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Mild solution of the heat equation with
a general stochastic measure

by

Vadym Radchenko (Kyiv)

Abstract. The stochastic heat equation on [0, T ]× R driven by a general stochastic
measure is investigated. Existence and uniqueness of the solution is established. Hölder
regularity of the solution in time and space variables is proved.

1. Introduction. In this paper we consider the stochastic heat equa-
tion, which can formally be written as

(1.1)

{
du(t, x) = a2 ∂

2u(t, x)
∂x2

dt+ f(t, x, u(t, x)) dt+ σ(t, x) dµ(x),
u(0, x) = u0(x),

where (t, x) ∈ [0, T ] × R, a ∈ R, a 6= 0, and µ is a stochastic measure
defined on the Borel σ-algebra of R. For µ we assume σ-additivity in prob-
ability only; the assumptions on f, σ and u0 are given in Section 4. We
consider mild solutions to the formal equation (1.1) (see (4.1) below). We
prove the existence and uniqueness of solution and obtain Hölder regularity
of its paths.

The Gaussian white noise driven parabolic stochastic partial differential
equations (SPDEs) were introduced and discussed initially in [21]. SPDEs
with Poisson white noise were considered, for example, in [1]. In [4] SPDEs
were studied as stochastic equations in function spaces. Hölder regularity
of solutions of SPDEs of different types was considered in [3], [5], [9], [18],
[21, Chapter 3]. In these and many other papers the stochastic noise satis-
fies some special conditions on distributions and moment existence, or has
martingale properties. In this paper, we consider a very general class of pos-
sible µ. On the other hand, the stochastic term in (1.1) is independent of u.
A reason is that an appropriate definition of integral of a random function
with respect to µ does not exist.
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The equation (1.1) describes the evolution in time of the density u of
some quantity such as heat or chemical concentration in a system with
random sources. The aim of the paper is to show that we can obtain and
study the mild solution under some general conditions on the stochastic part
of the equation.

The paper is organized as follows. In Section 2 we gather some basic facts
about stochastic measures; in Section 3 two auxiliary lemmas for stochastic
integrals are proved. A precise formulation of the problem and our assump-
tions are given in Section 4. Hölder continuity of the stochastic integral from
our equation is proved in Sections 5–6. Section 7 contains the main result
of the paper.

2. Preliminaries. Let L0 = L0(Ω,F ,P) be the set of all (equivalence
classes of) real-valued random variables defined on a complete probability
space (Ω,F ,P). Convergence in L0 means convergence in probability. Let X
be an arbitrary set and B be a σ-algebra of subsets of X.

Definition. Any σ-additive mapping µ : B → L0 is called a stochastic
measure.

In other words, µ is a vector measure with values in L0. We do not
assume positivity or moment existence for stochastic measures. In [7] such a
µ is called a general stochastic measure. In the following, µ always denotes
a stochastic measure.

Examples of stochastic measures are the following.
Let X=[0, T ]⊂R+, B be the σ-algebra of Borel subsets of [0, T ], and X(t)

be a continuous square integrable martingale. Then µ(A)=
	T
0 1A(t) dX(t) is

a stochastic measure on B. If WH(t) is a fractional Brownian motion with
Hurst index H > 1/2 and f : [0, T ] → R is a bounded measurable func-
tion then µ(A) =

	T
0 f(t)1A(t) dWH(t) is also a stochastic measure on B, as

follows from [8, Theorem 1.1]. Other examples may be found in [7, Subsec-
tion 7.2]. Theorem 8.3.1 of [7] states conditions under which a process with
independent increments generates a stochastic measure.

For deterministic measurable functions g : X → R, an integral of the
form

	
X g dµ is studied in [12] (see also [7, Chapter 7], [2]). The construction

of this integral is standard, uses an approximation by simple functions and is
based on results of [16, 17, 19, 20]. In particular, every bounded measurable
g is integrable with respect to any µ. An analogue of the Lebesgue domi-
nated convergence theorem holds for this integral (see [7, Proposition 7.1.1]
or [12, Corollary 1.2]). Path regularity of stochastic measures and parameter
integrals with respect to µ are studied in [13, 14]. Weak solutions of some
SPDEs with stochastic measures were obtained in [15].
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3. Properties of the integral with respect to stochastic measure.
The following statement is a generalization of [14, Lemma].

Lemma 3.1. Let fl : X → R, l ≥ 1, be measurable functions such that
f̄(x) =

∑∞
l=1 |fl(x)| is integrable with respect to µ. Then

(3.1)
∞∑
l=1

( �

X

fl dµ
)2

<∞ a.s.

Proof. Define ξl(ω) =
	
X fl dµ. Suppose the lemma were false. Then

∃ε0 > 0 ∀M > 0 ∃m ≥ 1 : P
(
Ωm,M =

{
ω ∈ Ω :

m∑
l=1

ξ2l (ω) ≥M
})
≥ ε0.

Consider independent Bernoulli random variables εl, 1 ≤ l ≤ m, defined on
some other probability space (Ω′,F ′,P′), P′(εl = 1) = P′(εl = −1) = 1/2.
The following is a consequence of the Paley–Zygmund inequality:

P′
[( m∑

l=1

λlεl

)2
≥ 1

4

m∑
l=1

λ2
l

]
≥ 1

8
, λl ∈ R

(see, for example, [7, Lemma 0.2.1] for λ = 1/4). Thus

P′
[
ω′ :

( m∑
l=1

εl(ω′)ξl(ω)
)2
≥ M

4

]
≥ 1

8

for all ω ∈ Ωm,M . Integrating over Ωm,M we get

(P× P′)
[
(ω, ω′) :

( m∑
l=1

εl(ω′)ξl(ω)
)2
≥ M

4

]
≥ ε0

8
.

