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Abstract. Given a normalized Orlicz function M we provide an easy formula for a
distribution such that, if X is a random variable distributed accordingly and X1, . . . , Xn

are independent copies of X, then
1

Cp
‖x‖M ≤ E‖(xiXi)

n
i=1‖p ≤ Cp‖x‖M ,

where Cp is a positive constant depending only on p. In case p = 2 we need the function
t 7→ tM ′(t)−M(t) to be 2-concave and as an application immediately obtain an embedding
of the corresponding Orlicz spaces into L1[0, 1]. We also provide a general result replacing
the `p-norm by an arbitrary N -norm. This complements some deep results obtained by
Gordon, Litvak, Schütt, and Werner [Ann. Prob. 30 (2002)]. We also prove, in the spirit
of that paper, a result which is of a simpler form and easier to apply. All results are true
in the more general setting of Musielak–Orlicz spaces.

1. Introduction. In their outstanding work [12], Kwapień and Schütt
obtained beautiful and strong combinatorial inequalities in connection with
Orlicz norms that were then used to study certain invariants of Banach
spaces (see also [13]). The new tool not only allowed them to compute the
positive projection constant of a finite-dimensional Orlicz space, but also led
to a characterization of the symmetric sublattices of `1(c0) and the finite-
dimensional symmetric subspaces of `1. The method was later used in [26]
to determine p-absolutely summing norms, and was extended by Raynaud
and Schütt to infinite-dimensional Banach spaces in [22] (see also [24] for
applications to Lorentz spaces). In some special cases, the combinatorial
expressions were already considered by Gluskin in [6] (see also [23]). Quite
recently, in [20], the tools were generalized to obtain new results on the local
structure of the classical Banach space L1.
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In the great paper [8], building upon the combinatorial results from [12]
and [13], Gordon, Litvak, Schütt and Werner were able to obtain even more
general results in the continuous setting. They proved that, if N is an Orlicz
function and X1, . . . , Xn are independent copies of a random variable X,
then E‖(xiXi)

n
i=1‖N is of the order ‖x‖M where M depends on N and on

the distribution of X. This result, of course, is already interesting from a
purely probabilistic point of view and was later used by the authors in [7]
to obtain estimates for various parameters associated to the local theory of
convex bodies. It also initiated further research and led to beautiful results
on order statistics [10, 9]. Recently, in the series of papers [1–3], these results
were also successfully applied to study geometric functionals corresponding
to random polytopes.

A natural question is whether the converse is true, i.e., whether given
Orlicz functions M and N , we can provide a formula for a distribution
so that, if X1, . . . , Xn are independent copies of an accordingly distributed
random variable X, then E‖(xiXi)

n
i=1‖N is of the order ‖x‖M . This is part

of the motivation for our work and we will answer this question in the
affirmative. The “natural” candidate for the distribution is deduced from a
new simpler version of a result from [8] that we prove here. In the special
case of N(t) = tp we give very easy formulas for the distribution of the
random variables depending on the Orlicz function M , provided M satisfies
a certain condition depending on the parameter p. For p = 2, this condition
amounts to the 2-concavity of t 7→ tM ′(t)−M(t).

In his beautiful paper [25] Schütt proved that, if M is equivalent to a
2-concave Orlicz function, then the spaces `nM , n ∈ N, embed uniformly
into L1 (see also [5] and [18]). The proof is quite technical and based on
combinatorial inequalities, some of which first appeared in the joint work
[12, 13] with Kwapień. Given a 2-concave Orlicz function M with certain
additional properties, Schütt provided an explicit formula for a sequence
a1, . . . , an of positive real numbers such that for all x ∈ Rn,

c1‖x‖M ≤
1

n!

∑
π∈Sn

( n∑
i=1

|xiaπ(i)|2
)1/2

≤ c2‖x‖M ,

where Sn is the set of all permutations of the numbers {1, . . . , n}, and c1, c2
are absolute constants (see Theorem 2 in [25]). Khinchin’s inequality then
implies that these Orlicz spaces embed uniformly into L1. Unfortunately,
the formula is rather complicated and it is non-trivial to calculate the Or-
licz function. This, in fact, is the other part of our motivation. The converse
result that we obtain for p = 2, where we need t 7→ tM ′(t) − M(t) to
be 2-concave, immediately implies that these Orlicz spaces `nM , n ∈ N, are
uniformly isomorphic to subspaces of L1. Although it seems we need a some-
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what stronger assumption on M , the inversion formula we obtain is much
simpler and easier to apply. The result might also be useful in finding new
and easily verifiable characterizations for more general classes of subspaces
of L1.

We provide here two different approaches to prove the converse results
(for `p-norms and general N -norms); in each, conditions on M naturally
appear. Even more, if p = 2 and we do not assume the 2-concavity of
t 7→ tM ′(t) −M(t), but only the equivalence of E‖(xiXi)

n
i=1‖2 and ‖x‖M ,

then it is not hard to see that t 7→ tM ′(t)−M(t) already has to be 2-concave
(see Proposition 7.1). Therefore, it seems that the condition is natural and
“not too far” from the 2-concavity of M .

