n} \leq(3 / \varepsilon)^{n}
$$

The polar of a convex body $K \subset \mathbb{R}^{n}$ is defined by

$$
K^{0}=\{x \mid\langle x, y\rangle \leq 1 \text { for every } y \in K\}
$$

Let K be a convex body. We say that a vector X is uniformly distributed on K if $\mathbb{P}\{X \in A\}=|K \cap A| /|K|$ for every measurable $A \subset \mathbb{R}^{n}$.

Given a square matrix T, we denote by $\|T\|_{\text {HS }}$ its Hilbert-Schmidt norm.
Below we will need the following geometric lemma. Although we will use only a particular case of the lemma, we prefer to state it in full generality for future references.

Lemma 2.1. Let $d>0$ and K, L be convex bodies in \mathbb{R}^{n} such that $K \subset-d L$. Then for every $x \in K$ and for $0<\varepsilon \leq 1$ one has

$$
|K \cap(x+\varepsilon L)| \geq\left|\frac{\varepsilon}{d+1} K \cap L\right|
$$

In particular, if $K=L=-K$ then

$$
|K \cap(x+\varepsilon K)| \geq\left|\frac{\varepsilon}{2} K\right|
$$

Proof. Define

$$
\alpha=1-\frac{\varepsilon}{d+1}, \quad \beta=\frac{\varepsilon}{d+1} .
$$

To prove the desired result it is enough to show that

$$
K \cap(x+\varepsilon L) \supset \alpha x+\beta K \cap L
$$

Let $z=\alpha x+\beta y$, where $y \in K \cap L$. Clearly, $z \in K$ and $z=x+\beta(y-x)$. Since

$$
y-x \in L-K \subset L+d L=(1+d) L
$$

we obtain the result.
Remark 1. The example of the cube (when x is a vertex) shows that the estimate in the "in particular" part of Lemma 2.1 is sharp.

Remark 2. It is known that for every convex body K in \mathbb{R}^{n} there exists a shift such that $K-a \subset-n(K-a)$. Thus, Lemma 2.1 implies that for every convex body K in \mathbb{R}^{n} there exists a vector $a \in \mathbb{R}^{n}$ such that for every $x \in K$ and for $\varepsilon>0$ one has

$$
|(K-a) \cap(x+\varepsilon(K-a))| \geq\left|\frac{\varepsilon}{n+1} K\right|
$$

The example of the regular simplex (when x is a vertex) shows that the latter estimate is sharp.

Remark 3. It was proved in [GLMP] that if a body L is in the position of maximal volume in K (that is, $L \subset K$ and for every linear map T and every point $x \in \mathbb{R}^{n}$ satisfying $T L+x \subset K$ one has $\left.|T L| \leq|L|\right)$, then there exists $a \in \mathbb{R}^{n}$ such that

$$
L-a \subset K-a \subset-n(L-a)
$$

Thus Lemma 2.1 implies that if a body L is in the position of maximal volume in K then there exists a vector $a \in \mathbb{R}^{n}$ such that for every $x \in K$ and for $\varepsilon>0$ one has

$$
|(K-a) \cap(x+\varepsilon(L-a))| \geq\left|\frac{\varepsilon}{n+1} L\right|
$$

3. Random embeddings of normed spaces in ℓ_{∞}^{N}. First we show that N vectors uniformly distributed on a symmetric convex body K form an ε-net in K.

Theorem 3.1. Let $n \geq 1,0<\varepsilon \leq 1$, and $N=(4 / \varepsilon)^{2 n}$. Let X_{1}, \ldots, X_{N} be independent random variables uniformly distributed on a symmetric convex body K in \mathbb{R}^{n}. Then with probability larger than $1-\exp \left(-(8 / \varepsilon)^{n} / 2\right)$ the set $\mathcal{N}=\left\{X_{1}, \ldots, X_{N}\right\}$ forms an ε-net in K.

Proof. Fix an $\varepsilon / 2$-net $\Lambda \subset K$ with $|\Lambda| \leq(6 / \varepsilon)^{n}$, and consider random vectors X_{1}, \ldots, X_{N} uniformly distributed on K, where N is as in the statement.

