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Marcinkiewicz integrals on product spaces

by
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L. C. Cheng (Bryn Mawr, PA) and Y. Pan (Pittsburgh, PA)

Abstract. We prove the Lp boundedness of the Marcinkiewicz integral operators µΩ
on Rn1 × · · · ×Rnk under the condition that Ω ∈ L(logL)k/2(Sn1−1 × · · · × Snk−1). The
exponent k/2 is the best possible. This answers an open question posed in [7].

1. Introduction. Marcinkiewicz integrals have been studied by many
authors, dating back to the investigations of such operators by Zygmund on
the circle and by Stein on Rn.

We shall be primarily concerned with Marcinkiewicz integrals on the
product space Rn × Rm, since the more general setting of Rn1 × · · · × Rnk
can be handled similarly (see Section 4).

For n,m ≥ 2, x ∈ Rn\{0}, y ∈ Rm\{0}, we let x′ = x/|x| and y′ = y/|y|.
Let Ω ∈ L1(Sn−1×Sm−1) be a function satisfying the following cancellation
conditions: { �

Sn−1 Ω(x′, ·) dσ(x′) = 0,�
Sm−1 Ω(·, y′) dσ(y′) = 0.

(1.1)

Then the Marcinkiewicz integral operator µΩ is given by

µΩ(f)(x, y) =
( ���

R2
+

|Ft,s(x, y)|2 dt ds
(ts)3

)1/2

,(1.2)

where

Ft,s(x, y) =
���

{|ξ|≤t, |η|≤s}

Ω(ξ′, η′)
|ξ|n−1|η|m−1 f(x− ξ, y − η) dξ dη.(1.3)

It has been known for a while that the Lp boundedness of µΩ holds for
1 < p <∞ under the conditionΩ ∈ L(logL)2(Sn−1×Sm−1) (see Ding [6] and
Chen et al. [3]). On the other hand, by adapting an argument of Walsh ([18])
to the product space setting, it can be shown that, for every ε > 0, the L2

boundedness of µΩ fails to hold for some Ω in L(logL)1−ε(Sn−1×Sm−1). In
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this sense the condition Ω ∈ L(logL)(Sn−1 × Sm−1), if sufficient, would be
the best possible.

For the special case p = 2, Choi ([5]) verified that µΩ is indeed bounded
on L2(Rn × Rm) for all Ω ∈ L(logL)(Sn−1 × Sm−1). Ding subsequently
conjectured in [7] that the Lp boundedness of µΩ holds under the condition
Ω ∈ L(logL)(Sn−1 × Sm−1) for 1 < p <∞.

As a more recent progress in this investigation, Chen, Fan and Yang
obtained the following:

Theorem 1 ([4]). Suppose that p ∈ (1,∞), r = min{p, p′}, and

Ω ∈ L(logL)2/r(log logL)8(1−2/r′)(Sn−1 × Sm−1).

Then µΩ is bounded on Lp(Rn × Rm).

Since the condition in Theorem 1 becomes Ω ∈ L(logL) when p = 2,
it recovers Choi’s L2 result. But, for p 6= 2, it still falls short of what is
conjectured by Ding.

The main purpose of this paper is to establish the following:

Theorem 2. If Ω ∈ L(logL)(Sn−1× Sm−1) and p ∈ (1,∞), then µΩ is
bounded on Lp(Rn × Rm).

Throughout the rest of the paper the letter C will stand for a constant
but not necessarily the same one at each occurrence.

2. Main lemma. Given a two-parameter family ν = {νt,s : t, s ∈ R} of
measures on Rn × Rm, we define the maximal operator ν∗ by

ν∗(f) = sup
t,s∈R

∣∣|νt,s| ∗ f
∣∣(2.1)

and the corresponding square function by

Gν(f)(x, y) =
( �

R×R
|νt,s ∗ f(x, y)|2 dt ds

)1/2
.(2.2)

Also, we write t±α = min{tα, t−α} and use ‖νt,s‖ to denote the total varia-
tion of νt,s.

