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Random ε-nets and embeddings in ℓN
∞

by

Y. Gordon (Haifa), A. E. Litvak (Edmonton),
A. Pajor (Marne-la-Vallée) and N. Tomczak-Jaegermann (Edmonton)

Abstract. We show that, given an n-dimensional normed space X, a sequence of
N = (8/ε)2n independent random vectors (Xi)

N

i=1, uniformly distributed in the unit ball
of X∗, with high probability forms an ε-net for this unit ball. Thus the random linear
map Γ : R

n → R
N defined by Γx = (〈x,Xi〉)

N

i=1 embeds X in ℓN

∞
with at most 1 + ε

norm distortion. In the case X = ℓn

2 we obtain a random 1 + ε-embedding into ℓN

∞
with

asymptotically best possible relation between N , n, and ε.

1. Introduction. Let X = (Rn, ‖ · ‖) be an arbitrary n-dimensional
normed space with unit ball K. It is well known that, for any 0 < ε < 1, X
can be 1 + ε-embedded into ℓN

∞, for some N = N(ε, n), depending on ε and
n, but independent of X. In this note we investigate 1+ε-isomorphic embed-
dings which are random with respect to some natural measure, depending
on K. We first show that for N = (8/ε)2n, a sequence of N independent ran-
dom vectors (Xi)

N
i=1

, uniformly distributed in the unit ball K0 of the dual
space X∗, forms an ε-net for K0 with high probability. Thus, with high prob-
ability, the random linear map Γ : R

n → R
N defined by Γx = (〈x, Xi〉)N

i=1

embeds X in ℓN
∞ with at most 1 + ε norm distortion.

The important case is X = ℓn
2 . In this case it is more natural to consider

random vectors Xi uniformly distributed on the sphere Sn−1. Such vectors
also form an ε-net on the sphere, hence they determine a random 1 + ε-
embedding Γ of ℓn

2
into ℓN

∞. We also show that
√

n/N Γ is a 1 + ε-isometry
from ℓn

2
into ℓN

2
, with high probability.

The case X = ℓn
2 is connected with Dvoretzky’s theorem ([D]). Milman

found a new proof ([M]), using the Lévy isoperimetric inequality on the
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sphere, that there exists a function c(ε) > 0 such that for all n ≤ c(ε) lnN ,
ℓn
2 can be 1 + ε-embedded into any normed space Y of dimension N . His

proof gives c(ε) ∼ ε2/ln(2/ε). Later a new approach was found in [G] by
using random Gaussian embeddings. It implies that c(ε) ∼ ε2 is sufficient.
Milman raised the question what is the best behavior of c(ε), as ε → 0, in
the above estimates. Recently Schechtman showed in [S1] that one may take
c(ε) ∼ ε/(ln(2/ε))2, however his approach is not random.

Since in this paper we deal with embeddings into ℓN
∞, we shall restrict our

attention to this case only. When Y = ℓN
∞, it is well known that there exists

an embedding with c(ε) ∼ 1/ln(2/ε). It is also known that this behavior of
c(ε) as ε → 0 cannot be improved. The standard embedding relies on the
existence of ε-nets of appropriate cardinalities. It is therefore natural to ask
whether this embedding can be randomized.

In this paper we provide a positive answer to this question. Namely, we
show (in Theorems 4.1, 4.3) that for the random embedding Γ determined by
independent uniformly distributed vectors on Sn−1, with large probability
one may achieve c(ε) ∼ 1/ln(2/ε), which is the best possible as mentioned
above. We would like to note that such a result is not valid in the setting of
the Haar measure on the Grassmann manifold (equivalently, for embeddings
defined by Gaussian matrices). Indeed, Schechtman recently showed ([S2])
that if “most” n = c′(ε) lnN -dimensional subspaces of ℓN

∞ are 1+ε-Euclidean
then c′(ε) ∼ ε.

2. Notation and preliminary results. We denote by 〈·, ·〉 the scalar
product of the canonical Euclidean structure on R

n and by | · | the canonical
Euclidean norm. The Euclidean ball is denoted by Bn

2
and the Euclidean

sphere is denoted by Sn−1.

By a convex body in R
n we always mean a compact convex set with

non-empty interior. A centrally symmetric body with respect to origin will
be called symmetric. Given a convex body K in R

n we denote by |K| its
volume and by ‖ · ‖K the Minkowski functional of K, i.e.

‖x‖K = inf{λ > 0 | x ∈ λK}.
If K is symmetric then ‖ · ‖K is a norm with the unit ball K.

