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On some Brownian functionals and their applications to
moments in the lognormal stochastic volatility model

by

Jacek Jakubowski and Maciej Wísniewolski (Warszawa)

Abstract. We find a probabilistic representation of the Laplace transform of some
special functional of geometric Brownian motion using squared Bessel and radial Ornstein–
Uhlenbeck processes. Knowing the transition density functions of these processes, we ob-
tain closed formulas for certain expectations of the relevant functional. Among other things
we compute the Laplace transform of the exponent of the T transforms of Brownian mo-
tion with drift used by Donati-Martin, Matsumoto, and Yor in a variety of identities of
duality type between functionals of Brownian motion. We also present links between ge-
ometric Brownian motion and Markov processes studied by Matsumoto and Yor. These
results have wide applications. As an example of their use in financial mathematics we find
the moments of processes representing the asset price in the lognormal volatility model.

1. Introduction. The aim of this paper is to present new results con-
cerning some functionals of Brownian motion with drift. We also give some
applications of those results to financial mathematics. The laws of many
different functionals of Brownian motion have been studied in recent years
(see, among others, [BS], [DY], [DGY], [MY4], [MY5]), but some of the re-
sults obtained cannot be effectively used in applications. The distribution

of
	t
0 e

B
(µ)
u du, where B

(µ)
t = Bt + µt with B a standard Brownian motion,

is an example of such a situation. This distribution can be characterized by
the Hartman–Watson distribution, but the oscillating nature of the latter
causes difficulties in numerical calculations (see [BRY] and [G]).

We study the laws of special functionals of geometric Brownian motion,
and find results convenient for numerical applications. We investigate the
functionals of geometric Brownian motion

Y
(µ)
t := exp(Bt + (µ− 1/2)t) for µ ∈ R.
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In particular, we study properties of the functionals

Γt =
Y

(0)
t

1 + β
	t
0 Y

(0)
s ds

and 1 + βA
(µ)
t for β > 0,

where A
(µ)
t :=

	t
0(Y

(µ)
u )2 du. We give a formula for the Laplace transform

of Γt. We also present a probabilistic representation of the Laplace transform
of Γt in terms of squared Bessel and radial Ornstein–Uhlenbeck processes.
Knowing the transition density functions of these processes, we obtain com-
putable formulas for certain expectations of the relevant functionals.

Two important advantages of the new results are, first, that they are ob-
tained for fixed t (and not for stochastic time), and secondly, that they can be
effectively used in numerical computations. Instead of using the Hartman–
Watson distribution we reduce the problem of computing expectations of a
functional of Brownian motion to computing several less complicated expec-
tations.

Our results can be applied in various areas where expectations of Brow-
nian motion functionals are calculated. As a first example we compute the
Laplace transform of the exponent of Tα and T

α/eB
(µ)
t

transforms of Brow-

nian motion with drift, which are used by Donati-Martin, Matsumoto, and
Yor in various identities of duality type between functionals of Brownian
motion (see [DMY] for a detailed study). In physics, exponential function-
als of Brownian motion play a crucial role in the context of one-dimensional
classical diffusion in a random environment. The integral of geometric Brow-
nian motion occurs in the study of the transport properties of disordered
samples of finite length (see [CMY]).

As another example of applications, this time in financial mathematics,
we compute the moments EXα

t , for α > 0, of the processes Xt representing
the asset price in an important stochastic volatility model, the lognormal
volatility model. Explicit forms of these moments have not been known so
far. Computing these moments is crucial in problems of pricing derivatives
(for instance, the necessity of a “convexity correction” to the forward rate
price for a broad class of interest rate derivatives; for details see, e.g., [BM]).
It is also important for approximations of characteristic functions of random
variables with very complicated distributions. We find a duality between the
Laplace transform of Γt and moments.

We now give a detailed plan of this paper. In Subsection 2.1, we present a
method of calculating the moments EΓ kt for k ∈ Z (Proposition 2.3, Remark
2.4) and investigate the connection of the functional Γ with some special
diffusion process (Theorem 2.5). In Subsection 2.2, we investigate various

properties of 1 + βA
(µ)
t . We find two different probabilistic representations

of the Laplace transform of (1 + βA
(µ)
t )−1 (Theorems 2.9 and 2.10), and
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formulas for E ln(1 + βA
(µ)
t ) and E(1 + βA

(µ)
t )−1 (Corollary 2.14). It turns

out that for an arbitrary strictly positive random variable we can find a
representation of the Laplace transform of (s + ξ)−1 for s ≥ 0 in terms of
a squared Bessel process (Lemma 2.6). Moreover, we find expressions for
E ln(1 + βξ), E(1 + βξ)−1 as well as for Ef(1/ξ) for f being a Bernstein
function (Theorems 2.13 and 2.31).

Theorem 2.11 gives identity in law of two squared Bessel processes with
index −1 with different initial laws, one being the law of a squared 0-
dimensional radial Ornstein–Uhlenbeck process with parameter −1. In The-
orem 2.20, we express the Laplace transform of Γt in terms of the functions
Fx introduced by Matsumoto and Yor in [MY4, Thm. 5.6]. Moreover, we find

some interesting connections between E((1 + βA
(µ)
t )−1) and the conditional

expectation of functionals of geometric Brownian motion with opposite drift.
Notice that we establish all those results for a fixed t.

In Section 3, we find the Laplace transforms of the exponent of Tα and
T
α/eB

(µ)
t

transforms and outline their applications.

Section 4 illustrates how one can use previous results in mathemati-
cal finance. Let X be the asset price process which is the unique strong
solution of dXt = YtXtdWt with Y being a geometric Brownian motion
(GBM) (this model is called the lognormal stochastic volatility model or the
Hull–White model, see [HW]). The distribution of the asset price for the log-
normal stochastic volatility model is known but its degree of complication
and numerical obstacles suggest looking for simpler approximations. Jour-
dain [J] gave conditions on existence of moments in the lognormal stochastic
volatility model, but gave no method of computing them.

In this work we find that the moment is equal to the Laplace trans-
form of the process Γ (Theorem 4.1), so we express moments in terms of
functions Fx. We find a closed formula for EXα

2Tλ
for the model with ran-

dom time Tλ which is an exponential random variable independent of the
Brownian motion driving the diffusion Y (Theorem 4.6).