The following is our main lemma:

Lemma 2.1. Let a, b ≥ 2, α, β, q > 1 and A > 0. Suppose that the family
{νt,s : t, s ∈ R} of measures satisfies the following :

(i) ‖νt,s‖ ≤ A for t, s ∈ R;
(ii) |ν̂t,s(ξ, η)| ≤A|atξ|±α/lna|bsη|±β/ln b for (ξ, η)∈Rn×Rm and t, s∈R;

(iii) ‖ν∗(f)‖q ≤ A‖f‖q for f ∈ Lq(Rn × Rm).
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Then, for every p satisfying |1/p − 1/2| < 1/(2q), there exists a positive
constant Cp which is independent of a and b such that

‖Gν(f)‖p ≤ Cp‖f‖p(2.3)

for f ∈ Lp(Rn × Rm).

Two propositions are needed for the proof of Lemma 2.1.

Proposition 2.2. Suppose that (i) and (iii) in Lemma 2.1 are satisfied
and |1/p0 − 1/2| = 1/(2q). Let F (x, y, t, s) be a measurable function on
Rn × Rm × R2 and Ft,s(x, y) = F (x, y, t, s) for (x, y) ∈ Rn × Rm and
(t, s) ∈ R2. Then
∥∥∥
( �

R2

|νt,s ∗ Ft,s|2 dt ds
)1/2∥∥∥

Lp0 (Rn×Rm)

≤
√
A
∥∥∥
( �

R2

|Ft,s|2 dt ds
)1/2∥∥∥

Lp0 (Rn×Rm)
.

The above proposition can be proved by using the proof of Lemma 14
in [8], after some minor modifications.

For λ > 2, let φ(λ) : R → [0, 1] be a C∞ function supported in [4/(5λ),
(5λ)/4] such that

∞�

0

φ(λ)(t)
t

dt = 2 lnλ.(2.4)

For a, b > 2, let Ψ ∈ C∞(Rn) and Γ ∈ C∞(Rm) be given by

Ψ̂(ξ) = φ(a)(|ξ|2), Γ̂ (η) = φ(b)(|η|2)

for ξ ∈ Rn and η ∈ Rm. For x ∈ Rn, y ∈ Rm and t, s > 0, set

Ψt(x) = t−nΨ(x/t), Γs(y) = s−mΓ (y/s)

and
Φt,s(x, y) = Ψt(x) · Γs(y).

Define the square function operator SΦ on Rn × Rm by

(SΦf)(x, y) =
( �

R×R
|(Φat,bs ∗ f)(x, y)|2 dt ds

)1/2
.(2.5)

Proposition 2.3. For every p ∈ (1,∞), there exists a positive constant
Cp independent of a and b such that

‖SΦf‖Lp(Rn×Rm) ≤ Cp‖f‖Lp(Rn×Rm)

for f ∈ Lp(Rn × Rm).

Proposition 2.3 can be established by using an argument of Fefferman
and Stein in [12] (pp. 123–124) which is rooted in the theory of vector-valued
singular integrals ([16, p. 46]). A careful tracking of the constant at each step
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shows its independence from the parameters a and b, which is a key feature
of Proposition 2.3. Details of the proof are omitted.

Proof of Lemma 2.1. It suffices to prove (2.3) for all Schwartz functions
f on Rn × Rm. For f ∈ S(Rn × Rm), it follows from (2.4) that

f =
�

R×R
(Φat,bs ∗ f) dt ds.(2.6)

By (2.6) and Minkowski’s inequality,

Gν (f)(x, y) =
( �

R×R

∣∣∣
�

R×R
Φat+u,bs+v ∗ νt,s ∗ f(x, y) du dv

∣∣∣
2
dt ds

)1/2
(2.7)

≤
�

R×R
(Hu,vf)(x, y) du dv,

where

(Hu,vf)(x, y) =
( �

R×R
|Φat+u,bs+v ∗ νt,s ∗ f(x, y)|2 dt ds

)1/2
.

First we shall obtain the following L2 estimate:

‖Hu,v‖2,2 ≤
A

2
√
αβ

e(α+β)e−α|u|e−β|v|.(2.8)

We shall present the proof of (2.8) for the case u, v ≥ 0 only. The remaining
cases can be handled similarly. Let

Eu,v,ξ,η =
{

(t, s) ∈ R× R :
4
5a
≤ a2(t+u)|ξ|2 ≤ 5a

4
,

4
5b
≤ b2(s+v)|η|2 ≤ 5b

4

}
.

