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Random ¢-nets and embeddings in (Y
by

Y. GOrDON (Haifa), A. E. LiTvAk (Edmonton),
A. PAJOR (Marne-la-Vallée) and N. TOMCZAK-JAEGERMANN (Edmonton)

Abstract. We show that, given an n-dimensional normed space X, a sequence of
N = (8/¢)*" independent random vectors (X;)IL,, uniformly distributed in the unit ball
of X*, with high probability forms an e-net for this unit ball. Thus the random linear
map I" : R® — RY defined by I'z = ({(z, X;))}X, embeds X in £}, with at most 1 + ¢
norm distortion. In the case X = ¢5 we obtain a random 1 + e-embedding into £Y, with
asymptotically best possible relation between N, n, and e.

1. Introduction. Let X = (R™,| - ||) be an arbitrary n-dimensional
normed space with unit ball K. It is well known that, for any 0 <e <1, X
can be 1+ e-embedded into ¢, for some N = N(e,n), depending on ¢ and
n, but independent of X. In this note we investigate 1+e-isomorphic embed-
dings which are random with respect to some natural measure, depending
on K. We first show that for N = (8/¢)?", a sequence of N independent ran-
dom vectors (X;)Y |, uniformly distributed in the unit ball K° of the dual
space X*, forms an e-net for K° with high probability. Thus, with high prob-
ability, the random linear map I" : R — RY defined by I'z = ({z, X;))¥,
embeds X in ¢Y with at most 1 + ¢ norm distortion.

The important case is X = £5. In this case it is more natural to consider
random vectors X; uniformly distributed on the sphere S"~!. Such vectors
also form an e-net on the sphere, hence they determine a random 1 + &-
embedding I of 5 into £Y. We also show that \/n/N I is a 1+ e-isometry
from ¢ into ¢, with high probability.

The case X = £ is connected with Dvoretzky’s theorem ([D]). Milman
found a new proof ([M]), using the Lévy isoperimetric inequality on the
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sphere, that there exists a function ¢(e) > 0 such that for all n < ¢(e)In N,
{5 can be 1 + e-embedded into any normed space Y of dimension N. His
proof gives c(e) ~ €2/In(2/¢). Later a new approach was found in [G] by
using random Gaussian embeddings. It implies that c(¢) ~ €2 is sufficient.
Milman raised the question what is the best behavior of c(¢), as € — 0, in
the above estimates. Recently Schechtman showed in [S1] that one may take
c(e) ~ ¢/(In(2/¢))?, however his approach is not random.

Since in this paper we deal with embeddings into £, we shall restrict our
attention to this case only. When Y = ¢X it is well known that there exists
an embedding with c(e) ~ 1/In(2/e). It is also known that this behavior of
c(e) as € — 0 cannot be improved. The standard embedding relies on the
existence of e-nets of appropriate cardinalities. It is therefore natural to ask
whether this embedding can be randomized.

In this paper we provide a positive answer to this question. Namely, we
show (in Theorems 4.1, 4.3) that for the random embedding I" determined by
independent uniformly distributed vectors on S™~!, with large probability
one may achieve c(e) ~ 1/In(2/¢), which is the best possible as mentioned
above. We would like to note that such a result is not valid in the setting of
the Haar measure on the Grassmann manifold (equivalently, for embeddings
defined by Gaussian matrices). Indeed, Schechtman recently showed ([S2])
that if “most” n = ¢/(¢) In N-dimensional subspaces of /Y, are 1+e-Euclidean
then /() ~ e.

2. Notation and preliminary results. We denote by (-,-) the scalar
product of the canonical Euclidean structure on R™ and by |- | the canonical
Euclidean norm. The Euclidean ball is denoted by B3 and the Euclidean
sphere is denoted by S"~1.

By a convex body in R™ we always mean a compact convex set with
non-empty interior. A centrally symmetric body with respect to origin will
be called symmetric. Given a convex body K in R"™ we denote by |K| its

volume and by || - ||k the Minkowski functional of K, i.e.
|lz||x = inf{A > 0]z € AK}.
If K is symmetric then || - ||x is a norm with the unit ball K.

Given a finite set A we denote its cardinality by |A|.
Recall that if K is a symmetric convex body in R™ then for every
0 < e <1 there exists an e-net A in K with respect to the norm | - | x
of cardinality
Al < (1+2/)" < (3/e)™

The polar of a convex body K C R" is defined by
K% ={z| (z,y) <1 for every y € K}.
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Let K be a convex body. We say that a vector X is uniformly distributed
on K if P{X € A} = |K N A|/|K]| for every measurable A C R".

Given a square matrix 7', we denote by ||T||us its Hilbert—Schmidt norm.

Below we will need the following geometric lemma. Although we will use
only a particular case of the lemma, we prefer to state it in full generality
for future references.

LEMMA 2.1. Let d > 0 and K, L be convexr bodies in R™ such that
K C —dL. Then for every x € K and for 0 <e <1 one has

—° KnL

Kn L) >
KO (D) 2 |-

In particular, if K = L = —K then
|IKN(zx+eK)| > ’%K‘

Proof. Define

a:]_—L7 ﬂ: <

To prove the desired result it is enough to show that
Kn(zx+eLl) Darx+LBKNL.

