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Sequence entropy and rigid σ-algebras

by
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Song Shao (Hefei)

Abstract. We study relationships between sequence entropy and the Kronecker and
rigid algebras. Let (Y,Y, ν, T ) be a factor of a measure-theoretical dynamical system
(X,X , µ, T ) and S be a sequence of positive integers with positive upper density. We
prove there exists a subsequence A ⊆ S such that hAµ (T, ξ | Y) = Hµ(ξ | K(X |Y )) for all
finite partitions ξ, where K(X |Y ) is the Kronecker algebra over Y. A similar result holds
for rigid algebras over Y. As an application, we characterize compact, rigid and mixing
extensions via relative sequence entropy.

1. Introduction. Sequence entropy for a measure was introduced as an
isomorphism invariant by Kushnirenko [Ku], who used it to distinguish be-
tween transformations with the same entropy. It is also a spectral invariant.
Kushnirenko [Ku] proved that an invertible measure-preserving transforma-
tion has discrete spectrum if and only if the sequence entropy of the system
is zero for any sequence. Later, sequence entropy was mainly used to char-
acterize different kinds of mixing properties in [S, Hu1, Hu2, Z1, Z2, HSY].
Also, in [BD, KY] relations between large sets of integers and mixing prop-
erties were considered.

The purpose of this paper is to study the relationship between sequence
entropy and some important σ-algebras associated to a measure-theoretical
dynamical system, namely the Kronecker and rigid algebras, and their rel-
ative versions.

Let (X,X , µ, T ) be a measure-theoretical dynamical system. It is not
difficult to prove by using standard properties of entropy and the Pinsker
σ-algebra that given a finite measurable partition ξ,

lim
n→∞

hµ(Tn, ξ) = Hµ(ξ |Π(X)),

where Π(X) is the Pinsker σ-algebra of the system (see [P] for general
properties and [B-R] for an explicit proof). One can restate this result using
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the language of sequence entropy as follows:

sup
A=nZ+, n∈N

hAµ (T, ξ) = Hµ(ξ |Π(X)).

What happens if one takes the supremum over another increasing se-
quence A of positive integers? It was shown in [HMY] that

(1.1) max
A⊆Z+

hAµ (T, ξ) = Hµ(ξ | K(X)),

where K(X) is the Kronecker algebra of the system and ξ is any finite
measurable partition.

In this paper we address the previous question for conditinal sequence
entropy with respect to a factor. Let (Y,Y, ν, T ) be a factor of (X,X , µ, T ).

First we show in Section 3 (Theorem 3.4) that for any given increasing
sequence S of positive integers with positive upper density,

max
A⊆S

hAµ (T, ξ | Y) = Hµ(ξ | K(X |Y ))

for any finite measurable partition ξ, where K(X |Y ) is the Kronecker alge-
bra relative to Y. As a corollary (Corollary 3.5) we sligthly extend (1.1) by
proving that

max
A⊆S

hAµ (T, ξ) = Hµ(ξ | K(X)).

Then in Section 4 we consider rigid algebras associated to the system
relative to the factor. We prove (Theorem 4.11) that for any IP-set F ′ there
exists an IP-subset F of F ′ such that

(1.2) max{hAµ (T, ξ | Y) : A ⊆ F is F-monotone} = Hµ(ξ | KF (X |Y ))

for all finite measurable partitions ξ, where KF (X |Y ) is the rigid algebra
relative to Y along F (refer to Section 4 for related concepts). The analogue
of (1.1) for rigid algebras is given in Corollary 4.13.

Two applications of the above results are presented.
The first one is a characterization of compact and weakly mixing ex-

tensions and rigid and mildly mixing extensions via conditional sequence
entropy, providing new proofs and slightly more general statements for re-
sults in [Hu1, Hu2] and [Z1, Z2] respectively.

The other application is given in Section 5.We show that maxA{hAµ (T |Y)}
∈ {log k : k ∈ N} ∪ {∞}.

In Section 2 we give some basic concepts and results in ergodic theory
and entropy theory.

2. Preliminaries. In this article, the integers, non-negative integers,
natural numbers and complex numbers are denoted by Z, Z+, N and C
respectively.
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2.1. Basic concepts. Let (X,X , µ) be a standard Borel space with µ
a regular probability measure on X and let T : X → X be an invertible
measure-preserving transformation. The quadruple (X,X , µ, T ) is called a
measure-theoretical dynamical system, or just system, if Tµ = µ, that is,
µ(B) = µ(T−1B) for all B ∈ X . For simplicity, in what follows all transfor-
mations of the system are called T .

A system (X,X , µ, T ) is ergodic if any measurable set A ∈ X for which
µ(A4T−1A) = 0 has µ(A) = 0 or µ(A) = 1. A system (X,X , µ, T ) is weakly
mixing if (X ×X,X ⊗X , µ⊗ µ, T × T ) is ergodic; and it is strongly mixing
if limn→∞ µ(T−nA ∩B) = µ(A)µ(B) for any A,B ∈ X .

A system (Y,Y, ν, T ) is a factor of (X,X , µ, T ) if there exists a measur-
able map π : X → Y such that πµ = ν and π ◦ T = T ◦ π. Equivalently one
says that (X,X , µ, T ) is an extension of (Y,Y, ν, T ).

Let (Y,Y, ν, T ) be a factor of (X,X , µ, T ). One can identify L2(Y,Y, ν)
with the subspace L2(X,π−1(Y), µ) of L2(X,X , µ) via f 7→ f ◦ π. By us-
ing this identification one can define the projection of L2(X,X , µ) onto
L2(Y,Y, ν): f 7→ E(f | Y). The conditional expectation E(f | Y) is charac-
terized as the unique Y-measurable function in L2(Y,Y, ν) such that

(2.1)
�

Y

gE(f | Y) dν =
�

X

g ◦ πf dµ

for all g ∈ L2(Y,Y, ν).
The disintegration of µ over ν is given by a measurable map y 7→ µy from

Y to the space of probability measures on X such that

(2.2) E(f | Y)(y) =
�

X

f dµy

ν-almost everywhere.
The self-joining of (X,X , µ, T ) relatively independent over the factor

(Y,Y, ν, T ) is the system (X×X,X ⊗X , µ×Y µ, T ×T ), where the measure
µ×Y µ is defined by

(2.3) µ×Y µ(B) =
�

Y

µy × µy(B) dν(y), ∀B ∈ X ⊗ X .

This measure is characterized by

(2.4)
�

X×X
f1 ⊗ f2 dµ×Y µ =

�

Y

E(f1 | Y)E(f2 | Y) dν

for all f1, f2 ∈ L2(X,X , µ), where f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).
For details about the concepts in this subsection see [F1, G].

2.2. Kronecker systems and rigid systems. Let (X,X , µ, T ) be a system.
An eigenfunction of T is a non-zero complex-valued function f ∈ L2(X,X , µ)
such that Tf = λf for some λ ∈ C, where Tf = f ◦ T . The complex



210 A. Coronel et al.

number λ is called the eigenvalue of T associated to f . If f ∈ L2(X,X , µ)
is an eigenfunction of T , then cl{Tnf : n ∈ Z} is a compact subset of
L2(X,X , µ). In general, one says that f is compact if cl{Tnf : n ∈ Z} is
compact in L2(X,X , µ). Let Hc(T ) be the set of all compact functions in
L2(X,X , µ). It is well known that Hc(T ) is the closure of the set spanned
by all the eigenfunctions of T .

The following proposition is a classical result (see for example [Zi]).

Proposition 2.1. Let (X,X , µ, T ) be a system and H be an algebra of
bounded functions in L2(X,X , µ) which is invariant under complex conjuga-
tion. Then there exists a sub-σ-algebra A of X such that cl(H)=L2(X,A, µ).
Moreover , if H is T -invariant , then A is T -invariant.