By Plancherel’s theorem and assumption (ii), we have

‖Hu,vf‖22 =
�

Rn×Rm
|f̂(ξ, η)|2

( �

R×R

∣∣φ(a)(a2(t+u)|ξ|2)φ(b)(b2(s+v)|η|2)
∣∣2

× |ν̂t,s(ξ, η)|2 dt ds
)
dξ dη

≤ A2
�

Rn×Rm
|f̂(ξ, η)|2

( �

Eu,v,ξ,η

|atξ|2α/ln a|bsη|2β/ln b dt ds
)
dξ dη

≤ A2

4αβ
e2α−2α|u|e2β−2β|v|‖f‖22,

which yields (2.8).
Next we let p0 satisfy |1/p0 − 1/2| = 1/(2q). Then by Propositions 2.2

and 2.3, there exists a positive constant C such that

‖Hu,vf‖p0 ≤ C‖SΦf‖p0 ≤ C‖f‖p0 .(2.9)
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By interpolating between (2.8) and (2.9) we obtain

‖Hu,vf‖p ≤ C(α, β, p)e−αp|u|e−βp|v|‖f‖p(2.10)

for (u, v) ∈ R × R and p satisfying |1/p − 1/2| < 1/(2q), where C(α, β, p),
αp and βp are positive constants independent of u, v, a and b. Lemma 2.1
now follows from (2.7) and (2.10).

3. Proof of the main theorem. Assume Ω ∈ L(logL)(Sn−1 × Sm−1)
and Ω satisfies (1.1). For k ∈ N, let Ek = {(x, y) ∈ Sn−1 × Sm−1 : 2k−1 ≤
|Ω(x, y)| < 2k}. Let D = {k ∈ N : |Ek| > 2−4k}, where | · | denotes the
product measure on Sn−1 × Sm−1. We now define Ωk by

Ωk(x, y) = Ω(x, y)χEk(x, y)−
�

Sn−1

Ω(x, y)χEk(x, y) dσ(x)(3.1)

−
�

Sm−1

Ω(x, y)χEk(x, y) dσ(y) +
�

Ek

Ω(x, y) dσ(x) dσ(y)

for k ∈ N, and

Ω0(x, y) = Ω(x, y)−
∑

k∈D
Ωk(x, y).(3.2)

Thus, for k ∈ N ∪ {0}, Ωk satisfies (1.1). Since ‖Ω0‖L2(Sn−1×Sm−1) ≤ 8, it
follows that µΩ0 is a bounded operator on Lp(Rn × Rm) for all p ∈ (1,∞).

For k ∈ D we let

ak = 2k, Ak =
16π(n+m)/2‖ΩχEk‖1

(Γ (n/2)Γ (m/2))
.

We then define the family of measures ν(k) = {νk,t,s : t, s ∈ R} on Rn × Rm
by

(3.3)
�

Rn×Rm
f dνk,t,s =

(
1

Aka
t+s
k

) �

{|x|≤atk, |y|≤ask}

Ωk(x′, y′)
|x|n−1|y|m−1f(x, y) dx dy.

Thus

‖νk,t,s‖ ≤ 1.(3.4)

By the cancellation properties of Ωk, we have

(3.5) |ν̂k,t,s(ξ, η)|

≤
(

1
Aka

t+s
k

) �

{|x|≤atk, |y|≤ask}
|eiξ·x − 1| |Ωk(x

′, y′)| dx dy
|x|n−1|y|m−1 ≤ atk|ξ|.

Similarly,
|ν̂k,t,s(ξ, η)| ≤ ask|η|.(3.6)



232 H. Al-Qassem et al.

By the proof of Corollary 4.1 in [9],∣∣∣∣a−sk
�

|y|≤ask

eiη·y
Ωk(x′, y′)
|y|m−1 dy

∣∣∣∣ ≤ C(ask|η|)−1/6
( �

Sm−1

|Ωk(x′, y′)|2 dσ(y′)
)1/2

.

Thus, for k ∈ D and t, s ∈ R,

|ν̂k,t,s(ξ, η)| ≤
(

1
Aka

t+s
k

) �

|x|≤atk

1
|x|n−1

∣∣∣∣
�

|y|≤ask

eiη·y
Ωk(x′, y′)
|y|m−1 dy

∣∣∣∣ dx(3.7)

≤ CA−1
k (ask|η|)−1/6‖Ωk‖L2(Sn−1×Sm−1)

≤ C22k+1(ask|η|)−1/6.