Hence there exists ω′0 ∈ Ω′ such that

P

[
ω :
( m∑
l=1

εl(ω′0)ξl(ω)
)2
≥ M

4

]
≥ ε0

8
.

Since εl(ω′0) = ±1, for the function ḡ(x) =
∑m

l=1 εl(ω
′
0)fl(x) we have

|ḡ(x)| ≤ f̄(x), P

[∣∣∣ �
X

ḡ dµ
∣∣∣ ≥ √M

2

]
≥ ε0

8
.

Recall that ε0 > 0 is fixed while M is arbitrary. By the dominated conver-
gence theorem [7, Proposition 7.1.1], the set function

	
B f̄ dµ, B ∈ B, is a

stochastic measure. Applying [11, Lemma 1] (or [12, Theorem 1.2]) we reach
a contradiction with the boundedness in probability of the set of values of
the stochastic measure (see [19, Theorem A] or [7, Theorem B.2.1]).
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We consider the Besov spaces Bα
22([c, d]). Recall that the norm in this

classical space for 0 < α < 1 may be introduced by

(3.2) ‖g‖Bα22([c,d]) = ‖g‖L2([c,d]) +
( d−c�

0

(w2(g, r))2r−2α−1 dr
)1/2

,

where

w2(g, r) = sup
0≤h≤r

( d−h�
c

|g(y + h)− g(y)|2 dy
)1/2

.

The norm in the Besov space Bα
22([c, d]) is equivalent to the norm in the

Slobodetskĭı space Wα
2 .

For any j ∈ R and all n ≥ 0, put

d
(j)
kn = j + k2−n, 0 ≤ k ≤ 2n, ∆

(j)
kn = (d(j)

(k−1)n, d
(j)
kn ], 1 ≤ k ≤ 2n.

The following estimate is a key tool for the proof of Hölder regularity of
the stochastic integral. In our estimates, C will denote a positive constant
that may change from one place to another.

Lemma 3.2. Let µ be defined on the Borel σ-algebra of R, Z be an arbi-
trary set , and q(z, x) : Z × [j, j + 1] → R be a function such that for some
1/2 < α < 1 and for each z ∈ Z, q(z, ·) ∈ Bα

22([j, j + 1]). Then the random
function

η(z) =
�

[j,j+1]

q(z, x) dµ(x), z ∈ Z,

has a version η̃(z) such that for some constant C (independent of z, j, ω)
and each ω ∈ Ω,

(3.3) |η̃(z)| ≤ |q(z, j)µ([j, j + 1])|

+ C‖q(z, ·)‖Bα22([j,j+1])

{∑
n≥1

2n(1−2α)
∑

1≤k≤2n

|µ(∆(j)
kn)|2

}1/2
.

Proof. Consider the functions

(3.4) qn(z, x) = q(z, j)1{j}(x) +
∑

1≤k≤2n

q(z, d(j)
(k−1)n)1

∆
(j)
kn

(x), n ≥ 0.

From the properties of Besov spaces it follows that for α > 1/2 we
have Bα

22([j, j + 1]) ⊂ C([j, j + 1]). The dominated convergence theorem [7,
Proposition 7.1.1] implies that

�

[j,j+1]

qn(z, x) dµ(x) P→
�

[j,j+1]

q(z, x) dµ(x), n→∞,
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for each z. Therefore

η̃(z) =
�

[j,j+1]

q0(z, x) dµ(x)(3.5)

+
∑
n≥1

( �

[j,j+1]

qn(z, x) dµ(x)−
�

[j,j+1]

qn−1(z, x) dµ(x)
)

is a version of η(z). Using (3.4) and the Cauchy–Schwarz inequality we
obtain, for any β > 0,∑

n≥1

∣∣∣ �

[j,j+1]

qn(z, x) dµ(x)−
�

[j,j+1]

qn−1(z, x) dµ(x)
∣∣∣

≤
∑
n≥1

∑
1≤k≤2n

|q(z, d(j)
(k−1)n)− q(z, d(j)

(k′−1)(n−1))| |µ(∆(j)
kn)|

≤
{∑
n≥1

∑
1≤k≤2n

22nβ|q(z, d(j)
(k−1)n)− q(z, d(j)

(k′−1)(n−1))|
2
}1/2

×
{∑
n≥1

∑
1≤k≤2n

2−2nβ|µ(∆(j)
kn)|2

}1/2
.

(The number k′ is chosen such that ∆(j)
kn ⊂ ∆

(j)
k′(n−1).)

Theorem 1.1 of [6] implies that for some constant C and with α = β+1/2,{∑
n≥1

∑
1≤k≤2n

22nβ|q(z, d(j)
(k−1)n)− q(z, d(j)

(k′−1)(n−1))|
2
}1/2

≤ C‖q(z, ·)‖Bα22([j,j+1]).

Applying (3.5) we obtain (3.3).

Note that by Lemma 3.1, for β > 0,∑
n≥1

∑
1≤k≤2n

2−2nβ|µ(∆(j)
kn)|2 <∞ a.s.

In the following we will take the version of the parameter integral η(z)
that satisfies (3.3) (we will call it the regular version).

