An $\mathfrak{M}_q(\mathbb{T})$ -functional calculus for power-bounded operators on certain UMD spaces

by

EARL BERKSON (Urbana, IL) and T. A. GILLESPIE (Edinburgh)

Abstract. For $1 \leq q < \infty$, let $\mathfrak{M}_q(\mathbb{T})$ denote the Banach algebra consisting of the bounded complex-valued functions on the unit circle having uniformly bounded q-variation on the dyadic arcs. We describe a broad class \mathcal{I} of UMD spaces such that whenever $X \in \mathcal{I}$, the sequence space $\ell^2(\mathbb{Z},X)$ admits the classes $\mathfrak{M}_q(\mathbb{T})$ as Fourier multipliers, for an appropriate range of values of q>1 (the range of q depending on X). This multiplier result expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction q>1. Moreover, when taken in conjunction with vector-valued transference, this $\mathfrak{M}_q(\mathbb{T})$ -multiplier result shows that if $X\in\mathcal{I}$, and U is an invertible power-bounded operator on X, then U has an $\mathfrak{M}_q(\mathbb{T})$ -functional calculus for an appropriate range of values of q>1. The class \mathcal{I} includes, in particular, all closed subspaces of the von Neumann–Schatten p-classes \mathcal{C}_p ($1), as well as all closed subspaces of any UMD lattice of functions on a <math>\sigma$ -finite measure space. The $\mathfrak{M}_q(\mathbb{T})$ -functional calculus result for \mathcal{I} , when specialized to the setting of closed subspaces of $L^p(\mu)$ (μ an arbitrary measure, 1), recovers a previous result of the authors.

1. Introduction and notation. Throughout what follows, the symbols \mathbb{R} , \mathbb{C} , \mathbb{T} , \mathbb{N} , and \mathbb{Z} , respectively, will stand for the real line, the complex plane, the unit circle in \mathbb{C} , the set of positive integers, and the additive group of all integers. The following notion will be central to our considerations.

DEFINITION 1.1. If [a, b] is a compact interval of \mathbb{R} , and $1 \leq q < \infty$, the *q-variation* of a function ψ mapping [a, b] into \mathbb{C} is defined by putting

$$\operatorname{var}_{q}(\psi, [a, b]) = \sup \left\{ \sum_{k=1}^{N} |\psi(x_{k}) - \psi(x_{k-1})|^{q} \right\}^{1/q},$$

where the supremum is extended over all partitions $a = x_0 < x_1 < \cdots < x_N = b$ of [a, b].

We denote by $V_q([a,b])$ the class of all functions $\psi:[a,b]\to\mathbb{C}$ such that $\mathrm{var}_q(\psi,[a,b])<\infty$. It is straightforward to see that $V_q([a,b])$ is a Banach

²⁰⁰⁰ Mathematics Subject Classification: Primary 42A45, 46B70, 46E40, 47B40.

Key words and phrases: UMD space, multiplier, complex interpolation, q-variation, spectral decomposition, spectral integral.

algebra under pointwise operations and the norm

$$\|\psi\|_{V_q([a,b])} \equiv \sup_{x \in [a,b]} |\psi(x)| + \operatorname{var}_q(\psi, [a,b]).$$

If $\psi \in V_q([a,b])$, then $\lim_{x \to y^+} \psi(x)$ exists for each $y \in [a,b)$, $\lim_{x \to y^-} \psi(x)$ exists for each $y \in (a,b]$, and the set of discontinuities of ψ in [a,b] is countable. Note that $\operatorname{var}_1(\psi,[a,b])$ is identical to the usual total variation $\operatorname{var}(\psi,[a,b])$, and so the Banach algebras $V_1([a,b])$ and $\operatorname{BV}([a,b])$ coincide (with identical norms).

Recall that the dyadic points relevant to the study of 2π -periodic functions are the terms of the sequence $\{s_k\}_{k=-\infty}^{\infty} \subseteq (0,2\pi)$ given by

(1.1)
$$s_k = \begin{cases} 2^{k-1}\pi & \text{if } k \le 0, \\ 2\pi - 2^{-k}\pi & \text{if } k > 0. \end{cases}$$

The corresponding dyadic arcs of \mathbb{T} , $\{\Delta_k\}_{k=-\infty}^{\infty}$, are specified by

$$\Delta_k = \{e^{ix} : x \in [s_k, s_{k+1}]\}.$$

Our main theme will be the multiplier actions on vector-valued functions of the *Marcinkiewicz q-classes* $\mathfrak{M}_q(\mathbb{T})$, $1 \leq q < \infty$, which are described as follows. Given a function $\phi : \mathbb{T} \to \mathbb{C}$ and $k \in \mathbb{Z}$, we write $\operatorname{var}_q(\phi, \Delta_k)$ to stand for

$$\operatorname{var}_q(\phi(e^{i(\cdot)}), [s_k, s_{k+1}]).$$

For $1 \leq q < \infty$, $\mathfrak{M}_q(\mathbb{T})$ is defined as the class of all functions $\phi : \mathbb{T} \to \mathbb{C}$ such that

$$\|\phi\|_{\mathfrak{M}_q(\mathbb{T})} \equiv \sup_{z \in \mathbb{T}} |\phi(z)| + \sup_{k \in \mathbb{Z}} \operatorname{var}_q(\phi, \Delta_k) < \infty.$$

