Random ε-nets and embeddings in ℓ^N_∞

by

Y. Gordon (Haifa), A. E. Litvak (Edmonton),
A. Pajor (Marne-la-Vallée) and N. Tomczak-Jaegermann (Edmonton)

Abstract. We show that, given an n-dimensional normed space X, a sequence of $N = (8/\varepsilon)^{2n}$ independent random vectors $(X_i)_{i=1}^N$, uniformly distributed in the unit ball of X^*, with high probability forms an ε-net for this unit ball. Thus the random linear map $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ defined by $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$ embeds X in ℓ^N_∞ with at most $1 + \varepsilon$ norm distortion. In the case $X = \ell^n_2$ we obtain a random $1 + \varepsilon$-embedding into ℓ^N_∞ with asymptotically best possible relation between N, n, and ε.

1. Introduction. Let $X = (\mathbb{R}^n, \| \cdot \|)$ be an arbitrary n-dimensional normed space with unit ball K. It is well known that, for any $0 < \varepsilon < 1$, X can be $1+\varepsilon$-embedded into ℓ^N_∞, for some $N = N(\varepsilon, n)$, depending on ε and n, but independent of X. In this note we investigate $1+\varepsilon$-isomorphic embeddings which are random with respect to some natural measure, depending on K. We first show that for $N = (8/\varepsilon)^{2n}$, a sequence of N independent random vectors $(X_i)_{i=1}^N$, uniformly distributed in the unit ball K^0 of the dual space X^*, forms an ε-net for K^0 with high probability. Thus, with high probability, the random linear map $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ defined by $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$ embeds X in ℓ^N_∞ with at most $1 + \varepsilon$ norm distortion.

The important case is $X = \ell^n_2$. In this case it is more natural to consider random vectors X_i uniformly distributed on the sphere S^{n-1}. Such vectors also form an ε-net on the sphere, hence they determine a random $1 + \varepsilon$-embedding Γ of ℓ^n_2 into ℓ^N_∞. We also show that $\sqrt{n/N} \Gamma$ is a $1 + \varepsilon$-isometry from ℓ^n_2 into ℓ^N_∞, with high probability.

The case $X = \ell^n_2$ is connected with Dvoretzky’s theorem ([D]). Milman found a new proof ([M]), using the Lévy isoperimetric inequality on the

2000 Mathematics Subject Classification: 46B07, 46B09, 52A21, 60D05.

Key words and phrases: Dvoretzky theorem, random embeddings into ℓ_∞, random ε-nets.

Y. Gordon was partially supported by France–Israel exchange fund 2005389, and by the Fund for the Promotion of Research at the Technion.

N. Tomczak-Jaegermann holds the Canada Research Chair in Geometric Analysis.
sphere, that there exists a function $c(\varepsilon) > 0$ such that for all $n \leq c(\varepsilon) \ln N$, ℓ_2^n can be $1 + \varepsilon$-embedded into any normed space Y of dimension N. His proof gives $c(\varepsilon) \sim \varepsilon^2 / \ln(2/\varepsilon)$. Later a new approach was found in [G] by using random Gaussian embeddings. It implies that $c(\varepsilon) \sim \varepsilon^2$ is sufficient. Milman raised the question what is the best behavior of $c(\varepsilon)$, as $\varepsilon \to 0$, in the above estimates. Recently Schechtman showed in [S1] that one may take $c(\varepsilon) \sim \varepsilon / (\ln(2/\varepsilon))^2$, however his approach is not random.

Since in this paper we deal with embeddings into ℓ_N^∞, we shall restrict our attention to this case only. When $Y = \ell_N^\infty$, it is well known that there exists an embedding with $c(\varepsilon) \sim 1 / \ln(2/\varepsilon)$. It is also known that this behavior of $c(\varepsilon)$ as $\varepsilon \to 0$ cannot be improved. The standard embedding relies on the existence of ε-nets of appropriate cardinalities. It is therefore natural to ask whether this embedding can be randomized.

In this paper we provide a positive answer to this question. Namely, we show (in Theorems 4.1, 4.3) that for the random embedding Γ determined by independent uniformly distributed vectors on S^{n-1}, with large probability one may achieve $c(\varepsilon) \sim 1 / \ln(2/\varepsilon)$, which is the best possible as mentioned above. We would like to note that such a result is not valid in the setting of the Haar measure on the Grassmann manifold (equivalently, for embeddings defined by Gaussian matrices). Indeed, Schechtman recently showed ([S2]) that if “most” $n = c'(\varepsilon) \ln N$-dimensional subspaces of ℓ_N^∞ are $1 + \varepsilon$-Euclidean then $c'(\varepsilon) \sim \varepsilon$.