Summing up, we present explicit forms of some interesting functionals
of Brownian motion. We compute the Laplace transform of the exponent of
Tα and T

α/eB
(µ)
t

transforms of Brownian motion with drift used by Donati-

Martin et al. [DMY] in many different identities. Finally, we compute the
moments of the asset price process in the lognormal stochastic volatility
model.

2. Properties of some functionals of geometric Brownian mo-
tion. Let (Ω,F ,P) be a complete probability space with filtration F =
(Ft)t∈[0,∞) and Brownian motion B on it. Functionals of the process Yt :=
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eBt−t/2 play a crucial role in many problems of modern stochastic analysis.
Studying the properties of the integral

	t
0 e

2Bu−udu =
	t
0 Y

2
u du is motivated

by the problem of pricing Asian options (see [DGY], [MY]). The process

Y −2t

	t
0 Y

2
u du has been considered by Matsumoto and Yor in several works

concerning laws of Brownian motion functionals. Along with Y −1t

	t
0 Y

2
u du it

plays a central role in a generalization of Pitman’s 2M − X theorem (for
details see for instance [MY2], [MY3], [MY5]). Here, we investigate, among
other, the properties of the functional Γ defined, for β > 0, by

(2.1) Γt =
Yt

1 + β
	t
0 Ys ds

.

It turns out that this process plays a crucial role in the problem of computing
the moments of the asset price in the lognormal stochastic volatility model
(see Section 4).

Remark 2.1. From the definition it follows that Γ0 = 1. If we want to
consider the process Γ which starts from a positive point x, it is enough to

replace in (2.1) the process Y by Ŷ (x), where Ŷ
(x)
t := xeBt−t/2.

In this section we find some new properties of the exponential functional
of the form

A
(µ)
t :=

t�

0

(Y (µ)
u )2 du,(2.2)

where, for µ ∈ R,

Y
(µ)
t := exp(Bt + (µ− 1/2)t).

Moreover, let

B
(µ)
t = Bt + µt.(2.3)

We also consider the random variable (often called perpetuity in the math-
ematical finance literature)

A(µ)
∞ :=

∞�

0

(Y (µ)
u )2 du.

In what follows we write Y = Y (0), A = A(0). We start by investigating Γ.

2.1. Some properties of Γ

Proposition 2.2. Let Γ be given by (2.1). Then

dΓt = ΓtdBt − βΓ 2
t dt.(2.4)

Proof. This follows easily from the Itô lemma.
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Proposition 2.3. Let Γ be given by (2.1), and set pk(t) =
	t
0 EΓ

k
u du

for k ∈ Z and t ≥ 0. Then the sequence (pk) satisfies the recurrence

(2.5) p′k(t) = 1 +
k(k − 1)

2
pk(t)− βkpk+1(t),

and

(2.6) p1(t) =
1

β
E
(

ln
(

1 + β

t�

0

Yu du
))
.

Proof. By Proposition 2.2 and the Itô lemma we have

(2.7) Γ kt = 1 + k

t�

0

Γ ku dBu − kβ
t�

0

Γ k+1
u du+

k(k − 1)

2

t�

0

Γ ku du.

The local martingale
	t
0 Γ

k
u dBu is a true martingale. Indeed, for k > 0

E
t�

0

Γ 2k
u du ≤ E

t�

0

Y 2k
u du <∞.

If −l = k < 0, we estimate (1/Γt)
2l using the inequality (x + y)2l ≤

C(x2l + y2l) for l, x, y > 0, and hence for k < 0 we have

E
t�

0

Γ 2k
u du ≤ C1Ee−2kBt + C2E

t�

0

e−2kBsds <∞.

Taking the expectation of both sides of (2.7) we obtain (2.5). Further,

p′1(t) = E
(

Yt

1 + β
	t
0 Yu du

)
=

1

β
E
∂

∂t

(
ln
(

1 + β

t�

0

Yu du
))

=
1

β

∂

∂t
E
(

ln
(

1 + β

t�

0

Yu du
))
,

as ln(1+β
	t
0 Yu du) ≤ ln(1+β

	T
0 Yu du) and E ln(1+β

	T
0 Yu du) <∞, which

implies (2.6).

Remark 2.4. Since, by (2.5),

(2.8) EΓ kt = 1 +
k(k − 1)

2
pk(t)− βkpk+1(t),

Proposition 2.3 allows us to compute EΓ kt for k ∈ Z. Taking k = −1, we
easily deduce from (2.5) that

p′−1(t) = 1 + βt+ p−1(t), p−1(0) = 0.

The solution of this differential equation is p−1(t) = (β + 1)et − βt −
(1 + β). Notice that having p−1 we get, recursively from (2.5), the func-
tions p−2, p−3, . . . . Using p1 we can determine p2, p3, . . . So, using (2.8), we
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can find all moments EΓ kt for k ∈ Z, provided we know p1. The function p1
is given by (2.6), so we have to find E(ln(1 + β

	t
0 Yu du)). Formulas for p1

are presented in Corollaries 2.18 and 2.26 below.

Now we investigate the connection of Γ with a diffusion V ≥ 1 given by
the SDE

(2.9) dVt =
√
V 2
t − 1 dBt.

We express the Laplace transform of Γ in terms of the Laplace transform
of V . For a detailed discussion of the diffusion given by (2.9) see [JW].

Theorem 2.5. Let λ ≥ 0, β > 0 and V be as above with V0 = 1 + λ/β,
and let Γ be given by (2.1). Then

Ee−λΓt = Ee−β(Vt−1).
Proof. Let θt = βΓt. Then, by (2.4),

dθt = θtdBt − θ2t dt
and θ0 = β. Moreover, for x ≥ 0,

de−xθt = −e−xθt(xθtdBt − xθ2t dt) + 1
2e
−xθtx2θ2t dt.

Taking p(t, x) := Ee−xθt , we deduce from the last expression that p satisfies
the partial differential equation

(2.10)
∂p

∂t
=

(
x+

1

2
x2
)
∂2p

∂x2
,

with p(0, x) = e−xβ.
Therefore, the Laplace transform of θt, for λ ≥ 0, is a solution of (2.10).

Consider the SDE

(2.11) dHt =
√
H2
t + 2Ht dBt, H0 = λ/β ≥ 0.