It is easily seen that $\mathfrak{M}_q(\mathbb{T})$ is a Banach algebra under pointwise operations and the norm $\|\cdot\|_{\mathfrak{M}_q(\mathbb{T})}$. For $1 \leq r \leq q < \infty$, $\mathfrak{M}_r(\mathbb{T}) \subseteq \mathfrak{M}_q(\mathbb{T})$, since $\|\cdot\|_{\mathfrak{M}_q(\mathbb{T})} \leq \|\cdot\|_{\mathfrak{M}_r(\mathbb{T})}$. Note that $\mathfrak{M}_1(\mathbb{T})$ is the usual class of Marcinkiewicz multipliers. For key properties of the notion of q-variation and of the Marcinkiewicz q-classes, we refer the reader to [7], [9], [12], and [19]. In particular, when $1 , both the unweighted and the <math>A_p$ -weighted ℓ^p -spaces of bilateral complex-valued sequences admit the classes $\mathfrak{M}_q(\mathbb{T})$ as Fourier multipliers for corresponding appropriate ranges of q (Corollary 4.12 of [7], Theorem 9 of [12]). (In the framework of the unweighted as well as of the A_p -weighted Lebesgue spaces of complex-valued functions on \mathbb{T} and \mathbb{R} , corresponding multiplier results hold for the relevant notions of the Marcinkiewicz q-classes—see [7], [12], [13], [19].) We remark in passing that, in contrast to $\mathfrak{M}_1(\mathbb{T})$, each function class $\mathfrak{M}_q(\mathbb{T})$, $1 < q < \infty$, contains continuous, nowhere differentiable functions of Weierstrass type (see 1.33 on p. 303 of [23], Theorem (17.7) of [24]).

The natural venue for seeking to extend classical multiplier theorems to Lebesgue spaces of vector-valued functions is the class of UMD spaces, which are characterized as the Banach spaces X such that the Hilbert transform for \mathbb{R} , \mathbb{T} , or \mathbb{Z} acts as a bounded convolution operator on the corresponding spaces L_X^p when 1 . (For the salient features of UMD spaces, see, e.g., [14], [16], [18], [29].) In particular, for an arbitrary UMD space <math>X, the classical forms of the Marcinkiewicz Multiplier Theorem (wherein q=1) have been extended to L_X^p , 1 (see Theorem 4 of [17] and Theorem (4.5) of [6]). Our first goal is to expand this vector-valued multiplier result beyond <math>q=1 by identifying a broad class $\mathcal I$ of UMD spaces so that whenever $X \in \mathcal I$, the sequence space $\ell^2(\mathbb Z,X)$ admits the classes $\mathfrak M_q(\mathbb T)$ as Fourier multipliers, for an appropriate range of values q>1 (depending on X). More specifically, this class $\mathcal I$ is described as follows. If a Hilbert space $\mathfrak X_0$ and a UMD space $\mathfrak X_1$ constitute a compatible couple for Calderón's complex method of interpolation, we shall denote the corresponding scale of interpolation spaces by $[\mathfrak X_0,\mathfrak X_1]_t$, $0 \leq t \leq 1$. By definition, the class $\mathcal I$ will consist of all Banach spaces X such that

(1.2) X is isomorphic (in the Banach space sense) to a subspace of $[\mathfrak{X}_0, \mathfrak{X}_1]_t$, for some Hilbert space \mathfrak{X}_0 , some UMD space \mathfrak{X}_1 , and some t in the open interval (0,1).

Clearly $X \in \mathcal{I}$ implies that X is UMD, and that all closed subspaces of X belong to \mathcal{I} .

- EXAMPLES 1.2. (i) From the standard interpolation properties of L^p spaces (Theorem 5.1.1 of [1]), it is obvious that for an arbitrary measure μ , and $1 , any closed subspace of <math>L^p(\mu)$ belongs to \mathcal{I} .
- (ii) The Corollary of Theorem 4 in [29] establishes that every UMD lattice of measurable functions on a σ -finite measure space is an intermediate space $[\mathfrak{X}_0,\mathfrak{X}_1]_t$, as described in (1.2), and hence belongs to \mathcal{I} . Since a Banach space with an unconditional basis can be equivalently renormed so as to become a Banach lattice by identifying each vector with the coefficient sequence of its expansion, any UMD space with an unconditional basis belongs to \mathcal{I} .
- (iii) In a direction away from lattices, consider the von Neumann–Schatten classes C_p for the Hilbert space $\ell^2(\mathbb{N})$. The class C_2 , consisting of the Hilbert–Schmidt operators, is itself a Hilbert space, and, as is well known, C_p is UMD for $1 (for the UMD property of <math>C_p$ via the Cotlar "bootstrap" method, see, e.g., III.6 of [21], IV.4 of [22]). It is also well known (see, e.g., Proposition 8 on p. 44 of [28]) that any of the spaces C_p , $1 , is a strictly intermediate interpolation space between <math>C_2$ and some C_r , where $1 < r < \infty$. Consequently, for $1 , <math>C_p \in \mathcal{I}$. (However, in contrast to example (ii), for $1 , <math>p \ne 2$, $p \ne 2$,

(iv) Problem 4 in §III.d of [29] poses the question of whether every UMD space is an intermediate space $[\mathfrak{X}_0, \mathfrak{X}_1]_t$ as described in (1.2). An affirmative answer would, of course, imply that the class UMD coincides with \mathcal{I} . However, it appears that this question remains open.