One easily deduces from Proposition 2.1 that there exists a T -invariant
sub-σ-algebra K(X) of X such that Hc(T ) = L2(X,K(X), µ). K(X) is called
the Kronecker algebra of (X,X , µ, T ). The system (X,X , µ, T ) is said to be
compact or to have discrete spectrum if Hc(T ) = L2(X,X , µ) or equivalently
K(X) = X .

A function f ∈ L2(X,X , µ) is rigid if there exists an increasing sequence
{tn}n∈N ⊆ Z+ with limn→∞ T

tnf = f in L2(X,X , µ). For a fixed sequence
F = {tn}n∈N ⊆ Z+, HF (T ) denotes the set of all functions f ∈ L2(X,X , µ)
with limn→∞ T

tnf = f in L2(X,X , µ). It is easy to see that the set of all
bounded functions in HF (T ) forms a T -invariant subalgebra of L2(X,X , µ),
invariant under complex conjugation. Thus from Proposition 2.1 one de-
duces that there exists a T -invariant sub-σ-algebra KF (X) of X such that
HF (T ) = L2(X,KF (X), µ). A system (X,X , µ, T ) is called rigid if there is
F = {tn}n∈N ⊆ Z+ such that HF (T ) = L2(X,X , µ).

2.3. Mixing properties and filters. A system (X,X , µ, T ) is mildly mixing
if it does not have non-constant rigid functions. In the strongly mixing case
KF (X) is trivial for any sequence F , thus strong mixing implies mild mixing.
Also, since every eigenfunction is rigid, mild mixing implies weak mixing. It
can be proved that mild mixing lies strictly between weak mixing and strong
mixing [FW]. For more details on mixing properties see [F1, F2, W2].

An upward hereditary collection G of subsets of Z+ is said to be a family.
That is, subsets of Z+ containing elements of G are in G too. If a family G is
closed under finite intersections and satisfies ∅ 6∈ G, then it is called a filter.
The dual of a family G is G∗ = {F ⊆ Z+ : F ∩ F ′ 6= ∅ for all F ′ ∈ F}.

Now some important families are introduced. Let A be a subset of either
Z+ or Z. The upper Banach density of A is

d∗(A) = lim sup
|I|→∞

|A ∩ I|
|I|

,

where I ranges over all intervals of Z+ or Z and | · | denotes cardinality. The
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upper density of a subset A of Z+ is

d̄(A) = lim sup
N→∞

|A ∩ {0, . . . , N − 1}|
N

;

if A is subset of Z, then

d̄(A) = lim sup
N→∞

|A ∩ {−N, . . . , N}|
2N + 1

.

The lower Banach density d∗(A) and the lower density d(A) are defined
analogously, with lim inf. If d̄(A) = d(A), then one says that A has density
d(A). Let D = {A ⊆ Z+ : d(A) = 1} and BD = {A : d∗(A) = 1}. It is easy
to see that D and BD are filters with duals D∗ = {A ⊆ Z+ : d̄(A) > 0} and
BD∗ = {A : d∗(A) > 0} respectively.

Let {bi}i∈I be a finite or infinite sequence in N. Define

FS({bi}i∈I) =
{∑
i∈α

bi : α is a finite non-empty subset of I
}
.

A set F ⊂ Z+ is an IP-set if there exists a sequence {bi}i∈N of natural
numbers such that F = FS({bi}i∈N). Denote the set of all IP-sets by IP.

Let {xn}n∈Z+ be a sequence in a metric space (X, d), x ∈ X, and G be a
family. One says that xn G-converges to x, denoted by G- limxn = x, if for
any neighborhood U of x, {n ∈ Z+ : xn ∈ U} ∈ G. The following is a well
known result concerning mixing in ergodic theory (see [F1, F2]).

Theorem 2.2. Let (X,X , µ, T ) be a system. Then:

(1) T is weakly mixing if and only if D- limµ(T−nA ∩ B) = µ(A)µ(B)
for any A,B ∈ X ;

(2) T is mildly mixing if and only if IP∗- limµ(T−nA∩B) = µ(A)µ(B)
for any A,B ∈ X .

For more discussion about various kinds of mixing and families, refer to
[BD, KY].

2.4. Sequence entropy and conditional sequence entropy. Let (X,X , µ, T )
be a system and S = {ti}i∈N be an increasing sequence of non-negative
integers. Let ξ be a measurable partition and A a sub-σ-algebra of X . The
(Shannon) entropy of ξ and the (Shannon) entropy of ξ given A are given
respectively by

Hµ(ξ) = −
∑
A∈ξ

µ(A) logµ(A)

and
Hµ(ξ | A) =

∑
A∈ξ

�

X

−E(1A | A) log E(1A | A) dµ.

One also uses the notation µ(A | A) = E(1A | A).
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Let ξ, η be measurable partitions with Hµ(ξ | A), Hµ(η | A) < ∞ and
identify (when necessary) η with the σ-algebra it induces. It is known that
Hµ(ξ | A) increases with respect to ξ and decreases with respect to A, and

Hµ(ξ ∨ η | A) = Hµ(ξ | η ∨ A) +Hµ(η | A).

Definition 2.3. The conditional sequence entropy along S of ξ given A
in the system (X,X , µ, T ) is defined by

hSµ(T, ξ | A) = lim sup
n→∞

1
n
Hµ

( n∨
i=1

T−tiξ
∣∣∣A)

= lim sup
n→∞

1
n

n∑
j=2

Hµ

(
T−tjξ

∣∣∣ j−1∨
i=1

T−tiξ ∨ A
)
.

The conditional sequence entropy along S given A in the system (X,X , µ, T )
is

hSµ(T | A) = sup
ξ
{hSµ(T, ξ | A) : Hµ(ξ | A) <∞}.

When S = Z+ and A is trivial one recovers the entropy of T with respect
to µ.

Let (Y,Y, ν, T ) be a factor of (X,X , µ, T ) and {µy}y∈Y be the disinte-
gration of µ over ν. Then the conditional (Shannon) entropy of ξ given Y
can be represented as

(2.5) Hµ(ξ | Y) =
�

Y

Hy(ξ) dν,

where Hy(·) denotes the entropy with respect to µy and Y is viewed as a
sub-σ-algebra of X . The following two lemmas come from [Hu2].

Lemma 2.4. Let ξ and η be measurable partitions of X with Hµ(ξ | Y),
Hµ(η | Y) <∞. Then

|hSµ(T, ξ | Y)− hSµ(T, η | Y)| ≤
�

Y

(Hy(ξ | η) +Hy(η | ξ)) dν

for any increasing sequence S ⊆ Z+.

Lemma 2.5. There exists a countable set {ξn}n∈N of finite measurable
partitions of X such that

inf
n

{ �

Y

(Hy(ξ | ξn) +Hy(ξn | ξ)) dν
}

= 0

for all measurable partitions ξ with Hµ(ξ | Y) <∞.

Hence one has

hSµ(T | Y) = sup
ξ
{hSµ(T, ξ | Y) : ξ is finite}.
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Thus hSµ(T | Y) = 0 if and only if hSµ(T, ξ | Y) = 0 for all two-set measurable
partitions ξ, since every finite partition is a refinement of two-set partitions.

For more information about entropy theory refer to [G, P, W1].

3. Sequence entropy relative to the compact extension. Through-
out this section we fix a system (X,X , µ, T ) and a factor (Y,Y, ν, T ).