By a short calculation, for any 0 ≤ y ≤ x,∣∣√x2 + 2x−
√
y2 + 2y

∣∣ ≤√(x− y)2 + 2(x− y),

so there exists a weak solution to SDE (2.11), and trajectory uniqueness
holds for (2.11) (see [KS, Thm. 5.5.4] and [RW, Thm. 5.40.1]). Thus by the
definition and properties of the infinitesimal generator of the process and
by uniqueness of solution, the function p̄(t, x) := Ee−xHt is the solution of
(2.10) with p̄(0, x) = e−xλ/β after changing the terminal condition to the
initial one (see for example [KS, Thm. 5.7.6]). Therefore,

(2.12) p(t, λ/β) = p̄(t, β).

Let us define the diffusion Vt := Ht + 1. It is easy to check that

(2.13) dVt =
√
V 2
t − 1 dBt, V0 = λ/β + 1.
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Using the same arguments as before we see that there exists a weak solution
to (2.13), and trajectory uniqueness holds for (2.13). Thus, by (2.12),

Ee−λΓt = Ee−
λ
β
θt = p(t, λ/β) = Ee−βHt = eβEe−βVt .

This ends the proof.

2.2. Some properties of 1 + βA
(µ)
t . We start by computating the

Laplace transform of (1 + βA
(µ)
t )−1. It is worth remarking that we compute

it for a fixed time t. It is known (see for instance [MY4]) that computing
expectations for functionals of geometric Brownian motion for a fixed time is
in general much more difficult than for stochastic time (see also Subsection
4.2.2).

Let us recall that a squared δ-dimensional radial Ornstein–Uhlenbeck
process with parameter λ for δ ≥ 0 and λ ∈ R is the unique solution of the
SDE

(2.14) Xt = x+

t�

0

(δ − 2λXs) ds+ 2

t�

0

√
Xs dWs,

where W is a standard Brownian motion (see [BS] and [GJY] for detailed
studies of these processes). If λ = 0, then the strong solution of (2.14) is
a squared δ-dimensional Bessel process (see [RY]). The number δ/2 − 1 is
called the index of the process.

It turns out that for an arbitrary strictly positive random variable we
can find a representation of the Laplace transform of (s+ ξ)−1 for s ≥ 0 in
terms of a squared Bessel process.

Lemma 2.6. Let ξ be a strictly positive random variable. Then for any
x, s ≥ 0,

(2.15) E exp

(
− x

s+ ξ

)
= EG(Rx(s/2)),

where Rx is a squared Bessel process with index −1 starting at x, and

(2.16) G(x) = E exp(−x/ξ).

Proof. Let us take a copy of Rx independent of ξ. By (2.16),

EG(Rx(s/2)) = E exp

(
−R

x(s/2)

ξ

)
= EE

(
exp
(
−ξ−1Rx(s/2)

) ∣∣ ξ)
= E exp

(
− xξ−1

1 + ξ−1s

)
= E exp

(
− x

s+ ξ

)
,

where we use the formula for the Laplace transform of a squared Bessel
process (see [RY, Chapter XI, p. 441]).
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Remark 2.7. For fixed t > 0 Matsumoto and Yor’s result [MY4, Thm.
5.6] states that

E
(

exp

(
− x

A
(1/2)
t

) ∣∣∣∣ Bt = y

)
= exp

(
−ϕ

2
x(y)− y2

2t

)
,(2.17)

where

ϕx(y) = arcosh(xe−y + cosh(y))(2.18)

= ln
(
xe−y + cosh(y) +

√
x2e−2y + sinh2(y) + 2xe−y cosh(y)

)
.

We use this result to find the function G from Lemma 2.6 for ξ = A
(µ)
t .

Lemma 2.8. Let

(2.19) G
(µ)
t (x) := E exp

(
− x

A
(µ)
t

)
.

Then

(2.20) G
(µ)
t (x) = e−tµ

2/2E exp

(
µBt +

1

2t
(B2

t − ϕ2
x(Bt))

)
,

where B is a standard Brownian motion and ϕx is given by (2.18).

Proof. Define a new probability measure Q by

(2.21)
dQ
dP

∣∣∣∣
Ft

= exp

(
−µBt −

µ2

2
t

)
.

Since B is a standard Brownian motion under P, it follows that B̂t = Bt+µt
is a standard Brownian motion under Q, by the Girsanov theorem. For

Â
(1/2)
t :=

	t
0 e

2B̂u du we have A
(µ)
t = Â

(1/2)
t , so

G
(µ)
t (x) = Ee−x/A

(µ)
t

= EQ(e−x/A
(µ)
t eµBt+µ

2t/2) = e−µ
2t/2EQ exp

(
µB̂t −

x

Â
(1/2)
t

)
.

Now, we use the result of Matsumoto and Yor recalled in Remark 2.7 to
obtain

G
(µ)
t (x) = e−tµ

2/2E exp

(
µBt +

1

2t
(B2

t − ϕ2
x(Bt))

)
.

Theorem 2.9. Fix β > 0, µ ∈ R and t > 0. Then, for any λ ≥ 0,

E exp

(
− λ

1 + βA
(µ)
t

)
= EG(µ)

t (Rλ/β(1/(2β))),

where Rλ/β is a squared Bessel process with index −1 starting at λ/β, and

G
(µ)
t is defined by (2.19).
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Proof. This is a direct corollary of Lemmas 2.6 and 2.8.

Theorem 2.10. Let β0 > 0, β ∈ (0, β0], µ ∈ R and t > 0. Let Rx,
x > 0, be a squared Bessel process with index −1 starting at x. Then, for
any λ ≥ 0,

E exp

(
− λ

1 + βA
(µ)
t

)
= Eφt(θλ(− ln

√
β/β0)),

where θλ(t) is a squared 0-dimensional radial Ornstein–Uhlenbeck process
with parameter −1 such that θλ(0) = λ and, for x > 0,

φt(x) = EG(µ)
t (Rx/β0(1/(2β0))),

with G
(µ)
t given by (2.20).

Proof. Let B be a standard Brownian motion under P. Set

p(s, x) := E exp

(
− x

1 + β0e−2sA
(µ)
t

)
for x, s ≥ 0. Observe that p(s, x) ≤ 1. The function p belongs to the class
C1,2([0,∞)× [0,∞)) by the Lebesgue theorem and satisfies the partial dif-
ferential equation

(2.22)
∂p

∂s
= 2x

(
∂p

∂x
+
∂2p

∂x2

)
,

for s, x ≥ 0 and p(0, x) = φt(x).
Observe that the right-hand side of (2.22) is now the infinitesimal gener-

ator of a 0-dimensional radial Ornstein–Uhlenbeck process with parameter
−1. Thus by the definition and properties of infinitesimal generators (see
for example [KS, Thm. 5.7.6]) one obtains

E exp

(
− λ

1 + βA
(µ)
t

)
= Eφt(θλ(− ln

√
β/β0))

for

φt(x) = EG(µ)
t (Rx/β0(1/(2β0))),

which follows from Theorem 2.9. The form of the function G
(µ)
t follows from

Lemma 2.8. This finishes the proof.

