# Marcinkiewicz integrals on product spaces 

by<br>H. Al-Qassem (Irbid), A. Al-Salman (Irbid), L. C. Cheng (Bryn Mawr, PA) and Y. Pan (Pittsburgh, PA)


#### Abstract

We prove the $L^{p}$ boundedness of the Marcinkiewicz integral operators $\mu_{\Omega}$ on $\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$ under the condition that $\Omega \in L(\log L)^{k / 2}\left(\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{k}-1}\right)$. The exponent $k / 2$ is the best possible. This answers an open question posed in [7].


1. Introduction. Marcinkiewicz integrals have been studied by many authors, dating back to the investigations of such operators by Zygmund on the circle and by Stein on $\mathbb{R}^{n}$.

We shall be primarily concerned with Marcinkiewicz integrals on the product space $\mathbb{R}^{n} \times \mathbb{R}^{m}$, since the more general setting of $\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$ can be handled similarly (see Section 4).

For $n, m \geq 2, x \in \mathbb{R}^{n} \backslash\{0\}, y \in \mathbb{R}^{m} \backslash\{0\}$, we let $x^{\prime}=x /|x|$ and $y^{\prime}=y /|y|$. Let $\Omega \in L^{1}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ be a function satisfying the following cancellation conditions:

$$
\left\{\begin{array}{l}
\int_{\mathbb{S}^{n-1}} \Omega\left(x^{\prime}, \cdot\right) d \sigma\left(x^{\prime}\right)=0  \tag{1.1}\\
\int_{\mathbb{S}^{m-1}} \Omega\left(\cdot, y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0
\end{array}\right.
$$

Then the Marcinkiewicz integral operator $\mu_{\Omega}$ is given by

$$
\begin{equation*}
\mu_{\Omega}(f)(x, y)=\left(\iint_{\mathbb{R}_{+}^{2}}\left|F_{t, s}(x, y)\right|^{2} \frac{d t d s}{(t s)^{3}}\right)^{1 / 2} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{t, s}(x, y)=\iint_{\{|\xi| \leq t,|\eta| \leq s\}} \frac{\Omega\left(\xi^{\prime}, \eta^{\prime}\right)}{|\xi|^{n-1}|\eta|^{m-1}} f(x-\xi, y-\eta) d \xi d \eta \tag{1.3}
\end{equation*}
$$

It has been known for a while that the $L^{p}$ boundedness of $\mu_{\Omega}$ holds for $1<p<\infty$ under the condition $\Omega \in L(\log L)^{2}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ (see Ding [6] and Chen et al. [3]). On the other hand, by adapting an argument of Walsh ([18]) to the product space setting, it can be shown that, for every $\varepsilon>0$, the $L^{2}$ boundedness of $\mu_{\Omega}$ fails to hold for some $\Omega$ in $L(\log L)^{1-\varepsilon}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$. In
this sense the condition $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$, if sufficient, would be the best possible.

For the special case $p=2$, Choi ([5]) verified that $\mu_{\Omega}$ is indeed bounded on $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for all $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$. Ding subsequently conjectured in [7] that the $L^{p}$ boundedness of $\mu_{\Omega}$ holds under the condition $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ for $1<p<\infty$.

As a more recent progress in this investigation, Chen, Fan and Yang obtained the following:

Theorem 1 ([4]). Suppose that $p \in(1, \infty), r=\min \left\{p, p^{\prime}\right\}$, and

$$
\Omega \in L(\log L)^{2 / r}(\log \log L)^{8\left(1-2 / r^{\prime}\right)}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)
$$

Then $\mu_{\Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.
Since the condition in Theorem 1 becomes $\Omega \in L(\log L)$ when $p=2$, it recovers Choi's $L^{2}$ result. But, for $p \neq 2$, it still falls short of what is conjectured by Ding.

The main purpose of this paper is to establish the following:
THEOREM 2. If $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ and $p \in(1, \infty)$, then $\mu_{\Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.