4. The problem. Consider equation (1.1) in the following mild sense:

(4.1) u(t, x) =
�

R
p(t, x− y)u0(y) dy +

t�

0

ds
�

R
p(t− s, x− y)f(s, y, u(s, y)) dy

+
�

R
dµ(y)

t�

0

p(t− s, x− y)σ(s, y) ds.
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Here

p(t, x) =
1

2a
√
πt
e−|x|

2/4a2t

is the Gaussian heat kernel, u(t, x) = u(t, x, ω) : [0, T ] × R × Ω → R is
an unknown measurable random function, and µ is a stochastic measure
defined on the Borel σ-algebra of R. The integrals of random functions with
respect to ds and dy are taken for each fixed ω ∈ Ω (some properties of such
integrals are studied in [10]).

We make the following assumptions throughout the paper.

Assumption 1. u0(y) = u0(y, ω) : R × Ω → R is measurable and
bounded, |u0(y, ω)| ≤ Cu0(ω).

Assumption 2. u0(y) is Hölder continuous in y ∈ R,

|u0(y1)− u0(y2)| ≤ Lu0(ω)|y1 − y2|β(u0), β(u0) ≥ 1/6.

Assumption 3. f(s, y, z) : [0, T ] × R × R → R is measurable and
bounded, |f(s, y, z)| ≤ Cf .

Assumption 4. f(s, y, z) is uniformly Lipschitz in y, z ∈ R,

|f(s, y1, z1)− f(s, y2, z2)| ≤ Lf (|y1 − y2|+ |z1 − z2|).

Assumption 5. σ(s, y) : [0, T ] × R → R is measurable and bounded,
|σ(s, y)| ≤ Cσ.

Assumption 6. σ(s, y) is uniformly Hölder continuous in y,

|σ(s, y1)− σ(s, y2)| ≤ Lσ|y1 − y2|β(σ), β(σ) > 1/2.

Note that the constants Lf and Lσ are independent of s. Also define

β̃ = min{2β(σ), 3/2}.

Recall that
	
R p(t, x) dx = 1.

5. Hölder continuity in x. We investigate the regularity of the paths
of the stochastic integral from (4.1).

Lemma 5.1. Suppose the function |y|τ is integrable with respect to µ
on R for some τ > 3/2 and Assumptions 1–6 hold. Then, for any fixed
t ∈ [0, T ],K > 0 and γ1 < (β̃ − 1)/2β̃, the stochastic process

ϑ(x) =
�

R
dµ(y)

t�

0

p(t− s, x− y)σ(s, y) ds, |x| ≤ K,

has a version Hölder continuous with exponent γ1.
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Proof. For fixed t, x1, x2 define

g(y) =
t�

0

p(t− s, x1 − y)σ(s, y) ds−
t�

0

p(t− s, x2 − y)σ(s, y) ds

=
t�

0

1
2a
√
π(t− s)

(
e
− |x1−y|

2

4a2(t−s) − e−
|x2−y|

2

4a2(t−s)
)
σ(s, y) ds.

In Step 1 below, for the difference ϑ(x1) − ϑ(x2), we estimate the integral	
[j,j+1] g(y) dµ(y). Here we will apply Lemma 3.2. In Step 2, we consider	
R g(y) dµ(y) and apply Lemma 3.1.

Step 1. We start from the following simple estimate. The inequality
1− e−δx ≤ δx for δ ≥ 0 yields

t�

0

1√
r

(1− e−δ/r) dr =
δ�

0

+
t�

δ

≤
δ�

0

1√
r
dr +

t�

δ

1√
r

δ

r
dr ≤ 4

√
δ.

Thus, for δ1, δ2 ≥ 0, we obtain

(5.1)
t�

0

1√
r
|e−δ1/r − e−δ2/r| dr ≤

t�

0

1√
r

(1− e−|δ2−δ1|/r) dr ≤ 4
√
|δ2 − δ1|.

Our first aim is to estimate ‖g‖Bα22([j,j+1]) using the value |x2 − x1|γ1 for
an appropriate constant γ1 > 0.

To this end, we use (3.2) and consider

g(y + h)− g(y)

= C

t�

0

1√
t− s

(
e
− |x1−y|

2

4a2(t−s) − e−
|x2−y|

2

4a2(t−s)
)

(σ(s, y + h)− σ(s, y)) ds

+ C

t�

0

σ(s, y + h)√
t− s

(
e
− |x1−y−h|

2

4a2(t−s) − e−
|x2−y−h|

2

4a2(t−s) − e−
|x1−y|

2

4a2(t−s) + e
− |x2−y|

2

4a2(t−s)
)
ds

= I1 + I2.

We have |x| ≤ K and |y| ≤ |j|+ 1. Assumption 5 and (5.1) for one term
of I1 lead to the estimate

(5.2)
∣∣∣∣ t�
0

1√
t− s

(
e
− |x1−y)|

2

4a2(t−s) − e−
|x2−y|

2

4a2(t−s)
)
σ(s, y + h) ds

∣∣∣∣
≤ Cσ

t�

0

1√
t− s

∣∣∣e− |x1−y|24a2(t−s) − e−
|x2−y|

2

4a2(t−s)
∣∣∣ ds
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≤ C|x2 − x1|1/2|x1 + x2 − 2y|1/2

≤ C(K + |j|+ 1)1/2|x2 − x1|1/2.
The second term of I1 is similar. Thus we obtain

|I1| ≤ C(K + |j|+ 1)1/2|x2 − x1|1/2.

Similarly, we can write I2 as a sum of two terms and arrive at the same
estimate. This way, we obtain

(w2(g, r))2 = sup
0≤h≤r

j+1−h�

j

|g(y + h)− g(y)|2 dy(5.3)

≤ C(K + |j|+ 1)|x2 − x1|.