Theorems 2.9 and 2.10 give two probabilistic representations for
E exp

(
− λ

1+βA
(µ)
t

)
, which leads to a new interesting equality in law stated

in the next theorem.

Theorem 2.11. Fix λ ≥ 0, β > 0 and s ≥ 0. Let θλ be a squared
0-dimensional radial Ornstein–Uhlenbeck process with parameter −1 such
that θλ(0) = λ, and Rx be a squared Bessel process with index −1 starting
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at x and independent of θλ. Then Re
2sλ/β(e2s/(2β)) and Rθ

λ(s)/β(1/(2β))
have the same law.

Proof. Taking β0 ≤ β such that s = − ln
√
β0/β we infer from Theorems

2.9 and 2.10 that

Eφt(θλ(s)) = EG(µ)
t (Re

2sλ/β(e2s/(2β))).

Hence the definition of φt yields

(2.23) EG(µ)
t (Rθ

λ(s)/β(1/(2β))) = EG(µ)
t (Re

2sλ/β(e2s/(2β))).

Let us denote

ψ1 := Rθ
λ(s)/β(1/(2β)), ψ2 := Re

2sλ/β(e2s/(2β)).

Then (2.23) takes the form

EG(µ)
t (ψ1) = EG(µ)

t (ψ2).

Recalling the definition of G
(µ)
t we obtain

EeµBt+
1
2t
(B2
t−ϕ2

ψ1
(Bt)) = EeµBt+

1
2t
(B2
t−ϕ2

ψ2
(Bt)).

Observe that the last equality holds for any µ ∈ R, so for any z ∈ R and
t > 0,

Ee−
1
2t
ϕ2
ψ1

(z)
= Ee−

1
2t
ϕ2
ψ2

(z)
.

Hence for any z ∈ R,

(2.24) ϕ2
ψ1

(z)
(law)
= ϕ2

ψ2
(z).

Observe that

ϕψ1(0) = ln
(
ψ1 + 1 +

√
ψ2
1 + 2ψ1

)
.

As the function x 7→ x + 1 +
√
x2 + 2x is monotone for x > 0 we conclude

that ψ1
(law)
= ψ2, which finishes the proof.

From the last theorem we immediately obtain

Corollary 2.12. Let θλ be a squared 0-dimensional radial Ornstein–
Uhlenbeck process with parameter −1 such that θλ(0) = λ > 0. Fix t ≥ 0.
Then for β > 0 and γ ≥ 0 we have

(2.25) E exp

(
− γ

γ + β
θλ(t)

)
= exp

(
− λγe2t

β + γe2t

)
.

Proof. Observe that for Rx as in Theorem 2.11 and x > 0,

Ee−γR
x(t) = e

− xγ
1+2γt .

Consequently,

E exp
(
−γRθλ(s)/β(1/(2β))

)
= E exp

(
− γ

γ + β
θλ(s)

)
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and

E exp
(
−γRe2sλ/β(e2s/(2β))

)
= exp

(
− λγe2s

β + γe2s

)
.

The assertion now follows from Theorem 2.11.

Theorem 2.13. For a strictly positive and integrable random variable ξ
and β ≥ 0,

E ln(1 + βξ) =

∞�

0

G(y)

y
(1− e−yβ) dy,(2.26)

E
(

1

1 + βξ

)
= 1− β

∞�

0

G(y)e−yβ dy,(2.27)

with G given by (2.16).

Proof. Observe that λ/(λ+β) = β
	∞
0 (1− e−λs)e−βs ds. Taking λ = 1/ξ

we have
1

1 + βξ
= β

∞�

0

(1− e−y/ξ)e−βy dy.

Next, we take the expectation and use Fubini’s theorem to obtain

E
(

1

1 + βξ

)
= 1− β

∞�

0

G(y)e−yβ dy,(2.28)

so (2.27) holds. Since

E ln(1 + βξ) ≤ 1 + βEξ <∞,
we can differentiate (2.28) under the expectation with respect to β and

∂

∂β
E ln(1 + βξ) =

1

β
− 1

β
E
(

1

1 + βξ

)
=

∞�

0

G(y)e−yβ dy.

This implies (2.26).

Using the above results we can obtain the expectations of ln(1 + βA
(µ)
t )

and (1 + βA
(µ)
t )−1.

Corollary 2.14. Fix β > 0, µ ∈ R and t ≥ 0. Then

E ln(1 + βA
(µ)
t ) =

∞�

0

G
(µ)
t (y)

y
(1− e−yβ) dy,(2.29)

E
(

1

1 + βA
(µ)
t

)
= 1− β

∞�

0

G
(µ)
t (y)e−yβ dy,(2.30)

where G
(µ)
t is given by (2.19).
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Proof. Apply Theorem 2.13 for ξ = A
(µ)
t .

Remark 2.15. Formula (2.30) gives a closed form of E((1 + βA
(µ)
t )−1)

for β > 0. The density of A
(µ)
t is known, but due to the complicated nature

of the Hartman–Watson distribution, it can hardly be used for numerical
computations (see for instance [BRY] and [MY4]). Since the simple form of

G
(µ)
t is given explicitly, the formulas (2.29) and (2.30) allow one to obtain

E ln(1 + βA
(µ)
t ) and E((1 + βA

(µ)
t )−1) numerically.

It turns out that the above arguments for f(λ) = (1 + β/λ)−1 can be
generalized to Bernstein functions. Recall that f : (0,∞)→ R is a Bernstein
function if it is nonnegative, C∞ and (−1)n−1f (n)(λ) ≥ 0 for all n ≥ 1
and λ > 0 (see [SSV, Definition 3.1]). Each Bernstein function f admits a
representation

(2.31) f(λ) = a+ bλ+
�

(0,∞)

(1− e−λy)µ(dy)

for λ > 0, where a, b ≥ 0 and µ is a measure on (0,∞) such that	
(0,∞)(1 ∧ y)µ(dy) < ∞ (for details see [SSV, Theorem 3.2]). The func-

tion f(λ) = (1 + β/λ)−1 is a Bernstein function for which a = b = 0 and
µ is an exponential distribution. For simplicity we only consider Bernstein
functions for which a = b = 0.