Throughout the rest of the paper the letter $C$ will stand for a constant but not necessarily the same one at each occurrence.
2. Main lemma. Given a two-parameter family $\nu=\left\{\nu_{t, s}: t, s \in \mathbb{R}\right\}$ of measures on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, we define the maximal operator $\nu^{*}$ by

$$
\begin{equation*}
\nu^{*}(f)=\sup _{t, s \in \mathbb{R}}| | \nu_{t, s}|* f| \tag{2.1}
\end{equation*}
$$

and the corresponding square function by

$$
\begin{equation*}
G_{\nu}(f)(x, y)=\left(\int_{\mathbb{R} \times \mathbb{R}}\left|\nu_{t, s} * f(x, y)\right|^{2} d t d s\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

Also, we write $t^{ \pm \alpha}=\min \left\{t^{\alpha}, t^{-\alpha}\right\}$ and use $\left\|\nu_{t, s}\right\|$ to denote the total variation of $\nu_{t, s}$.

The following is our main lemma:
Lemma 2.1. Let $a, b \geq 2, \alpha, \beta, q>1$ and $A>0$. Suppose that the family $\left\{\nu_{t, s}: t, s \in \mathbb{R}\right\}$ of measures satisfies the following:
(i) $\left\|\nu_{t, s}\right\| \leq A$ for $t, s \in \mathbb{R}$;
(ii) $\left|\widehat{\nu}_{t, s}(\xi, \eta)\right| \leq A\left|a^{t} \xi\right|^{ \pm \alpha / \ln a}\left|b^{s} \eta\right|^{ \pm \beta / \ln b}$ for $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ and $t, s \in \mathbb{R}$;
(iii) $\left\|\nu^{*}(f)\right\|_{q} \leq A\|f\|_{q}$ for $f \in L^{q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.

Then, for every $p$ satisfying $|1 / p-1 / 2|<1 /(2 q)$, there exists a positive constant $C_{p}$ which is independent of $a$ and $b$ such that

$$
\begin{equation*}
\left\|G_{\nu}(f)\right\|_{p} \leq C_{p}\|f\|_{p} \tag{2.3}
\end{equation*}
$$

for $f \in L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.
Two propositions are needed for the proof of Lemma 2.1.
Proposition 2.2. Suppose that (i) and (iii) in Lemma 2.1 are satisfied and $\left|1 / p_{0}-1 / 2\right|=1 /(2 q)$. Let $F(x, y, t, s)$ be a measurable function on $\mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{2}$ and $F_{t, s}(x, y)=F(x, y, t, s)$ for $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ and $(t, s) \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
&\left\|\left(\int_{\mathbb{R}^{2}}\left|\nu_{t, s} * F_{t, s}\right|^{2} d t d s\right)^{1 / 2}\right\|_{L^{p_{0}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}} \\
& \leq \sqrt{A}\left\|\left(\int_{\mathbb{R}^{2}}\left|F_{t, s}\right|^{2} d t d s\right)^{1 / 2}\right\|_{L^{p_{0}}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}
\end{aligned}
$$

The above proposition can be proved by using the proof of Lemma 14 in [8], after some minor modifications.

For $\lambda>2$, let $\phi^{(\lambda)}: \mathbb{R} \rightarrow[0,1]$ be a $C^{\infty}$ function supported in $[4 /(5 \lambda)$, $(5 \lambda) / 4]$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\phi^{(\lambda)}(t)}{t} d t=2 \ln \lambda \tag{2.4}
\end{equation*}
$$

For $a, b>2$, let $\Psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\Gamma \in C^{\infty}\left(\mathbb{R}^{m}\right)$ be given by

$$
\widehat{\Psi}(\xi)=\phi^{(a)}\left(|\xi|^{2}\right), \quad \widehat{\Gamma}(\eta)=\phi^{(b)}\left(|\eta|^{2}\right)
$$

for $\xi \in \mathbb{R}^{n}$ and $\eta \in \mathbb{R}^{m}$. For $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$ and $t, s>0$, set

$$
\Psi_{t}(x)=t^{-n} \Psi(x / t), \quad \Gamma_{s}(y)=s^{-m} \Gamma(y / s)
$$

and

$$
\Phi_{t, s}(x, y)=\Psi_{t}(x) \cdot \Gamma_{s}(y)
$$

Define the square function operator $S_{\Phi}$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ by

$$
\begin{equation*}
\left(S_{\Phi} f\right)(x, y)=\left(\int_{\mathbb{R} \times \mathbb{R}}\left|\left(\Phi_{a^{t}, b^{s}} * f\right)(x, y)\right|^{2} d t d s\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