Let z = ax + By, where y € K N L. Clearly, z € K and z = z + B(y — x).
Since
y—re€L—-KCL+dL=(14+d)L,

we obtain the result. m

REMARK 1. The example of the cube (when z is a vertex) shows that
the estimate in the “in particular” part of Lemma 2.1 is sharp.

REMARK 2. It is known that for every convex body K in R™ there exists
a shift such that K — a C —n(K — a). Thus, Lemma 2.1 implies that for
every convex body K in R"™ there exists a vector a € R" such that for every
x € K and for € > 0 one has
€

(K —a)N(x+e(K —a))|> ]

K.

The example of the regular simplex (when x is a vertex) shows that the
latter estimate is sharp.

REMARK 3. It was proved in [GLMP] that if a body L is in the position
of maximal volume in K (that is, L C K and for every linear map 7" and
every point x € R" satisfying TL + x C K one has |TL| < |L|), then there
exists a € R" such that

L-—aCK-aC—-n(L—-a).
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Thus Lemma 2.1 implies that if a body L is in the position of maximal
volume in K then there exists a vector a € R™ such that for every x € K
and for € > 0 one has

(K —a)N(z+e(l —a))l>

L‘.
n+1

3. Random embeddings of normed spaces in (Y. First we show
that IV vectors uniformly distributed on a symmetric convex body K form
an e-net in K.

THEOREM 3.1. Letn>1,0<¢e<1, and N = (4/¢)*". Let X1,...,Xn
be independent random variables uniformly distributed on a symmetric con-
vex body K in R™. Then with probability larger than 1 —exp(—(8/¢)™/2) the
set N ={X1,..., XN} forms an e-net in K.

Proof. Fix an £/2-net A C K with |4] < (6/¢)", and consider random
vectors X7i, ..., Xy uniformly distributed on K, where N is as in the state-
ment.

We want to show that the probability

(1) P{Vx € K 3i < N such that ||z — X;||x < &}
is large. Clearly this probability is larger than
(2) P{Vz € A 3i < N such that ||z — X;||x < e/2}.

We denote by A the event considered in (2), and estimate the probability
of its complement A°. We have

P(A°) =P{3x € A Vi < N one has ||z — X;||x > ¢/2}
< |A|(P{llzo — Xi|x > e/21)Y
< 41 = P{fleo — Xk < /21",
where zg € A satisfies
P{llwo = Xillx > €/2} = maxP{|ls - Xillx > €/2}.
Note that
P{|lxzo — X1llx <e/2} =P{X1 € 2o+ (¢/2)K} = |[K N (20 + (¢/2)K)|/|K|.
Applying Lemma 2.1 we obtain
P{llzo — Xullx <e/2} = (e/2)".
This implies
P(A°) < (6/2)"(1 — (¢/2)")" < (6/2)" exp(—(¢/2)"N)
= exp(nln(6/c) — (¢/2)"(4/)*") < exp(—(8/2)"/2),
which yields the result. =
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To prove the next theorem we need the following standard lemma. We
provide its proof for the sake of completeness.

LEMMA 3.2. Let X be a Banach space and K be its unit ball. Let N be
an e-net in the unit ball K° (or in the unit sphere OK°) of the dual space.
Then for every x € X we have

sup (2, y) < [|lz[lx < (1 —¢)”! sup(z,y).
yeN yeN

Proof. The left hand side estimate is obvious. Now let |z||x = 1 and
consider z € K" such that (z,z) = 1. Then for an appropriate y € N we
have 1 = (z,y) + (,2 — y) < supyepr(z,y) + €, which implies the required
estimate. m

Combining Theorem 3.1 with Lemma 3.2 we deduce that a random ma-
trix whose rows are independent random vectors uniformly distributed on
the polar of a symmetric convex body provides a random embedding of the
body into ¢%.

THEOREM 3.3. Let 0 < ¢ < 1 and n < (InN)/2In(4/¢). Let K be
a symmetric convexr body in R™. Let Xq,...,Xn be independent random
vectors uniformly distributed on K°. Consider the matriz I' : R* — RN
whose rows are X1,...,Xn (i.e. ['v = ({x, X;))N,). Then with probability
larger than 1 — exp(—(8/€)"™/2) we have

(I=9)|zllx < || I'z||co < |||k for all x € R™.

4. The Euclidean case. In this section we discuss the embedding of £5
into ¢Y . Here it is more natural to work with random vectors uniformly dis-
tributed on the Euclidean sphere S™~!. Accordingly, in the rest of the paper
X1, ..., Xn stand for independent random vectors uniformly distributed on
the Euclidean sphere S~ ! and I' : R — R¥ is the matrix whose rows are
Xi,..., Xn (that is, 'z = ((z, X;))X ).