After having established (in Theorem 2.7) the $\mathfrak{M}_q(\mathbb{T})$ -multiplier result for $\ell^2(\mathbb{Z},X)$ ($X\in\mathcal{I}$, and q>1 in a suitable range depending only on X), we apply it, via vector-valued transference ([15]), to an arbitrary invertible power-bounded operator U on X. This procedure yields, for the same values of q, an $\mathfrak{M}_q(\mathbb{T})$ -functional calculus for U (Theorem 3.8). The outcome extends to \mathcal{I} the $\mathfrak{M}_q(\mathbb{T})$ -functional calculus result in Theorem 4.10 of [7] for $L^p(\mu)$ -subspaces (μ an arbitrary measure, 1), and also expands in the direction <math>q > 1 the $\mathfrak{M}_1(\mathbb{T})$ -functional calculus result for arbitrary UMD spaces in Theorem (1.1)-(ii) of [6].

Throughout all that follows, the symbol K with a (possibly empty) set of subscripts will stand for a constant which depends only on those subscripts, and which may change in value from one occurrence to another. For a given Banach space Y, we shall denote by $\mathfrak{B}(Y)$ the Banach algebra of all bounded linear mappings of Y into Y. The identity operator of Y will be symbolized by I. The Fourier transform (respectively, inverse Fourier transform) of a function f will be written as \hat{f} (respectively, f^{\vee}).

2. The multiplier theorem for $\mathfrak{M}_q(\mathbb{T})$ when $X \in \mathcal{I}$. In treating Fourier multipliers for Lebesgue spaces of vector-valued functions, we shall follow the presentation of this topic in §3 of [6]. If G is a locally compact abelian group with dual group Γ , Y is a Banach space, and $1 \leq p < \infty$, then the algebra of Fourier multipliers for $L^p(G,Y)$ (denoted by $M_{p,Y}(\Gamma)$) consists of all bounded, measurable, complex-valued functions ϕ on Γ such that the mapping T_{ϕ} , initially defined on $\{L^1(G) \cap L^{\infty}(G)\} \otimes Y$ by putting

$$T_{\phi}\left(\sum_{j=1}^{N} f_j y_j\right) = \sum_{j=1}^{N} (\phi \, \widehat{f}_j)^{\vee} y_j,$$

extends to an element of $\mathfrak{B}(L^p(G,Y))$ (also denoted by T_{ϕ} , and called the multiplier transform on $L^p(G,Y)$ corresponding to ϕ). In this case, we define the multiplier norm $\|\phi\|_{M_{p,Y}(\Gamma)}$ of ϕ to be $\|T_{\phi}\|_{\mathfrak{B}(L^p(G,Y))}$. Regularization of Fourier multipliers for $L^p(G,Y)$ is furnished by Proposition A in §3 of [6]: if $k \in L^1(\Gamma)$ and $\phi \in M_{p,Y}(\Gamma)$, then the convolution $k * \phi$ belongs to $M_{p,Y}(\Gamma)$, and

Notice that if Z is a closed subspace of Y, then $M_{p,Y}(\Gamma) \subseteq M_{p,Z}(\Gamma)$, and

(2.2)
$$\|\phi\|_{M_{p,Z}(\Gamma)} \le \|\phi\|_{M_{p,Y}(\Gamma)} \quad \text{for all } \phi \in M_{p,Y}(\Gamma).$$

It will be convenient to record here, for later use, the following lemma.

LEMMA 2.1. Suppose G is a locally compact abelian group with dual group Γ , Y is a Banach space, $1 \leq p < \infty$, $\{\phi_n\}_{n=1}^{\infty} \subseteq M_{p,Y}(\Gamma)$, and

$$\sup_{n\in\mathbb{N}} \|\phi_n\|_{M_{p,Y}(\Gamma)} < \infty.$$

If ϕ is a bounded measurable function on Γ such that $\phi_n \to \phi$ a.e. on Γ , then $\phi \in M_{p,Y}(\Gamma)$, and

$$\|\phi\|_{M_{p,Y}(\Gamma)} \le \sup_{n \in \mathbb{N}} \|\phi_n\|_{M_{p,Y}(\Gamma)}.$$

Proof. Apart from the trivial case where $Y = \{0\}$, we have, for each $k \in \mathbb{N}$,

(2.3)
$$|\phi_k| \le \sup_{n \in \mathbb{N}} \|\phi_n\|_{M_{p,Y}(\Gamma)} \quad \text{locally a.e. on } \Gamma.$$

It follows from our hypothesis of a.e. convergence and (2.3) that if

$$f \in \{L^1(G) \cap L^\infty(G)\} \otimes Y$$
,

then $T_{\phi_n}f \to T_{\phi}f$ in $L^2(G,Y)$. Consequently, we can choose a subsequence $\{T_{\phi_{n_k}}f\}_{k=1}^{\infty}$ convergent to $T_{\phi}f$ a.e. An application of Fatou's Lemma completes the proof.

For a given Banach space Y, the multipliers for the sequence spaces $\ell^p(\mathbb{Z},Y)$, $1 \leq p < \infty$, are easily seen to have the following simple characterization in terms of convolution operators.