3.1. Almost periodic functions. The L2(X,X , µ) norm is denoted by
‖ · ‖ and the L2(X,X , µy) norm by ‖ · ‖y for ν-almost every y ∈ Y . The
corresponding inner products are denoted by 〈·, ·〉 and 〈·, ·〉y. Recall {µy}y∈Y
is the disintegration of µ over ν.

Definition 3.1. A function f ∈ L2(X,X , µ) is almost periodic over Y
if for every ε > 0 there exist g1, . . . , gl ∈ L2(X,X , µ) such that for all n ∈ Z,

min
1≤j≤l

‖Tnf − gj‖y < ε

for ν-almost every y ∈ Y . One writes f ∈ AP(Y).

Remark 3.2.

(1) The almost periodic functions over Y form a subspace of L2(X,X , µ).
Using Proposition 2.1 one can verify that there exists a sub-σ-algebra
K(X |Y ) of X such that AP(Y) = L2(X,K(X |Y ), µ).

(2) One calls K(X |Y ) the Kronecker algebra over Y. Any function f ∈
AP(Y) is called a compact function over Y.

The following theorem will be used later.

Theorem 3.3 ([Hu2]). Let f ∈L2(X,X , µ). Then f ∈L2(X,K(X |Y ), µ)⊥

if and only if

lim
n→∞

1
n

n−1∑
i=0

|E(gT if | Y)| = 0

in L1(Y,Y, ν) for all g ∈ L2(X,X , µ).

3.2. Conditional sequence entropy and K(X |Y ). In this section we will
prove the following result.

Theorem 3.4. Let (X,X , µ, T ) be a system and (Y,Y, ν, T ) be its factor.
Then for every increasing sequence S ∈ D∗,

(3.1) max
A⊆S

hAµ (T, ξ | Y) = Hµ(ξ | K(X |Y ))

for all measurable partitions ξ of X with Hµ(ξ | Y) <∞.

The following result is now immediate.
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Corollary 3.5 ([HMY]). Let (X,X , µ, T ) be a system. Then for every
increasing sequence S ∈ D∗,
(3.2) max

A⊆S
hAµ (T, ξ) = Hµ(ξ | K(X))

for all measurable partitions ξ of X with Hµ(ξ) <∞.

Observe that our result is more general than the one in [HMY], where it
is only proved that maxA⊆Z+ h

A
µ (T, ξ) = Hµ(ξ | K(X)).

Theorem 3.4 follows directly from the following series of lemmas.

Lemma 3.6. For any increasing sequence S ∈ D∗ there exists a subse-
quence A ⊆ S such that

(3.3) hAµ (T, ξ | Y) ≥ Hµ(ξ | K(X |Y ))

for any measurable partition ξ of X with Hµ(ξ | Y) <∞.

Proof. To simplify notation, K(X |Y ) is denoted by K. First, we prove
the following claim.

Claim. Given finite measurable partitions ξ and η of X and ε > 0, there
exist a sequence D ∈ D and M ∈ N such that for any m ≥M in D,

(3.4)
�

Y

Hy(T−mξ | η) dν ≥ Hµ(ξ | K)− ε.

Proof of the Claim. Let ξ = {A1, . . . , Ak} and η = {B1, . . . , Bl}. For any
A,B ∈ X , since 1A − E(1A | K) ∈ L2(X,K, µ)⊥, by Theorem 3.3 one has

lim
n→∞

1
n

n∑
i=0

∣∣∣ �
X

T i(1A − E(1A | K))1B dµy
∣∣∣ = 0

in L1(Y,Y, ν). Equivalently, there exists D′ = D′(A,B) ∈ D such that

lim
D′3n→∞

�

Y

∣∣∣ �
X

Tn(1A − E(1A | K))1B dµy
∣∣∣ dν = 0.

Since D is a filter, there exists D ∈ D such that for any 1 ≤ i ≤ k, 1 ≤ j ≤ l,

(3.5) lim
D3n→∞

�

Y

∣∣∣µy(T−nAi ∩Bj)− �

X

TnE(1Ai | K)1Bj dµy
∣∣∣ dν = 0.

Let ϕ(x) = −x log x. Choose 0 < δ < ε
4

1
kl log l such that

|u− v| < δ ⇒ |ϕ(u)− ϕ(v)| < ε

4
1
kl
.

By (3.5) there exists M > 0 such that for every m > M in D there is
Em ⊆ Y with ν(Em) > 1− ε/(2 log k) such that∣∣∣µy(T−mAi ∩Bj)− �

X

TmE(1Ai | K)1Bj dµy
∣∣∣ < δ

for all 1 ≤ i ≤ k, 1 ≤ j ≤ l and y ∈ Em.
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For any y ∈ Em,∣∣∣∣∑
i,j

−µy(T−mAi ∩Bj) log
µy(T−mAi ∩Bj)

µy(Bj)

+
( �

X

TmE(1Ai | K)1Bj dµy
)

log

	
X T

mE(1Ai | K)1Bj dµy
µy(Bj)

∣∣∣∣
≤
∑
i,j

∣∣∣µy(T−mAi ∩Bj) logµy(T−mAi ∩Bj)

−
�

X

TmE(1Ai | K)1Bj dµy log
�

X

TmE(1Ai | K)1Bj dµy
∣∣∣

+
∑
i

∣∣∣∑
j

(
µy(T−mAi ∩Bj)−

�

X

TmE(1Ai | K)1Bj dµy
)

logµy(Bj)
∣∣∣

≤ kl ε
4

1
kl

+ kδ
∣∣∣ log

(∏
j

µy(Bj)
)∣∣∣ ≤ ε

4
+ k

ε

4
1

kl log l

∣∣∣∣log
(∑

j µy(Bj)
l

)l∣∣∣∣ =
ε

2
.

Hence

Hy(T−mξ | η)

=
∑
i,j

−µy(T−mAi ∩Bj) log
µy(T−mAj ∩Bj)

µy(Bj)

≥
∑
i,j

(
−

�

X

TmE(1Ai | K)1Bj dµy
)

log

	
X T

mE(1Ai | K)1Bj dµy
µy(Bj)

−
ε

2

Let

aij = −
( �

X

TmE(1Ai | K)1Bj dµy
)

log

	
X T

mE(1Ai | K)1Bj dµy
µy(Bj)

.

Then we have aij = µy(Bj)ϕ(
	
Bj
TmE(1Ai | K) dµBj ,y), where µBj ,y =

µy(· ∩Bj)/µy(Bj). Since ϕ is concave, one deduces

aij ≥ µy(Bj)
�

Bj

−TmE(1Ai | K) log TmE(1Ai | K) dµBj ,y

=
�

Bj

−TmE(1Ai |K) log TmE(1Ai | K) dµy.

Thus

Hy(T−mξ | η) ≥
∑
i,j

aij−
ε

2
≥
∑
i

�

X

−TmE(1Ai | K) log TmE(1Ai | K) dµy−
ε

2
.
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Integrating with respect to ν one obtains�

Y

Hy(T−mξ | η) dν ≥
�

Em

Hy(T−mξ | η) dν

≥
∑
i

�

Em

�

X

−TmE(1Ai | K) log TmE(1Ai | K) dµy dν −
ε

2

=
∑
i

�

Y

�

X

−TmE(1Ai | K) log TmE(1Ai | K) dµy dν

−
∑
i

�

Y \Em

�

X

−TmE(1Ai | K) log TmE(1Ai | K) dµy dν −
ε

2

≥
∑
i

�

X

−TmE(1Ai | K) log TmE(1Ai | K) dµ− ε

2 log k
log k − ε

2

= Hµ(ξ | K)− ε.
In the last inequality we use

	
X

∑
i−TmE(1Ai | K) log TmE(1Ai | K) dµy =

Hy(T−mξ | K) ≤ log k. This completes the proof of the claim.