Proposition 2.3. For every $p \in(1, \infty)$, there exists a positive constant $C_{p}$ independent of $a$ and $b$ such that

$$
\left\|S_{\Phi} f\right\|_{L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}
$$

for $f \in L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.
Proposition 2.3 can be established by using an argument of Fefferman and Stein in [12] (pp. 123-124) which is rooted in the theory of vector-valued singular integrals ([16, p. 46]). A careful tracking of the constant at each step
shows its independence from the parameters $a$ and $b$, which is a key feature of Proposition 2.3. Details of the proof are omitted.

Proof of Lemma 2.1. It suffices to prove (2.3) for all Schwartz functions $f$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$. For $f \in \mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, it follows from (2.4) that

$$
\begin{equation*}
f=\int_{\mathbb{R} \times \mathbb{R}}\left(\Phi_{a^{t}, b^{s}} * f\right) d t d s \tag{2.6}
\end{equation*}
$$

By (2.6) and Minkowski's inequality,

$$
\begin{align*}
G_{\nu}(f)(x, y) & =\left(\int_{\mathbb{R} \times \mathbb{R}}\left|\int_{\mathbb{R} \times \mathbb{R}} \Phi_{a^{t+u}, b^{s+v}} * \nu_{t, s} * f(x, y) d u d v\right|^{2} d t d s\right)^{1 / 2}  \tag{2.7}\\
& \leq \int_{\mathbb{R} \times \mathbb{R}}\left(H_{u, v} f\right)(x, y) d u d v
\end{align*}
$$

where

$$
\left(H_{u, v} f\right)(x, y)=\left(\int_{\mathbb{R} \times \mathbb{R}}\left|\Phi_{a^{t+u}, b^{s+v}} * \nu_{t, s} * f(x, y)\right|^{2} d t d s\right)^{1 / 2}
$$

First we shall obtain the following $L^{2}$ estimate:

$$
\begin{equation*}
\left\|H_{u, v}\right\|_{2,2} \leq \frac{A}{2 \sqrt{\alpha \beta}} e^{(\alpha+\beta)} e^{-\alpha|u|} e^{-\beta|v|} \tag{2.8}
\end{equation*}
$$

We shall present the proof of (2.8) for the case $u, v \geq 0$ only. The remaining cases can be handled similarly. Let

$$
E_{u, v, \xi, \eta}=\left\{(t, s) \in \mathbb{R} \times \mathbb{R}: \frac{4}{5 a} \leq a^{2(t+u)}|\xi|^{2} \leq \frac{5 a}{4}, \frac{4}{5 b} \leq b^{2(s+v)}|\eta|^{2} \leq \frac{5 b}{4}\right\}
$$

By Plancherel's theorem and assumption (ii), we have

$$
\begin{aligned}
\left\|H_{u, v} f\right\|_{2}^{2} & =\int_{\mathbb{R}^{n} \times \mathbb{R}^{m}}|\widehat{f}(\xi, \eta)|^{2}\left(\int_{\mathbb{R} \times \mathbb{R}}\left|\phi^{(a)}\left(a^{2(t+u)}|\xi|^{2}\right) \phi^{(b)}\left(b^{2(s+v)}|\eta|^{2}\right)\right|^{2}\right. \\
& \left.\times\left|\widehat{\nu}_{t, s}(\xi, \eta)\right|^{2} d t d s\right) d \xi d \eta \\
& \leq A^{2} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}}|\widehat{f}(\xi, \eta)|^{2}\left(\int_{E_{u, v, \xi, \eta}}\left|a^{t} \xi\right|^{2 \alpha / \ln a}\left|b^{s} \eta\right|^{2 \beta / \ln b} d t d s\right) d \xi d \eta \\
& \leq \frac{A^{2}}{4 \alpha \beta} e^{2 \alpha-2 \alpha|u|} e^{2 \beta-2 \beta|v|}\|f\|_{2}^{2},
\end{aligned}
$$

which yields (2.8).
Next we let $p_{0}$ satisfy $\left|1 / p_{0}-1 / 2\right|=1 /(2 q)$. Then by Propositions 2.2 and 2.3 , there exists a positive constant $C$ such that

$$
\begin{equation*}
\left\|H_{u, v} f\right\|_{p_{0}} \leq C\left\|S_{\Phi} f\right\|_{p_{0}} \leq C\|f\|_{p_{0}} \tag{2.9}
\end{equation*}
$$