PROPOSITION 2.2. Suppose Y is a Banach space, and $1 \leq p < \infty$. Then a bounded measurable function $\psi : \mathbb{T} \to C$ belongs to $M_{p,Y}(\mathbb{T})$ if and only if its inverse Fourier transform ψ^{\vee} satisfies the following two conditions:

(i) For each sequence $x = \{x_j\}_{j=-\infty}^{\infty} \in \ell^p(\mathbb{Z},Y)$, and each $k \in \mathbb{Z}$, the series

$$(\psi^{\vee} * x)(k) \equiv \sum_{j=-\infty}^{\infty} \psi^{\vee}(k-j) x_j$$

 $converges \ unconditionally \ in \ Y.$

(ii) The mapping $S_{\psi}: x \in \ell^p(\mathbb{Z}, Y) \mapsto \psi^{\vee} * x \text{ belongs to } \mathfrak{B}(\ell^p(\mathbb{Z}, Y)).$

If this is the case, then S_{ψ} is the multiplier transform on $\ell^p(\mathbb{Z},Y)$ corresponding to ψ .

In the case of a UMD space Y, the vector-valued Marcinkiewicz Theorem for $\ell^p(\mathbb{Z}, Y)$ takes the following form (see Theorem (4.5) of [6]).

THEOREM 2.3. Suppose Y is a UMD space, and $1 . If <math>\phi \in \mathfrak{M}_1(\mathbb{T})$, then $\phi \in M_{p,Y}(\mathbb{T})$, and

(2.4)
$$\|\phi\|_{M_{p,Y}(\mathbb{T})} \le K_{p,Y} \|\phi\|_{\mathfrak{M}_1(\mathbb{T})}.$$

The following interpolation result sets the stage for showing that if $X \in \mathcal{I}$, then for suitable values of q > 1 we have $\mathfrak{M}_q(\mathbb{T}) \subseteq M_{2,X}(\mathbb{T})$.

THEOREM 2.4. Let $F = [\mathfrak{X}_0, \mathfrak{X}_1]_t$, where \mathfrak{X}_0 is a Hilbert space, \mathfrak{X}_1 is a UMD space, and 0 < t < 1. Then for each $\phi \in \mathfrak{M}_1(\mathbb{T})$,

(2.5)
$$\|\phi\|_{M_{2,F}(\mathbb{T})} \le K_{\mathfrak{X}_1}^t (\sup_{z \in \mathbb{T}} |\phi(z)|)^{1-t} \|\phi\|_{\mathfrak{M}_1(\mathbb{T})}^t.$$

Proof. By Theorem 5.1.2 of [1], we have, with equal norms,

(2.6)
$$[\ell^2(\mathbb{Z}, \mathfrak{X}_0), \ell^2(\mathbb{Z}, \mathfrak{X}_1)]_t = \ell^2(\mathbb{Z}, F).$$

Since \mathfrak{X}_0 is a Hilbert space and ϕ is bounded, it follows from Proposition 2.2 and the Parseval formula for $L^2(\mathbb{T},\mathfrak{X}_0)$ that

(2.7)
$$\|\phi\|_{M_{2,\mathfrak{X}_{0}}(\mathbb{T})} \leq \sup_{z \in \mathbb{T}} |\phi(z)|.$$

By Theorem 2.3, $\phi \in M_{2,\mathfrak{X}_1}(\mathbb{T})$, and

(2.8)
$$\|\phi\|_{M_{2,\mathfrak{X}_{1}}(\mathbb{T})} \leq K_{\mathfrak{X}_{1}} \|\phi\|_{\mathfrak{M}_{1}(\mathbb{T})}.$$

Now a complex interpolation based on (2.6)–(2.8) concludes the proof.

In order to implement Theorem 2.4, we shall require the following version of Lemma 3 in [25]; a proof for the generality stated here can be obtained by suitable modifications to the argument on pp. 209–210 of [26].

LEMMA 2.5. Let [a,b] be a compact interval in \mathbb{R} , and suppose that $1 \leq q < \infty$. Then for each complex-valued function f on [a,b] such that $\operatorname{var}_q(f,[a,b]) \leq 1$, and for each real number ε such that $0 < \varepsilon < 1$, there is a function $f_{\varepsilon} \in \operatorname{BV}([a,b])$ such that:

(2.9)
$$\sup_{x \in [a,b]} |f(x) - f_{\varepsilon}(x)| \le \varepsilon,$$

(2.10)
$$\operatorname{var}(f_{\varepsilon}, [a, b]) \le 4\varepsilon^{1-q}.$$

The function f_{ε} can be chosen so that

(2.11)
$$f_{\varepsilon}(a) = f(a), \quad f_{\varepsilon}(b) = f(b).$$

THEOREM 2.6. Let $F = [\mathfrak{X}_0, \mathfrak{X}_1]_t$, where \mathfrak{X}_0 is a Hilbert space, \mathfrak{X}_1 is a UMD space, and 0 < t < 1. Suppose that $1 \le q < 1/t$. Then

$$\mathfrak{M}_q(\mathbb{T}) \subseteq M_{2,F}(\mathbb{T}).$$

For each $\phi \in \mathfrak{M}_q(\mathbb{T})$,

$$\|\phi\|_{M_{2,F}(\mathbb{T})} \le K_{\mathfrak{X}_1,q,t} \|\phi\|_{\mathfrak{M}_q(\mathbb{T})}.$$

Proof. (Compare the method of proof used for the Theorem in [25].) Let $\{s_k\}_{k=-\infty}^{\infty}$ be the sequence of dyadic points of $(0, 2\pi)$ specified in (1.1), and suppose that $1 \leq q < 1/t$, $\phi \in \mathfrak{M}_q(\mathbb{T})$, and $\|\phi\|_{\mathfrak{M}_q(\mathbb{T})} \leq 1$. Let $n \in \mathbb{N}$, and for each $k \in \mathbb{Z}$, apply Lemma 2.5 (including (2.11)) to the function $\phi(e^{i(\cdot)})$ restricted to the interval $[s_k, s_{k+1}]$, taking $\varepsilon = 2^{-n}$. This procedure allows us to construct a function $\phi_n : \mathbb{T} \to \mathbb{C}$ such that $\phi_n(1) = \phi(1)$, and