Our main result is the following:

Theorem 1.1. Let 1 < p < ∞ and M ∈ C3 be an Orlicz function with
M ′(0) = 0 and M ′′(T ) = 0 for T = M−1(1). Assume the normalization	∞
0 x dM ′(x) = 1 and that M |[T,∞) is linear. Moreover, assume that for all
x > 0,

fX(x) =

(
1− 2

p

)
1

x3
M ′′
(

1

x

)
− 1

px4
M ′′′

(
1

x

)
≥ 0.

Then fX is a probability density and for all x ∈ Rn,

c1(p− 1)1/p‖x‖M ≤ E‖(xiXi)
n
i=1‖p ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants and X1, . . . , Xn are iid with den-
sity fX .

If M is not normalized, we can divide the function fX by
	∞
0 x dM ′(x)

to obtain a probability density and the statement of the theorem is true
with constants depending on p and M . Due to the definition of the Orlicz
norm, its value is uniquely determined by the values of the function M on
the interval [0,M−1(1)]. Hence, it is no restriction to extend M linearly. If
p = 2, this immediately yields the desired embedding of Orlicz spaces into
L1 (see Corollary 6.1). In fact, we will prove the case p =∞ first, which will
then imply the result for arbitrary `p-norms.

2. Preliminaries and notation. A convex function M : [0,∞) →
[0,∞) where M(0) = 0 and M(t) > 0 for t > 0 is called an Orlicz function.
The n-dimensional Orlicz space `nM is Rn equipped with the norm

(2.1) ‖x‖M = inf
{
ρ > 0 :

n∑
i=1

M(|xi|/ρ) ≤ 1
}
.

In case M(t) = tp, 1 ≤ p < ∞, we just have `nM = `np , i.e., ‖ · ‖M = ‖ · ‖p.
Given Orlicz functions M1, . . . ,Mn, we define the corresponding Musielak–
Orlicz function as M = (M1, . . . ,Mn), and the n-dimensional Musielak–
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Orlicz space `nM is Rn equipped with the norm

‖x‖M = inf
{
ρ > 0 :

n∑
i=1

Mi(|xi|/ρ) ≤ 1
}
.

If Mi = M for all i = 1, . . . , n, then `nM = `nM . We say that two Orlicz
functions M and N are equivalent if there are positive constants a and b
such that for all t ≥ 0,

a−1M(b−1t) ≤ N(t) ≤ aM(bt).

If two Orlicz functions are equivalent, so are their norms. An Orlicz function
is said to be p-concave for some 1 ≤ p < ∞ if t 7→ M(t1/p) is a concave
function. We say that an Orlicz function M is normalized if

∞�

0

x dM ′(x) = 1.

Note also that, if two Orlicz functions are equivalent in a neighborhood of
zero, then the corresponding sequence spaces already coincide [14, Proposi-
tion 4.a.5]. For a detailed and thorough introduction to the theory of Orlicz
spaces we refer the reader to [11], [21] or [14, 15] and to [16] in the case of
Musielak–Orlicz spaces.

Let X and Y be isomorphic Banach spaces. We say that they are
C-isomorphic if there is an isomorphism T : X → Y with ‖T‖ ‖T−1‖ ≤ C.
We define the Banach–Mazur distance of X and Y by

d(X,Y ) = inf{‖T‖ ‖T−1‖ : T ∈ L(X,Y ) isomorphism}.
Let (Xn)n be a sequence of n-dimensional normed spaces and let Z also be
a normed space. If there exists a constant C > 0 such that for all n ∈ N
there exists a normed space Yn ⊆ Z with dim(Yn) = n and d(Xn, Yn) ≤ C,
then we say (Xn)n embeds uniformly into Z. The beautiful monograph [27]
gives a detailed introduction to the concept of Banach–Mazur distances.

We will use the notation A ∼ B to indicate the existence of two positive
absolute constants c1, c2 such that c1A ≤ B ≤ c2A. Similarly, we define
the symbol .. We write ∼p, with some positive constant p, to indicate that
the constants c1 and c2 depend on p. The symbols c1, c2, c, C, . . . will always
denote positive absolute constants whose value may change from line to line.

By L1 we denote the L1 space on the unit interval [0, 1] with Lebesgue
measure.

We write f ∈ Ck, for some k ∈ N, whenever the function f is k times
continuously differentiable; and Ck(a, b) means Ck((a, b)).

The following theorem was obtained in [10] and provides a formula for
the Orlicz function M provided that we know the distribution of X:
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Theorem 2.1 ([10, Lemma 5.2]). Let X1, . . . , Xn be iid integrable ran-
dom variables. For all s ≥ 0 define

M(s) =

s�

0

�

1/t≤|X1|

|X1| dP dt.