Let {ξk}k∈N be as in Lemma 2.5. For any increasing sequence S ∈ D∗,
since D is a filter, one can choose A = {t1 < t2 < · · · } ⊆ S such that
�

Y

Hy

(
T−tnξj

∣∣∣ n−1∨
i=1

T−tiξj

)
dν≥Hµ(ξj | K)− 1

2n
for any n≥2 and 1≤ j≤n.

Fix k ∈ N. One has

hAµ (T, ξk | Y)

= lim sup
n→∞

1
n
Hµ

( n∨
i=1

T−tiξk

∣∣∣Y) = lim sup
n→∞

1
n

�

Y

Hy

( n∨
i=1

T−tiξk

)
dν

= lim sup
n→∞

1
n

�

Y

[
Hy

( k∨
i=1

T−tiξk

)
+

n∑
i=k+1

Hy

(
T−tiξk

∣∣∣ i−1∨
j=1

T−tjξk

)]
dν

≥ lim sup
n→∞

1
n

[ �
Y

Hy

( k∨
i=1

T−tiξk

)
dν + (n− k)Hµ(ξk | K)−

n∑
i=k+1

1
2i
]

= Hµ(ξk | K).

Therefore hAµ (T, ξk | Y) ≥ Hµ(ξk | K) for any k ∈ N. Now let ξ be any parti-
tion with H(ξ | Y) <∞. Given δ > 0, by Lemma 2.5 one can choose ξk such
that

	
Y (Hy(ξ | ξk)+Hy(ξk | ξ)) dν < δ. Then |hAµ (T, ξ | Y)−hAµ (T, ξk | Y)| < δ

and |Hµ(ξ | Y)−Hµ(ξk | Y)| < δ. So

hAµ (T, ξ | Y) ≥ hAµ (T, ξk | Y)− δ ≥ Hµ(ξ | Y)− 2δ.

Since δ is arbitrary, the proof is complete.
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Lemma 3.7. Let B∈X . Then B∈K(X |Y ) if and only if hAµ (T,{B,Bc} |Y)
= 0 for any increasing sequence A ⊆ Z+.

Proof. For necessity we refer to [Hu2, Theorem 1]. To prove sufficiency
we will use Lemma 3.6. If B 6∈ K(X |Y ) then Hµ({B,Bc} |K(X |Y )) > 0.
Thus, by Lemma 3.6, there exists A ⊆ Z+ such that

hAµ (T, {B,Bc} | Y) ≥ Hµ({B,Bc} |K(X |Y )) > 0.

Lemma 3.8. For any measurable partition ξ of X with Hµ(ξ | Y) < ∞
and any increasing sequence A ⊆ Z+,

(3.6) hAµ (T, ξ | Y) ≤ Hµ(ξ | K(X |Y )).

Proof. Let {ξk}k∈N be a countable set of finite K(X |Y )-measurable par-
titions such that ξk ↗ K(X |Y ). Let A = {t1 < t2 < · · · }. Since ξk is
K(X |Y )-measurable, by Lemma 3.7 one has hAµ (T, ξk | Y) = 0. So

hAµ (T, ξ | Y) = lim sup
n→∞

1
n

�

Y

Hy

( n∨
i=1

T−tiξ
)
dν − hAµ (T, ξk | Y)

≤ lim sup
n→∞

1
n

�

Y

Hy

( n∨
i=1

T−ti(ξ ∨ ξk)
)
dν − lim

n→∞

1
n

�

Y

Hy

( n∨
i=1

T−tiξk

)
dν

= lim sup
n→∞

1
n

�

Y

(
Hy

( n∨
i=1

T−ti(ξ ∨ ξk)
)
−Hy

( n∨
i=1

T−tiξk

))
dν

= lim sup
n→∞

1
n

�

Y

Hy

( n∨
i=1

T−tiξ
∣∣∣ n∨
i=1

T−tiξk

)
dν

≤ lim sup
n→∞

1
n

�

Y

n∑
i=1

Hy(T−tiξ |T−tiξk) dν

= lim sup
n→∞

1
n

�

Y

n∑
i=1

Hy(ξ | ξk) dν

=
�

Y

Hy(ξ | ξk) dν =
�

Y

(Hy(ξ ∨ ξk)−Hy(ξk)) dν

= Hµ(ξ ∨ ξk | Y)−Hµ(ξk | Y) = Hµ(ξ | ξk ∨ Y) ≤ Hµ(ξ | ξk).

One concludes by the martingale theorem.

3.3. Compact and weakly mixing extensions. Now as a corollary of the
last subsection we recover some results of Hulse [Hu1, Hu2]. First let us
recall some notations.
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Definition 3.9.

(1) (X,X , µ, T ) is called a compact extension of (Y,Y, ν, T ) if

L2(X,K(X |Y ), µ) = L2(X,X , µ), that is, K(X |Y ) = X .
(2) (X,X , µ, T ) is called a weakly mixing extension of (Y,Y, ν, T ) if
K(X |Y ) = Y.

Remark 3.10. For a more complete discussion of compact and weakly
mixing extensions see [F1, Hu2]. For example, in [Hu2] it is proved that
(X,X , µ, T ) is a weakly mixing extension of (Y,Y, ν, T ) if and only if (X×X,
X ⊗ X , µ ×Y µ, T × T ) is ergodic relative to (Y,Y, ν, T ) if and only if
limn→∞ n

−1
∑n−1

i=0 |E(gT if | Y)| = 0 in L1(Y,Y, ν) for all f ∈ L2(X,X , µ)
and g ∈ L2(X,Y, µ)⊥ (here we view Y as a sub-σ-algebra of X ).

The results of the last subsection immediately yield

Corollary 3.11 ([Hu2]).

(1) (X,X , µ, T ) is a compact extension of (Y,Y, ν, T ) if and only if
hAµ (T | Y) = 0 for any increasing sequence A ⊆ Z+.

(2) (X,X , µ, T ) is a weakly mixing extension of (Y,Y, ν, T ) if and only
if for any increasing sequence S ∈ D∗, there exists an increasing sub-
sequence A ⊆ S such that hAµ (T, ξ | Y) = Hµ(ξ | Y) for all measurable
partitions ξ of X with Hµ(ξ | Y) <∞.

Observe that the second statement is a little stronger than the corre-
sponding result in [Hu2]. The case when Y is trivial can be found in [Hu1].

4. Sequence entropy relative to a rigid extension

4.1. F-sequence and IP-systems. Let F denote the collection of all non-
empty finite subsets of N. Given α, β ∈ F , we write α < β (or β > α) if
maxα < minβ. The set

F (1) = FU({αi}i∈N) :=
{⋃
i∈β

αi : β ∈ F
}

with α1 < α2 < · · · is called an IP-ring. The following theorem will be
useful.

Theorem 4.1 (Hindman’s Theorem).For any finite partition{C1, . . . , Cr}
of F one of the Ci’s contains an IP-ring.

Let {ni}i∈N ⊆ Z+. Set nα =
∑

i∈α ni for α ∈ F . Then FS({ni}i∈N) =
{nα}α∈F and the IP-set generated by this sequence is FS({ni}i∈N). Observe
that we do not require the elements of {ni}i∈N to be distinct. If F (1) is an
IP-ring of F , then {nα}α∈F(1) is an IP-subset of {nα}α∈F ; conversely, any
IP-subset of {nα}α∈F has this form.
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A sequence in any space Y indexed by the set F is called an F-sequence.
If Y is a (multiplicative) semigroup, then an F-sequence {yα}α∈F on Y
defines an IP-system if yα = yi1 · · · yik for any α = {i1, . . . , ik} ∈ F with
i1 < · · · < ik. An IP-system should be viewed as a generalized semigroup.
Indeed, if α ∩ β = ∅ and α < β then yα∪β = yαyβ.