(2.12)
$$\sup_{z \in \mathbb{T}} |\phi(z) - \phi_n(z)| \le 2^{-n},$$

(2.13)
$$\sup_{k \in \mathbb{Z}} \operatorname{var}_{1}(\phi_{n}, \Delta_{k}) \leq 4(2^{n(q-1)}).$$

Now we define the functions ψ_n , $n \in \mathbb{N}$, on \mathbb{T} by putting:

$$\psi_1 = \phi_1, \quad \psi_n = \phi_n - \phi_{n-1} \quad \text{ for } n \ge 2.$$

It is readily seen from (2.12) and (2.13) that for each $n \in \mathbb{N}$,

(2.14)
$$\sup_{z \in \mathbb{T}} |\psi_n(z)| \le 3 \cdot 2^{-n},$$

(2.15)
$$\|\psi_n\|_{\mathfrak{M}_1(\mathbb{T})} \le K_q 2^{n(q-1)}.$$

Moreover, it follows from (2.12) that

(2.16)
$$\sum_{n=1}^{\infty} \psi_n \text{ converges to } \phi \text{ uniformly on } \mathbb{T}.$$

Applying Theorem 2.4 to (2.14) and (2.15), we see that for each $n \in \mathbb{N}$,

(2.17)
$$\|\psi_n\|_{M_{2,F}(\mathbb{T})} \le K_{\mathfrak{X}_1,q,t} \, 2^{-n(1-qt)}.$$

Since qt < 1, (2.17) implies that

(2.18)
$$\sup_{N \in \mathbb{N}} \left\| \sum_{n=1}^{N} \psi_n \right\|_{M_{2,F}(\mathbb{T})} \le K_{\mathfrak{X}_1,q,t}.$$

In view of (2.16) and (2.18), the desired conclusions (for $\|\phi\|_{\mathfrak{M}_q(\mathbb{T})} \leq 1$) now follow from Lemma 2.1. \blacksquare

Our main multiplier theorem is now readily deduced.

THEOREM 2.7. Suppose that X belongs to the class of Banach spaces \mathcal{I} defined by (1.2). Then there is a real number q_0 , depending only on X, such that $1 < q_0 < \infty$, and for $1 \le q < q_0$,

$$\mathfrak{M}_q(\mathbb{T}) \subseteq M_{2,X}(\mathbb{T}).$$

Moreover, if $1 \leq q < q_0$, and $\phi \in \mathfrak{M}_q(\mathbb{T})$, then

$$\|\phi\|_{M_{2,X}(\mathbb{T})} \le K_{X,q} \|\phi\|_{\mathfrak{M}_q(\mathbb{T})}.$$

Proof. Let $t \in (0,1)$ be as in (1.2), set $q_0 = 1/t$, and use Theorem 2.6 together with (2.2). \blacksquare

3. The $\mathfrak{M}_q(\mathbb{T})$ -functional calculus. Let $X \in \mathcal{I}$, and suppose that $U \in \mathfrak{B}(X)$ is an invertible operator which is power-bounded, i.e.,

$$(3.1) c \equiv \sup_{k \in \mathbb{Z}} \|U^k\| < \infty.$$

We shall show that for a suitable range of q > 1, U has a norm-continuous $\mathfrak{M}_q(\mathbb{T})$ -functional calculus. In order to accomplish this it will be necessary to review beforehand relevant background items concerned with spectral decomposability.

DEFINITION 3.1. A spectral family in a Banach space Y is an idempotent-valued function $E(\cdot): \mathbb{R} \to \mathfrak{B}(Y)$ with the following properties:

- (i) $E(\lambda)E(\tau) = E(\tau)E(\lambda) = E(\lambda)$ if $\lambda \le \tau$;
- (ii) $\sup\{||E(\lambda)|| : \lambda \in \mathbb{R}\} < \infty;$
- (iii) with respect to the strong operator topology of $\mathfrak{B}(Y)$, $E(\cdot)$ is right continuous and has a left-hand limit $E(\lambda^-)$ at each point $\lambda \in \mathbb{R}$;
- (iv) $E(\lambda) \to I$ as $\lambda \to \infty$ and $E(\lambda) \to 0$ as $\lambda \to -\infty$, each limit being with respect to the strong operator topology of $\mathfrak{B}(Y)$.

If, in addition, we have $a, b \in \mathbb{R}$ with $a \leq b$, $E(\lambda) = 0$ for $\lambda < a$, and $E(\lambda) = I$ for $\lambda \geq b$, then $E(\cdot)$ is said to be *concentrated on* [a, b].