We want to show that the probability

$$
\begin{equation*}
\mathbb{P}\left\{\forall x \in K \exists i \leq N \text { such that }\left\|x-X_{i}\right\|_{K}<\varepsilon\right\} \tag{1}
\end{equation*}
$$

is large. Clearly this probability is larger than

$$
\begin{equation*}
\mathbb{P}\left\{\forall x \in \Lambda \exists i \leq N \text { such that }\left\|x-X_{i}\right\|_{K}<\varepsilon / 2\right\} . \tag{2}
\end{equation*}
$$

We denote by A the event considered in (2), and estimate the probability of its complement $A^{\text {c }}$. We have

$$
\begin{aligned}
\mathbb{P}\left(A^{\mathrm{c}}\right) & =\mathbb{P}\left\{\exists x \in \Lambda \forall i \leq N \text { one has }\left\|x-X_{i}\right\|_{K} \geq \varepsilon / 2\right\} \\
& \leq|\Lambda|\left(\mathbb{P}\left\{\left\|x_{0}-X_{1}\right\|_{K} \geq \varepsilon / 2\right\}\right)^{N} \\
& \leq|\Lambda|\left(1-\mathbb{P}\left\{\left\|x_{0}-X_{1}\right\|_{K}<\varepsilon / 2\right\}\right)^{N}
\end{aligned}
$$

where $x_{0} \in \Lambda$ satisfies

$$
\mathbb{P}\left\{\left\|x_{0}-X_{i}\right\|_{K} \geq \varepsilon / 2\right\}=\max _{x \in \Lambda} \mathbb{P}\left\{\left\|x-X_{i}\right\|_{K} \geq \varepsilon / 2\right\}
$$

Note that
$\mathbb{P}\left\{\left\|x_{0}-X_{1}\right\|_{K}<\varepsilon / 2\right\}=\mathbb{P}\left\{X_{1} \in x_{0}+(\varepsilon / 2) K\right\}=\left|K \cap\left(x_{0}+(\varepsilon / 2) K\right)\right| /|K|$.
Applying Lemma 2.1 we obtain

$$
\mathbb{P}\left\{\left\|x_{0}-X_{1}\right\|_{K}<\varepsilon / 2\right\} \geq(\varepsilon / 2)^{n}
$$

This implies

$$
\begin{aligned}
\mathbb{P}\left(A^{\mathrm{c}}\right) & \leq(6 / \varepsilon)^{n}\left(1-(\varepsilon / 2)^{n}\right)^{N} \leq(6 / \varepsilon)^{n} \exp \left(-(\varepsilon / 2)^{n} N\right) \\
& =\exp \left(n \ln (6 / \varepsilon)-(\varepsilon / 2)^{n}(4 / \varepsilon)^{2 n}\right) \leq \exp \left(-(8 / \varepsilon)^{n} / 2\right)
\end{aligned}
$$

which yields the result.

To prove the next theorem we need the following standard lemma. We provide its proof for the sake of completeness.

Lemma 3.2. Let X be a Banach space and K be its unit ball. Let \mathcal{N} be an ε-net in the unit ball K^{0} (or in the unit sphere ∂K^{0}) of the dual space. Then for every $x \in X$ we have

$$
\sup _{y \in \mathcal{N}}\langle x, y\rangle \leq\|x\|_{K} \leq(1-\varepsilon)^{-1} \sup _{y \in \mathcal{N}}\langle x, y\rangle .
$$

Proof. The left hand side estimate is obvious. Now let $\|x\|_{X}=1$ and consider $z \in \partial K^{0}$ such that $\langle x, z\rangle=1$. Then for an appropriate $y \in \mathcal{N}$ we have $1=\langle x, y\rangle+\langle x, z-y\rangle \leq \sup _{y \in \mathcal{N}}\langle x, y\rangle+\varepsilon$, which implies the required estimate.

Combining Theorem 3.1 with Lemma 3.2 we deduce that a random matrix whose rows are independent random vectors uniformly distributed on the polar of a symmetric convex body provides a random embedding of the body into ℓ_{∞}^{N}.