Similarly,

|ν̂k,t,s(ξ, η)| ≤ C22k+1(atk|ξ|)−1/6.(3.8)

By (3.4)–(3.8) we obtain

|ν̂k,t,s(ξ, η)| ≤ C|atkξ|±1/(6k)|askη|±1/(6k).(3.9)

By the boundedness of the strong maximal function on R2 we see that

‖(ν(k))∗(f)‖Lq(Rn×Rm) ≤ Bq‖f‖Lq(Rn×Rm)

for 1 < q ≤ ∞, where Bq is independent of k. Applying Lemma 2.1, we get

‖Gν(k)(f)‖p ≤ Cp‖f‖p.(3.10)

Finally, by Minkowski’s inequality and (3.10), we have

‖µΩ(f)‖p ≤ ‖µΩ0(f)‖p +
∑

k∈D
(ln ak)Ak‖Gν(k)(f)‖p(3.11)

≤ Cp
(

1 +
∑

k∈D
k

�

Ek

|Ω(x, y)| dσ(x) ds(y)
)
‖f‖p

≤ Cp(1 + ‖Ω‖L(logL))‖f‖p
for 1 < p <∞ and f ∈ Lp(Rn × Rm). This proves Theorem 2.

4. Concluding remarks. Let k ∈ N, n1, . . . , nk ≥ 2 and Ω(x′1, . . . , x
′
k)

be an integrable function on Sn1−1 × · · · × Snk−1. Suppose that Ω satisfies
the following cancellation condition:�

Snj−1

Ω(x′1, . . . , x
′
k) dσ(x′j) = 0 for j = 1, . . . , k.(4.1)

The corresponding Marcinkiewicz integral operator on Rn1 × · · · × Rnk is
defined by

µΩ(f)(x1, . . . , xk) =
(∞�

0

· · ·
∞�

0

|Ft1,...,tk(x1, . . . , xk)|2
dt1 · · · dtk
t31 · · · t3k

)1/2

,(4.2)



Marcinkiewicz integrals on product spaces 233

where

(4.3) Ft1,...,tk(x1, . . . , xk)

=
�

|y1|≤t1
· · ·

�

|yk|≤tk

Ω(y′1, . . . , y
′
k)

|y1|n1−1 · · · |ynk−1
k

f(x1 − y1, . . . , xk − yk) dy1 . . . dyk.

Theorem 2 admits the following generalization:

Theorem 3. For Ω, µΩ as above, if Ω∈L(logL)k/2(Sn1−1×· · ·×Snk−1)
and p ∈ (1,∞), then µΩ is bounded on Lp(Rn1 × · · · × Rnk). The exponent
k/2 is the best possible.

When k = 1 (i.e. the underlying space is not a product space), the Lp

boundedness of µΩ under the condition Ω ∈ L(logL)1/2 was obtained first
for p = 2 in [18], and then for all p ∈ (1,∞) in [1]. Historically, this is the
case that had received the most amount of attention. For a sampling of past
studies, see [2], [11], [13], [14], [18], [19]. Related results can also be found
in [8], [15], and [17].

Theorem 2 takes care of the case k = 2. The proof of Theorem 2 easily
extends to the case k > 2. We omit the details.
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[13] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta
Math. 104 (1960), 93–140.

[14] E. Stein, On the functions of Littlewood–Paley, Lusin and Marcinkiewicz , Trans.
Amer. Math. Soc. 88 (1958), 430–466.

[15] —, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, Princeton Univ. Press, 1993.

[16] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, 1970.

[17] E. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull.
Amer. Math. Soc. 84 (1978), 1239–1295.

[18] T. Walsh, On the function of Marcinkiewicz , Studia Math. 44 (1972), 203–217.
[19] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.

Department of Mathematics
Yarmouk University
Irbid, Jordan
E-mail: hussain@yu.edu.jo

alsalman@yu.edu.jo

Department of Mathematics
University of Pittsburgh
Pittsburgh, PA 15260, U.S.A.
E-mail: yibiao+@pitt.edu

Department of Mathematics
Bryn Mawr College

Bryn Mawr, PA 19010, U.S.A.
E-mail: lcheng@brynmawr.edu

Received November 14, 2003
Revised version December 17, 2004 (5309)