By interpolating between (2.8) and (2.9) we obtain

$$
\begin{equation*}
\left\|H_{u, v} f\right\|_{p} \leq C(\alpha, \beta, p) e^{-\alpha_{p}|u|} e^{-\beta_{p}|v|}\|f\|_{p} \tag{2.10}
\end{equation*}
$$

for $(u, v) \in \mathbb{R} \times \mathbb{R}$ and $p$ satisfying $|1 / p-1 / 2|<1 /(2 q)$, where $C(\alpha, \beta, p)$, $\alpha_{p}$ and $\beta_{p}$ are positive constants independent of $u, v, a$ and $b$. Lemma 2.1 now follows from (2.7) and (2.10).
3. Proof of the main theorem. Assume $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ and $\Omega$ satisfies (1.1). For $k \in \mathbb{N}$, let $E_{k}=\left\{(x, y) \in \mathbb{S}^{n-1} \times \mathbb{S}^{m-1}: 2^{k-1} \leq\right.$ $\left.|\Omega(x, y)|<2^{k}\right\}$. Let $D=\left\{k \in \mathbb{N}:\left|E_{k}\right|>2^{-4 k}\right\}$, where $|\cdot|$ denotes the product measure on $\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}$. We now define $\Omega_{k}$ by

$$
\begin{align*}
\Omega_{k}(x, y)= & \Omega(x, y) \chi_{E_{k}}(x, y)-\int_{\mathbb{S}^{n-1}} \Omega(x, y) \chi_{E_{k}}(x, y) d \sigma(x)  \tag{3.1}\\
& -\int_{\mathbb{S}^{m-1}} \Omega(x, y) \chi_{E_{k}}(x, y) d \sigma(y)+\int_{E_{k}} \Omega(x, y) d \sigma(x) d \sigma(y)
\end{align*}
$$

for $k \in \mathbb{N}$, and

$$
\begin{equation*}
\Omega_{0}(x, y)=\Omega(x, y)-\sum_{k \in D} \Omega_{k}(x, y) \tag{3.2}
\end{equation*}
$$

Thus, for $k \in \mathbb{N} \cup\{0\}, \Omega_{k}$ satisfies (1.1). Since $\left\|\Omega_{0}\right\|_{L^{2}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)} \leq 8$, it follows that $\mu_{\Omega_{0}}$ is a bounded operator on $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for all $p \in(1, \infty)$.

For $k \in D$ we let

$$
a_{k}=2^{k}, \quad A_{k}=\frac{16 \pi^{(n+m) / 2}\left\|\Omega \chi_{E_{k}}\right\|_{1}}{(\Gamma(n / 2) \Gamma(m / 2))}
$$

We then define the family of measures $\nu^{(k)}=\left\{\nu_{k, t, s}: t, s \in \mathbb{R}\right\}$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ by

$$
\begin{equation*}
\int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} f d \nu_{k, t, s}=\left(\frac{1}{A_{k} a_{k}^{t+s}}\right) \int_{\left\{|x| \leq a_{k}^{t},|y| \leq a_{k}^{s}\right\}} \frac{\Omega_{k}\left(x^{\prime}, y^{\prime}\right)}{|x|^{n-1}|y|^{m-1}} f(x, y) d x d y \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|\nu_{k, t, s}\right\| \leq 1 \tag{3.4}
\end{equation*}
$$

By the cancellation properties of $\Omega_{k}$, we have

$$
\begin{align*}
& \left|\widehat{\nu}_{k, t, s}(\xi, \eta)\right|  \tag{3.5}\\
& \quad \leq\left(\frac{1}{A_{k} a_{k}^{t+s}}\right) \int_{\left\{|x| \leq a_{k}^{t},|y| \leq a_{k}^{s}\right\}}\left|e^{i \xi \cdot x}-1\right| \frac{\left|\Omega_{k}\left(x^{\prime}, y^{\prime}\right)\right| d x d y}{|x|^{n-1}|y|^{m-1}} \leq a_{k}^{t}|\xi| .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|\widehat{\nu}_{k, t, s}(\xi, \eta)\right| \leq a_{k}^{s}|\eta| \tag{3.6}
\end{equation*}
$$