Theorem 2.16. For a strictly positive random variable ξ and a Bern-
stein function f having representation (2.31) with a = b = 0 the following
identity holds:

Ef(1/ξ) =

∞�

0

(1−G(y))µ(dy),

where G is given by (2.16) and µ is a measure on (0,∞) such that	
(0,∞)(1 ∧ y)µ(dy) <∞.

Proof. The proof goes in the same way as that of Theorem 2.13. We use
representation (2.31) and Fubini’s theorem.

Remark 2.17. If we know the function G we can use the above theorem
to compute the expectation Ef(1/ξ) for a Bernstein function f . For f one

can take f(λ) = (λ/(1+λ))α for α ∈ (0, 1), f(λ) =
√
λ(1−e−2a

√
λ) for a > 0,

f(λ) = ln(1 +λα) for α ∈ (0, 1) and many, many others—see [SSV, Chapter
15], where for each f the corresponding measure µ is given. In particular,

Theorem 2.16 gives a closed form of Ef((A
(µ)
t )−1) for a Bernstein function f .

For example, taking the Bernstein function

f(λ) =
λ(1− e−2

√
λ+a)√

λ+ a
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(see [SSV, Chapter 15, point 20]) we have, for a, t > 0,

E
(

1− e−2
√

(At)−1+a√
At + aA2

t

)
=

∞�

0

(1−G(y))
1

2
√
πy5

(
e−1/y−ay(2 + y(e1/y − 1)(1 + 2y))

)
dy,

where G is given by (2.16).

Corollary 2.14 allows us to find the first function p1(·) for the recurrence
of Proposition 2.3.

Corollary 2.18. Let p1 be given by (2.6). Then

p1(t) =
1

β

∞�

0

G
(−1/2)
t/4 (y)

y
(1− e−4βy) dy,(2.32)

where G(µ) is defined by (2.19).

Proof. Since Zu = 1
2B4u is a standard Brownian motion, we infer that

βp1(4t) = E ln
(

1 + β

4t�

0

Yu du
)

= E ln
(

1 + 4β

t�

0

eB4u−2u du
)

= E ln
(

1 + 4β

t�

0

e2(Zu−u) du
)

= E ln(1 + 4βA
(−1/2)
t ).

Hence, (2.32) follows from (2.29).

To find an exact formula for the Laplace transform of Γt, for fixed t ≥ 0,
we need the following theorem.

Theorem 2.19. For λ, α > 0, µ ∈ R and a ∈ R,

E
[

exp

(
− λeaB

(µ)
t

1 + αA
(µ)
t

)]
= E

[
F
B

(µ)
t

(
α−1R(λeaB

(µ)
t )(1/2)

)]
,

where Fx(·) for x ∈ R is given by

(2.33) Fx(z) = exp

(
−ϕz(x)2 − x2

2t

)
for z > 0, ϕx is given by (2.18), and Rx is a squared Bessel process with
index −1 starting at x and independent of B(µ) given by (2.3).

Proof. For each x, let Rx be as in the statement. Using the Laplace
transform of a squared Bessel process (see [RY, Chapter XI, p. 441]) and
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the density function of Rx1/2 we obtain

E exp

(
− λeaB

(µ)
t

1 + αA
(µ)
t

)
= E exp

(
−R

(λeaB
(µ)
t )(1/2)

αA
(µ)
t

)
= EF

B
(µ)
t

(
1

α
R(λeaB

(µ)
t )(1/2)

)
,

where

Fx(z) = E(e−z/A
(µ)
t | Bt = x).

Indeed, let Q be the measure defined by (2.21), so B
(µ)
t is a standard Brow-

nian motion under Q. Then

E exp

(
−R

(λeaB
(µ)
t )(1/2)

αA
(µ)
t

)
= EQ

[
eµB

(µ)
t −µ2t exp

(
−R

(λeaB
(µ)
t )(1/2)

αA
(µ)
t

)]

= EQ

[
eµB

(µ)
t −µ2tEQ

[
exp

(
−R

(λeaB
(µ)
t )(1/2)

αA
(µ)
t

) ∣∣∣∣ B(µ)
t , R

]]
= EQ

[
eµB

(µ)
t −µ2tF

B
(µ)
t

(
1

α
R(λeaB

(µ)
t )(1/2)

)]
=E
[
F
B

(µ)
t

(
1

α
R(λeaB

(µ)
t )(1/2)

)]
.

Using Remark 2.7 we finish the proof.

Now, we give a formula for the Laplace transform of Γ .

Theorem 2.20. For λ > 0, we have

Ee−λΓt = E
[
F
B

(−1/2)
t

(
(4β)−1R(λe2B

(−1/2)
t )(1/2)

)]
,

where Fx is given by (2.33), and Rx is a squared Bessel process with index
−1 starting at x and independent of B(−1/2) given by (2.3).

Proof. From the definition of Γ we have

Γ4t =
Y4t

1 + β
	4t
0 Yu du

=
e2(B4t/2−t)

1 + 4β
	t
0 e

2(B4t/2−t) du
.

Since B4t/2 is a Brownian motion, the statement follows from Theorem 2.19
with α = 4β, a = 2 and µ = −1/2.

Hence and from Theorem 2.5 we have

Corollary 2.21. Let V be a diffusion defined by SDE (2.9) with V0 ≥ 1.
For β > 0, we have

Ee−βVt = e−βE
[
F
B

(−1/2)
t

(
(4β)−1R(λe2B

(−1/2)
t )(1/2)

)]
,

where λ = β(V0 − 1).



On some Brownian functionals 215

Now, we use formula (2.30) and the results of Matsumoto and Yor to

obtain some interesting connections between E((1 + βA
(µ)
t )−1) and the con-

ditional expectation of functionals of geometric Brownian motion with op-
posite drift.

Proposition 2.22. For µ > 0 and β > 0, we have

E
(

1

1 + 2βA
(µ)
t

)
= 1− 2βE

(
A

(−µ)
t

∣∣ A(−µ)
∞ = 1/(2β)

)
.