Given a spectral family $E(\cdot)$ in Y concentrated on a compact interval J=[a,b], an associated theory of spectral integration can be developed as follows. For each bounded function $\varphi:J\to\mathbb{C}$ and each partition $\mathcal{P}=(\lambda_0,\lambda_1,\ldots,\lambda_n)$ of J, where $a=\lambda_0<\lambda_1<\cdots<\lambda_n=b$, set

(3.2)
$$S(\mathcal{P}; \varphi, E) = \sum_{k=1}^{n} \varphi(\lambda_k) \{ E(\lambda_k) - E(\lambda_{k-1}) \}.$$

If the net $\{S(\mathcal{P}; \varphi, E)\}$ converges in the strong operator topology of $\mathfrak{B}(Y)$ as \mathcal{P} increases with respect to refinement through the set of partitions of J, then the strong limit is called the *spectral integral of* φ with respect to $E(\cdot)$ (over J) and is denoted by $\int_{J} \varphi(\lambda) dE(\lambda)$. In this case, we define $\int_{J}^{\oplus} \varphi(\lambda) dE(\lambda)$ by writing

$$\int_{J}^{\oplus} \varphi(\lambda) \, dE(\lambda) \equiv \varphi(a) E(a) + \int_{J} \varphi(\lambda) \, dE(\lambda).$$

The Banach algebra $\mathrm{BV}(J)$ consists of the functions $\varphi:J\to\mathbb{C}$ having bounded variation on J, with norm

$$\|\varphi\|_{\mathrm{BV}(J)} = \sup_{x \in \mathcal{J}} |\varphi(x)| + \mathrm{var}(\varphi, J).$$

It can be shown that the spectral integral $\int_{J} \varphi(\lambda) dE(\lambda)$ exists for each

 $\varphi \in \mathrm{BV}(J)$, and that the mapping

$$\varphi \in \mathrm{BV}(J) \mapsto \int_{J}^{\oplus} \varphi(\lambda) \, dE(\lambda)$$

is an identity-preserving algebra homomorphism of $\mathrm{BV}(J)$ into $\mathfrak{B}(Y)$ satisfying

(3.3)
$$\left\| \int_{J}^{\oplus} \varphi(\lambda) \, dE(\lambda) \right\| \le \|\varphi\|_{\mathrm{BV}(J)} \sup\{ \|E(\lambda)\| : \lambda \in \mathbb{R} \}.$$

(See [20, Chapter 17], or the simplified account in [5, §2].) We shall also consider the Banach algebra BV(\mathbb{T}), which consists of all $\psi : \mathbb{T} \to \mathbb{C}$ such that the function $\widetilde{\psi}(t) \equiv \psi(e^{it})$ belongs to BV([0, 2π]), and which is furnished with the norm $\|\psi\|_{\text{BV}(\mathbb{T})} = \|\widetilde{\psi}\|_{\text{BV}([0, 2\pi])}$.

DEFINITION 3.2. Let Y be a Banach space. An operator $V \in \mathfrak{B}(Y)$ is said to be trigonometrically well-bounded if there is a spectral family $E(\cdot)$ in Y concentrated on $[0,2\pi]$ such that $V=\int_{[0,2\pi]}^{\oplus}e^{i\lambda}\,dE(\lambda)$. In this case, it is possible to arrange that $E((2\pi)^-)=I$, and with this additional property the spectral family $E(\cdot)$ is uniquely determined by V, and is called the spectral decomposition of V.

The class of trigonometrically well-bounded operators was introduced in [3], and its theory further developed in [4]. Trigonometrically well-bounded operators occur naturally in fundamental structural roles, since every invertible power-bounded operator on a UMD space is trigonometrically well-bounded (Theorem (4.5) of [14]). (In particular, the operator $U \in \mathfrak{B}(X)$ in (3.1) is trigonometrically well-bounded, since X is UMD.) For a variety of natural examples of trigonometrically well-bounded operators which are not power-bounded, see, e.g., §4 of [8]. For some further applications of trigonometrically well-bounded operators to ergodic theory, see [2] and [10]–[12].

The next proposition (Theorem (3.10)-(i) of [5]) provides a vector-valued variant of Fejér's theorem valid for trigonometrically well-bounded operators.

DEFINITION 3.3. Given a function $\psi \in BV(\mathbb{T})$, we define $\psi^{\#} \in BV([0, 2\pi])$ by writing

$$\psi^{\#}(t) = \frac{1}{2} \left\{ \lim_{s \to t^{+}} \psi(e^{is}) + \lim_{s \to t^{-}} \psi(e^{is}) \right\} \quad \text{ for all } t \in [0, 2\pi].$$

PROPOSITION 3.4. Suppose that Y is a Banach space, and V is a trigonometrically well-bounded operator on Y with spectral decomposition $E(\cdot)$. Then for each $\psi \in BV(\mathbb{T})$, and each $y \in Y$, we have, in the notation of Definition 3.3,

$$\left\| \sum_{j=-n}^{n} \widehat{\kappa}_{n}(j) \widehat{\psi}(j) V^{j} y - \int_{[0,2\pi]}^{\oplus} \psi^{\#}(t) dE(t) y \right\| \to 0 \quad \text{as } n \to \infty,$$

where $\{\kappa_n\}_{n=0}^{\infty}$ is the Fejér kernel for \mathbb{T} :

$$\kappa_n(z) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) z^j \quad \text{for all } n \ge 0 \text{ and all } z \in \mathbb{T}.$$

The discussion leading up to (3.3) shows that a trigonometrically well-bounded operator V has a norm-continuous $\mathrm{BV}(\mathbb{T})$ -functional calculus Ψ_V : $\psi \in \mathrm{BV}(\mathbb{T}) \mapsto \int_{[0,2\pi]}^{\oplus} \psi(e^{it}) \, dE(t)$, where $E(\cdot)$ is the spectral decomposition of V. The following theorem (contained in Theorem 14 of [12]) provides a simplifying condition for the existence of values q > 1 such that Ψ_V can be extended to a norm-continuous $\mathfrak{M}_q(\mathbb{T})$ -functional calculus for V.