Theorem 3.3. Let $0<\varepsilon<1$ and $n \leq(\ln N) / 2 \ln (4 / \varepsilon)$. Let K be a symmetric convex body in \mathbb{R}^{n}. Let X_{1}, \ldots, X_{N} be independent random vectors uniformly distributed on K^{0}. Consider the matrix $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ whose rows are X_{1}, \ldots, X_{N} (i.e. $\left.\Gamma x=\left(\left\langle x, X_{i}\right\rangle\right)_{i=1}^{N}\right)$. Then with probability larger than $1-\exp \left(-(8 / \varepsilon)^{n} / 2\right)$ we have

$$
(1-\varepsilon)\|x\|_{K} \leq\|\Gamma x\|_{\infty} \leq\|x\|_{K} \quad \text { for all } x \in \mathbb{R}^{n}
$$

4. The Euclidean case. In this section we discuss the embedding of ℓ_{2}^{n} into ℓ_{∞}^{N}. Here it is more natural to work with random vectors uniformly distributed on the Euclidean sphere S^{n-1}. Accordingly, in the rest of the paper X_{1}, \ldots, X_{N} stand for independent random vectors uniformly distributed on the Euclidean sphere S^{n-1} and $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ is the matrix whose rows are $X_{1}, \ldots, X_{N}\left(\right.$ that is, $\left.\Gamma x=\left(\left\langle x, X_{i}\right\rangle\right)_{i=1}^{N}\right)$.

One can easily check that Theorem 3.1 holds for S^{n-1} and such vectors X_{1}, \ldots, X_{N}. Indeed, this follows from the same argument as before with minor modifications. We need only observe that given $y \in S^{n-1}$ the normalized Lebesgue measure of a cap

$$
\left\{x \in S^{n-1}| | x-y \mid \leq \varepsilon\right\}
$$

is larger than or equal to $(\varepsilon / 2)^{n}$ (cf. e.g. [P, Chapter 6$]$), as well as the fact that in S^{n-1} there exists an ε-net of cardinality $(3 / \varepsilon)^{n}$. Therefore Theorem 3.3 holds with $K=B_{2}^{n}$ and with the matrix $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ defined above. We formally state both facts for future reference.

Theorem 4.1. Let $0<\varepsilon<1$ and let $n \leq(\ln N) / 2 \ln (4 / \varepsilon)$. Let $\mathcal{N}=$ $\left\{X_{1}, \ldots, X_{N}\right\}$ where $X_{i}(i=1, \ldots, N)$ are independent random vectors
uniformly distributed on S^{n-1}. Then, with probability larger than $1-\exp \left(-(8 / \varepsilon)^{n} / 2\right), \mathcal{N}$ forms an ε-net on S^{n-1}. Furthermore, with the same probability, the matrix Γ as above satisfies

$$
(1-\varepsilon)|x| \leq\|\Gamma x\|_{\infty} \leq|x| \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Denote by Q the unit ball of ℓ_{∞}^{N} (i.e. the N-dimensional cube). Theorem 4.1 shows that Q has an n-dimensional section (which can be realized as $E:=\Gamma \mathbb{R}^{n}$) which is almost Euclidean, i.e.

$$
\Gamma B_{2}^{n} \subset Q \cap E \subset(1-\varepsilon)^{-1} \Gamma B_{2}^{n}
$$

Below we show that in fact the ellipsoid ΓB_{2}^{n} is, up to $(1+\varepsilon) /(1-\varepsilon)$, equivalent to the standard Euclidean ball of radius $\sqrt{N / n}$. In other words, a random subspace $E=\Gamma \mathbb{R}^{n}$ of ℓ_{∞}^{N} is nearly Euclidean with respect to the canonical Euclidean structure on \mathbb{R}^{N}. Namely, Theorem 4.3 below shows that

$$
(1-\varepsilon) \sqrt{N / n} \Gamma B_{2}^{n} \subset Q \cap E \subset \frac{1+\varepsilon}{1-\varepsilon} \sqrt{N / n} \Gamma B_{2}^{n}
$$

We need the following lemma, which shows that $\sqrt{n / N} \Gamma$ almost preserves the Euclidean norm of a vector.