By the proof of Corollary 4.1 in [9],

$$
\left|a_{k}^{-s} \int_{|y| \leq a_{k}^{s}} e^{i \eta \cdot y} \frac{\Omega_{k}\left(x^{\prime}, y^{\prime}\right)}{|y|^{m-1}} d y\right| \leq C\left(a_{k}^{s}|\eta|\right)^{-1 / 6}\left(\int_{\mathbb{S}^{m-1}}\left|\Omega_{k}\left(x^{\prime}, y^{\prime}\right)\right|^{2} d \sigma\left(y^{\prime}\right)\right)^{1 / 2}
$$

Thus, for $k \in D$ and $t, s \in \mathbb{R}$,

$$
\begin{align*}
\left|\widehat{\nu}_{k, t, s}(\xi, \eta)\right| & \leq\left(\frac{1}{A_{k} a_{k}^{t+s}}\right) \int_{|x| \leq a_{k}^{t}} \frac{1}{|x|^{n-1}}\left|\int_{|y| \leq a_{k}^{s}} e^{i \eta \cdot y} \frac{\Omega_{k}\left(x^{\prime}, y^{\prime}\right)}{|y|^{m-1}} d y\right| d x  \tag{3.7}\\
& \leq C A_{k}^{-1}\left(a_{k}^{s}|\eta|\right)^{-1 / 6}\left\|\Omega_{k}\right\|_{L^{2}\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)} \\
& \leq C 2^{2 k+1}\left(a_{k}^{s}|\eta|\right)^{-1 / 6} .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|\widehat{\nu}_{k, t, s}(\xi, \eta)\right| \leq C 2^{2 k+1}\left(a_{k}^{t}|\xi|\right)^{-1 / 6} \tag{3.8}
\end{equation*}
$$

By (3.4)-(3.8) we obtain

$$
\begin{equation*}
\left|\widehat{\nu}_{k, t, s}(\xi, \eta)\right| \leq C\left|a_{k}^{t} \xi\right|^{ \pm 1 /(6 k)}\left|a_{k}^{s} \eta\right|^{ \pm 1 /(6 k)} \tag{3.9}
\end{equation*}
$$

By the boundedness of the strong maximal function on $\mathbb{R}^{2}$ we see that

$$
\left\|\left(\nu^{(k)}\right)^{*}(f)\right\|_{L^{q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)} \leq B_{q}\|f\|_{L^{q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}
$$

for $1<q \leq \infty$, where $B_{q}$ is independent of $k$. Applying Lemma 2.1, we get

$$
\begin{equation*}
\left\|G_{\nu^{(k)}}(f)\right\|_{p} \leq C_{p}\|f\|_{p} \tag{3.10}
\end{equation*}
$$

Finally, by Minkowski's inequality and (3.10), we have

$$
\begin{align*}
\left\|\mu_{\Omega}(f)\right\|_{p} & \leq\left\|\mu_{\Omega_{0}}(f)\right\|_{p}+\sum_{k \in D}\left(\ln a_{k}\right) A_{k}\left\|G_{\nu^{(k)}}(f)\right\|_{p}  \tag{3.11}\\
& \leq C_{p}\left(1+\sum_{k \in D} k \int_{E_{k}}|\Omega(x, y)| d \sigma(x) d s(y)\right)\|f\|_{p} \\
& \leq C_{p}\left(1+\|\Omega\|_{L(\log L)}\right)\|f\|_{p}
\end{align*}
$$

for $1<p<\infty$ and $f \in L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. This proves Theorem 2 .
4. Concluding remarks. Let $k \in \mathbb{N}, n_{1}, \ldots, n_{k} \geq 2$ and $\Omega\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ be an integrable function on $\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{k}-1}$. Suppose that $\Omega$ satisfies the following cancellation condition:

$$
\begin{equation*}
\int_{\mathbb{S}^{n} j^{-1}} \Omega\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) d \sigma\left(x_{j}^{\prime}\right)=0 \quad \text { for } j=1, \ldots, k . \tag{4.1}
\end{equation*}
$$