Given a finite set A we denote its cardinality by |A|.
Recall that if K is a symmetric convex body in R

n then for every
0 < ε ≤ 1 there exists an ε-net Λ in K with respect to the norm ‖ · ‖K

of cardinality

|Λ| ≤ (1 + 2/ε)n ≤ (3/ε)n.

The polar of a convex body K ⊂ R
n is defined by

K0 = {x | 〈x, y〉 ≤ 1 for every y ∈ K}.
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Let K be a convex body. We say that a vector X is uniformly distributed

on K if P{X ∈ A} = |K ∩ A|/|K| for every measurable A ⊂ R
n.

Given a square matrix T , we denote by ‖T‖HS its Hilbert–Schmidt norm.
Below we will need the following geometric lemma. Although we will use

only a particular case of the lemma, we prefer to state it in full generality
for future references.

Lemma 2.1. Let d > 0 and K, L be convex bodies in R
n such that

K ⊂ −dL. Then for every x ∈ K and for 0 < ε ≤ 1 one has

|K ∩ (x + εL)| ≥
∣

∣

∣

∣

ε

d + 1
K ∩ L

∣

∣

∣

∣

.

In particular , if K = L = −K then

|K ∩ (x + εK)| ≥
∣

∣

∣

∣

ε

2
K

∣

∣

∣

∣

.

Proof. Define

α = 1 − ε

d + 1
, β =

ε

d + 1
.

To prove the desired result it is enough to show that

K ∩ (x + εL) ⊃ αx + βK ∩ L.

Let z = αx + βy, where y ∈ K ∩ L. Clearly, z ∈ K and z = x + β(y − x).
Since

y − x ∈ L − K ⊂ L + dL = (1 + d)L,

we obtain the result.

Remark 1. The example of the cube (when x is a vertex) shows that
the estimate in the “in particular” part of Lemma 2.1 is sharp.

Remark 2. It is known that for every convex body K in R
n there exists

a shift such that K − a ⊂ −n(K − a). Thus, Lemma 2.1 implies that for
every convex body K in R

n there exists a vector a ∈ R
n such that for every

x ∈ K and for ε > 0 one has

|(K − a) ∩ (x + ε(K − a))| ≥
∣

∣

∣

∣

ε

n + 1
K

∣

∣

∣

∣

.

The example of the regular simplex (when x is a vertex) shows that the
latter estimate is sharp.

Remark 3. It was proved in [GLMP] that if a body L is in the position
of maximal volume in K (that is, L ⊂ K and for every linear map T and
every point x ∈ R

n satisfying TL + x ⊂ K one has |TL| ≤ |L|), then there
exists a ∈ R

n such that

L − a ⊂ K − a ⊂ −n(L − a).
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Thus Lemma 2.1 implies that if a body L is in the position of maximal
volume in K then there exists a vector a ∈ R

n such that for every x ∈ K
and for ε > 0 one has

|(K − a) ∩ (x + ε(L − a))| ≥
∣

∣

∣

∣

ε

n + 1
L

∣

∣

∣

∣

.

3. Random embeddings of normed spaces in ℓN
∞. First we show

that N vectors uniformly distributed on a symmetric convex body K form
an ε-net in K.

Theorem 3.1. Let n ≥ 1, 0 < ε ≤ 1, and N = (4/ε)2n. Let X1, . . . , XN

be independent random variables uniformly distributed on a symmetric con-

vex body K in R
n. Then with probability larger than 1− exp(−(8/ε)n/2) the

set N = {X1, . . . , XN} forms an ε-net in K.

Proof. Fix an ε/2-net Λ ⊂ K with |Λ| ≤ (6/ε)n, and consider random
vectors X1, . . . , XN uniformly distributed on K, where N is as in the state-
ment.

We want to show that the probability

(1) P{∀x ∈ K ∃i ≤ N such that ‖x − Xi‖K < ε}
is large. Clearly this probability is larger than

(2) P{∀x ∈ Λ ∃i ≤ N such that ‖x − Xi‖K < ε/2}.
We denote by A the event considered in (2), and estimate the probability
of its complement Ac. We have

P(Ac) = P{∃x ∈ Λ ∀i ≤ N one has ‖x − Xi‖K ≥ ε/2}
≤ |Λ|(P{‖x0 − X1‖K ≥ ε/2})N

≤ |Λ|(1 − P{‖x0 − X1‖K < ε/2})N ,

where x0 ∈ Λ satisfies

P{‖x0 − Xi‖K ≥ ε/2} = max
x∈Λ

P{‖x − Xi‖K ≥ ε/2}.

Note that

P{‖x0 − X1‖K < ε/2} = P{X1 ∈ x0 + (ε/2)K} = |K ∩ (x0 + (ε/2)K)|/|K|.
Applying Lemma 2.1 we obtain

P{‖x0 − X1‖K < ε/2} ≥ (ε/2)n.

