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Regularity of the Hardy–Littlewood
maximal operator on block decreasing functions

by

J. M. Aldaz (Madrid) and F. J. Pérez Lázaro (Logroño)

Abstract. We study the Hardy–Littlewood maximal operator defined via an uncon-
ditional norm, acting on block decreasing functions. We show that the uncentered maximal
operator maps block decreasing functions of special bounded variation to functions with
integrable distributional derivatives, thus improving their regularity. In the special case
of the maximal operator defined by the `∞-norm, that is, by averaging over cubes, the
result extends to block decreasing functions of bounded variation, not necessarily special.

1. Introduction. The usefulness of the Hardy–Littlewood maximal
function M stems basically from two facts:

1) It is larger than the given function, since |f | ≤ Mf a.e., but it is
not too large, since ‖Mf‖p ≤ cp‖f‖p for 1 < p ≤ ∞, while on L1,
M satisfies a weak type (1, 1) inequality.

2) It is more regular than the original function: If f is measurable, then
Mf is lower semicontinuous.

The fact that Mf controls f and its averages over balls (by definition),
together with its Lp boundedness, leads to its frequent use in chains of in-
equalities, while its lower semicontinuity allows one to decompose its level
sets using dyadic cubes. This is the basis of the often applied Calderón–
Zygmund decomposition: Utilize Mf as a proxy for f , splitting the open
set {Mf > t} into suitable disjoint cubes. This might be impossible to
do directly with {f > t}, since in principle this set is merely measur-
able.

Regarding derivatives, the study of the regularity properties of the
Hardy–Littlewood maximal function is much more recent. It was initiated
by Juha Kinnunen [Ki], who proved that the centered maximal operator is
bounded on the Sobolev spaces W 1,p(Rd) for 1 < p ≤ ∞. Since then, a good
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deal of work has been done within this line of research (cf. for instance [KiLi],
[HaOn], [KiSa], [Lu], [Bu], [Ko1], [Ko2], [Ta]). The overall emerging pattern,
concerning regularity, seems to be that the worse f is, the greater the im-
provement of Mf when compared to f . In fact, if the functions are “good",
there may not be any improvement at all. For instance, the maximal function
of a C1 function need not be C1, while the maximal function of a Lipschitz or
an α-Hölder function will be Lipschitz or α-Hölder, but in general no better
than that, though constants will be lowered (so there is some quantitative
improvement; cf. [ACP]).

In the present paper, only the uncentered maximal function will be con-
sidered, since it has better regularity properties than its centered relative.
A model example of this fact is the following: Let f be the characteristic
function of the unit interval in the real line. Then both f and the centered
maximal function of f are discontinuous at 0 and 1, while Mf is Lipschitz
on R with constant 1.

Here, the dimension d will always be at least two. The one-dimensional
case was studied in [AlPe1]; there we showed that given an arbitrary interval
I ⊂ R, if f : I → R is of bounded variation and Df denotes its distributional
derivative, then Mf is absolutely continuous and ‖DMf‖L1(I) ≤ |Df |(I),
where |Df | is the total variation of Df (cf. [AlPe1, Theorem 2.5]). Hence,
M improves the regularity of BV functions, so, just as in the case of the
Calderón–Zygmund decomposition, Mf can be used as a proxy for f , with
the function DMf replacing the measure Df . Along these lines, a Landau
type inequality is presented in [AlPe1, Theorem 5.1]. Of course, having a
function as derivative, instead of a singular measure, makes it possible to
consider ‖DMf‖Lp for p > 1. In turn, this suggests the possibility of obtain-
ing inequalities of Gagliardo–Nirenberg–Sobolev for functions less regular
than those in the Sobolev classes.

Thus, it is interesting to try to find higher-dimensional versions of [AlPe1,
Theorem 2.5]. In [AlPe2, Theorem 2.19 and Remark 2.20], we showed that
the local maximal function MR (where the radii of balls are bounded above
by R) maps BV(Rd) boundedly into L1(Rd), with constant of the order
of logR. In fact, even the local, strong maximal function is bounded from
BV(Rd) into L1(Rd) (with constant of the order of logdR). However, the
derivative of the local, strong maximal function is not always comparable
to ‖f‖BV (cf. [AlPe2, Theorem 2.21]), so we have unboundedness of this
operator on BV.