Lemma 4.2. Let $0<\varepsilon<1$ and let $N \geq n^{3} / \varepsilon^{4}$. Let X_{1}, \ldots, X_{N} be independent random points on the sphere S^{n-1}. Then with probability larger than $1-n^{2} /\left(\varepsilon^{4} N\right)$ we have

$$
(1-\varepsilon)|x| \leq|\Gamma x| \sqrt{n / N} \leq(1+\varepsilon)|x| \quad \text { for all } x \in \mathbb{R}^{n}
$$

Remark. One can get better estimates using a theorem of Bourgain [B]. For instance, the above inequalities are satisfied with probability larger than $1-\delta$ as far as $N \geq c(\delta) n(\ln n)^{3} / \varepsilon^{2}\left(\right.$ instead of $\left.N \geq n^{3} / \varepsilon^{4}\right)$ for some function $c(\delta)>0$. However, we prefer to present here a simpler proof, which provides estimates good enough for our purposes.

Proof of Lemma 4.2. Set $A:=\left\|\Gamma^{*} \Gamma-(N / n) I\right\|_{\text {HS }}$. Using the fact that $\|T\|_{\mathrm{HS}}^{2}=\operatorname{tr}\left(T^{*} T\right)$ for every operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, we get

$$
\begin{aligned}
A^{2} & =\sum_{i, j}\left|\left\langle X_{i}, X_{j}\right\rangle\right|^{2}+\left(N^{2} / n^{2}\right) n-(2 N / n)\|\Gamma\|_{\mathrm{HS}}^{2} \\
& =\sum_{i, j}\left|\left\langle X_{i}, X_{j}\right\rangle\right|^{2}+\left(N^{2} / n^{2}\right) n-2 N^{2} / n \\
& =\sum_{i}\left|X_{i}\right|^{4}+\sum_{i \neq j}\left|\left\langle X_{i}, X_{j}\right\rangle\right|^{2}-N^{2} / n .
\end{aligned}
$$

Therefore,

$$
\mathbb{E} A^{2}=N+N(N-1) \mathbb{E}\left|\left\langle X_{1}, X_{2}\right\rangle\right|^{2}
$$

Since $\mathbb{E}\left|\left\langle X_{1}, X_{2}\right\rangle\right|^{2}=1 / n$, we finally obtain $\mathbb{E} A^{2}=N(1-1 / n)$.

By Chebyshev's inequality we get, for any $\varepsilon_{1}>0$,

$$
\mathbb{P}\left\{A>\varepsilon_{1}\right\} \leq \mathbb{E} A^{2} / \varepsilon_{1}^{2} \leq N / \varepsilon_{1}^{2}
$$

Thus

$$
\begin{aligned}
\mathbb{P}\left\{\left\|\frac{n}{N} \Gamma^{*} \Gamma-I\right\|<\varepsilon_{1}\right\} & \geq \mathbb{P}\left\{\left\|\frac{n}{N} \Gamma^{*} \Gamma-I\right\|_{\mathrm{HS}}<\varepsilon_{1}\right\} \\
& \geq 1-\mathbb{P}\left\{A>\frac{N}{n} \varepsilon_{1}\right\} \geq 1-\frac{N n^{2}}{\varepsilon_{1}^{2} N^{2}}=1-\frac{n^{2}}{\varepsilon_{1}^{2} N}
\end{aligned}
$$

The last estimate implies that, for any $\varepsilon_{1}>0$, with probability larger than or equal to $1-n^{2} /\left(\varepsilon_{1}^{2} N\right)$, we have the following estimates for singular numbers of the matrix Γ :

$$
\left|\sqrt{n / N} s_{j}(\Gamma)-1\right|<\sqrt{\varepsilon_{1}} \quad \text { for } j=1, \ldots, n
$$

In particular,

$$
1-\sqrt{\varepsilon_{1}}<\sqrt{n / N} s_{n}(\Gamma) \leq \sqrt{n / N} s_{1}(\Gamma)<1+\sqrt{\varepsilon_{1}}
$$

Setting $\varepsilon_{1}=\varepsilon^{2}$ immediately implies the desired conclusion.
Combining Theorem 3.3 with Lemma 4.2 we obtain
Theorem 4.3. Let $0<\varepsilon<1$ and $2 \leq n \leq(\ln N) / 2 \ln (4 / \varepsilon)$. Let X_{1}, \ldots, X_{N} be independent random vectors uniformly distributed on S^{n-1}. Consider the matrix $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ whose rows are X_{1}, \ldots, X_{N}. Then with probability larger than $1-n^{2} \varepsilon^{2 n-4} / 16^{n}-\exp \left(-(8 / \varepsilon)^{n} / 2\right) \geq 1-e^{-n}$ we have

$$
\frac{1-\varepsilon}{1+\varepsilon}|\Gamma x| \leq \sqrt{\frac{N}{n}}\|\Gamma x\|_{\infty} \leq \frac{1}{1-\varepsilon}|\Gamma x| \quad \text { for all } x \in \mathbb{R}^{n}
$$