One can easily check that Theorem 3.1 holds for S”~! and such vectors
X1,...,Xn. Indeed, this follows from the same argument as before with mi-
nor modifications. We need only observe that given y € S?~! the normalized
Lebesgue measure of a cap

{res" |z -yl <e}

is larger than or equal to (¢/2)" (cf. e.g. [P, Chapter 6]), as well as the fact
that in S™~! there exists an e-net of cardinality (3/¢)". Therefore Theo-
rem 3.3 holds with K = BJ and with the matrix I" : R® — RY defined
above. We formally state both facts for future reference.

THEOREM 4.1. Let 0 < ¢ < 1 and let n < (InN)/21In(4/¢). Let N =
{X1,..., XN} where X; (i = 1,...,N) are independent random wvectors
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uniformly distributed on S™'. Then, with probability larger than
1—exp(—(8/e)"/2), N forms an e-net on S"~t. Furthermore, with the same
probability, the matriz I' as above satisfies

(1 —¢)|z| < ||[I't||oo < |z| for all x € R™.

Denote by @ the unit ball of ¢Y (i.e. the N-dimensional cube). Theo-
rem 4.1 shows that @) has an n-dimensional section (which can be realized
as F := I'R™) which is almost Euclidean, i.e.

I'BYy cQNEC(1-¢)'I'By.

Below we show that in fact the ellipsoid I'BY is, up to (1+¢)/(1—¢),
equivalent to the standard Euclidean ball of radius y/N/n. In other words,
a random subspace E = I'R" of /Y is nearly Euclidean with respect to the
canonical Euclidean structure on RY. Namely, Theorem 4.3 below shows

that
1
(1-2)VN/nTB} CQNEC ; fz /N/n "B

We need the following lemma, which shows that y/n/N I" almost pre-
serves the Euclidean norm of a vector.

LEMMA 4.2. Let 0 < & < 1 and let N > n3/e*. Let X1,..., XN be
independent random points on the sphere S"~1. Then with probability larger
than 1 —n?/(¢*N) we have

(I—¢)lz| < |I'z|]\/n/N < (1+¢)|z| forallz e R".

REMARK. One can get better estimates using a theorem of Bourgain
[B]. For instance, the above inequalities are satisfied with probability larger
than 1 — § as far as N > ¢(0)n(Inn)?/e? (instead of N > n?/e?) for some
function ¢(6) > 0. However, we prefer to present here a simpler proof, which
provides estimates good enough for our purposes.

Proof of Lemma 4.2. Set A := ||[[*I" — (N/n)I||us. Using the fact that
|T|l}g = tr(T*T) for every operator T : R™ — R¥ we get

= Z (X5, X5)[P + (N?/n*)n — (2N/n) || Tl

= Zy Xi, X2 + (N?/n*)n — 2N?/n

_Z]X|4+Z|XZ,X — N?/n.
i#j
Therefore,
EA%? = N + N(N — 1)E[(X1, Xo) %

Since E|(X1, X2)|? = 1/n, we finally obtain EA% = N(1 — 1/n).
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By Chebyshev’s inequality we get, for any 1 > 0,
P{A >¢e1} <EA?/e? < N/e3.

<<€1}
HS

N Nn? n?
>1-PcA>— >1l———=1—-——.
- { nel}_ g2 N2 e2N

Thus

i

The last estimate implies that, for any €; > 0, with probability larger than or
equal to 1 —n?/(¢2N), we have the following estimates for singular numbers
of the matrix I

IVn/Ns;(I')—1] < e forj=1,...,n.

%F*F—IH <51} 2}}”{

n
—I"r-1I
N

In particular,

1—e1 <v/n/Nsp(I') </n/Nsi(I') <14 /e1.

2

Setting €1 = ¢° immediately implies the desired conclusion. m

Combining Theorem 3.3 with Lemma 4.2 we obtain

THEOREM 4.3. Let 0 < ¢ < 1 and 2 < n < (InN)/2In(4/e). Let
X1,...,Xn be independent random vectors uniformly distributed on S™ 1.
Consider the matriz I’ : R* — RN whose rows are Xi1,...,Xn. Then with
probability larger than 1 —n2?=4 /16" —exp(—(8/¢)"/2) > 1 —e™" we have

hz Fa| < \/gnmnoo < 11? Fa|  for all x € R™.

Finally, we would like to emphasize the differences between the random-
ness given by the matrix I" and a standard Gaussian matrix G (i.e., with
independent N(0,1) entries). Fix N and 0 < € < 1. As already mentioned
in the introduction, I" gives a random embedding with n; ~ (In N)/In(2/¢)
(which is best possible in general), while G' provides a random embed-
ding with no ~ €In N, which is best possible if one requires high proba-
bility ([S2]).

Another observation is that Euclidean sections of the cube determined
by I" and G, and taken in the appropriate dimensions n; and ng (or smaller),
will have different radii. Indeed, the conclusion of Theorem 4.3 implies that,
with high probability defined by I', for every non-zero y € I'R™,

yllc  [na [ InN
| N Nin(2/e)
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On the other hand, with high probability defined by G for every non-zero
y = Gx € GR™ one has

[Yle  ElGzllec _ EllGer]c ~ /InN
[l E|Gxl E|Ge| N

These two expectations are not comparable uniformly in € (as € — 0).
Added in proof. Theorem 3.1 should be compared with Proposition 5.3 of [GM].
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