THEOREM 3.5. Suppose that Y is a Banach space, $V \in \mathfrak{B}(Y)$ is trigonometrically well-bounded, $E(\cdot)$ is the spectral decomposition of V, and $1 < \beta < \infty$. If there is a constant η such that (with notation as in Definition 3.3)

$$\left\| \int_{[0,2\pi]}^{\oplus} \psi^{\#}(t) dE(t) \right\| \leq \eta \|\psi\|_{\mathfrak{M}_{\beta}(\mathbb{T})} \quad \text{for all } \psi \in \mathrm{BV}(\mathbb{T}),$$

then whenever $1 \leq q < \beta$, the integral $\int_{[0,2\pi]} \phi(e^{it}) dE(t)$ exists for each $\phi \in \mathfrak{M}_q(\mathbb{T})$, and the mapping $\phi \in \mathfrak{M}_q(\mathbb{T}) \mapsto \int_{[0,2\pi]}^{\oplus} \phi(e^{it}) dE(t)$ is a homomorphism of the Banach algebra $\mathfrak{M}_q(\mathbb{T})$ into $\mathfrak{B}(Y)$ such that

$$\left\| \int_{[0,2\pi]}^{\oplus} \phi(e^{it}) dE(t) \right\| \le K\eta \|\phi\|_{\mathfrak{M}_q(\mathbb{T})} \quad \text{ for all } \phi \in \mathfrak{M}_q(\mathbb{T}).$$

In order to relate the multiplier result in Theorem 2.7 to the trigonometrically well-bounded operator $U \in \mathfrak{B}(X)$ in (3.1), we shall also require the following vector-valued version of transference (Theorem (2.8) of [15]).

Theorem 3.6. Let $u \mapsto R_u$ be a strongly continuous representation of a locally compact abelian group G in a Banach space Y such that

$$\tau \equiv \sup\{\|R_u\| : u \in G\} < \infty.$$

Let $k \in L^1(G)$, and let H_k denote the bounded linear mapping of Y into Y defined (via Bochner integration with respect to Haar measure du on G) by

$$H_k y = \int_G k(u) R_{-u} y \, du$$
 for all $y \in Y$.

Then for $1 \leq p < \infty$,

$$||H_k|| \le \tau^2 N_{p,Y}(k),$$

where $N_{p,Y}(k)$ denotes the norm of convolution by k on $L^p(G,Y)$.

REMARK 3.7. If G is a locally compact abelian group with dual group Γ , Y is a Banach space, $1 \leq p < \infty$, and $k \in L^1(G)$, then it is clear that $\hat{k} \in M_{p,Y}(\Gamma)$, the multiplier transform of \hat{k} coinciding on $L^p(G,Y)$ with convolution by k. Hence we can replace $N_{p,Y}(k)$ in (3.4) by $\|\hat{k}\|_{M_{p,Y}(\Gamma)}$.

The stage is now set for establishing the following theorem, which constitutes the $\mathfrak{M}_q(\mathbb{T})$ -functional calculus result described at the outset of this section.

THEOREM 3.8. Suppose that X belongs to the class \mathcal{I} of Banach spaces defined by (1.2), and $U \in \mathfrak{B}(X)$ is an invertible operator such that (3.1) holds. (It follows, in particular, that U is trigonometrically well-bounded.) Let $\mathcal{E}(\cdot)$ denote the spectral decomposition of U. Then there is a real number q_0 , depending only on X, satisfying $1 < q_0 < \infty$, and such that whenever $1 \le q < q_0$, the following assertions are valid:

- (i) For each $\phi \in \mathfrak{M}_q(\mathbb{T})$, the spectral integral $\int_{[0,2\pi]} \phi(e^{it}) d\mathcal{E}(t)$ exists.
- (ii) The mapping $\phi \in \mathfrak{M}_q(\mathbb{T}) \mapsto \int_{[0,2\pi]}^{\oplus} \phi(e^{it}) d\mathcal{E}(t)$ is a homomorphism of the Banach algebra $\mathfrak{M}_q(\mathbb{T})$ into $\mathfrak{B}(X)$ such that

$$\left\| \int_{[0,2\pi]}^{\oplus} \phi(e^{it}) d\mathcal{E}(t) \right\| \le c^2 K_{X,q} \|\phi\|_{\mathfrak{M}_q(\mathbb{T})} \quad \text{for all } \phi \in \mathfrak{M}_q(\mathbb{T}).$$

Proof. Fix the number q_0 furnished by Theorem 2.7. Let $Q: \mathbb{T} \to \mathbb{C}$ be a trigonometric polynomial:

$$Q(z) \equiv \sum_{j=-\infty}^{\infty} \widehat{Q}(j)z^{j},$$

where $\widehat{Q}(j) = 0$ for all but finitely many j. In view of (3.1), we can now specialize Theorem 3.6 to the representation R of \mathbb{Z} in X given by

$$R_j = U^j$$
 for all $j \in \mathbb{Z}$,

taking $k \in \ell^1(\mathbb{Z})$ to be the sequence $\{Q^{\vee}(j)\}_{j=-\infty}^{\infty}$. Under these circumstances, the operator H_k appearing in (3.4) is Q(U), and so with the aid of Remark 3.7, we have