This implies

P(Ac) ≤ (6/ε)n(1 − (ε/2)n)N ≤ (6/ε)n exp(−(ε/2)nN)

= exp(n ln(6/ε) − (ε/2)n(4/ε)2n) ≤ exp(−(8/ε)n/2),

which yields the result.



Random ε-nets and embeddings in ℓN

∞
95

To prove the next theorem we need the following standard lemma. We
provide its proof for the sake of completeness.

Lemma 3.2. Let X be a Banach space and K be its unit ball. Let N be

an ε-net in the unit ball K0 (or in the unit sphere ∂K0) of the dual space.

Then for every x ∈ X we have

sup
y∈N

〈x, y〉 ≤ ‖x‖K ≤ (1 − ε)−1 sup
y∈N

〈x, y〉.

Proof. The left hand side estimate is obvious. Now let ‖x‖X = 1 and
consider z ∈ ∂K0 such that 〈x, z〉 = 1. Then for an appropriate y ∈ N we
have 1 = 〈x, y〉 + 〈x, z − y〉 ≤ supy∈N 〈x, y〉 + ε, which implies the required
estimate.

Combining Theorem 3.1 with Lemma 3.2 we deduce that a random ma-
trix whose rows are independent random vectors uniformly distributed on
the polar of a symmetric convex body provides a random embedding of the
body into ℓN

∞.

Theorem 3.3. Let 0 < ε < 1 and n ≤ (lnN)/2 ln(4/ε). Let K be

a symmetric convex body in R
n. Let X1, . . . , XN be independent random

vectors uniformly distributed on K0. Consider the matrix Γ : R
n → R

N

whose rows are X1, . . . , XN (i.e. Γx = (〈x, Xi〉)N
i=1

). Then with probability

larger than 1 − exp(−(8/ε)n/2) we have

(1 − ε)‖x‖K ≤ ‖Γx‖∞ ≤ ‖x‖K for all x ∈ R
n.

4. The Euclidean case. In this section we discuss the embedding of ℓn
2

into ℓN
∞. Here it is more natural to work with random vectors uniformly dis-

tributed on the Euclidean sphere Sn−1. Accordingly, in the rest of the paper
X1, . . . , XN stand for independent random vectors uniformly distributed on
the Euclidean sphere Sn−1 and Γ : R

n → R
N is the matrix whose rows are

X1, . . . , XN (that is, Γx = (〈x, Xi〉)N
i=1

).
One can easily check that Theorem 3.1 holds for Sn−1 and such vectors

X1, . . . , XN . Indeed, this follows from the same argument as before with mi-
nor modifications. We need only observe that given y ∈ Sn−1 the normalized
Lebesgue measure of a cap

{x ∈ Sn−1 | |x − y| ≤ ε}
is larger than or equal to (ε/2)n (cf. e.g. [P, Chapter 6]), as well as the fact
that in Sn−1 there exists an ε-net of cardinality (3/ε)n. Therefore Theo-
rem 3.3 holds with K = Bn

2
and with the matrix Γ : R

n → R
N defined

above. We formally state both facts for future reference.

Theorem 4.1. Let 0 < ε < 1 and let n ≤ (lnN)/2 ln(4/ε). Let N =
{X1, . . . , XN} where Xi (i = 1, . . . , N) are independent random vectors
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uniformly distributed on Sn−1. Then, with probability larger than

1−exp(−(8/ε)n/2), N forms an ε-net on Sn−1. Furthermore, with the same

probability , the matrix Γ as above satisfies

(1 − ε)|x| ≤ ‖Γx‖∞ ≤ |x| for all x ∈ R
n.

Denote by Q the unit ball of ℓN
∞ (i.e. the N -dimensional cube). Theo-

rem 4.1 shows that Q has an n-dimensional section (which can be realized
as E := ΓR

n) which is almost Euclidean, i.e.

ΓBn
2 ⊂ Q ∩ E ⊂ (1 − ε)−1ΓBn

2 .

Below we show that in fact the ellipsoid ΓBn
2

is, up to (1 + ε)/(1 − ε),
equivalent to the standard Euclidean ball of radius

√

N/n. In other words,
a random subspace E = ΓR

n of ℓN
∞ is nearly Euclidean with respect to the

canonical Euclidean structure on R
N . Namely, Theorem 4.3 below shows

that

(1 − ε)
√

N/n ΓBn
2 ⊂ Q ∩ E ⊂ 1 + ε

1 − ε

√

N/nΓBn
2 .