Further we consider the estimate with a power of r. By Assumption 6
applied to I1,

(5.4) |I1| ≤ Chβ(σ)

∣∣∣∣ t�
0

1√
t− s

ds

∣∣∣∣ ≤ Chβ(σ),

j+1−h�

j

I2
1 dy ≤ Ch2β(σ).

As in (5.2), using Assumption 5 and (5.1) for one term of I2 we get

(5.5)
∣∣∣∣ t�
0

1√
t− s

(
e
− |x1−y−h|

2

4a2(t−s) − e−
|x1−y|

2

4a2(t−s)
)
σ(s, y + h) ds

∣∣∣∣
≤ Ch1/2|2x1 − 2y − h|1/2 ≤ C(K + |j|+ 1)1/2h1/2.

The other term of I2 is similar. So, for β(σ) > 1/2,

(5.6) |I2| ≤ C(K + |j|+ 1)1/2h1/2.

On the other hand, by the boundedness of σ together with the Lagrange
formula, for θ = min{|x1 − y − h|, |x1 − y|} and v = θ(2a

√
t− s)−1 we have

(5.7)
∣∣∣∣ t�
0

1√
t− s

(
e
− |x1−y−h|

2

4a2(t−s) − e−
|x1−y|

2

4a2(t−s)
)
σ(s, y + h) ds

∣∣∣∣
≤ C

t�

0

1√
t− s

e
− θ2

4a2(t−s)

∣∣∣∣(x1 − y − h)2

4a2(t− s)
− (x1 − y)2

4a2(t− s)

∣∣∣∣ ds
≤ C(K + |j|+ 1)h

t�

0

e
− θ2

4a2(t−s)

(t− s)3/2
ds

= C(K + |j|+ 1)hθ−1
∞�

θ/2a
√
t

e−v
2
dv ≤ C(K + |j|+ 1)hθ−1.
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Note that θ ≥ |y−x1|/2 for |y−x1| ≥ 2
√
h. For the integral on this domain,

we use the estimate (5.7):

(5.8)
�

[j,j+1−h]∩{|y−x1|≥2
√
h}

I2
2 dy

≤ C(K + |j|+ 1)2h2
�

{|y−x1|≥2
√
h}

1
|y − x1|2

dy = C(K + |j|+ 1)2h3/2.

For the other domain of integration, we apply (5.6) to see that

(5.9)
�

[j,j+1−h]∩{|y−x1|≤2
√
h}

I2
2 dy ≤ C(K + |j|+ 1)h3/2.

So, from (5.4), (5.8), and (5.9) we find that

(5.10) (w2(g, r))2 ≤ C(K + |j|+ 1)2rβ̃.

The product of (5.3) to the power λ, and (5.10) to the power 1 − λ,
0 < λ < 1, now satisfies

(w2(g, r))2 ≤ C(K + |j|+ 1)2rβ̃(1−λ)|x2 − x1|λ.

Therefore, for λ < 1− 2α/β̃ the integral in (3.2) is finite.
Further, estimates analogous to (5.2) yield

‖g‖L2([j,j+1]) ≤ C(K + |j|+ 1)1/2|x2 − x1|1/2.

Similarly, we obtain

(5.11) |g(j)| ≤ C(K + |j|+ 1)1/2|x2 − x1|1/2.

Therefore, for any 0 < γ1 < (β̃ − 1)/2β̃ there exists α > 1/2 such that

(5.12) ‖g‖Bα22([j,j+1]) ≤ C(K + |j|+ 1)|x2 − x1|γ1 .

Step 2. We apply Lemma 3.2 for the parameter z = (x1, x2, t) and
choose the regular version of integrals on [j, j + 1]. Using (5.11), (5.12) and
the Cauchy–Schwarz inequality, we obtain

|ϑ(x1)− ϑ(x2)| =
∣∣∣ �

R
g(y) dµ(y)

∣∣∣ ≤∑
j∈Z

∣∣∣ j+1�

j

g(y) dµ(y)
∣∣∣

≤
∑
j∈Z
|g(j)µ([j, j + 1])|

+ C
∑
j∈Z
‖g‖Bα22([j,j+1])

{∑
n≥1

2n(1−2α)
∑

1≤k≤2n

|µ(∆(j)
kn)|2

}1/2
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≤ C|x2 − x1|γ1
[∑
j∈Z

(K + |j|+ 1)1/2|µ([j, j + 1])|

+
∑
j∈Z

(K + |j|+ 1)
{∑
n≥1

2n(1−2α)
∑

1≤k≤2n

|µ(∆(j)
kn)|2

}1/2]
≤ C|x2 − x1|γ1

×
[(∑

j∈Z
(|j|+ 1)2ρ(K + |j|+ 1)(µ([j, j + 1]))2

)1/2(∑
j∈Z

(|j|+ 1)−2ρ
)1/2

+
(∑
n≥1

2n(1−2α)
∑
j∈Z

(K + |j|+ 1)2(|j|+ 1)2ρ
∑

1≤k≤2n

|µ(∆(j)
kn)|2

)1/2

×
(∑
j∈Z

(|j|+ 1)−2ρ
)1/2]

.