2. Notation and preliminary results. We denote by $\langle \cdot, \cdot \rangle$ the scalar product of the canonical Euclidean structure on \mathbb{R}^n and by $|\cdot|$ the canonical Euclidean norm. The Euclidean ball is denoted by B_2^n and the Euclidean sphere is denoted by S^{n-1}.

By a convex body in \mathbb{R}^n we always mean a compact convex set with non-empty interior. A centrally symmetric body with respect to origin will be called symmetric. Given a convex body K in \mathbb{R}^n we denote by $|K|$ its volume and by $\| \cdot \|_K$ the Minkowski functional of K, i.e.

$$\|x\|_K = \inf\{\lambda > 0 \mid x \in \lambda K\}.$$

If K is symmetric then $\| \cdot \|_K$ is a norm with the unit ball K.

Given a finite set A we denote its cardinality by $|A|$.

Recall that if K is a symmetric convex body in \mathbb{R}^n then for every $0 < \varepsilon \leq 1$ there exists an ε-net A in K with respect to the norm $\| \cdot \|_K$ of cardinality

$$|A| \leq (1 + 2/\varepsilon)^n \leq (3/\varepsilon)^n.$$

The polar of a convex body $K \subset \mathbb{R}^n$ is defined by

$$K^0 = \{ x \mid \langle x, y \rangle \leq 1 \text{ for every } y \in K \}.$$
Let K be a convex body. We say that a vector X is \textit{uniformly distributed} on K if $\mathbb{P}\{X \in A\} = |K \cap A|/|K|$ for every measurable $A \subset \mathbb{R}^n$.

Given a square matrix T, we denote by $\|T\|_{\text{HS}}$ its Hilbert–Schmidt norm.

Below we will need the following geometric lemma. Although we will use only a particular case of the lemma, we prefer to state it in full generality for future references.

Lemma 2.1. Let $d > 0$ and K, L be convex bodies in \mathbb{R}^n such that $K \subset -dL$. Then for every $x \in K$ and for $0 < \varepsilon \leq 1$ one has

$$|K \cap (x + \varepsilon L)| \geq \left| \frac{\varepsilon}{d+1} K \cap L \right|.$$

In particular, if $K = L = -K$ then

$$|K \cap (x + \varepsilon K)| \geq \left| \frac{\varepsilon}{2} K \right|.$$

Proof. Define

$$\alpha = 1 - \frac{\varepsilon}{d+1}, \quad \beta = \frac{\varepsilon}{d+1}.$$

To prove the desired result it is enough to show that

$$K \cap (x + \varepsilon L) \supset \alpha x + \beta K \cap L.$$

Let $z = \alpha x + \beta y$, where $y \in K \cap L$. Clearly, $z \in K$ and $z = x + \beta (y - x)$. Since

$$y - x \in L - K \subset L + dL = (1 + d)L,$$

we obtain the result. \hfill \blacksquare

Remark 1. The example of the cube (when x is a vertex) shows that the estimate in the “in particular” part of Lemma 2.1 is sharp.

Remark 2. It is known that for every convex body K in \mathbb{R}^n there exists a shift such that $K - a \subset -n(K - a)$. Thus, Lemma 2.1 implies that for every convex body K in \mathbb{R}^n there exists a vector $a \in \mathbb{R}^n$ such that for every $x \in K$ and for $\varepsilon > 0$ one has

$$|(K - a) \cap (x + \varepsilon (K - a))| \geq \left| \frac{\varepsilon}{n+1} K \right|.$$

The example of the regular simplex (when x is a vertex) shows that the latter estimate is sharp.

Remark 3. It was proved in [GLMP] that if a body L is in the position of maximal volume in K (that is, $L \subset K$ and for every linear map T and every point $x \in \mathbb{R}^n$ satisfying $TL + x \subset K$ one has $|TL| \leq |L|$), then there exists $a \in \mathbb{R}^n$ such that

$$L - a \subset K - a \subset -n(L - a).$$
Thus Lemma 2.1 implies that if a body \(L \) is in the position of maximal volume in \(K \) then there exists a vector \(a \in \mathbb{R}^n \) such that for every \(x \in K \) and for \(\varepsilon > 0 \) one has
\[
|(K - a) \cap (x + \varepsilon(L - a))| \geq \left| \frac{\varepsilon}{n+1} L \right|.
\]

3. Random embeddings of normed spaces in \(\ell_\infty^N \). First we show that \(N \) vectors uniformly distributed on a symmetric convex body \(K \) form an \(\varepsilon \)-net in \(K \).