Let F (1) be an IP-ring. Then the map ξ : F → F (1), ξ(α) =
⋃
i∈α αi, is

bijective and structure-preserving in the sense that ξ(α ∪ β) = ξ(α) ∪ ξ(β).
In particular, any sequence {yα}α∈F(1) can be naturally identified with a
particular F-sequence, namely {xα}α∈F where xα = yξ(α).

Definition 4.2. Assume that {xα}α∈F is an F-sequence in a topological
space X. Let x ∈ X and F (1) be an IP-ring. Write

IP- lim
α∈F(1)

xα = x

if for any neighborhood U of x there exists α0 ∈ F (1) such that xα ∈ U for
any α ∈ F (1) with α > α0.

Theorem 4.3 ([FK]). Let {Uα}α∈F be an IP-system of unitary operators
on a separable Hilbert space H. Then there is an IP-subsystem {Uα}α∈F(1) ,
with F (1) an IP-ring , such that

IP- lim
α∈F(1)

Uα = P

weakly , where P is the orthogonal projection onto a subspace of H.

4.2. Almost periodicity over Y along F (1). Let (X,X , µ, T ) be a system
and {nα}α∈F be an IP-set. Then {Tnα}α∈F and {(T × T )nα}α∈F define
IP-systems. One writes Tα = Tnα and (T × T )α = (T × T )nα .

Now consider a factor (Y,Y, ν, T ) of (X,X , µ, T ) and let π : X → Y
be the corresponding factor map. By Theorem 4.3, there exists an IP-ring
F (1) ⊆ F such that for all K ∈ L2(X ×X,X ⊗ X , µ×Y µ),

(4.1) IP- lim
α∈F(1)

(T × T )αK = PK

exists in the weak topology and P is an orthogonal projection.

Definition 4.4. Let {nα}α∈F be an IP-set and F (1) ⊆ F an IP-ring.
A function f ∈ L2(X,X , µ) is called almost periodic over Y with respect
to {nα}α∈F along F (1), and one writes f ∈ AP(Y, {nα},F (1)), if for every
ε > 0 there exists a set D ∈ Y with ν(D) < ε and functions g1, . . . , gl ∈
L2(X,X , µ) such that for every δ > 0 there exists α0 ∈ F (1) with the
property that whenever α ∈ F (1) with α > α0 there is a set Eα ∈ Y with
ν(Eα) < δ such that for all y 6∈ D ∪ Eα,

min
1≤j≤l

‖Tαf − gj‖y < ε.
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Remark 4.5.

(1) The definition we use comes from [BM], and is different from those
in [FK] and [Z2]. In [FK] a function is called almost periodic over
Y with respect to {nα}α∈F along F (1) if for every ε > 0 and α0 ∈
F (1) there exist g1, . . . , gl ∈ L2(X,X , µ) and a set E ⊆ Y with
ν(E) < ε such that for all α ∈ F (1) with α > α0 and y 6∈ E one
has min1≤j≤l ‖Tαf − gj‖y < ε. Refer to [BM] for a discussion of the
difference between the two definitions.

(2) AP(Y, {nα},F (1)) need not be closed, but if f ∈ AP(Y, {nα},F (1)),
then for every ε > 0 there exist g1, . . . , gl ∈ L∞(X,X , µ) and α0 ∈
F (1) such that for any α ∈ F (1) with α > α0, there is a set Eα ∈ Y
with ν(Eα) < ε and min1≤j≤l ‖Tαf − gj‖y < ε for all y 6∈ Eα.

(3) AP(Y, {nα},F (1)) ∩ L∞(X,X , µ) is a T -invariant σ-algebra which
contains |g| and ḡ whenever it contains g. By Proposition 2.1, there
exists a sub-σ-algebra KF (X |Y ), where F = {nα}α∈F(1) , such that
(see also [FK, Lemma 7.3])

(4.2) AP(Y, {nα},F (1)) = L2(X,KF (X |Y ), µ).

(4) One calls KF (X |Y ) a rigid algebra over Y, and any function f ∈
AP(Y, {nα},F (1)) is called a rigid function over Y.

To each K ∈ L2(X × X,X ⊗ X , µ ×Y µ) and ν-almost every y ∈ Y
we associate an operator (also called) K : L2(X,X , µy) → L2(X,X , µy),
f 7→ K ∗ f , where

(4.3) K ∗ f(x) =
�

X

K(x, x′)f(x′) dµy(x′), where y = π(x).

For ν-a.e. y ∈ Y , K is a Hilbert–Schmidt operator on L2(X,X , µy). In
particular, it is a compact operator (i.e. the closure of the image of the unit
ball is compact). See [F1, FK] for details.

For the next four results fix a system (X,X , µ, T ), a factor (Y,Y, ν, T )
of it, an IP-set {nα}α∈F and an IP-ring F (1) such that (4.1) holds. Let
F = {nα}α∈F(1) and let KF (X |Y ) be the associated rigid algebra over Y.

Lemma 4.6. If K ∈ L2(X × X,X ⊗ X , µ ×Y µ) with PK = K and
f ∈ L∞(X,X , µ), then K ∗ f ∈ AP(Y, {nα},F (1)).

Proof. Let ε > 0. Since for ν-a.e. y ∈ Y the operator K is compact on
L2(X,X , µy), there exists M(y) ∈ N such that the set

{K ∗ (T jf) : −M(y) ≤ j ≤M(y)}

is ε/2-dense in {K ∗(T jf) : j ∈ Z} (in L2(X,X , µy)). Let M be large enough
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such that M > M(y) for all y outside of a set D ∈ Y with ν(D) < ε and let

{g1, . . . , gl} = {K ∗ (T jf) : −M ≤ j ≤M}.

Then for any y ∈ Dc and any n ∈ Z,

(4.4) inf
1≤j≤l

‖K ∗ (Tnf)− gj‖y < ε/2.

On the other hand, by (4.1) one has

IP- lim
α∈F(1)

‖Tα(K ∗ f)−K ∗ (Tαf)‖2

= IP- lim
α∈F(1)

�

X

∣∣∣ �
X

(K(Tαx, Tαx′)−K(x, x′))f(Tαx′) dµπ(x)(x
′)
∣∣∣2 dµ(x)

≤ IP- lim
α∈F(1)

�

X

�

X

|K(Tαx, Tαx′)−K(x, x′)|2|f(Tαx′)|2 dµπ(x)(x
′) dµ(x)

≤ IP- lim
α∈F(1)

‖(T × T )αK −K‖2‖f‖2∞ = 0.

So for any δ > 0 there exists α0 ∈ F (1) such that for any α ∈ F (1) with
α > α0 there is a set Eα ∈ Y with ν(Eα) < δ and for any y 6∈ Eα,

(4.5) ‖Tα(K ∗ f)−K ∗ (Tαf)‖y < ε/2.

Hence whenever y 6∈ D ∪ Eα, one has

(4.6) inf
1≤j≤l

‖Tα(K ∗ f)− gj‖y < ε.

Theorem 4.7. Let (X,X , µ, T ), (Y,Y, ν, T ), {nα}α∈F and F (1) be as
above. Then f ∈ L2(X,KF (X |Y ), µ)⊥ if and only if

IP- lim
α∈F(1)

�

Y

|E(gTαf | Y)| dν = 0

for any g ∈ L2(X,X , µ).