For any ρ > 1/2, we have
∑

j∈Z(|j| + 1)−2ρ < ∞. The sums involving the
stochastic measures have the form

∑∞
l=1(

	
X fl dµ)2, where

{fl(y), l ≥ 1} = {(|j|+ 1)ρ(K + |j|+ 1)1/2 1[j,j+1](y), j ∈ Z}
in the first part, and

{fl(y), l ≥ 1} = {2n(1−2α)/2(K + |j|+ 1)(|j|+ 1)ρ1
∆

(j)
kn

(y),

j ∈ Z, n ≥ 1, 1 ≤ k ≤ 2n}
in the second part of the last sum. Lemma 3.1 together with our integrability
condition for τ = ρ+ 1 finishes the proof.

Note that the estimate β̃ ≤ 3/2 implies γ1 < 1/6.

6. Hölder continuity in t

Lemma 6.1. Assume that for some τ > 5/2, the function |y|τ is inte-
grable with respect to µ on R and Assumptions 1–6 hold. Then for any fixed
x ∈ R and γ2 < (β̃ − 1)/6β̃ the stochastic process

ϑ̄(t) =
�

R
dµ(y)

t�

0

p(t− s, x− y)σ(s, y) ds, t ∈ [0, T ],

has a version Hölder continuous with exponent γ2.

Proof. For fixed x, t1, t2 define

ḡ(y) =
t2�

0

p(t2 − s, x− y)σ(s, y) ds−
t1�

0

p(t1 − s, x− y)σ(s, y) ds.
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In Steps 1–3 below, we consider the difference ϑ̄(t2) − ϑ̄(t1), and estimate
different parts of the integral

	
[j,j+1] ḡ(y) dµ(y). We will apply Lemma 3.2.

In Step 4, we consider
	
R ḡ(y) dµ(y) using Lemma 3.1.

We will estimate ‖ḡ‖Bα22([j,j+1]) using the value |t2− t1|γ2 . In this section
it is assumed that t1 < t2. To estimate (3.2), we will write

ḡ(y + h)− ḡ(y) = J1 − J2, J1 = J11 + J12, J2 = J21 + J22 = J̄21 + J̄22

and consider each of the terms

N(Jmn) =
1�

0

r−2α−1
(

sup
0≤h≤r

j+1−h�

j

J2
mn dy

)
dr , 1/2 < α < 1,

separately.

Step 1. Consider

J1 =
t2�

t1

e
− |x−y−h|

2

4a2(t2−s)

2a
√
π(t2 − s)

σ(s, y + h) ds−
t2�

t1

e
− |x−y|2

4a2(t2−s)

2a
√
π(t2 − s)

σ(s, y) ds.

By Assumption 6, we have

|J11| =
∣∣∣∣ t2�
t1

e
− |x−y−h|

2

4a2(t2−s)

2a
√
π(t2 − s)

(σ(s, y + h)− σ(s, y)) ds
∣∣∣∣

≤ Chβ(σ)
t2�

t1

1√
t2 − s

ds = Chβ(σ)
√
t2 − t1.

So, for 1/2 < α < β(σ),

(6.1) N(J11) ≤ C(t2 − t1).

As in (5.7), for the second term of J1 for ζ = min{|x − y − h|, |x − y|}
and v = ζ2(4a2(t2 − s))−1 we have

|J12| =
∣∣∣∣ t2�
t1

1
2a
√
π(t2 − s)

(
e
− |x−y−h|

2

4a2(t2−s) − e−
|x−y|2

4a2(t2−s)
)
σ(s, y) ds

∣∣∣∣(6.2)

≤ Ch(|x|+ |y|+ 1)
t2�

t1

e
− ζ2

4a2(t2−s)

(t2 − s)3/2
ds

= Ch(|x|+ |y|+ 1)ζ−1
∞�

ζ2/4a2(t2−t1)

e−v√
v
dv

≤ Ch(|x|+ |j|+ 1)ζ−2
√
t2 − t1.
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(In the last inequality we have used the fact that |y| ≤ |j| + 1 and
√
v ≥

ζ(2a
√
t2 − t1)−1 in the domain of integration.)

We will estimate
	
[j,j+1−h] J

2
12 dy on two domains separately. Take any

0 < ϕ < 1/3. Then for |y − x| ≥ 2hϕ we have ζ ≥ |y − x|/2. Using (6.2), we
get

(6.3)
�

[j,j+1−h]∩{|y−x|≥2hϕ}

J2
12 dy

≤ C(t2 − t1)h2(|x|+ |j|+ 1)2
�

{|y−x|≥2hϕ}

dy

|y − x|4

= C(|x|+ |j|+ 1)2(t2 − t1)h2−3ϕ.

Consider the integral of J2
12 on the other domain. Obviously,

t�

0

1√
r
|e−δ2/r − e−δ1/r| dr ≤

t�

0

1√
r
dr = 2

√
t.

Multiplying the power λ of this inequality and the power 1− λ of (5.1), for
any 0 < λ < 1 we get

t�

0

1√
r
|e−δ2/r − e−δ1/r| dr ≤ C|δ2 − δ1|(1−λ)/2tλ/2.

This way,

t2�

t1

1√
t2 − s

∣∣∣e− |x−y−h|24a2(t2−s) − e−
|x−y|2

4a2(t2−s)
∣∣∣ ds

≤ C
(
| |x− y − h|2 − |x− y|2|

4a2

)(1−λ)/2

(t2 − t1)λ/2

≤ C(|x|+ |j|+ 1)h(1−λ)/2(t2 − t1)λ/2.

Combining this with Assumption 5, we get

(6.4)
�

[j,j+1−h]∩{|y−x|<2hϕ}

J2
12 dy ≤ C(|x|+ |j|+ 1)2h1+ϕ−λ(t2 − t1)λ.