We need the following lemma, which shows that
√

n/N Γ almost pre-
serves the Euclidean norm of a vector.

Lemma 4.2. Let 0 < ε < 1 and let N ≥ n3/ε4. Let X1, . . . , XN be

independent random points on the sphere Sn−1. Then with probability larger

than 1 − n2/(ε4N) we have

(1 − ε)|x| ≤ |Γx|
√

n/N ≤ (1 + ε)|x| for all x ∈ R
n.

Remark. One can get better estimates using a theorem of Bourgain
[B]. For instance, the above inequalities are satisfied with probability larger
than 1 − δ as far as N ≥ c(δ)n(lnn)3/ε2 (instead of N ≥ n3/ε4) for some
function c(δ) > 0. However, we prefer to present here a simpler proof, which
provides estimates good enough for our purposes.

Proof of Lemma 4.2. Set A := ‖Γ ∗Γ − (N/n)I‖HS. Using the fact that
‖T‖2

HS
= tr(T ∗T ) for every operator T : R

n → R
N , we get

A2 =
∑

i,j

|〈Xi, Xj〉|2 + (N2/n2)n − (2N/n)‖Γ‖2
HS

=
∑

i,j

|〈Xi, Xj〉|2 + (N2/n2)n − 2N2/n

=
∑

i

|Xi|4 +
∑

i6=j

|〈Xi, Xj〉|2 − N2/n.

Therefore,
EA2 = N + N(N − 1)E|〈X1, X2〉|2.

Since E|〈X1, X2〉|2 = 1/n, we finally obtain EA2 = N(1 − 1/n).



Random ε-nets and embeddings in ℓN

∞
97

By Chebyshev’s inequality we get, for any ε1 > 0,

P{A > ε1} ≤ EA2/ε2
1 ≤ N/ε2

1.

Thus

P

{∥

∥

∥

∥

n

N
Γ ∗Γ − I

∥

∥

∥

∥

< ε1

}

≥ P

{∥

∥

∥

∥

n

N
Γ ∗Γ − I

∥

∥

∥

∥

HS

< ε1

}

≥ 1 − P

{

A >
N

n
ε1

}

≥ 1 − Nn2

ε2
1
N2

= 1 − n2

ε2
1
N

.

The last estimate implies that, for any ε1 > 0, with probability larger than or
equal to 1−n2/(ε2

1N), we have the following estimates for singular numbers
of the matrix Γ :

|
√

n/N sj(Γ ) − 1| <
√

ε1 for j = 1, . . . , n.

In particular,

1 −√
ε1 <

√

n/N sn(Γ ) ≤
√

n/N s1(Γ ) < 1 +
√

ε1.

Setting ε1 = ε2 immediately implies the desired conclusion.

Combining Theorem 3.3 with Lemma 4.2 we obtain

Theorem 4.3. Let 0 < ε < 1 and 2 ≤ n ≤ (lnN)/2 ln(4/ε). Let

X1, . . . , XN be independent random vectors uniformly distributed on Sn−1.

Consider the matrix Γ : R
n → R

N whose rows are X1, . . . , XN . Then with

probability larger than 1−n2ε2n−4/16n− exp(−(8/ε)n/2) ≥ 1−e−n we have

1 − ε

1 + ε
|Γx| ≤

√

N

n
‖Γx‖∞ ≤ 1

1 − ε
|Γx| for all x ∈ R

n.

Finally, we would like to emphasize the differences between the random-
ness given by the matrix Γ and a standard Gaussian matrix G (i.e., with
independent N(0, 1) entries). Fix N and 0 < ε < 1. As already mentioned
in the introduction, Γ gives a random embedding with n1 ∼ (lnN)/ln(2/ε)
(which is best possible in general), while G provides a random embed-
ding with n2 ∼ ε lnN , which is best possible if one requires high proba-
bility ([S2]).

Another observation is that Euclidean sections of the cube determined
by Γ and G, and taken in the appropriate dimensions n1 and n2 (or smaller),
will have different radii. Indeed, the conclusion of Theorem 4.3 implies that,
with high probability defined by Γ , for every non-zero y ∈ ΓR

n1 ,

‖y‖∞
|y| ∼

√

n1

N
∼

√

lnN

N ln(2/ε)
.
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On the other hand, with high probability defined by G for every non-zero
y = Gx ∈ GR

n2 one has

‖y‖∞
|y| ∼ E ‖Gx‖∞

E |Gx| =
E ‖Ge1‖∞

E |Ge1|
∼

√

lnN

N
.

These two expectations are not comparable uniformly in ε (as ε → 0).

Added in proof. Theorem 3.1 should be compared with Proposition 5.3 of [GM].
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