Proof. Assume that f ∈ L2(X,KF (X |Y ), µ)⊥. Then

IP- lim
α∈F(1)

( �

Y

|E(gTαf | Y)| dν
)2
≤ IP- lim

α∈F(1)

�

Y

|E(gTαf | Y)
∣∣∣2 dν

= IP- lim
α∈F(1)

�

X×X
g ⊗ g · (T × T )α(f ⊗ f) dµ×Y µ

=
�

X×X
g ⊗ gP (f ⊗ f) dµ×Y µ =

�

X×X
f ⊗ fP (g ⊗ g) dµ×Y µ.
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Let K = P (g ⊗ g). Then PK = K and�

X×X
f ⊗ fP (g ⊗ g)dµ×Y µ =

�

X×X
f ⊗ fKdµ×Y µ

=
�

Y

�

X×X
f(x)f(x′)K(x, x′) dµy(x) dµy(x′) dν(y)

=
�

X

f(x)
�

X

K(x, x′)f(x′) dµπ(x)(x
′) dµ(x)

=
�

X

f(x)K ∗ f(x) dµ(x) = 〈f,K ∗ f〉.

By Lemma 4.6, K ∗ f ∈ AP(Y, {nα},F (1)). So 〈f,K ∗ f〉 = 0. Hence

IP- lim
α∈F(1)

�
|E(gTαf | Y)| dν = 0.

Now we show the converse. It suffices to show that if f∈L2(X,KF (X |Y ),µ)
and IP- limα∈F(1)

	
Y |E(gTαf | Y)| dν = 0 for any g ∈ L2(X,X , µ), then

f = 0. The method follows from [BM, Lemma 3.13.] and [FK, Lemma 7.6].
Let 0 < δ < 1 be so small that for any h ∈ L2(X,X , µ) satisfying

‖f − h‖2 < 2δ one has |〈f, h〉| > ‖f‖2/2. Let ε > 0 with ε2 < δ and	
E ‖f‖

2
y dν < δ for all E ∈ Y with ν(E) < ε.

By Remark 4.5(2), for f ∈ L2(X,KF (X |Y ), µ) = AP(Y, {nα},F (1)),
there exist g1, . . . , gl ∈ L∞(X,X , µ) and α0 ∈ F (1) such that whenever
α ∈ F (1) with α > α0 there is a set Eα ∈ Y with ν(Eα) < ε satisfying: for
all y 6∈ Eα there exists j(α, y) with 1 ≤ j(α, y) ≤ l such that

‖Tαf − gj(α,y)‖y < ε.

For every α ∈ F (1) with α > α0 and i ∈ {1, . . . , l}, let ξi(y) = 1 if y 6∈ Eα
and j(α, y) = i, and ξi(y) = 0 otherwise. Write hα =

∑l
i=1 ξigi, that is, hα

is equal to gj(α,y) on the fiber over y when y 6∈ Eα, and equal to zero on
fibers over y ∈ Eα. Each hα is measurable and

‖f − T−1
α hα‖2 = ‖Tαf − hα‖2 =

�

Y

�

X

|Tαf − hα|2 dµy(x) dν

=
�

Eα

‖Tαf‖2y dν +
�

Y \Eα

‖Tαf − gj(α,y)‖2y dν ≤ δ + ε2 ≤ 2δ.

Hence |〈Tαf, hα〉| = |〈f, T−1
α hα〉| ≥ ‖f‖2/2. Also,

|〈Tαf, hα〉| =
∣∣∣ l∑
j=1

�

Y

ξj(y)
�

X

Tαf · gj dµy dν
∣∣∣

≤
l∑

j=1

�

Y

∣∣∣ �
X

Tαf · gj dµy
∣∣∣ dν =

l∑
j=1

�

Y

|E(Tαf · gj | Y)| dν.



Sequence entropy and rigid σ-algebras 223

Since IP- limα∈F(1)

	
Y |E(gTαf | Y)|dν = 0 for any g ∈ L2(X,X , µ), it follows

that ‖f‖ = 0 and thus f = 0.

Proposition 4.8. We have f ∈ L2(X,KF (X |Y ), µ) if and only if for
any ε > 0 and any IP-ring F (2) = FU({αi}i∈N) ⊆ F (1), there is M ∈ N such
that for every α ∈ F (2) with α > αM there exists Eα ∈ Y with ν(Eα) < ε
satisfying , for any y 6∈ Eα,

inf
β∈FU({αi}Mi=1)

‖Tαf − Tβf‖y < ε.

Proof. Let f ∈ L2(X,KF (X |Y ), µ). By Remark 4.5(2), for any ε > 0
there exist g1, . . . , gl ∈ L∞(X,X , µ) and α0 ∈ F (1) such that for any α ∈
F (1) with α > α0, there is E′α ∈ Y with ν(E′α) < ε/2 satisfying

(4.7) inf
1≤j≤l

‖Tαf − gj‖y < ε/2

for any y 6∈ E′α. Without loss of generality, assume α1 < α2 < · · · . Let
M1 ∈ N be such that αM1 > α0.

For j ∈ {1, . . . , l} let Ej = {y ∈ Y : ‖Tαf − gj‖y < ε/2 for some
α ∈ F (2)}. Then we can assume that ν(Ej) = 1 for all 1 ≤ j ≤ l, otherwise
we may modify gj so that gj = TαM1

f on π−1(Ecj ) without affecting (4.7).
For j ∈ {1, . . . , l} let Ej,n = {y ∈ Y : ‖Tβf − gj‖y < ε/2 for some β ∈

FU({αi}ni=1)}. Then ν(
⋃
n≥1Ej,n) = 1 for all 1 ≤ j ≤ l. Thus there is M2 ∈

N such that ν(
⋂l
j=1Ej,n) > 1−ε/2 for any n ≥M2. Let M = max{M1,M2}.

Then for any α ∈ F (2) with α > αM (that is, α ∈ FU({αi}i>M ))

inf
β∈FU({αi}Mi=1)

‖Tαf−Tβf‖y≤ inf
1≤j≤l

{‖Tαf−gj‖y+ inf
β∈FU({αi}Mi=1)

‖Tβf−gj‖y}<ε

for all y not in Eα = E′α ∪ (
⋂l
j=1Ej,M )c, which has measure less than ε.

Now we show the converse. If f 6∈ L2(X,KF (X |Y ), µ), then f = f1 +f2,
where f1 ∈ L2(X,KF (X |Y ), µ) and f2 ∈ L2(X,KF (X |Y ), µ)⊥ with f2

non-trivial. One deduces that there is ε > 0 such that ‖f2‖2y ≥ 3ε for any y
in a set E ∈ Y of measure greater than 2ε.

By Theorem 4.7, IP- limα∈F(1)

	
Y |E(gTαf2 | Y)| dν = 0 for any g ∈

L2(X,X , µ). Fix any IP-ring F (2) = FU({αi}i∈N) ⊆ F (1) and M ∈ N.
Since

IP- lim
α∈F(1)

�

Y

|E(Tβf2Tαf2 | Y)| dν = 0

for any β ∈ FU({αi}Mi=1), there is αM ′ ∈ F (2), M ′ > M , such that for any
α ∈ F (2) with α > αM ′ , there exists Aα ∈ Y with ν(Aα) > 1− ε such that
|〈Tαf2, Tβf2〉y| < ε for any y ∈ Aα. Then

‖Tαf2 − Tβf2‖2y = ‖Tαf2‖2y + ‖Tβf2‖2y − 2Re〈Tαf2, Tβf2〉y > ε > ε2

for any y ∈ T−1
α E ∩Aα, the measure of which is ν(T−1

α E ∩Aα) > ε.
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So for any α ∈ F (2) with α > αM ′ , one has

ν{y ∈ Y : inf
β∈FU({αi}Mi=1)

‖Tαf − Tβf‖2y < ε2}

≤ ν{y ∈ Y : inf
β∈FU({αi}Mi=1)

‖Tαf2 − Tβf2‖2y < ε2} < 1− ε.