From (6.3) and (6.4) it follows that for

2− 3ϕ− 2α > 0, 1 + ϕ− λ− 2α > 0

the value N(J12) is finite. Thus, for any λ < 1/3 there exist 1/2 < α < 1
and 0 < ϕ < 1/3 such that

(6.5) N(J12) ≤ C(|x|+ |j|+ 1)2(t2 − t1)λ.
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Step 2. Consider

J2 =
t1�

0

[
e
− |x−y−h|

2

4a2(t1−s)

2a
√
π(t1 − s)

− e
− |x−y−h|

2

4a2(t2−s)

2a
√
π(t2 − s)

]
σ(s, y + h) ds(6.6)

−
t1�

0

[
e
− |x−y|2

4a2(t1−s)

2a
√
π(t1 − s)

− e
− |x−y|2

4a2(t2−s)

2a
√
π(t2 − s)

]
σ(s, y) ds = J21 + J22.

Step 2.1. We estimate J22; the term J21 is similar. We have

|J22| ≤ C
t1�

0

[(
1√
t1 − s

− 1√
t2 − s

)
e
− |x−y|2

4a2(t2−s)(6.7)

+
1√
t1 − s

(
e
− |x−y|2

4a2(t2−s) − e−
|x−y|2

4a2(t1−s)

)]
ds.

For the first term of (6.7), we estimate the exponential by 1 to get

(6.8)
t1�

0

(
1√
t1 − s

− 1√
t2 − s

)
e
− |x−y|2

4a2(t2−s) ds ≤ 2
√
t2 − t1.

The second term of (6.7) will be divided into two parts:

(6.9)
t1�

0

1√
t1 − s

(
e
− |x−y|2

4a2(t2−s) − e−
|x−y|2

4a2(t1−s)
)
ds =

t1�

t1− 3√t2−t1

+
t1− 3√t2−t1�

0

.

The first term of (6.9) is bounded by

(6.10)
t1�

t1− 3√t2−t1

1√
t1 − s

ds = 2 6
√
t2 − t1.

In the second term of (6.9), we apply the inequality e−z1 − e−z2 ≤ z2 − z1
for 0 ≤ z1 ≤ z2 to obtain

(6.11)
t1− 3√t2−t1�

0

1√
t1 − s

(
e
− |x−y|2

4a2(t2−s) − e−
|x−y|2

4a2(t1−s)
)
ds

≤ C|x− y|2
t1− 3√t2−t1�

0

t2 − t1
(t1 − s)3/2(t2 − s)

ds ≤ C(|x|+ |y|)2(t2 − t1)1/6.

In the second integral of (6.11) we change t1 − s and t2 − s to 3
√
t2 − t1, so

that the integrand increases and we arrive at the desired estimate.
Combining (6.8), (6.10) and (6.11) yields

(6.12) |J22| ≤ C(|x|+ |j|+ 1)2|t2 − t1|1/6.
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Analogously we can get the same estimate for J21. Therefore,

(6.13) sup
0≤h≤r

j+1−h�

j

J2
2 dy ≤ C(|x|+ |j|+ 1)4|t2 − t1|1/3.

Step 2.2. Now we turn to J2. Write

J2 =
t1�

0

1
2a
√
π(t1 − s)

(
e
− |x−y−h|

2

4a2(t1−s)σ(s, y + h)− e−
|x−y|2

4a2(t1−s)σ(s, y)
)
ds

−
t1�

0

1
2a
√
π(t2 − s)

(
e
− |x−y−h|

2

4a2(t2−s)σ(s, y + h)− e−
|x−y|2

4a2(t2−s)σ(s, y)
)
ds

= J̄21 + J̄22,

with

|J̄21| ≤
t1�

0

1
2a
√
π(t1 − s)

e
− |x−y−h|

2

4a2(t1−s) |σ(s, y + h)− σ(s, y)| ds

+
∣∣∣∣ t1�

0

1
2a
√
π(t1 − s)

(
e
− |x−y−h|

2

4a2(t1−s) − e−
|x−y|2

4a2(t1−s)
)
σ(s, y) ds

∣∣∣∣
= J̄211 + J̄212.

By Assumption 6, we have

(6.14) J̄211 ≤ CLσhβ(σ)
t1�

0

1√
t1 − s

ds ≤ Chβ(σ),

j+1−h�

j

J̄2
211 dy ≤ Ch2β(σ).

Along the lines leading from (5.5) to (5.9), we get

(6.15)
j+1−h�

j

J̄2
212 dy ≤ C(|x|+ |j|+ 1)2h3/2.

Now (6.14) and (6.15) show

(6.16) sup
0≤h≤r

j+1−h�

j

J̄2
21 dy ≤ C(|x|+ |j|+ 1)2rβ̃.

Concerning J̄22, for t1 < t2 we have

|J̄22| ≤ C
t2�

0

1√
t2 − s

∣∣∣e− |x−y−h|24a2(t2−s)σ(s, y + h)− e−
|x−y|2

4a2(t2−s)σ(s, y)
∣∣∣ ds.

We may proceed analogously to the estimate of J̄21 and obtain (6.16) for J̄22.
Consequently,
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(6.17) sup
0≤h≤r

j+1−h�

j

J2
2 dy ≤ C(|x|+ |j|+ 1)2rβ̃.

Raising (6.17) to the power 1−λ and (6.13) to the power λ, we conclude
that

sup
0≤h≤r

j+1−h�

j

J2
2 dy ≤ C(|x|+ |j|+ 1)2+2λ|t1 − t2|λ/3rβ̃(1−λ).