Proof. By the result of Matsumoto and Yor [MY1, Thm. 2.2] the process

{B(−µ+1/2)
t , t ≥ 0} given A

(−µ)
∞ = 1/(2β) has the same distribution as the

process {B(µ−1/2)
t − log(1 + 2βA

(µ)
t ), t ≥ 0} for µ > 0. From that we obtain

E
(
A

(−µ)
t

∣∣ A(−µ)
∞ = 1/(2β)

)
= E

t�

0

e2B
(µ−1/2)
s

(1 + 2βA
(µ)
s )2

ds

=
1

2β

(
1− E

(
1

1 + 2βA
(µ)
t

))
.

Proposition 2.23. Let β > 0 and µ > 0. Then

(2.34) E
(
A

(−µ)
t

∣∣ A(−µ)
∞ = 1/(2β)

)
=

1

2

∞�

0

G
(µ)
t (y)e−yβ dy,

where G(µ) is defined by (2.19).

Proof. This follows from Proposition 2.22 and (2.30).

Proposition 2.24. For β > 0 and µ ∈ R, we have

E
(

e2µB
(−µ)
t

1 + 2βA
(−µ)
t

)
= 1− 2β

∞�

0

G
(µ)
t (y)e−yβ dy.

Proof. Fix µ ∈ R. Define a new probability measure Q by

dQ
dP

∣∣∣∣
Ft

= e−2µBt−2µ
2t.

The process B
(2µ)
t = Bt + 2µt is a standard Brownian motion under Q, so

E
(

1

1 + 2βA
(µ)
t

)
= EQ

(
e2µ(B

(2µ)
t −µt)

1 + 2β
	t
0 e

2(B
(2µ)
t −µu) du

)
= E

(
e2µB

(−µ)
t

1 + 2βA
(−µ)
t

)
.

Now, the statement follows from Corollary 2.14.

We go back, for a moment, to the function p1 given by (2.6).
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Proposition 2.25. For t ≥ 0 we have

p1(t) = t− 4β

t�

0

E
(
A

(−1/2)
s/4

∣∣ A(−1/2)
∞ = 1/(4β)

)
ds.

Proof. We have p′1(t) = EΓt, p1(0) = 0, and

Γ4t =
e2B̂

(−1/2)
t

1 + 4βÂ
(−1/2)
t

,

where B̂t = B4t/2 is a standard Brownian motion, and Â(−1/2) is defined by
(2.2) with B̂ instead of B. Since

E
(
A

(−1/2)
t/4

∣∣ A(−1/2)
∞ = 1/(4β)

)
= E

(
Â

(−1/2)
t/4

∣∣ Â(−1/2)
∞ = 1/(4β)

)
,

the assertion follows from (2.34) with µ = 1/2 and Proposition 2.24.

Proposition 2.23 now gives immediately

Corollary 2.26. For t ≥ 0 we have

p1(t) = t− 2β

t�

0

∞�

0

G
(1/2)
s/4 (y)e−2yβ dy ds,

where G
(1/2)
t is defined by (2.19) with µ = 1/2.

Remark 2.27. Notice that we have established all the results for fixed t.
In several papers (for instance [MY], [MY4]) integral functionals of a geo-
metric Brownian motion with random time given by a random variable in-
dependent of the Brownian motion and with exponential distribution were
investigated. To give an example of such a functional. Let Eλ be an exponen-
tial random variable with parameter λ > 0. If ζ1,a is a random variable with

beta distribution with parameters 1 and a =

√
2λ+1/4−1/2

2 , γb is a random

variable with gamma distribution with parameter b =

√
2λ+1/4+1/2

2 , and ζ1,a
and γb are independent, then

(2.35) E ln
(

1 + β

Eλ�

0

Y 2
u du

)
= E ln

(
1 + β

ζ1,a
γb

)
,

because
	Eλ
0 Y 2

u du
(law)
= ζ1,a/γb (see [MY4]). In Corollary 2.14 we have cal-

culated the RHS of (2.35) for a fixed time t instead of a random time given
by Eλ.

Later, we will be making use of random time. In Subsection 4.2.2 we
show how to compute the moments in a lognormal stochastic volatility model
with random time which is exponentially distributed and independent of the
Brownian motion driving the model.
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3. The Laplace transform of the exponent of the anticipative Tα
transform. In this section we consider the exponent of the Tα transform

of Brownian motion with drift B
(µ)
t studied by Donati-Martin et al. [DMY].

The Tα transform of B(µ), for α ≥ 0 and µ ∈ R, is defined by

Tα(B(µ))t = B
(µ)
t − ln(1 + αA

(µ)
t ).

We also consider an anticipative version of the Tα transform, for s ≤ t,

T
α/eB

(µ)
t

(B(µ))s = B(µ)
s − ln(1 + αA(µ)

s /eB
(µ)
t ).

Its importance is established in [DMY], where the transforms Tα and T
α/eB

(µ)
t

appear in many identities between functionals of Brownian motion. These
identities are mostly of duality type, and the distributions of Tα(B(µ))t and
T
α/eB

(µ)
t

(B(µ))s for α > 0 are not established there. Using the methods from

the previous section we find, for fixed t ≥ 0 and s ≤ t, the Laplace transforms
of the random variables

T̂α(B(µ))t := exp(Tα(B(µ))t) =
eB

(µ)
t

1 + αA
(µ)
t

,

T̂
α/eB

(µ)
t

(B(µ))s := exp(T
α/eB

(µ)
t

(B(µ))s) =
eB

(µ)
s

1 + αA
(µ)
s /eB

(µ)
t

.

Theorem 3.1. For λ > 0 and µ ∈ R we have

E exp(−λT̂α(B(µ))t) = EF
B

(µ)
t

(
α−1R(λeB

(µ)
t )(1/2)

)
,

where Fx is given by (2.33), and for each x, Rx is a squared Bessel process
with index −1 starting at x and independent of B(µ) given by (2.3).

Proof. Follows from Theorem 2.19 with a = 1.

Theorem 3.2. For λ > 0, µ ∈ R and s ≤ t, we have

(3.1) E exp
(
−λT̂

α/eB
(µ)
t

(B(µ))s
)

= EF
B

(µ)
s

(
eB

(µ)
t −B

(µ)
s

α
R(λeB

(µ)
s )(eB

(µ)
s /2)

)
,

where Fx is given by (2.33), and for each x, Rx is a squared Bessel process
with index −1 starting at x and independent of B(µ) given by (2.3).