This contradicts the assumption of the proposition.

Definition 4.9. Let {nα}α∈F be an IP-set and F (1) and IP-ring. Any
subset having the form

(4.8) {nβi}i∈N ⊆ {nα}α∈F(1)

with β1 < β2 < · · · is called an F-monotone subset of {nα}α∈F(1) .

A proof similar to that of Proposition 4.8 yields the following corollary.

Corollary 4.10. f ∈ L2(X,KF (X |Y ), µ) if and only if for any any
ε > 0 and any F-monotone subset {nβi}i∈N ⊆ {nα}α∈F(1) there exists M ∈
N such that for every n ∈ N with n > M there is En ∈ Y with ν(En) < ε
satisfying , for any y 6∈ En,

inf
1≤i≤n−1

‖Tβnf − Tβif‖y < ε.

4.3. Conditional sequence entropy and rigid algebra KF (X |Y ). As in
the previous section, in this subsection we study relations between condi-
tional sequence entropy and the rigid algebra KF (X |Y ). The main result is
the following.

Theorem 4.11. Let (X,X , µ, T ) be a system and (Y,Y, ν, T ) one of its
factors. For any IP-set {nα}α∈F there exists an IP-ring F (1) of F such
that for any IP-ring F (2) ⊆ F (1) there exists an F-monotone subset A ⊆
{nα}α∈F(2) such that

(4.9) hAµ (T, ξ | Y) = Hµ(ξ | KF (X |Y ))

for all measurable partitions ξ of XwithHµ(ξ | Y)<∞, whereF ={nα}α∈F(1) .

In particular , for any IP-set {nα}α∈F there exists an IP-ring F (1) of F
such that

(4.10) max{hAµ (T, ξ | Y) : A ⊆ F is F-monotone} = Hµ(ξ | KF (X |Y )),

where F = {nα}α∈F(1).

Remark 4.12. The reason why we need to consider the given IP-set
on an IP-ring F (1) comes from the fact that in our proof we strongly use
Theorem 4.3 and its consequence stated in (4.1). In fact, the theorem works
for any IP-ring F (1) such that condition (4.1) holds.

By Theorem 4.11 with Y trivial, one obtains the following result imme-
diately.
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Corollary 4.13. Let (X,X , µ, T ) be a system and {nα}α∈F be an IP-
set. Then there exists an IP-ring F (1) of F such that for any IP-ring F (2) ⊆
F (1) there exists an F-monotone subset A ⊆ {nα}α∈F(2) such that

(4.11) hAµ (T, ξ) = Hµ(ξ | KF (X))

for all measurable partitions ξ of X with Hµ(ξ) <∞, where F = {nα}α∈F(1).
In particular , for any IP-set {nα}α∈F there exists an IP-ring F (1) of F

such that

(4.12) max{hAµ (T, ξ) : A ⊆ F is F-monotone} = Hµ(ξ | KF (X)),

where F = {nα}α∈F(1).

Theorem 4.11 will follow directly from the following four lemmas.

Lemma 4.14. Let {nα}α∈F be an IP-set. Then there exists an IP-ring
F (1) of F such that for any IP-ring F (2) ⊆ F (1) there exists an F-monotone
subset A ⊆ {nα}α∈F(2) such that

hAµ (T, ξ | Y) ≥ Hµ(ξ | KF (X |Y ))

for all measurable partitions ξ of XwithHµ(ξ | Y)<∞, where F ={nα}α∈F(1) .

Proof. The proof is similar to that of Lemma 3.6. We only point out the
differences.

Let F (1) be the IP-ring such that (4.1) holds. Consider KF = KF (X |Y )
to be the σ-algebra associated to F = {nα}α∈F(1) . All the results in the last
subsection hold for this factor.

Let GF be the family generated by {{nα}α∈F(2) : F (2) is an IP-ring of
F (1)}, that is, the family of all IP-subsets of F . Then by Hindman’s Theorem
G∗F is a filter.

Claim. For any measurable finite partitions ξ and η of X and ε > 0,
there exists a sequence S ∈ G∗F such that for any m ∈ S,

(4.13)
�

Y

Hy(T−mξ | η) dν(y) ≥ Hµ(ξ | KF )− ε.

Proof of Claim. It is easy to verify that G∗F = {S ⊆ Z+ : there exists
α0 ∈ F (1) such that nα ∈ S for any α ∈ F (1) with α > α0}. For any
A,B ∈ X , since 1A − E(1A | KF ) ∈ L2(X,KF , µ)⊥, from Theorem 4.7 one
deduces

IP- lim
α∈F(1)

�

Y

∣∣∣ �
X

Tα(1A − E(1A | KF )) · 1B dµy
∣∣∣ dν = 0.

Equivalently,

G∗F - lim
�

Y

∣∣∣ �
X

Tn(1A − E(1A | KF )) · 1B dµy
∣∣∣ dν = 0.
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Let ξ = {A1, . . . , Ak} and η = {B1, . . . , Bl}. Since G∗F is a filter, for any
fixed δ1, δ2 > 0 there exists S ∈ G∗F such that for any m ∈ S there is a set
Em ∈ Y with ν(Em) > 1− δ1 satisfying

(4.14)
∣∣∣µy(T−mAi ∩Bj)− �

X

TmE(1Ai | KF )1Bj dµy
∣∣∣ < δ2

for all 1 ≤ i ≤ k, 1 ≤ j ≤ l and y ∈ Em. One concludes as in the proof of
the Claim in the proof of Lemma 3.6.

For any IP-ring F (2) ⊆ F (1), S = {nα}α∈F(2) is an IP-set and hence
S ∈ GF . Thus one can complete the proof in much the same way as the
proof of Lemma 3.6. We omit the details.

The following lemma is well known (see for example Lemma 4.15 in
[W1]).

Lemma 4.15. Let r ≥ 1 be a fixed integer. For each ε > 0 there exists
δ > 0 such that if ξ = {A1, . . . , Ar} and η = {C1, . . . , Cr} are two measurable
partitions of X with

∑r
i=1 µ(Ai 4 Ci) < δ then the Rokhlin metric satisfies

ρµ(ξ, η) = Hµ(ξ | η) +Hµ(η | ξ) < ε.

Lemma 4.16. Let {nα}α∈F be an IP-set and B ∈ X . Then there exists
an IP-ring F (1) of F such that B ∈ KF (X |Y ) if and only if

hAµ (T, {B,Bc} | Y) = 0

for all F-monotone subsets A ⊆ F , where F = {nα}α∈F(1).

Proof. Let F (1) be the IP-ring such that (4.1) holds. Assume B ∈
KF (X |Y ). Let A = {nβi}i∈N be an F-monotone subset of F = {nα}α∈F(1)

and ξ = {B,Bc}.
Observe that ‖Tn1B − Tm1B‖2y = µy(T−nB 4 T−mB). Since 1B ∈

L2(X,KF (X |Y ), µ), by Corollary 4.10 there is M ∈ N such that for any
n > M there exists En ∈ Y with ν(En) < δ satisfying, for any y 6∈ En,

inf
1≤j≤n−1

‖Tβn1B − Tβj1B‖y < δ,

where δ is chosen, as in Lemma 4.15, so small that ρy(ξ, η) := ρµy(ξ, η) < ε
for r = 2.