Then, for all x = (xi)
n
i=1 ∈ Rn,

c1‖x‖M ≤ E max
1≤i≤n

|xiXi| ≤ c2‖x‖M ,

where c1, c2 are absolute constants independent of the distribution of X1.

Obviously, the function

(2.2) M(s) =

s�

0

�

1/t≤|X1|

|X1| dP dt

is non-negative and convex, since
	
1/t≤|X| |X| dP is increasing in t. Further-

more, M is continuous, differentiable and M(0) = M ′(0) = 0.
Note that, in fact, Theorem 2.1 is true for Musielak–Orlicz spaces when

we do not assume the random variables to be identically distributed:

Theorem 2.2. Let X1, . . . , Xn be independent integrable random vari-
ables. For all s ≥ 0 and all j = 1, . . . , n define

Mj(s) =

s�

0

�

1/t≤|Xj |

|Xj | dP dt.

Then, for all x = (xi)
n
i=1 ∈ Rn,

c1‖x‖M ≤ E max
1≤i≤n

|xiXi| ≤ c2‖x‖M,

where c1, c2 are absolute constants and M = (M1, . . . ,Mn).

A proof in the case of averages over permutations can be found in [17]
and can be generalized to our setting by a straightforward adaption of the
proof of Theorem 2.1.

Remark 2.3. Because of Theorem 2.2, all results presented in this paper
hold in the more general setting of Musielak–Orlicz spaces, but for notational
convenience we state them only for Orlicz spaces.

Remark 2.4. If M is an Orlicz function such that M ∈ C3, then for
t 7→ tM ′(t) −M(t), being 2-concave is equivalent to M ′′′ ≤ 0. Therefore,
and for the sake of convenience, we will later assume M ′′′ ≤ 0, but might
still talk about the 2-concavity of t 7→ tM ′(t)−M(t) at the same time.

We will also need a result from [19] about the generating distribution of
`p-norms. We recall that the density of a log γ1,p distributed random variable



274 D. Alonso-Gutiérrez et al.

ξ with parameter p > 0 is given by

fξ(x) = px−p−11[1,∞)(x).

Note also that for all x > 0,

P(ξ ≥ x) = min(1, x−p).

Theorem 2.5 ([19, Theorem 3.1]). Let p > 1 and ξ1, . . . , ξn be iid copies
of a log γ1,p distributed random variable ξ. Then, for all x ∈ Rn,

c1‖x‖p ≤ E max
1≤i≤n

|xiξi| ≤
c2

(p− 1)1/p
‖x‖p,

where c1, c2 are positive absolute constants.

Recall the following well-known theorem about the existence of indepen-
dent random variables corresponding to given distributions:

Theorem 2.6 ([4, Theorem 20.4]). Let (µj)j be a finite or infinite se-
quence of probability measures on the real line. Then there exists an inde-
pendent sequence of random variables (ξj)j defined on the probability space
([0, 1],BR, λ), with Borel σ-algebra BR and Lebesgue measure λ, so that the
distribution of ξj is µj.

3. A simple representation result. In this section we prove a result
of the same spirit as Theorem 2.1, where we replace the `∞-norm by some
`p-norm for 1 < p < ∞. This is a special case of Theorem 1 in [8] with
N(t) = tp. There it seems unclear how to determine the “precise” form of
the Orlicz function that appears. Of course, this is somehow unsatisfactory,
and therefore we provide a result that produces a “simple” representation
of this Orlicz function. Observe also that the following result, which is a
consequence of Theorems 2.1 and 2.5, corresponds to the discrete results
recently obtained in [20].

Theorem 3.1. Let 1 < p <∞, and X1, . . . , Xn be iid integrable random
variables. For all s ≥ 0 define

M(s) =
p

p− 1

s�

0

( �

|X1|≤1/t

tp−1|X1|p dP +
�

|X1|>1/t

|X1| dP
)
dt.

Then, for all x ∈ Rn,

c1(p− 1)1/p‖x‖M ≤ E‖(xiXi)
n
i=1‖p ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants.

Proof. Let X1, . . . , Xn be defined on (Ω1,P1) and let ξ1, . . . , ξn be inde-
pendent copies of a log γ1,p distributed random variable ξ, say on (Ω2,P2).
Then, by Theorem 2.5,
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EΩ1‖(xiXi)
n
i=1‖p . EΩ1EΩ2 max

1≤i≤n
|xiXiξi| . (p− 1)−1/pEΩ1‖(xiXi)

n
i=1‖p

for all x ∈ Rn. On the other hand, by Theorem 2.1,

EΩ1EΩ2 max
1≤i≤n

|xiXiξi| ∼ ‖x‖M

for all x ∈ Rn, where

M(s) =

s�

0

�

1/t≤|X1ξ|

|X1ξ| dP dt.

For t > 0 and ω1 ∈ Ω1 define

Iω1 := {ω2 ∈ Ω2 : t|ξ(ω2)X1(ω1)| ≥ 1}.