Therefore, for any λ < 1− 1/β̃ there exists α > 1/2 such that

(6.18) N(J2) ≤ C(|x|+ |j|+ 1)2+2λ|t1 − t2|λ/3.
Recall that we have larger Hölder exponents in (6.1) and (6.5).

Step 3. Consider

|ḡ(y)| ≤
∣∣∣ t1�

0

(p(t1 − s, x− y)− p(t2 − s, x− y))σ(s, y) ds
∣∣∣(6.19)

+
∣∣∣ t2�
t1

p(t2 − s, x− y)σ(s, y) ds
∣∣∣.

The first integral in (6.19) equals CJ22, and we can use estimate (6.12). For
the second summand of (6.19) we have∣∣∣ t2�

t1

p(t2 − s, x− y)σ(s, y) ds
∣∣∣ ≤ C t2�

t1

1√
t2 − s

ds = C
√
t2 − t1.

Therefore

|ḡ(j)| ≤ C(|x|+ |j|+ 1)2|t2 − t1|1/6,(6.20)

‖ḡ(y)‖L2([j,j+1]) ≤ C(|x|+ |j|+ 1)2|t2 − t1|1/6,
completing the estimate of the terms of (3.3).

Therefore, for any 0 < γ2 < (β̃ − 1)/6β̃ there exists α > 1/2 such that

(6.21) ‖ḡ‖Bα22([j,j+1]) ≤ C(|x|+ |j|+ 1)2|t2 − t1|γ2 .
Step 4. Recall Step 2 of the proof of Lemma 5.1 for the parameter

z = (x, t1, t2) and the function ḡ. We use (6.20) and (6.21) instead of (5.11)
and (5.12), so we get τ = ρ+ 2 > 5/2.

Note that from β̃ ≤ 3/2 it follows that γ2 < 1/18.

7. Solution to the equation

Theorem. Suppose Assumptions 1–6 hold.

(i) Equation (4.1) has a solution u(t, x). If v(t, x) is another solution,
then for each t and x, u(t, x) = v(t, x) a.s.



246 V. Radchenko

(ii) Suppose the function |y|τ is integrable with respect to µ on R for
some τ > 3/2. Then, for any fixed t ∈ [0, T ], K > 0, and γ1 <
(β̃ − 1)/2β̃, the stochastic process u(t, x), x ∈ [−K,K], has a version
Hölder continuous with exponent γ1.

(iii) Suppose the function |y|τ is integrable with respect to µ on R for
some τ > 5/2. Then for any fixed δ > 0, K > 0, γ2 < (β̃ − 1)/6β̃,
and γ1 < (β̃ − 1)/2β̃, the stochastic function u(t, x) has a version
ũ(t, x) such that for some Lũ(ω) > 0,

|ũ(t1, x1)− ũ(t2, x2)| ≤ Lũ(|t1 − t2|γ2 + |x1 − x2|γ1),
t ∈ [δ, T ], x ∈ [−K,K].

Proof. Consider the following standard iteration process. Take u(0)(t, x)
= 0 and set

u(n+1)(t, x) =
�

R
p(t, x− y)u0(y) dy(7.1)

+
t�

0

ds
�

R
p(t− s, x− y)f(s, y, u(n)(s, y)) dy

+
�

R
dµ(y)

t�

0

p(t− s, x− y)σ(s, y) ds, n ≥ 0.

The measurability of the first and second summands of (7.1) follows from
the Fubini theorem. The third summand may be rewritten as the limit in
probability of the integrals of the simple functions

�

R
hi(x, t, y) dµ(y), i→∞, hi(x, t, y) =

l(i)∑
k=1

c
(i)
k (x, t)1

A
(i)
k

(y).

By [10, Lemma 2], the limit in probability of measurable processes is again
measurable.

Further, for all n, t, x we take the same version of the stochastic integral,
so the estimates below hold for all ω ∈ Ω. By Assumption 4, we get

(7.2) |u(n+1)(t, x)− u(n)(t, x)|

≤ Lf
t�

0

ds
�

R
p(t− s, x− y)|u(n)(s, y)− u(n−1)(s, y)| dy, n ≥ 2.

By the boundedness of f , we obtain

|u(2)(t, x)− u(1)(t, x)| ≤ 2Cf
t�

0

ds
�

R
p(t− s, x− y) dy = 2Cf t.
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Set

gn(t) = sup
x∈R
|u(n+1)(t, x)− u(n)(t, x)|, n ≥ 1.

Then from (7.2) we obtain

gn(t) ≤ Lf
t�

0

gn−1(s) ds.

By induction,

(7.3) gn(t) ≤ 2CfLnf
tn+1

(n+ 1)!
,

hence the series
∑∞

n=0 gn(t) converges uniformly on [0, T ]. We define
u(t, x) := limn→∞ u

(n)(t, x). Taking the limit in (7.1) as n → ∞, we ar-
rive at (4.1).

Note that the paths of the right hand side of (4.1) are continuous in
t, x for the regular version of stochastic integral, and u is continuous in
probability. We can take the continuous version of u and exclude ω such
that (4.1) fails for some rational x, t. Then the estimates below hold for all
ω from a set of probability 1.

If u(t, x) and v(t, x) are both solutions to (4.1), then

u(t, x)− v(t, x) =
t�

0

ds
�

R
p(t− s, x− y)[f(s, y, u(s, y))− f(s, y, v(s, y))] dy.