If $\psi \in BV(\mathbb{T})$, and $\{\kappa_n\}_{n=0}^{\infty}$ is the Fejér kernel for \mathbb{T} , we infer from (3.5) that for each $n \geq 0$, the trigonometric polynomial $\kappa_n * \psi$ satisfies

$$(3.6) \qquad \left\| \sum_{j=-n}^{n} \widehat{\kappa}_{n}(j)\widehat{\psi}(j)U^{j} \right\| = \left\| (\kappa_{n} * \psi)(U) \right\| \leq c^{2} \left\| \kappa_{n} * \psi \right\|_{M_{2,X}(\mathbb{T})}.$$

We now apply (2.1) and Theorem 2.7 to the right-hand member of (3.6) to

get, for $1 \leq q < q_0$,

$$\left\| \sum_{j=-n}^{n} \widehat{\kappa}_{n}(j) \widehat{\psi}(j) U^{j} \right\| \leq c^{2} K_{X,q} \|\psi\|_{\mathfrak{M}_{q}(\mathbb{T})}.$$

Using this in Proposition 3.4, we see that for $1 \le q < q_0$ and $\psi \in BV(\mathbb{T})$,

(3.7)
$$\left\| \int_{[0,2\pi]}^{\oplus} \psi^{\#}(t) \, d\mathcal{E}(t) \right\| \leq c^{2} K_{X,q} \|\psi\|_{\mathfrak{M}_{q}(\mathbb{T})}.$$

The proof is completed by observing that if $1 \le q < q_0$, we can set $\beta = (q+q_0)/2$, apply (3.7) to β in place of q, and then appeal to Theorem 3.5.

REMARK 3.9. If $X \in \mathcal{I}$, and $U_0 \in \mathfrak{B}(X)$ is a trigonometrically well-bounded operator which does not satisfy the power-boundedness assumption described by (3.1), then the conclusions of Theorem 3.8 can fail to hold. Specifically, (5.36) in [6] furnishes the spectral decomposition $E_0(\cdot)$ of a trigonometrically well-bounded operator U_0 on Hilbert space such that for some $\phi \in \mathfrak{M}_1(\mathbb{T})$, the spectral integral $\int_{[0,2\pi]} \phi(e^{it}) dE_0(t)$ does not exist.

References

- J. Bergh and J. Löfström, Interpolation Spaces—An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
- [2] E. Berkson, J. Bourgain, and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on L^p-subspaces, Integral Equations Operator Theory 14 (1991), 678–715.
- [3] E. Berkson and T. A. Gillespie, AC functions on the circle and spectral families,
 J. Operator Theory 13 (1985), 33-47.
- [4] —, —, Fourier series criteria for operator decomposability, Integral Equations Operator Theory 9 (1986),767–789.
- [5] —, —, Stečkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140–170.
- [6] —, —, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13–49.
- [7] —, —, The q-variation of functions and spectral integration of Fourier multipliers, Duke Math. J. 88 (1997), 103–132.
- [8] —, —, Mean-boundedness and Littlewood-Paley for separation-preserving operators, Trans. Amer. Math. Soc. 349 (1997), 1169–1189.
- [9] —, —, Multipliers for weighted L^p-spaces, transference, and the q-variation of functions, Bull. Sci. Math. 122 (1998), 427–454.
- [10] —, —, Spectral integration from dominated ergodic estimates, Illinois J. Math. 43 (1999), 500–519.
- [11] —, —, A Tauberian theorem for ergodic averages, spectral decomposability, and the dominated ergodic estimate for positive invertible operators, Positivity 7 (2003), 161–175.
- [12] —, —, The q-variation of functions and spectral integration from dominated ergodic estimates, J. Fourier Anal. Appl. 10 (2004), 149–177.

- [13] E. Berkson and T. A. Gillespie, On restrictions of multipliers in weighted settings, Indiana Univ. Math. J. 52 (2003), 927–961.
- [14] E. Berkson, T. A. Gillespie, and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489–517.
- [15] —, —, —, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1–14.
- [16] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163–168.
- [17] —, Vector-valued singular integrals and the H¹-BMO duality, in: Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr. and Textbooks Pure Appl. Math. 98, Dekker, New York, 1986, 1–19.
- [18] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, IL, 1981), Wadsworth, Belmont, CA, 1983, 270–286.
- [19] R. Coifman, J. L. Rubio de Francia, and S. Semmes, Multiplicateurs de Fourier de $L^p(\mathbb{R})$ et estimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 351–354.
- [20] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monogr. 12, Academic Press, New York, 1978.
- [21] I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI, 1970.
- [22] J. A. Gutiérrez, On the boundedness of the Banach space-valued Hilbert transform, thesis, Univ. of Texas (Austin), 1982.
- [23] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), 301–325.
- [24] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1969.
- [25] I. I. Hirschman, Jr., Multiplier transformations. III, Proc. Amer. Math. Soc. 13 (1962), 851–857.
- [26] A. A. Kruglov and M. Z. Solomjak, Interpolation of operators in the spaces V_p, Vestnik Leningrad Univ. 1971, no. 13, 54–60 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 4 (1977), 209–216.
- [27] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3–19.
- [28] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [29] J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, in: Probability and Banach Spaces (Zaragoza, 1985), Lecture Notes in Math. 1221, Springer, Berlin, 1986, 195–222.

Department of Mathematics University of Illinois 1409 W. Green St. Urbana, IL 61801, U.S.A. E-mail: berkson@math.uiuc.edu School of Mathematics
University of Edinburgh
James Clerk Maxwell Building
Edinburgh EH9 3JZ, Scotland, U.K.
E-mail: alastair@maths.ed.ac.uk