Hence for any n > M there is 1 ≤ j(n) ≤ n−1 such that ρy(T−1
βn
ξ, T−1

βj(n)
ξ)

< ε. So

Hy

(
T−1
βn
ξ
∣∣∣ n−1∨
i=1

T−1
βi
ξ
)
≤ Hy(T−1

βn
ξ |T−1

βj(n)
ξ) ≤ ρy(T−1

βn
ξ, T−1

βj(n)
ξ) < ε.
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For any y ∈ Y , Hy(T−1
βn
ξ|T−1

βj
ξ) ≤ log 2. Therefore

hAµ (T, ξ | Y) = lim sup
n→∞

1
n

�

Y

Hy

( n∨
i=1

T−1
βi
ξ
)
dν(y)

= lim sup
n→∞

1
n

�

Y

n∑
i=2

Hy

(
T−1
βi
ξ
∣∣∣ i−1∨
j=1

T−1
βj
ξ
)
dν(y)

= lim sup
n→∞

1
n

( �

En

n∑
i=2

Hy

(
T−1
βi
ξ
∣∣∣ i−1∨
j=1

T−1
βj
ξ
)
dν(y)

+
�

Y \En

n∑
i=2

Hy

(
T−1
βi
ξ
∣∣∣ i−1∨
j=1

T−1
βj
ξ
)
dν(y)

)
≤ δ log 2 + ε.

Since ε and δ are arbitrary, it follows that hAµ (T, ξ | Y) = 0.
Now we show the converse. IfB /∈KF (X |Y ) thenHµ({B,Bc} |KF (X |Y ))

> 0. So by Lemma 4.14 there exists an F-monotone subset A of F such that

hAµ (T, {B,Bc} | Y) ≥ Hµ({B,Bc} |KF (X |Y )) > 0.

Lemma 4.17. Let {nα}α∈F be an IP-set. Then there exists an IP-ring
F (1) of F such that for any finite measurable partition ξ of X and any
F-monotone subset A ⊆ F ,

(4.15) hAµ (T, ξ | Y) ≤ Hµ(ξ | KF (X |Y )),

where F = {nα}α∈F(1).

Proof. Let F (1) be the IP-ring such that (4.1) holds. In the proof of
Lemma 3.8, replace K(X |Y ) by KF (X |Y ) and use Lemma 4.16.

4.4. Rigid and mildly mixing extensions. Let (X,X , µ, T ) be a system
and (Y,Y, ν, T ) one of its factors.

Definition 4.18 ([FK]). Let {nα}α∈F be an IP-set and F (1) an IP-
ring. The system (X,X , µ, T ) is Y-mixing along F (1) if for each f, g ∈
L2(X ×X,X ⊗ X , µ×Y µ),

(4.16)
IP- lim

α∈F(1)

{ �

X×X
g ·(T ×T )αf dµ×Y µ−

�

Y

E(g | Y) ·(T ×T )αE(f | Y) dν
}

= 0.

Remark 4.19. It is easy to prove [Z2, Theorem 2.5.] that (X,X , µ, T )
is Y-mixing along F (1) if and only if for each f, g ∈ L2(X,X , µ),

IP- lim
α∈F(1)

�

X

|E(gTαf | Y)− E(g | Y)TαE(f | Y)| dµ = 0.
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Proposition 4.20. Let {nα}α∈F be an IP-set and F (1) an IP-ring as
in (4.1). Then the following conditions are equivalent :

(1) (X,X , µ, T ) is Y-mixing along F (1).
(2) For any f ∈ L2(X,Y, µ)⊥ and g ∈ L2(X,X , µ),

IP- lim
α∈F(1)

�

Y

|E(gTαf | Y)| dν = 0.

(3) KF (X |Y ) = Y, where F = {nα}α∈F(1).

Proof. This follows from Theorem 4.7.

Definition 4.21.

(1) (X,X , µ, T ) is a rigid extension over Y if there exists an IP-set F
such that X = KF (X |Y ).

(2) (X,X , µ, T ) is a mild mixing extension over Y if for any IP-set F ,
KF (X |Y ) = Y.

The following theorem follows easily from the work done in the previous
subsection. We leave the proof to the reader.

Theorem 4.22.

(1) (X,X , µ, T ) is a rigid extension over Y if and only if there exists an
IP-set F such that hAµ (T | Y) = 0 for all F-monotone subsets A ⊆ F .

(2) Let {nα}α∈F be an IP-set and F (1) as in (4.1). Then (X,X , µ, T ) is
Y-mixing along F (1) if and only if for any IP-ring F (2) ⊆ F (1) there
exists an F-monotone subset A ⊆ {nα}α∈F(2) such that hAµ (T, ξ | Y)
= Hµ(ξ | Y) for all measurable partitions ξ with Hµ(ξ | Y) <∞.

(3) (X,X , µ, T ) is a mild mixing extension over Y if and only if for
any IP-set F there exists an F-monotone subset A ⊆ F such that
hAµ (T, ξ | Y) = Hµ(ξ | Y) for all measurable partitions ξ with Hµ(ξ | Y)
<∞.

Remark 4.23. Parts (1) and (3) of Theorem 4.22 appear in [Z2], and
the cases when (Y,Y, ν, T ) is the trivial factor appear in [Z1], but stated in a
slightly different language. Observe that the definitions of AP(Y, {nα},F (1))
(Definition 4.4) and a rigid extension (Definition 4.21) differ from [Z2]. Also
our method is different from that in [Z2].

5. An application. In this section we give an application of Theorems
3.4 and 4.11.

Theorem 5.1. Suppose that (Y,Y, ν, T ) is a factor of the ergodic system
(X,X , µ, T ). Then

max
A
{hAµ (T | Y)} ∈ {log k : k ∈ N} ∪ {∞}.
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Proof. Denote by (K,K, κ, T ) the factor of (X,X , µ, T ) associated to the
T -invariant σ-algebra K(X |Y ). Since (X,X , µ, T ) is ergodic, by the Rokhlin
Theorem it is isomorphic to a skew-product over (K,K, κ, T ). Explicitly,
there exists a probability space (U,U , ρ), which may be a finite set with the
uniform probability measure or the unit interval with the Lebesgue measure,
and a measurable function γ from Y to the automorphisms of (U,U , ρ) such
that (X,X , µ, T ) ∼= (K ×U,K⊗U , κ× ρ, Tγ), where Tγ(x, u) = (Tx, γ(x)u).

If ξ1 and ξ2 are finite partitions of K and U respectively, define partitions
ξ′1 and ξ′2 of K × U by ξ′1 = ξ1 × U = {B × U : B ∈ ξ1} and ξ′2 = K × ξ2 =
{K ×B : B ∈ ξ2}. By Theorem 3.4 for any sequence S ∈ D∗, there exists a
subsequence A ⊆ S such that

hAκ×ρ(Tγ , ξ1 × ξ2 | Y) = Hκ×ρ(ξ1 × ξ2 | K) = Hκ×ρ(ξ′1 ∨ ξ′2 | K)

= Hκ×ρ(ξ′2) = Hρ(ξ2).

Thus, hAµ (T | Y) = supξ1,ξ2 h
A
κ×ρ(Tγ , ξ1 × ξ2 | Y) is log k for some k ∈ N if U

is a finite set, and ∞ if U is continuous. So

hAµ (T | Y) ∈ {log k : k ∈ N} ∪ {∞}.
In particular, one gets the assertion.

Remark 5.2.

(1) One can use Theorem 4.11 instead of Theorem 3.4 to prove Theorem
5.1.

(2) In fact, what is proved in Theorem 5.1 is that for any sequence
S ∈ D∗, there exists a subsequence A ⊆ S such that hAµ (T | Y) ∈
{log k : k ∈ N} ∪ {∞}. Similarly, using Theorem 4.11 one can show
that for any IP-set {nα}α∈F there exists an IP-ring F (1) of F such
that for any IP-ring F (2) ⊆ F (1) there exists an F-monotone subset
A ⊆ {nα}α∈F(2) such that hAµ (T | Y) ∈ {log k : k ∈ N} ∪ {∞}.
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