Theorem 3.1. Let \(n \geq 1, 0 < \varepsilon \leq 1, \) and \(N = \left(\frac{4}{\varepsilon}\right)^{2n} \). Let \(X_1, \ldots, X_N \) be independent random variables uniformly distributed on a symmetric convex body \(K \) in \(\mathbb{R}^n \). Then with probability larger than \(1 - \exp(-\left(\frac{8}{\varepsilon}\right)^n/2) \) the set \(N = \{X_1, \ldots, X_N\} \) forms an \(\varepsilon \)-net in \(K \).

Proof. Fix an \(\varepsilon/2 \)-net \(\Lambda \subset K \) with \(|\Lambda| \leq (6/\varepsilon)^n \), and consider random vectors \(X_1, \ldots, X_N \) uniformly distributed on \(K \), where \(N \) is as in the statement.

We want to show that the probability
\[
P(\forall x \in K \exists i \leq N \text{ such that } \|x - X_i\|_K < \varepsilon)
\]
is large. Clearly this probability is larger than
\[
P(\forall x \in \Lambda \exists i \leq N \text{ such that } \|x - X_i\|_K < \varepsilon/2).
\]
We denote by \(A \) the event considered in (2), and estimate the probability of its complement \(A^c \). We have
\[
P(A^c) = P(\exists x \in \Lambda \forall i \leq N \text{ one has } \|x - X_i\|_K \geq \varepsilon/2)
\leq |\Lambda| (P(\|x_0 - X_1\|_K \geq \varepsilon/2))^N
\leq |\Lambda| (1 - P(\|x_0 - X_1\|_K < \varepsilon/2))^N,
\]
where \(x_0 \in \Lambda \) satisfies
\[
P(\|x_0 - X_i\|_K \geq \varepsilon/2) = \max_{x \in \Lambda} P(\|x - X_i\|_K \geq \varepsilon/2).
\]
Note that
\[
P(\|x_0 - X_1\|_K < \varepsilon/2) = P(\{X_1 \in x_0 + (\varepsilon/2)K\} = |K \cap (x_0 + (\varepsilon/2)K)|/|K|.
\]
Applying Lemma 2.1 we obtain
\[
P(\|x_0 - X_1\|_K < \varepsilon/2) \geq (\varepsilon/2)^n.
\]
This implies
\[
P(A^c) \leq (6/\varepsilon)^n (1 - (\varepsilon/2)^n)^N \leq (6/\varepsilon)^n \exp(-\varepsilon/2)^n N
\]
\[
= \exp(n \ln(6/\varepsilon) - (\varepsilon/2)^n (4/\varepsilon)^{2n}) \leq \exp(-8/\varepsilon)^n/2),
\]
which yields the result. \(\blacksquare \)
To prove the next theorem we need the following standard lemma. We provide its proof for the sake of completeness.

Lemma 3.2. Let X be a Banach space and K be its unit ball. Let \mathcal{N} be an ε-net in the unit ball K^0 (or in the unit sphere ∂K^0) of the dual space. Then for every $x \in X$ we have

$$\sup_{y \in \mathcal{N}} \langle x, y \rangle \leq \|x\|_K \leq (1 - \varepsilon)^{-1} \sup_{y \in \mathcal{N}} \langle x, y \rangle.$$

Proof. The left hand side estimate is obvious. Now let $\|x\|_X = 1$ and consider $z \in \partial K^0$ such that $\langle x, z \rangle = 1$. Then for an appropriate $y \in \mathcal{N}$ we have $1 = \langle x, y \rangle + \langle x, z - y \rangle \leq \sup_{y \in \mathcal{N}} \langle x, y \rangle + \varepsilon$, which implies the required estimate.

Combining Theorem 3.1 with Lemma 3.2 we deduce that a random matrix whose rows are independent random vectors uniformly distributed on the polar of a symmetric convex body provides a random embedding of the body into ℓ^N_∞.

Theorem 3.3. Let $0 < \varepsilon < 1$ and $n \leq (\ln N)/2 \ln (4/\varepsilon)$. Let K be a symmetric convex body in \mathbb{R}^n. Let X_1, \ldots, X_N be independent random vectors uniformly distributed on K^0. Consider the matrix $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ whose rows are X_1, \ldots, X_N (i.e. $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$). Then with probability larger than $1 - \exp(-8/\varepsilon)^n/2$ we have

$$(1 - \varepsilon)\|x\|_K \leq \|\Gamma x\|_\infty \leq \|x\|_K$$

for all $x \in \mathbb{R}^n$.