Regarding the maximal operator, two questions remain open. First,
whether it regularizes functions in BV, so if f ∈ BV, thenMf is ACL (abso-
lutely continuous on lines, the natural generalization of absolute continuity to
d > 1), and second, whether the size ofDMf is not too large, i.e., there exists
a constant c such that |DMf |(Rd) ≤ c‖f‖BV. At this point both questions
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seem to be intractable. We mention, after recalling thatW 1,1(Rd) ⊂ BV(Rd),
a related and simpler question from [HaOn, Question 1]: Is the operator
f 7→ |∇Mf | bounded from the Sobolev space W 1,1(Rd) to L1(Rd)?

The results presented here are obtained by restricting ourselves to a
smaller class of functions: the block decreasing (or unconditional decreasing)
functions of bounded variation (which, in particular, contain the W 1,1(Rd)
block decreasing functions). For these functions Hajłasz and Onninen’s ques-
tion has a positive answer.

In general, the balls we use when defining the maximal operator are
unconditional. Specializing to cubes, we obtain stronger results.

More precisely, let f ≥ 0 be block decreasing. We show that if Mf is de-
fined using unconditional balls, then the variation of f controls the variation
ofMf (Theorem 7). If f has finite variation, thenMf is continuous a.e. with
respect to the (d − 1)-dimensional Hausdorff measure (no unconditionality
needed here, cf. Theorem 8). Further assumptions on f lead to better results:
If f is also of special bounded variation (so the derivative Df has no Cantor
part), then Mf has an integrable weak gradient (cf. Theorem 11). When
the maximal function is defined using cubes, Mf has a weak gradient even
if Df has a nontrivial Cantor part (cf. Theorem 12). Identical results hold
for the local maximal operator MR. Using the fact that MR maps BV(Rd)
boundedly into L1(Rd), we obtain boundedness results forMR from the non-
negative block decreasing functions into the functions of bounded variation
(cf. Corollary 13).

2. Definitions and results

Definition 1. A function f : Rd → [−∞,∞] is unconditional if for all
x = (x1, . . . , xd) ∈ Rd we have f(x1, . . . , xd) = f(|x1|, . . . , |xd|).

Definition 2. Let f : Rd → [−∞,∞] be unconditional. Then f is block
decreasing if the restriction of f to the nonnegative cone [0,∞)d is decreasing
in each variable.

Remark 3. Observe that being unconditional depends on the system
of coordinates chosen for Rd. A rotation, for instance, may destroy this
property. The term “block decreasing” comes from the statistical literature,
while in functional analysis “unconditional decreasing” is used instead. Ra-
dial functions with respect to unconditional norms in Rd (for instance, the
`p-norms, 1 ≤ p ≤ ∞) are block decreasing. But in general, a block de-
creasing function may have nonconvex level sets, in which case it is not
radial with respect to any norm. On the other hand, a norm ν may fail
to be unconditional; then a radial function with respect to ν is not block
decreasing.
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Given a norm µ in Rd, we denote by Bµ(y, δ) := {x ∈ Rd : µ(x − y)
≤ δ} the closed µ-ball centered at y ∈ Rd and of radius δ > 0. Absolute
values around a set denote its k-dimensional Lebesgue measure. While the
dimension k is not indicated in |A|, it will usually be clear from the context.
When doubts may arise, we explicitly state what k is.

Definition 4. Let f ∈ L1
loc(Rd). Then for all x ∈ Rd, the uncentered

maximal function Mµf is defined by

(2.1) Mµf(x) = sup
{y∈Rd, δ>0 :x∈Bµ(y,δ)}

1
|Bµ(y, δ)|

�

Bµ(y,δ)

|f(u)| du.

Let R > 0 be fixed. The localmaximal functionMR,µf is defined by imposing
an extra condition on the radius of balls: δ ≤ R. Apart from that, the
definition is identical to (2.1).

We write Mp instead of Mµ in the special case where 1 ≤ p ≤ ∞ and
µ is an `p-norm, i.e., given by ‖x‖p := (|x1|p + |x2|p + · · · + |xd|p)1/p when
1 ≤ p < ∞, and by ‖x‖∞ := max1≤i≤d{|x1|, . . . , |xd|}. Likewise, we write
Bp instead of Bµ for balls.

Remark 5. Since all norms on Rd are equivalent, maximal functions
defined using different norms are always pointwise comparable. However,
comparability yields no information about regularity properties, or the size
of derivatives, if they exist in some appropriate sense.