Now, we observe that

M(s) =

s�

0

�

Ω1

�

Iω1

|X1(ω1)ξ(ω2)| dP2(ω2) dP1(ω1) dt

=

s�

0

�

Ω1

|X1(ω1)|
�

Iω1

|ξ(ω2)| dP2(ω2) dP1(ω1) dt.

Let us take a closer look at the inner integral. Fix t > 0 and ω1 ∈ Ω1 and
recall that the density of ξ is

fξ(x) = px−p−11[1,∞)(x).

Therefore, if t|X1(ω1)| ≤ 1,
�

Iω1

|ξ(ω2)| dP2(ω2) = p
�

{z: zt|X1(ω1)|≥1}

z−p dz =
p

p− 1
(t|X1|)p−1.

Now assume that t|X1(ω1)| ≥ 1. Then we get
�

Iω1

|ξ(ω2)| dP2(ω2) = E|ξ| = p

p− 1
.

Hence, by splitting the integral over Ω1, for fixed t we have

�

Ω1

�

Iω1

|X1(ω1)ξ(ω2)| dP2(ω2) dP1(ω1)

=
p

p− 1

�

|X1|≤1/t

tp−1|X1|p dP1(ω1) +
p

p− 1

�

|X1|>1/t

|X1| dP1(ω1).

This implies the result.
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Note that by Fubini’s theorem,

s�

0

1/t�

0

tp−1|x|p dPX1(x) dt =

∞�

0

|x|p
s∧|x|−1�

0

tp−1 dt dPX1(x)

=
1

p

(
sp

1/s�

0

xp dPX(x) + P(|X1| ≥ s−1)
)

≤ 1

p

(
P(|X| ≤ s−1) + P(|X| ≥ s−1)

)
=

1

p
.

Hence, the limit case in Theorem 3.1 for p → ∞ coincides with Theorem
2.1.

Observe also that Theorem 3.1 provides a natural candidate for the prob-
ability density that appears in Theorem 1.1:

If the random variables |X1|, . . . , |Xn| have a density fX , then

M ′′(s) = psp−2
s−1�

0

xpfX(x) dx,

that is,
s−1�

0

xpfX(x) dx =
1

p
s2−pM ′′(s).

Therefore, differentiating once again,

fX(s−1) =

(
1− 2

p

)
s3M ′′(s)− 1

p
s4M ′′′(s).

In the following section we will prove Theorem 1.1 in the case p = ∞.
We then reduce the case of general p to the case p =∞ in Section 5.

4. The case of the `∞-norm. To obtain the case of `p-norms it is
enough to settle the question for the `∞-norm. We will give a short expla-
nation of that fact:

Assume that N is an arbitrary Orlicz function and we know how to
choose a distribution (depending on N) so that, if ξ1, . . . , ξn are indepen-
dent random variables distributed according to that law, then, for all x =
(xi)

n
i=1 ∈ Rn,

E max
1≤i≤n

|xiξi| ∼ ‖x‖N .

Now, let M be the normalized Orlicz function given in Theorem 1.1. We
want to find a distribution and independent random variables X1, . . . , Xn

defined on a measure spaces (Ω1,P1) distributed according to this such that

(4.1) EΩ1‖(xiXi)
n
i=1‖p ∼p ‖x‖M .



Distribution of random variables 277

Of course, we can find a distribution and accordingly distributed indepen-
dent random variables Z1, . . . , Zn so that

E max
1≤i≤n

|xiZi| ∼ ‖x‖M ,

since we can just take N = M . On the other hand, observe that

EΩ1‖(xiXi)
n
i=1‖p ∼p EΩ1EΩ2 max

1≤i≤n
|xiXiYi|,

where the distribution of the independent random variables Y1, . . . , Yn, say
on (Ω2,P2), is obtained by choosing N(t) = tp. So, for all x = (xi)

n
i=1 ∈ Rn,

E max
1≤i≤n

|xiZi| ∼p ‖x‖M ∼ EΩ1EΩ2 max
1≤i≤n

|xiXiYi|.

Therefore, in order to get (4.1), we just have to choose the distribution of

X1, . . . , Xn so that X1Y1
D
= Z1. Of course, here the distribution of Z and Y

is known.

Before we continue, we observe that the transformation formula for in-
tegrals yields the following substitution rule for Stieltjes integrals:

(4.2)

b�

a

f ◦ u d(F ◦ u) =

u(b)�

u(a)

f dF,

where f is an arbitrary measurable function, F is a non-decreasing function
and u is monotone on the interval [a, b].

The following result is the converse to Theorem 2.1:

Proposition 4.1. Let M be a normalized Orlicz function withM ′(0) = 0.
Let X1, . . . , Xn be independent copies of a random variable X with distribu-
tion

(4.3) P(X ≤ t) =
�

[1/t,∞)

s dM ′(s), t > 0.