Proof. In the first step, we prove (3.1) for s = t. Using the Laplace
transform of a squared Bessel process and arguing as in the proof of Theorem
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2.19 we obtain

E exp
(
−λT̂

α/eB
(µ)
t

(B(µ))t
)

= E exp

(
− λeB

(µ)
t

1 + αA
(µ)
t e−B

(µ)
t

)

= E exp

(
− λe2B

(µ)
t

eB
(µ)
t + αA

(µ)
t

)
= E exp

(
−R

(λe2B
(µ)
t )(eB

(µ)
t /2)

αA
(µ)
t

)
= EF

B
(µ)
t

(
1

α
R(λe2B

(µ)
t )(eB

(µ)
t /2)

)
.

In the second step, we prove (3.1) for s < t. By definition of T̂
α/eB

(µ)
t

(B(µ))s,

E exp
(
−λT̂

α/eB
(µ)
t

(B(µ))s
)

= E exp

(
− λeB

(µ)
s

1 + αA
(µ)
s e−B

(µ)
t

)

= E exp

(
− λeB

(µ)
s

1 + αA
(µ)
s e−B

(µ)
s e−(B

(µ)
t −B

(µ)
s )

)
.

Since e−(B
(µ)
t −B

(µ)
s ) is independent of σ(B

(µ)
u , u ≤ s), taking the conditional

expectation with respect to σ(B
(µ)
t − B(µ)

s ) and using the result from the

first step with αe−(B
(µ)
t − B

(µ)
s ) in place of α, we obtain

E exp
(
−λT̂

α/eB
(µ)
t

(B(µ))s
)

= EF
B

(µ)
s

(
eB

(µ)
t −B

(µ)
s

α
R(λe2B

(µ)
s )(eB

(µ)
s /2)

)
,

which completes the proof.

Remark 3.3. Theorems 3.1 and 3.2 enable us to find the Laplace trans-
form of the T -transforms T̂α(B(µ))t and T̂

α/eB
(µ)
t

(B(µ))s. Indeed, we know the

function Fx (see (2.33)) and the density function of Rx, and since B(µ) is in-

dependent ofRx, we can compute the expectations EF
B

(µ)
t

(
α−1Rλe

B
(µ)
t (1/2)

)
and EF

B
(µ)
s

(
eB

(µ)
t −B(µ)

s

α Rλe
B
(µ)
s (eB

(µ)
s /2)

)
.

4. Moments of the asset price in the lognormal stochastic volati-
lity model

4.1. Model of market. We consider a market defined on a complete
probability space (Ω,F ,P) with filtration F = (Ft)t∈[0,T ], T <∞, satisfying
the usual conditions and F = FT . Without loss of generality we assume the
savings account to be constant and identically equal to one. Moreover, we
assume that the price Xt of the underlying asset at time t has a stochastic
volatility Yt which is a geometric Brownian motion, so the dynamics of the
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proces X is given by

dXt = YtXtdWt,(4.1)

where X0 = 1. The dynamics of the vector (X,Y ) is given by a system of
SDEs consisting of (4.1) and

dYt = YtdZt, Y0 = 1.(4.2)

The processes W,Z are correlated Brownian motions, d〈W,Z〉t = ρdt with
ρ ∈ [−1, 1]. The process X has the form

(4.3) Xt = exp

(t�
0

YudWu −
1

2

t�

0

Y 2
u du

)
,

and this is a unique strong solution of SDE (4.1) on [0, T ]. The existence and
uniqueness follow directly from the assumptions on Y and the well known
properties of stochastic exponents (see, e.g., Revuz and Yor [RY]). Since
the process X is a local martingale, there is no arbitrage on the market so
defined.

Notice that we can represent W as

(4.4) Wt = ρZt +
√

1− ρ2 Vt,

where (V,Z) is a standard two-dimensional Wiener process. Using (4.3) and
(4.4) we can express the moment of order α of X as

EXα
t = E exp

(
αρ

t�

0

Yu dZu + α
√

1− ρ2
t�

0

Yu dVu −
α

2

t�

0

Y 2
u du

)
(4.5)

= E exp
(
αρ

t�

0

Yu dZu +
α2(1− ρ2)− α

2

t�

0

Y 2
u du

)
.

Therefore the calculation of moments reduces to calculating Brownian func-
tionals.

4.2. Moments of the asset price in the lognormal stochastic
volatility model

4.2.1. Moments of order α > 0. Jourdain [J] proved that for α ∈
(1, (1− ρ2)−1) and ρ 6= 0 the moments EXα exist, but he did not find their
values. We calculate the moments for α > 0, α(1− ρ2) < 1 and ρ ∈ [−1, 1].
Note that Sin [S] has established that the process X is a true martingale if
and only if ρ ≤ 0.

First, we prove that the moment of order α of the strong solution of (4.1)
is equal to the Laplace transform of the process Γ .
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Theorem 4.1. Let t ∈ [0, T ], α > 0, α(1 − ρ2) < 1 and Γ be given by
(2.1) with

(4.6) β =
√
α− α2(1− ρ2).

If X is given by (4.1), then

EXα
t = e−(β+ρα)E exp((β + ρα)Γt)(4.7)

= e−(β+ρα)EF
B

(−1/2)
t

(
(4β)−1R(−(β+ρα)e2B

(−1/2)
t )

(1/2)
)
,

where Fx is given by (2.33), and for each x, Rx is a squared Bessel process
with index −1 starting at x and independent of B(µ) given by (2.3).

Proof. Define a measure Q by

dQ
dP

∣∣∣∣
FT

= exp

(
−β

T�

0

Yu dZu −
β2

2

T�

0

Y 2
u du

)
,

with β given by (4.6). Then Q is a probability measure since, by (4.2),

exp
(
−β

T�

0

Yu dZu −
β2

2

T�

0

Y 2
u du

)
= exp

(
−β(YT − 1)− β2

2

T�

0

Y 2
u du

)
≤ eβ.

Using (4.5) and the definition of Q we infer

(4.8)

EXα
t = E exp

(
αρ

t�

0

Yu dZu +
α2(1− ρ2)− α

2

t�

0

Y 2
u du

)
= EQe

(ρα+β)(Yt−1).