The corresponding Marcinkiewicz integral operator on $\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$ is defined by

$$
\begin{equation*}
\mu_{\Omega}(f)\left(x_{1}, \ldots, x_{k}\right)=\left(\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left|F_{t_{1}, \ldots, t_{k}}\left(x_{1}, \ldots, x_{k}\right)\right|^{2} \frac{d t_{1} \cdots d t_{k}}{t_{1}^{3} \cdots t_{k}^{3}}\right)^{1 / 2} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{t_{1}, \ldots, t_{k}}\left(x_{1}, \ldots, x_{k}\right)  \tag{4.3}\\
= & \int_{\left|y_{1}\right| \leq t_{1}} \cdots \int_{\left|y_{k}\right| \leq t_{k}} \frac{\Omega\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right)}{\left|y_{1}\right|^{n_{1}-1} \ldots \mid y_{k}^{n_{k}-1}} f\left(x_{1}-y_{1}, \ldots, x_{k}-y_{k}\right) d y_{1} \ldots d y_{k}
\end{align*}
$$

Theorem 2 admits the following generalization:
Theorem 3. For $\Omega, \mu_{\Omega}$ as above, if $\Omega \in L(\log L)^{k / 2}\left(\mathbb{S}^{n_{1}-1} \times \cdots \times \mathbb{S}^{n_{k}-1}\right)$ and $p \in(1, \infty)$, then $\mu_{\Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}\right)$. The exponent $k / 2$ is the best possible.

When $k=1$ (i.e. the underlying space is not a product space), the $L^{p}$ boundedness of $\mu_{\Omega}$ under the condition $\Omega \in L(\log L)^{1 / 2}$ was obtained first for $p=2$ in [18], and then for all $p \in(1, \infty)$ in [1]. Historically, this is the case that had received the most amount of attention. For a sampling of past studies, see [2], [11], [13], [14], [18], [19]. Related results can also be found in [8], [15], and [17].

Theorem 2 takes care of the case $k=2$. The proof of Theorem 2 easily extends to the case $k>2$. We omit the details.

## References

[1] A. Al-Salman, H. Al-Qassem, L. Cheng and Y. Pan, $L^{p}$ bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), 697-700.
[2] A. Benedek, A. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.
[3] J. Chen, D. Fan and Y. Ying, Rough Marcinkiewicz integrals with $L\left(\log ^{+} L\right)^{2}$ kernels on product spaces, Adv. Math. (China) 30 (2001), 179-181.
[4] —, 一, 一, The method of rotation and Marcinkiewicz integrals on product domains, Studia Math. 153 (2002), 41-58.
[5] Y. Choi, Marcinkiewicz integrals with rough homogeneous kernels of degree zero in product domains, J. Math. Anal. Appl. 261 (2001), 53-60.
[6] Y. Ding, $L^{2}$-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J. 27 (1998), 105-115.
[7] -, On Marcinkiewicz integral, in: Proc. Conf. "Singular Integrals and Related Topics III", Osaka, 2001, 28-38.
[8] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 185-206.
[9] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[10] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799-839.
[11] D. Fan and S. Sato, Weak type $(1,1)$ estimates for Marcinkiewicz integrals with rough kernels, Tohoku Math. J. 53 (2001), 265-284.
[12] R. Fefferman and E. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), 117-143.
[13] L. Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93-140.
[14] E. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
[15] -, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[16] —, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
[17] E. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
[18] T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217.
[19] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.

Department of Mathematics
Yarmouk University
Irbid, Jordan
E-mail: hussain@yu.edu.jo
alsalman@yu.edu.jo

Department of Mathematics
Bryn Mawr College Bryn Mawr, PA 19010, U.S.A. E-mail: lcheng@brynmawr.edu

Department of Mathematics
University of Pittsburgh
Pittsburgh, PA 15260, U.S.A.
E-mail: yibiao+@pitt.edu

Received November 14, 2003
Revised version December 17, 2004