Then, for all x = (xi)
n
i=1 ∈ Rn,

c1‖x‖M ≤ E max
1≤i≤n

|xiXi| ≤ c2‖x‖M ,

where c1, c2 are constants independent of the Orlicz function M .

Proof. We first observe that for an arbitrary random variable X which
is ≥ 0 a.s., by (4.2) we have

FX(t) := P(X ≤ t) =
�

(0,t]

dFX(s) = −
�

[1/t,∞)

d(FX ◦ u)(s),

where u(s) = 1/s. If the distribution of X is given by (4.3), we obtain

d(FX ◦ u)(s) = −s dM ′(s).
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Now we obtain, again by (4.2) and this identity,
s�

0

�

[1/t,∞)

x dFX(x) dt = −
s�

0

�

(0,t]

1

x
d(FX ◦ u)(x) dt

=

s�

0

�

(0,t]

dM ′(x) dt = M(s).

The assertion is now a consequence of Theorem 2.1.

Remark 4.2. The assumption that M is normalized, i.e.,
	∞
0 x dM ′(x)

= 1, ensures that the constants do not depend on M . Note also that, as an
immediate consequence of Proposition 4.1, by the integration by parts rule
for Stieltjes integrals we obtain

(4.4) P(X > t) =

1/t�

0

s dM ′(s) =
1

t
M ′
(

1

t

)
−M

(
1

t

)
for any t > 0. If M is “sufficiently smooth”, we deduce that the density fX
of X is given by

fX(t) = t−3M ′′(t−1).

Remark 4.3. To generate an `p-norm in Proposition 4.1, i.e., to consider
the case M(t) = tp, one needs to pass to an equivalent Orlicz function so

that the normalization condition is satisfied. The function M̃ with M̃(t) = tp

on [0, (p− 1)−1/p] which is then linearly extended does the trick.

5. The case of `p-norms. We will now prove the result which will then
imply the main result, Theorem 1.1. Of course, in the proposition we could
also assume M ∈ C3, but M ∈ C2 with M ′′ absolutely continuous on each
compact subinterval of (0,∞) is sufficient.

Proposition 5.1. Let M ∈ C2(0,∞) be a normalized Orlicz function
and M ′′ be absolutely continuous on each compact subinterval of (0,∞).
Assume that M ′(0) = 0 = M ′′(T ) for T = M−1(1) and that M |[T,∞) is
linear. Let 1 < p < ∞ and X,Y be two independent random variables
distributed according to the laws

P(Y ≥ y) = min(1, y−p) and

P(X ≥ x) = −M
(

1

x

)
+

1

x
M ′
(

1

x

)
− 1

px2
M ′′
(

1

x

)
.

Then the tail distribution function of XY is

(5.1) P(XY ≥ z) =
1

z
M ′
(

1

z

)
−M

(
1

z

)
, z > 0.
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Proof. First note that the density function of X is given by

(5.2) fX(x) =

(
1− 2

p

)
1

x3
M ′′
(

1

x

)
− 1

px4
M ′′′

(
1

x

)
,

Inserting the expression for P(Y ≥ y), we obtain

P(XY ≥ z) =
�
1{XY≥z} dP =

∞�

0

P(Y ≥ z/x)fX(x) dx(5.3)

=

∞�

0

min(1, xp/zp)fX(x) dx

= P(X ≥ z) + z−p
z�

0

xpfX(x) dx.

Observe that, under the above assumptions and for z ≤ T−1, we have
P(X ≥ z) = 1 = z−1M ′(z−1)−M(z−1) and fX(z) = 0, since

	∞
0 x dM ′(x) =

TM ′(T ) −M(T ) = 1. This yields (5.1) for z ≤ 1/T . Thus we now assume
z > 1/T and continue with calculating the integral

	z
0 x

pfX(x) dx. We sub-
stitute u = 1/x and obtain

z�

0

xpfX(x) dx =

∞�

z−1

u−p−2fX(u−1) du

=

T�

z−1

((
1− 2

p

)
u1−pM ′′(u)− u2−p

p
M ′′′(u)

)
du.

Partial integration further yields
z�

0

xpfX(x) dx = −u
2−p

p
M ′′(u)

∣∣∣∣T
z−1

=
1

p
zp−2M ′′(z−1),

since M ′′(T ) = 0. Combining equation (5.3) with this result and the expres-
sion for the distribution of X, we obtain (5.1) for z > 1/T .

Now we can finally prove our main theorem:

Proof of Theorem 1.1. Let M be the given Orlicz function and (Xi)
n
i=1

the given random variables on a measure space (Ω1,P1). First note that by
Proposition 4.1 and Remark 4.2 we get

(5.4) ‖x‖M ∼ E max
1≤i≤n

|xiZi|,

where P(Z ≥ z) = z−1M ′(z−1)−M(z−1). Secondly, by Theorem 2.5,

(5.5)

EΩ1‖(xiXi)
n
i=1‖p . EΩ1EΩ2 max

1≤i≤n
|xiXiYi| . (p− 1)−1/pEΩ1‖(xiXi)

n
i=1‖p
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where the random variables (Yi)
n
i=1, defined on (Ω2,P2), are independent

and log γ1,p distributed. Since, by Proposition 5.1, X1Y1
D
= Z1, we combine

(5.4) and (5.5) to obtain the assertion of the theorem.