From now on, we assume that all functions appearing in this paper are
locally integrable, including functions of the formMµf . It might happen that
for some f ∈ L1

loc(Rd), Mµf ≡ ∞. But then Mµf is constant, and thus its
variation is zero under any reasonable notion of variation. So we exclude
this trivial case from any further consideration. It follows that Mµf is finite
almost everywhere. But in general, something else is needed to have local
integrability of Mµf . For the type of functions studied in this paper, that is,
for block decreasing functions of bounded variation, the local integrability
of Mµf is easy to check (cf. Lemma 14 below); but some auxiliary results
are stated in greater generality, and for these we assume local integrability
of Mµf from the start.

Let Ω ⊂ Rd be open. The following definition is taken from [AFP, p. 119].

Definition 6. For f ∈ L1
loc(Ω), the variation V (f,Ω) of f in Ω is given

by
V (f,Ω) := sup

{ �
Ω

f div φdx : φ ∈ [C1
c (Ω)]d, ‖φ‖∞ ≤ 1

}
.

Suppose V (f,Ω) < ∞, i.e., f is of finite variation. If additionally f ∈
L1(Ω), we write f ∈ BV(Ω), where BV stands for bounded variation. In-
tegration by parts shows that if f is continuously differentiable in Ω, then
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V (f,Ω) =
	
Ω |∇f | dx. By Proposition 3.6, p. 120 of [AFP], V (f,Ω) < ∞ if

and only if there exists an Rd-valued Radon measure Df = (D1f, . . . ,Ddf)
on Ω such that �

Ω

f div φdx = −
�

Ω

φdDf ∀φ ∈ [C1
c (Ω)]d.

That is, the distributional derivative is representable by a Radon measureDf
on Ω with total variation |Df |(Ω) < ∞. Furthermore, |Df |(Ω) = V (f,Ω).
The norm of f ∈ BV(Ω) is defined by ‖f‖BV(Ω) := ‖f‖L1(Ω) + |Df |(Ω).
Note that W 1,1(Ω) ⊂ BV(Ω), and the Sobolev norm on W 1,1(Ω) is simply
the restriction to the latter space of the BV norm. Note also that a function
f ≥ 0 of bounded variation on Rd need not be bounded (provided d ≥ 2,
as we always assume in this paper); well known examples exist in W 1,1(Rd).
However, if f is also block decreasing, then the hypothesis V (f,Rd) < ∞
entails that the precise representative f∗ of f (defined by taking the limsup
in the Lebesgue Differentiation Theorem) must be finite except perhaps on
a negligible (d − 1)-dimensional Hausdorff measurable set. Since f is block
decreasing, either f∗(0) = ∞ or f∗ is bounded. But we must allow the
possibility that f∗(0) = ∞, so we will consider functions with values in
[0,∞]. In general we do not assume that f is integrable.

The first theorem of the paper states that the variation of Mµf is con-
trolled by the variation of f , and the same happens with the local maximal
function MR,µf , with constant independent of R.

Theorem 7. Let f : Rd → [0,∞] be a block decreasing function and let µ
be an unconditional norm in Rd. Then V (Mµf,Rd) ≤ c(µ, d)V (f,Rd), and ,
with the same constant c(µ, d), V (MR,µf,Rd) ≤ c(µ, d)V (f,Rd) for every
R > 0.

The next theorem states that the maximal function of a block decreas-
ing function of finite variation is continuous, except perhaps on a negligible
(d − 1)-dimensional Hausdorff measurable set. The same happens with the
local maximal function. Observe that unconditionality of the norm is not
assumed here.

Theorem 8. Let f : Rd → [0,∞] be a block decreasing function such
that V (f,Rd) < ∞. Let µ be a norm in Rd, and let R > 0. Then Mµf and
MR,µf are continuous a.e. with respect to Hd−1.

It is well known (see [AFP, pp. 184–186]) that if f ∈ L1
loc(Rd) and

V (f,Rd) < ∞, then the distributional derivative Df of f can be decom-
posed into three parts,

Df = Daf +Djf +Dcf,
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where Daf is absolutely continuous, Djf is the jump part of Df , its restric-
tion to the jump set of f (to be defined below, cf. Definition 24), and Dcf
is the Cantor part of the measure, the singular part of Df that lives on the
set where f is approximately continuous (cf. [AFP, p. 160] for the definition
of approximate continuity). The functions f : Rd → [−∞,∞] of bounded
variation for which Dcf = 0 are called functions of special bounded varia-
tion, and denoted by SBV(Rd). If both Dcf and Djf vanish, then f is in the
Sobolev space W 1,1(Rd), and Df(A) =

	
A∇f for every measurable set A.