Applying Assumption 4, we may use the arguments leading from (7.2)
to (7.3) for

g(t) = sup
x∈R
|u(t, x)− v(t, x)|

to get

g(t) ≤ 2CfLnf
tn+1

(n+ 1)!
≤ 2CfLnf

Tn+1

(n+ 1)!
.

Consequently, g = 0 and the solution is unique. Part (i) of the theorem is
proved.

We now investigate the Hölder continuity in x of the solution on bounded
intervals of R.

We claim that for each n ≥ 0 there is some Lu(n)(t) > 0 such that

|u(n)(t, x1)− u(n)(t, x2)| ≤ Lu(n)(t)|x1 − x2|γ1 .

We have Lu(0) = 0. We will proceed by induction.
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Applying (7.1), Lemma 5.1, the change of variables y 7→ y + x2 − x1 in
the integrals with respect to dy involving x2, and our Assumptions, we have

|u(n+1)(t, x1)− u(n+1)(t, x2)|

≤
�

R
p(t, x1 − y)|u0(y)− u0(y + x2 − x1)| dy

+
t�

0

ds
�

R
p(t− s, x1 − y)

× |f(s, y, u(n)(s, y))− f(s, y + x2 − x1, u
(n)(s, y + x2 − x1))| dy

+ C|x1 − x2|γ1

≤ Lu0 |x1 − x2|β(u0)

+
t�

0

ds
�

R
p(t− s, x1 − y)Lf (|x1 − x2|+ Lu(n)(s)|x1 − x2|γ1) dy

+ C|x1 − x2|γ1 .

Thus,

Lu(n+1)(t) ≤ L+ L

t�

0

Lu(n)(s) ds

for some constant L, so the claim is true. Inductively, we obtain the finite
upper bound

Lu(n)(t) ≤ LeLt ≤ LeLT ,

which proves the Hölder continuity in x. Thus we get part (ii) of the theorem.
Note that L is independent of t.

Further, for fixed x, we prove the Hölder continuity in t of the solution
u(t, x) on intervals [δ, T ], δ > 0. For δ ≤ t1 < t2 ≤ T and the regular version
of u(·, x), using Lemma 6.1, we have

|u(t2, x)− u(t1, x)| ≤
�

R
|p(t2, x− y)− p(t1, x− y)| |u0(y)| dy

+
∣∣∣ t2�

0

ds
�

R
p(t2 − s, x− y)f(s, y, u(s, y)) dy

−
t1�

0

ds
�

R
p(t1−s, x−y)f(s, y, u(s, y)) dy

∣∣∣+C|t1 − t2|γ2
= Y1 + Y2 + C|t1 − t2|γ2 .

For Y1, Assumption 1 shows
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Y1 ≤ C
�

R

∣∣∣∣ 1√
t2
e
− (x−y)2

4a2t2 − 1√
t1
e
− (x−y)2

4a2t1

∣∣∣∣ dy
≤ C

�

R

∣∣∣∣ 1√
t2
− 1√

t1

∣∣∣∣ e− (x−y)2

4a2t1 dy + C
�

R

1√
t2

∣∣∣e− (x−y)2

4a2t2 − e
− (x−y)2

4a2t1

∣∣∣ dy
= C

(
1√
t1
− 1√

t2

)√
t1 + C

1√
t2

(
√
t2 −

√
t1) ≤ Cδ−1 (t2 − t1).

Now we estimate Y2 in the following way:

Y2 ≤
t2�

t1

ds
�

R
p(t2 − s, x− y)|f(s, y, u(s, y))| dy

+
t1�

0

ds
�

R
|p(t2 − s, x− y)− p(t1 − s, x− y)| |f(s, y, u(s, y))| dy

= Y21 + Y22.

By boundedness of f , Y21 ≤ Cf (t2−t1). Using the equality
	
R e
−z2/b2 dz = Cb

and some simple calculations, we obtain

Y22 ≤ C
t1�

0

ds
�

R

∣∣∣∣ 1√
t2 − s

e
− (x−y)2

4a2(t2−s) − 1√
t1 − s

e
− (x−y)2

4a2(t1−s)

∣∣∣∣ dy
≤ C

t1�

0

ds
�

R

∣∣∣∣ 1√
t2 − s

− 1√
t1 − s

∣∣∣∣e− (x−y)2

4a2(t2−s) dy

+ C

t1�

0

ds
�

R

1√
t1 − s

∣∣∣e− (x−y)2

4a2(t2−s) − e−
(x−y)2

4a2(t1−s)
∣∣∣ dy = C

√
t2 − t1.

For a given interval [−K,K], the constant C is independent of x.
Therefore, under the assumptions of (iii), we can find a version ũ(x)

that is Hölder continuous in x for fixed t, and a version ũ(t) that is Hölder
continuous in t for fixed x. We exclude all ω ∈ Ω such that ũ(x)(t, x) 6=
ũ(t)(t, x) for at least one pair of rational (t, x) ∈ [δ, T ]×[−K,K]. For other ω,
we put ũ = ũ(x) = ũ(x) for rational (t, x) and define ũ on [δ, T ] × [−K,K]
by continuity. Thus we get a version ũ(t, x) that is Hölder continuous in x
and t.

We can compare our values of γ1 and γ2 with the results obtained for
SPDEs with Gaussian noise. In [5], for a class of parabolic SPDEs with
Banach space valued noise, it is proved that the solution is Hölder con-
tinuous in time with exponent α and Hölder continuous in space with ex-
ponent β, provided that 2α + β < 1/2. For the equation studied in [21,
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Chapter 3], Corollary 3.4 of [21] states Hölder continuity with any exponent
less than 1/4.
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