In case p = 2, we obtain the following corollary:

Corollary 5.2. Let M ∈ C3(0,∞) be a normalized Orlicz function with
M ′(0) = 0 and M ′′′(x) ≤ 0 for all x ≥ 0 and assume that M ′′(M−1(1)) = 0.
Then

(5.6) fX(x) = − 1

2x4
M ′′′

(
1

x

)
is a probability density and for all x ∈ Rn,

c1‖x‖M ≤ E‖(xiXi)
n
i=1‖2 ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants and X1, . . . , Xn are iid with den-
sity fX .

Again, the normalization condition
	∞
0 y dM ′(y) = 1 ensures that con-

stants do not depend on M and, in fact, is of the same form as the nor-
malization condition in Theorem 2 from [25]. Note also that in the proof of
Theorem 5.1 and its corollaries we need that M ′′(T ) = 0 for T = M−1(1).
This, indeed, is no restriction, since Lemma 8.2 in Section 8 shows that for
any 2-concave Orlicz function we can assume that M ′′(T ) = 0, otherwise we
pass to an equivalent Orlicz function which has this property. Recall also
that every Orlicz function which satisfies M ′′′ ≤ 0 is already 2-concave. The
authors do not know whether for an Orlicz function M , being 2-concave is
equivalent (up to equivalent Orlicz functions) to having non-positive third
derivative.

Remark 5.3. Note that another proof of Corollary 5.2 via a Choquet-
type representation theorem in the spirit of Lemma 7 in [25] also yields the
condition that the function z 7→ zM ′(z) −M(z) has to be 2-concave (or
equivalently M ′′′ ≤ 0).

6. Orlicz spaces that are isomorphic to subspaces of L1. As we
will see, it is an easy consequence of Corollary 5.2 that the sequence of Orlicz
spaces `nM , n ∈ N, where t 7→ tM ′(t)−M(t) is 2-concave, embeds uniformly
into L1. Although we need t 7→ tM ′(t) −M(t) to be a 2-concave function,
which seems a bit stronger than to assume that M is 2-concave, the simplic-
ity of the representation (5.6) of the density that we need in our embedding
has a strong advantage over the representation in [25, Theorem 2], since it
is much easier to handle.

We obtain the following result:
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Corollary 6.1. Let M be a normalized Orlicz function with M ′(0) = 0
and M ′′′ ≤ 0. Then there exists a positive absolute constant C (independent
of M) such that for all n ∈ N there is a subspace Yn of L1 with dim(Yn) = n
and

d(`nM , Yn) ≤ C,

i.e., (`nM )n embeds uniformly into L1.

Proof. The proof is a simple consequence of Corollary 5.2, Khinchin’s
inequality and Theorem 2.6. Given n ∈ N, we let µ1 = · · · = µn be the
distribution of Rademacher functions, that is,

µi({1}) = µi({−1}) = 1/2, 1 ≤ i ≤ n.

Additionally, we let µn+1 = · · · = µ2n be the distribution of Xi given in
Corollary 5.2. Then we apply Theorem 2.6 to the finite sequence (µi)

2n
i=1

of probability measures to get a sequence of independent random variables
r1, . . . , rn, X1, . . . , Xn defined on the unit interval [0, 1] such that the distri-
bution of ri is µi and the distribution of Xi is µn+i for all 1 ≤ i ≤ n. Then
the asserted isomorphism is given by

Ψn : `nM → L1[0, 1], a 7→
n∑
i=1

airi(·)Xi(·).

Thus, applying Khinchin’s inequality, for any a = (ai)
n
i=1 ∈ Rn,

‖Ψn(a)‖L1

=

1�

0

∣∣∣ n∑
i=1

airi(t)Xi(t)
∣∣∣ dt

=
�

Rn

�

{−1,1}n

∣∣∣ n∑
i=1

aiεixi

∣∣∣ d(µ1 ⊗ · · · ⊗ µn)(ε) d(µn+1 ⊗ · · · ⊗ µ2n)(x)

∼
�

Rn

( n∑
i=1

|aixi|2
)1/2

d(µn+1 ⊗ · · · ⊗ µ2n)(x)

=
�

[0,1]

( n∑
i=1

|aiXi(t)|2
)1/2

dt ∼ ‖a‖M ,

where we used Corollary 5.2 in the last step.