4. The Euclidean case. In this section we discuss the embedding of ℓ^2_n into ℓ^N_∞. Here it is more natural to work with random vectors uniformly distributed on the Euclidean sphere S^{n-1}. Accordingly, in the rest of the paper X_1, \ldots, X_N stand for independent random vectors uniformly distributed on the Euclidean sphere S^{n-1} and $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ is the matrix whose rows are X_1, \ldots, X_N (that is, $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$).

One can easily check that Theorem 3.1 holds for S^{n-1} and such vectors X_1, \ldots, X_N. Indeed, this follows from the same argument as before with minor modifications. We need only observe that given $y \in S^{n-1}$ the normalized Lebesgue measure of a cap

$$\{x \in S^{n-1} \mid |x - y| \leq \varepsilon\}$$

is larger than or equal to $(\varepsilon/2)^n$ (cf. e.g. [P, Chapter 6]), as well as the fact that in S^{n-1} there exists an ε-net of cardinality $(3/\varepsilon)^n$. Therefore Theorem 3.3 holds with $K = B^n_2$ and with the matrix $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ defined above. We formally state both facts for future reference.

Theorem 4.1. Let $0 < \varepsilon < 1$ and let $n \leq (\ln N)/2 \ln (4/\varepsilon)$. Let $\mathcal{N} = \{X_1, \ldots, X_N\}$ where X_i ($i = 1, \ldots, N$) are independent random vectors
uniformly distributed on S^{n-1}. Then, with probability larger than $1- \exp(-(8/\varepsilon)^n/2)$, \mathcal{N} forms an ε-net on S^{n-1}. Furthermore, with the same probability, the matrix Γ as above satisfies

\[(1 - \varepsilon)|x| \leq \|\Gamma x\|_\infty \leq |x| \quad \text{for all } x \in \mathbb{R}^n.\]

Denote by Q the unit ball of ℓ^N_∞ (i.e. the N-dimensional cube). Theorem 4.1 shows that Q has an n-dimensional section (which can be realized as $E := \Gamma \mathbb{R}^n$) which is almost Euclidean, i.e.

\[\Gamma B^2_n \subset Q \cap E \subset (1 - \varepsilon)^{-1} \Gamma B^2_n.\]

Below we show that in fact the ellipsoid ΓB^2_n is, up to $(1 + \varepsilon)/(1 - \varepsilon)$, equivalent to the standard Euclidean ball of radius $\sqrt{N/n}$. In other words, a random subspace $E = \Gamma \mathbb{R}^n$ of ℓ^N_∞ is nearly Euclidean with respect to the canonical Euclidean structure on \mathbb{R}^N. Namely, Theorem 4.3 below shows that

\[(1 - \varepsilon)\sqrt{N/n} \Gamma B^2_n \subset Q \cap E \subset (1 - \varepsilon)\sqrt{N/n} \Gamma B^2_n.\]

We need the following lemma, which shows that $\sqrt{n/N} \Gamma$ almost preserves the Euclidean norm of a vector.

Lemma 4.2. Let $0 < \varepsilon < 1$ and let $N \geq n^3/\varepsilon^4$. Let X_1, \ldots, X_N be independent random points on the sphere S^{n-1}. Then with probability larger than $1 - n^2/(\varepsilon^4 N)$ we have

\[(1 - \varepsilon)|x| \leq \|\Gamma x\|_\sqrt{n/N} \leq (1 + \varepsilon)|x| \quad \text{for all } x \in \mathbb{R}^n.\]

Remark. One can get better estimates using a theorem of Bourgain [B]. For instance, the above inequalities are satisfied with probability larger than $1 - \delta$ as far as $N \geq c(\delta)n(\ln n)^3/\varepsilon^2$ (instead of $N \geq n^3/\varepsilon^4$) for some function $c(\delta) > 0$. However, we prefer to present here a simpler proof, which provides estimates good enough for our purposes.