Example 9. In order to illustrate some notions that have already been
defined and others that will appear later on, and also to explain the termi-
nology, consider the following simple example. Let f be the characteristic
function of the unit square [−1/2, 1/2]2 ⊂ R2. Then f is a block decreasing,
BV function, with |Df | = |Djf | and |Df |(R2) = 4, the length of the bound-
ary of the square. This boundary is also the jump set of f (cf. Definition 24
below). And |Df | = |Djf | is just the linear Lebesgue measure on the jump
set. Since Dcf = 0, f is actually a SBV function. The centered maximal
function of f has the same jump set as f , though the jumps are smaller, and
the uncentered maximal function M∞f associated to cubes has empty jump
set. For a general norm µ, we know from the preceding theorem that the
jump set of Mµf has linear measure at most zero. In fact, it is easy to see
that the jump set of Mµf contains, at most, the four corners of the square.

The jump set of a function is obviously disjoint from the set of its con-
tinuity points. From the preceding theorem, together with the fact that if
E ⊂ Rd has Hd−1-measure zero then Djf(E) = 0 (cf. [AFP, formula (3.90),
p. 184]), we obtain the following corollary. It says that essentially (with re-
spect to Hd−1) Mµf has no jumps.

Corollary 10. Let f be a locally integrable, nonnegative block decreas-
ing function such that V (f,Rd) <∞. Let µ be a norm in Rd, and let R > 0.
Then DjMµf = 0, and DjMR,µf = 0.

The integrability of f is not assumed in the next result, so it deals with
nonnegative block decreasing functions slightly more general than those in
SBV(Rd).

Theorem 11. Let f : Rd → [0,∞] be a block decreasing function with
V (f,Rd) < ∞ and |Dcf | = 0. Let µ be an unconditional norm in Rd, and
let R > 0. Then Mµf has a weak gradient ∇Mµf in L1, and there exists a
constant c(µ, d) > 0 such that�

Rd
|∇Mµf(x)| dx ≤ c(µ, d)V (f,Rd).

The same result , with the same constant c(µ, d), holds for MR,µf .
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This theorem gives a positive answer to [HaOn, Question 1] in the special
case of functions f with |f | block decreasing. In fact, the condition f ∈
W 1,1(Rd) from [HaOn, Question 1] is relaxed (to V (f,Rd) < ∞ and |Dcf |
= 0).

If µ happens to be the `∞-norm, then the “no Cantor part” hypothesis
|Dcf | = 0 can be dispensed with. The reason for this is that block decreasing
functions are particularly well adapted to arguments using cubes, or more
generally, rectangles with sides parallel to the axes. Even though the next
result is stated for cubes only, it also holds for any norm defined using a
fixed rectangle (with sides parallel to the axes).

Theorem 12. Let f : Rd → [0,∞] be a block decreasing function such
that V (f,Rd) < ∞, let M∞f be the maximal function of f defined us-
ing cubes, i.e., `∞-balls, and let R > 0. Then M∞f has a weak gradient
∇M∞f ∈ L1(Rd), and �

Rd
|∇M∞f(x)| dx ≤ cdV (f,Rd).

The same result holds for MR,∞f .

Denote by BD(Rd) the cone of nonnegative block decreasing functions
in BV(Rd), measured with the BV norm. The preceding theorems, together
with Theorem 2.19 and Remark 2.20 of [AlPe2], entail the following bound-
edness results on BD(Rd) for the local maximal operator.

Corollary 13. Given an unconditional norm µ on Rd, the local maxi-
mal operatorMR,µ is bounded from BD(Rd) to BV(Rd). More precisely , there
exists a constant c = c(µ, d) > 0 such that for all R > 0 and all f ∈ BD(Rd)
we have

(2.2) ‖MR,µf‖BV(Rd) ≤ c(‖f‖BV(Rd) + ‖f‖L1(Rd) log+R).