7. The general result. Following the ideas described in Section 4, we
now generalize our results to find an inequality of the form

1

C
‖x‖M ≤ E‖(xiXi)

n
i=1‖N ≤ C‖x‖M
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for a general Orlicz function N . For each normalized Orlicz function L, we
write

FL(t) =

1/t�

0

s dL′(s) =
1

t
L′
(

1

t

)
− L

(
1

t

)
and call this function the tail distribution function associated to L, motivated
by Proposition 4.1 and equation (4.4).

Proposition 7.1. Let M,N be normalized Orlicz functions with M ′(0)
= N ′(0) = 0.

(i) If there exists a probability measure µ on (0,∞) such that

(7.1) FM (t) =
�

(0,∞)

FN (t/x) dµ(x),

then, for all x = (xi)
n
i=1 ∈ Rn,

c1‖x‖M ≤ E‖(xiXi)
n
i=1‖N ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants and X1, . . . , Xn are iid
random variables with distribution µ.

(ii) If there exist iid random variables X1, . . . , Xn with distribution µ on
(0,∞) such that

c1‖x‖M ≤ E‖(xiXi)
n
i=1‖N ≤ c2‖x‖M ,

where c1, c2 are positive absolute constants, then there exists an Or-
licz function M̃ equivalent to M such that

F
M̃

(t) =
�

(0,∞)

FN (t/x) dµ(x).

Proof. (i) Note that condition (7.1) guarantees that we can follow the
line of argument in the proof of Theorem 1.1. Indeed, we choose indepen-
dent sequences (Z1, . . . , Zn) of iid random variables defined on (Ω1,P1) and
(Y1, . . . , Yn) defined on (Ω2,P2) with tail distribution functions FM and FN ,
respectively. By Proposition 4.1 we have

‖x‖M ∼ EΩ1 max
1≤i≤n

|xiZi| and ‖x‖N ∼ EΩ2 max
1≤i≤n

|xiYi|

for all (xi)
n
i=1 ∈ Rn. By (7.1), X1Y1

D
= Z1, since for all t > 0,

P(Z1 > t) = FM (t) =
�

(0,∞)

FN (t/x) dµ(x)(7.2)

=
�

(0,∞)

P(xY1 > t) dµ(x) = P(X1Y1 > t).
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Therefore,

‖x‖M ∼ EΩ1 max
1≤i≤n

|xiZi| = EΩEΩ2 max
1≤i≤n

|xiXiYi|

=
�

Ω

EΩ2 max
1≤i≤n

|xiXi(ω)Yi| dP(ω)

∼
�

Ω

‖(xiXi(ω))ni=1‖N dP(ω) = EΩ‖(xiXi)
n
i=1‖N .

(ii) Assume that

E‖(xiXi)
n
i=1‖N ∼ ‖x‖M

for iid random variables X1, . . . , Xn with distribution µ. Define the tail
distribution function F by

F (t) =
�

(0,∞)

FN (t/x) dµ(x),

and choose a sequence of iid random variables (Z1, . . . , Zn) defined on (Ω1,P1)
with tail distribution function F , and a sequence (Y1, . . . , Yn) independent
of (X1, . . . , Xn) defined on (Ω2,P2) with tail distribution function FN . By
construction, Zi has the same distribution as XiYi, i = 1, . . . , n. Now define
an Orlicz function M̃ by

M̃(s) =

s�

0

�

1/t≤|Z1|

|Z1| dP1 dt.

By Theorem 2.1, ‖x‖
M̃
∼ EΩ1 max1≤i≤n |xiZi| and, therefore, we obtain

‖x‖M ∼ EΩ‖(xiXi)
n
i=1‖N =

�

Ω

‖(xiXi(ω))ni=1‖N dP(ω)

∼
�

Ω

EΩ2 max
1≤i≤n

|xiXi(ω)Yi| dP(ω) = EΩEΩ2 max
1≤i≤n

|xiXiYi|

= EΩ1 max
1≤i≤n

|xiZi| ∼ ‖x‖M̃ .

Thus, M and M̃ are equivalent [14, Proposition 4.a.5].

Condition (7.1) seems hard to check for general Orlicz functions M
and N . However, in the special case of N(t) = t2 on [0, 1], extended lin-
early to the right of 1 as a C1 function, condition (7.1) is equivalent to the
positivity of the function fX in (5.6). Indeed,

FM (t) =
�

(0,∞)

FN (t/x) dµ(x) =
�

(0,∞)

min(1, x2/t2) dµ(x).
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Note that �

(0,∞)

min(1, x2z2) dµ(x) = FM (1/z) = zM ′(z)−M(z)

is obviously a 2-concave function in z as an average over such functions,
in correspondence with the discussion before. On the other hand, Corollary
5.2 can be restated in the following form that shows that the converse is
also true: if z 7→ zM ′(z)−M(z) is 2-concave under the conditions stated in
Corollary 5.2, then the tail distribution function FM has a representation
of the form (7.1) and the distribution µ is explicitly given by the density

f(x) = − 1

2x4
M ′′′

(
1

x

)
.

8. Appendix. We provide some approximation results for Orlicz func-
tions that we need in this paper and which might be interesting in further
applications.