Proof of Lemma 4.2. Set $A := \|\Gamma^* \Gamma - (N/n)I\|_{\text{HS}}$. Using the fact that $\|T\|_{\text{HS}}^2 = \text{tr}(T^*T)$ for every operator $T : \mathbb{R}^n \to \mathbb{R}^N$, we get

\[A^2 = \sum_{i,j} \langle X_i, X_j \rangle^2 + (N^2/n^2)n - (2N/n)\|\Gamma\|_{\text{HS}}^2\]

\[= \sum_{i,j} \langle X_i, X_j \rangle^2 + (N^2/n^2)n - 2N^2/n\]

\[= \sum_i |X_i|^4 + \sum_{i \neq j} |\langle X_i, X_j \rangle|^2 - N^2/n.\]

Therefore,

\[\mathbb{E}A^2 = N + N(N - 1)\mathbb{E}|\langle X_1, X_2 \rangle|^2.\]

Since $\mathbb{E}|\langle X_1, X_2 \rangle|^2 = 1/n$, we finally obtain $\mathbb{E}A^2 = N(1 - 1/n)$.
By Chebyshev’s inequality we get, for any $\varepsilon_1 > 0$,
\[
P\{A > \varepsilon_1\} \leq \mathbb{E}A^2/\varepsilon_1^2 \leq N/\varepsilon_1^2.
\]

Thus
\[
P\left\{ \left\| \frac{n}{N} \Gamma^* \Gamma - I \right\| < \varepsilon_1 \right\} \geq P\left\{ \left\| \frac{n}{N} \Gamma^* \Gamma - I \right\|_{HS} < \varepsilon_1 \right\}
\geq 1 - P\left\{ A > \frac{N}{n} \varepsilon_1 \right\} \geq 1 - \frac{Nn^2}{\varepsilon_1^2 N^2} = 1 - \frac{n^2}{\varepsilon_1^2 N}.
\]

The last estimate implies that, for any $\varepsilon_1 > 0$, with probability larger than or equal to $1 - n^2/(\varepsilon_1^2 N)$, we have the following estimates for singular numbers of the matrix Γ:
\[
|\sqrt{n/N} s_j(\Gamma) - 1| < \sqrt{\varepsilon_1} \quad \text{for } j = 1, \ldots, n.
\]

In particular,
\[
1 - \sqrt{\varepsilon_1} < \sqrt{n/N} s_n(\Gamma) \leq \sqrt{n/N} s_1(\Gamma) < 1 + \sqrt{\varepsilon_1}.
\]

Setting $\varepsilon_1 = \varepsilon^2$ immediately implies the desired conclusion. ■

Combining Theorem 3.3 with Lemma 4.2 we obtain

Theorem 4.3. Let $0 < \varepsilon < 1$ and $2 \leq n \leq (\ln N)/2 \ln(4/\varepsilon)$. Let X_1, \ldots, X_N be independent random vectors uniformly distributed on S^{n-1}. Consider the matrix $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ whose rows are X_1, \ldots, X_N. Then with probability larger than $1 - n^2/\varepsilon^{2n-4}/16^n - \exp\left(-\frac{8}{\varepsilon}n^2/2 \right)$ we have
\[
\frac{1 - \varepsilon}{1 + \varepsilon} |\Gamma x| \leq \sqrt{\frac{N}{n}} \|\Gamma x\|_{\infty} \leq \frac{1}{1 - \varepsilon} |\Gamma x| \quad \text{for all } x \in \mathbb{R}^n.
\]

Finally, we would like to emphasize the differences between the randomness given by the matrix Γ and a standard Gaussian matrix G (i.e., with independent $N(0,1)$ entries). Fix N and $0 < \varepsilon < 1$. As already mentioned in the introduction, Γ gives a random embedding with $n_1 \sim (\ln N)/\ln(2/\varepsilon)$ (which is best possible in general), while G provides a random embedding with $n_2 \sim \varepsilon \ln N$, which is best possible if one requires high probability ([S2]).

Another observation is that Euclidean sections of the cube determined by Γ and G, and taken in the appropriate dimensions n_1 and n_2 (or smaller), will have different radii. Indeed, the conclusion of Theorem 4.3 implies that, with high probability defined by Γ, for every non-zero $y \in \Gamma \mathbb{R}^{n_1}$,
\[
\frac{\|y\|_{\infty}}{|y|} \sim \sqrt{\frac{n_1}{N}} \sim \sqrt{\frac{\ln N}{N \ln(2/\varepsilon)}}.
\]
On the other hand, with high probability defined by G for every non-zero $y = Gx \in G\mathbb{R}^{n^2}$ one has

$$\frac{\|y\|_\infty}{|y|} \sim \frac{\mathbb{E}\|Gx\|_\infty}{\mathbb{E}|Gx|} = \frac{\mathbb{E}\|Ge_1\|_\infty}{\mathbb{E}|Ge_1|} \sim \sqrt{\frac{\ln N}{N}}.$$

These two expectations are not comparable uniformly in ε (as $\varepsilon \to 0$).

Added in proof. Theorem 3.1 should be compared with Proposition 5.3 of [GM].

References