By the Girsanov theorem, Bt = Zt+
	t
0 βYs ds is a standard Brownian motion

under Q and, by (4.2),

dZt = dBt − βYtdt = dBt − β exp(Zt − t/2)dt, Z0 = 0.(4.9)

We know, by the result of Alili, Matsumoto, and Shiraishi [AMY, Lem. 3.1],
that the unique strong solution of (4.9) is given by

Zt =
t

2
+ ln

(
Ut

1 + β
	t
0 Usds

)
, where Ut = eBt−t/2.

Therefore,

Yt = exp(Zt − t/2) =
Ut

1 + β
	t
0 Usds

.

Thus, the law of Y under Q is equal to the law of Γ under P, since the law
of U under Q is equal to the law of Y under P. Hence (4.8) yields the first
equality in (4.7). The second follows from Proposition 2.20.

Remark 4.2. (a) From Theorem 4.1, we immediately see that all mo-
ments exist provided ρ2 = 1.
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(b) The condition α(1 − ρ2) < 1 is not necessary for the existence of
moments since for ρ = 0 the process X is a martingale, so EXt exists.
However, for ρ = 0, EXα

t =∞ for α > 1 ([J]).

We can also express the moments of order α > 1 in terms of the diffusion
given by SDE (2.9).

Theorem 4.3. Assume that α>1, α(1−ρ2) < 1 and β=
√
α−α2(1−ρ2).

Let X be given by (4.1) and V be the diffusion given by SDE (2.9) such that
V0 = −ρα/β. Then

EXα
t = e−ραEe−βVt .

Proof. Let λ = −(β + ρα). Since λ > 0 provided α > 1, the assertion
follows from Theorems 4.1 and 2.5.

4.2.2. Moments with independent random time. In this subsection, we
find closed formulas for the moments in the lognormal stochastic volatility
model when the time is an exponential random variable independent of the
Brownian motion driving the diffusion Y . The idea of considering such time
is not new and can be found in many studies of Asian options (see for
instance [MY], [MY4]).

Proposition 4.4. Let Eλ be a random variable with exponential distri-
bution with parameter λ > 0. Assume that Eλ is independent of a standard
Brownian motion B. Let Zt = 2Bt/4, Yt = e−t/2+Zt, and Ut = eBt−t. Then

E
(

ln
(

1 + β

4Eλ�

0

Yu du
))

=
4β

λ
− 4β2

∞�

0

E
(Eλ�

0

U2
s ds−K/4

)+
(1 + βK)−2dK.

Proof. It is obvious that Y4t = e−2t+Z4t = e−2t+2Bt = U2
t . The Taylor

theorem with integral remainder applied to the function f(x) = ln(1 + βx)
gives

ln(1 + βx) = βx− β2
∞�

0

(x−K)+(1 + βK)−2 dK.

Hence replacing x by
	4Eλ
0 Yu du and taking the expectation we get

(4.10) E
(

ln
(

1 + β

4Eλ�

0

Yu du
))

= βE
( 4Eλ�

0

Yu du
)
− β2

∞�

0

E
( 4Eλ�

0

Yu du−K
)+

(1 + βK)−2 dK

= 4βE
(Eλ�

0

U2
s ds

)
− 4β2

∞�

0

E
(Eλ�

0

U2
s ds−K/4

)+
(1 + βK)−2 dK.
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Let At =
	t
0 U

2
s ds. It is known (see [MY4]) that EAEλ = 1/λ. By (4.10) this

completes the proof.

Remark 4.5. The RHS of (4.4) can be computed due to a result of
Mansuy and Yor [MY, Thm. 6.1] which gives

E
(Eλ�

0

U2
s ds−K/4

)+
=

1

λΓ
(√

2λ+1−1
2

) 2/K�

0

e−uu
√
2λ+1−3

2 (1−Ku/2)
√
2λ+1+1

2 du.

Here and below, Γ denotes the gamma function.
In the next theorem we establish an explicit formula for the moments of

XE2λ
.

Theorem 4.6. Let α > 0, α(1 − ρ2) < 1 and Eλ be a random vari-
able with exponential distribution with parameter λ > 0. Assume that Eλ is
independent of the Brownian motions V and Z driving the process X. Then

EXα
2Eλ

= λe−(αρ+β)
Γ ((1 +

√
4λ+ 1)/2)

Γ (1 +
√

4λ+ 1)

×
(
φ1

(
1

2
β

) 1/(2β)�

0

e
αρ−β
2β

1
yφ2(y) dy + φ2

(
1

2
β

) ∞�

1/2β

e
αρ−β
2β

1
yφ1(y) dy

)
,

where β =
√
α− α2(1− ρ2),

φ1(x) = x−(1+
√
1+4λ)/2Φ

(
(1 +

√
1 + 4λ)/2, 1 +

√
1 + 4λ, x−1

)
,

φ2(x) = x−(1+
√
1+4λ)/2Ψ

(
(1 +

√
1 + 4λ)/2, 1 +

√
1 + 4λ, x−1

)
,

and Φ, Ψ denote the confluent hypergeometric functions of the first and sec-
ond kind, respectively,

Φ(α, γ, z) =

∞∑
k=0

(α)k
(γ)k

zk

k!
,

Ψ(α, γ, z) =
Γ (1− γ)

Γ (1 + α− γ)
Φ(α, γ, z) +

Γ (γ − 1)

Γ (α)
z1−γΦ(1 + α− γ, 2− γ, z),

where (α)0 = 1 and

(α)k =
Γ (α+ k)

Γ (α)
= α(α+ 1) · · · (α+ k − 1) for k = 1, 2, . . . .

Proof. Let us define

ηt :=
1

2βΓ2t
.

Observe that

ηt = exp(
√

2 B̂t + t)

(
1

2β
+

t�

0

exp(−
√

2 B̂u − u) du

)
,
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where B̂t = − 1√
2
Z2t. We know that ηt is a Markov process with resolvent

Uλf(x) =
Γ ((1 +

√
4λ+ 1)/2)

Γ (1 +
√

4λ+ 1)

×
(
φ1(x)

x�

0

e−1/yφ2(y)f(y) dy + φ2(x)

∞�

x

e−1/yφ1(y)f(y) dy
)

(for details see [DGY, Thm. 3.1]), so we conclude by Theorem 4.1 and the
definition of η that

EXα
2Eλ

= e−(αρ+β)E exp

{
αρ+ β

2β

1

ηEλ

}
= λe−(αρ+β)Uλf

(
1

2β

)
,

with f(x) = exp
{αρ+β

2β
1
x

}
.
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