Lemma 8.1. Let M ∈ C2(0,∞) be an Orlicz function with M ′(0) = 0
and such that M ′′ is decreasing. Then M is 2-concave.

Proof. Recall that M is 2-concave if and only if xM ′′(x) ≤ M ′(x). For
all ε ∈ (0, x), there exists ξε ∈ (ε, x) such that

M ′(x) = M ′(ε) + (x− ε)M ′′(ξε).

Since M ′′ is decreasing, we get

M ′(x) ≥M ′(ε) + (x− ε)M ′′(x),

and so, for ε→ 0, M ′(x) ≥ xM ′′(x), which means that M is 2-concave.

Lemma 8.2. Let M ∈ C2(0,M−1(1)) be an Orlicz function that is linear
to the right of T := M−1(1). Then, for all constants c > 1, there exists an
Orlicz function N such that

(1) N ′′(T ) = 0,
(2) N(t) ≤M(t) ≤ cN(t) for all t ∈ [0,∞).

Additionally, if M ′′ is decreasing, we can choose N so that N ′′ is decreasing.

Proof. We let δ ∈ (0, 1) and define N as follows: We set N(t) = M(t) for
all t ≤ T (1−δ) and we extend M to [0, T ] so that N ′′ is smooth, decreasing,
N ′′(t) ≤M ′′(t) for t ∈ [0, T ) and N ′′(T ) = 0. For t > T , we define N linearly
with the same slope as M .

We have to show property (2). The inequality N(t) ≤ M(t) follows
from the construction for all t ∈ [0,∞). The second inequality is trivial
for t ≤ T (1 − δ) since M(t) = N(t) for such t. Next, we explore the case
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M

1

T = TM = M−1(1)T (1− δ)

N

TN = N−1(1)

Fig. 1. Approximation of the Orlicz function M

t ∈ [T (1−δ), T ]. If we choose t in this interval, by the above definition of N ,

0 ≤M(t)−N(t) =

t�

T (1−δ)

s�

T (1−δ)

(M ′′(x)−N ′′(x)) dx ds

≤ Tδ2 max
x∈[T (1−δ),T ]

(M ′′(x)−N ′′(x)) ≤ Tδ2 max
x∈[T (1−δ),T ]

M ′′(x).

Now we choose δ such that Tδ2 maxx∈[T (1−δ),T ]M
′′(x) ≤ (c−1)M(T (1−δ)).

This is possible since maxx∈[T (1−δ),T ]M
′′(x) is an increasing function of δ

and M(T (1− δ)) is a decreasing function of δ. Then for t ∈ [T (1− δ), T ] we
obtain

M(t) = N(t) +M(t)−N(t)

≤ N(t) + (c− 1)M(T (1− δ)) = N(t) + (c− 1)N(T (1− δ)) ≤ cN(t).

This is property (2) for t ∈ [T (1 − δ), T ]. Since, for t ≥ T , the difference
M(t) − N(t) is constant by definition of N , and the two Orlicz functions
M and N are both increasing, the inequality M(t) ≤ cN(t) also holds for
t ≥ T by the following simple calculation:

M(t) = N(t) +M(t)−N(t) = N(t) +M(T )−N(T )

≤ N(t) + (c− 1)N(T ) ≤ cN(t).

Figure 1 illustrates the choice of the equivalent Orlicz function in the
proof of Lemma 8.2 which has the desired properties.

Remark 8.3. Let M and N be as in Lemma 8.2. In order to apply
this lemma to Proposition 5.1, we have to pass once again to an equivalent
Orlicz function Ñ , a multiple of the function N constructed in Lemma 8.2
(see Figure 1), to ensure M−1(1) = Ñ−1(1) and hence that Ñ is “smooth”

up to the point Ñ−1(1).
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Fundación Séneca, 04540/GERM/06. The third and fourth authors are sup-
ported by the Austrian Science Fund, FWF project P23987 “Projection
Operators in Analysis and Geometry of Classical Banach Spaces”.

References

[1] D. Alonso-Gutiérrez and J. Prochno, On the Gaussian behavior of marginals and
the mean width of random polytopes, Proc. Amer. Math. Soc., to appear.

[2] D. Alonso-Gutiérrez and J. Prochno, Estimating support functions of random poly-
topes via Orlicz norms, Discrete Comput. Geom. 49 (2013), 558–588.

[3] D. Alonso-Gutiérrez and J. Prochno, Mean width of random perturbations of random
polytopes, preprint, 2013.

[4] P. Billingsley, Probability and Measure, 3rd ed., Wiley Ser. Probab. Math., Wiley,
New York, 1995.

[5] J. Bretagnolle et D. Dacunha-Castelle, Application de l’étude de certaines formes
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Universidad de Murcia
Campus de Espinardo
30100 Murcia, Spain
E-mail: davidalonso@um.es

Current address:
Departament de Matemàtiques
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