Finally, we would like to emphasize the differences between the randomness given by the matrix Γ and a standard Gaussian matrix G (i.e., with independent $N(0,1)$ entries). Fix N and $0<\varepsilon<1$. As already mentioned in the introduction, Γ gives a random embedding with $n_{1} \sim(\ln N) / \ln (2 / \varepsilon)$ (which is best possible in general), while G provides a random embedding with $n_{2} \sim \varepsilon \ln N$, which is best possible if one requires high probability ([S2]).

Another observation is that Euclidean sections of the cube determined by Γ and G, and taken in the appropriate dimensions n_{1} and n_{2} (or smaller), will have different radii. Indeed, the conclusion of Theorem 4.3 implies that, with high probability defined by Γ, for every non-zero $y \in \Gamma \mathbb{R}^{n_{1}}$,

$$
\frac{\|y\|_{\infty}}{|y|} \sim \sqrt{\frac{n_{1}}{N}} \sim \sqrt{\frac{\ln N}{N \ln (2 / \varepsilon)}}
$$

On the other hand, with high probability defined by G for every non-zero $y=G x \in G \mathbb{R}^{n_{2}}$ one has

$$
\frac{\|y\|_{\infty}}{|y|} \sim \frac{\mathbb{E}\|G x\|_{\infty}}{\mathbb{E}|G x|}=\frac{\mathbb{E}\left\|G e_{1}\right\|_{\infty}}{\mathbb{E}\left|G e_{1}\right|} \sim \sqrt{\frac{\ln N}{N}} .
$$

These two expectations are not comparable uniformly in ε (as $\varepsilon \rightarrow 0$).
Added in proof. Theorem 3.1 should be compared with Proposition 5.3 of [GM].

References

[B] J. Bourgain, Random points in isotropic convex sets, in: Convex Geometric Analysis, K. M. Ball and V. Milman (eds.), Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 1999, 53-58.
[D] A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, and Pergamon Press, Oxford, 1961, 123-160.
[GM] A. A. Giannopoulos and V. D. Milman, Concentration property on probability spaces, Adv. Math. 156 (2000), 77-106.
[G] Y. Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), 265-289.
[GLMP] Y. Gordon, A. E. Litvak, M. Meyer and A. Pajor, John's decomposition in the general case and applications, J. Differential Geom. 68 (2004), 99-119.
[M] V. D. Milman, A new proof of the theorem of A. Dvoretzky on intersections of convex bodies, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4, 28-37 (in Russian); English transl.: Functional Anal. Appl. 5 (1971), 288-295.
[P] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, Cambridge, 1989.
[S1] G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces in normed spaces, Adv. Math. 200 (2006), 125-135.
[S2] -, The random version of Dvoretzky's theorem in ℓ_{∞}^{n}, in: GAFA, Lecture Notes in Math., Springer, to appear (see also http://www.wisdom.weizmann.ac.il/ mathusers/gideon/papers/ranDv.pdf).

Department of Mathematics, Technion
Haifa 32000, Israel
E-mail: gordon@techunix.technion.ac.il
Équipe d'Analyse et Mathématiques Appliquées
Université de Marne-la-Vallée
Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton, AB, Canada T6G 2G1
E-mail: alexandr@math.ualberta.ca
nicole.tomczak@ualberta.ca
5, boulevard Descartes, Champs sur Marne
77454 Marne-la-Vallée, Cedex 2, France
E-mail: Alain.Pajor@univ-mlv.fr
Received October 2, 2006
Revised version October 16, 2006

[^0]: 2000 Mathematics Subject Classification: 46B07, 46B09, 52A21, 60D05.
 Key words and phrases: Dvoretzky theorem, random embeddings into ℓ_{∞}, random ε-nets.
 Y. Gordon was partially supported by France-Israel exchange fund 2005389, and by the Fund for the Promotion of Research at the Technion.
 N. Tomczak-Jaegermann holds the Canada Research Chair in Geometric Analysis.