If µ = ‖·‖∞, thenMR,µ is bounded from BD(Rd) to W 1,1(Rd), so there exists
a constant c = c(µ, d) > 0 such that for all R > 0 and all f ∈ BD(Rd),
(2.3) ‖MR,∞f‖W 1,1(Rd) ≤ c(‖f‖BV(Rd) + ‖f‖L1(Rd) log+R).

Of course, if R is fixed, then (2.2) reduces to
(2.4) ‖MR,µf‖BV(Rd) ≤ c‖f‖BV(Rd),

though perhaps with a different c, and likewise for (2.3), in the case of cubes.

3. The maximal function of a block decreasing function. In this
and the following sections, lemmas and proofs will refer exclusively to the
maximal operator M , since they are exactly the same for the local oper-
ator MR. The only exception occurs in Lemma 35, which is valid in the
nonlocal case, under fewer hypotheses. It has to do with the Lipschitz be-
havior of Mf on some “good sets”, for a locally integrable f . Since as R



260 J. M. Aldaz and F. J. Pérez Lázaro

becomes small, MRf looks more like f , any improvement of MRf over f
will tend to disappear as R → 0. Thus, the local case requires additional
assumptions, and hence it is treated in a different lemma.

In this section we prove that if f is nonnegative and block decreasing,
thenMµf is block decreasing (see Lemma 19 below; of course,Mµf is always
nonnegative). First we deal with the local integrability of Mµf .

Lemma 14. Let f : Rd → [0,∞] be a block decreasing function such that
V (f,Rd) <∞, and let µ be any norm in Rd. Then Mµf ∈ L1

loc(Rd).

Proof. By pointwise comparability of maximal functions associated to
different norms, it is enough to prove the result in the `∞ case. Fix a ball
B = B∞(0, r) (centered at the origin) and note that for any x ∈ B, to
estimate M∞f(x) it suffices to average over cubes contained in B, by the
block decreasing property of f . Now by Sobolev embedding for functions
in BV(B∞(0, r)) (cf. for instance, [AFP, Corollary 3.49, p. 152]), we have
f ∈ Ld/(d−1)(B∞(0, r)). Using the boundedness of the maximal operator
when p > 1, we get M∞f ∈ Ld/(d−1)(B∞(0, r)) ⊂ L1(B∞(0, r)). Since r is
arbitrary, it follows that M∞f ∈ L1

loc(Rd).

On R, being unconditional is the same as being even, and being block
decreasing, the same as being even and unimodal (decreasing on (0,∞)). So
the next lemma is trivial, and we omit the proof. We do mention that a (non-
trivial) higher-dimensional version is known in the literature as Anderson’s
theorem (cf. [An] or [Ga, Theorem 11.1]).

Lemma 15. Let f : R→ [0,∞] be block decreasing. Then for every δ > 0,
the function gδ(x) :=

	x+δ
x−δ f(u) du is block decreasing.

It follows from the definition of V (f,Ω) in terms of the distributional
derivative Df that functions equal a.e. have the same variation. Since the
measure Df may have a singular part, it is nevertheless useful to choose an
everywhere defined representative of f .

Definition 16. Let Bµ denote a generic ball defined using the norm µ.
The precise representative f∗ of f is

f∗(x) := lim sup
|Bµ|↓0, x∈Bµ

1
|Bµ|

�

Bµ

f(y) dy.

The notation does not reflect the fact that f∗ depends on µ, since this
will make no difference in the arguments below.

A related notion of precise representative can be obtained by taking the
limsup over balls centered at x, instead of balls containing x, as we do above.
With either choice of definition, it is not difficult to see that if f is block
decreasing, then so is f∗ (cf. Lemma 18 below).
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From now on, we use the following notation. Let x = (x1, . . . , xd) ∈ Rd,
let i ∈ {1, . . . , d}, and let {e1, . . . , ed} be the canonical basis of Rd. We de-
note by x̂i the (d − 1)-dimensional vector obtained from x by removing its
ith component. That is, x̂i = (x1, . . . , xi−1, xi+1, . . . , xd). To shorten expres-
sions, we write x = (x̂i, xi). Even though the notation may suggest otherwise,
we do emphasize the fact that the order of the coordinates in x = (x̂i, xi) is
unaltered. We also write f(x) = f(x̂i, xi) rather than f(x) = f((x̂i, xi)).

Lemma 17. Let f : Rd → [0,∞] be block decreasing , let µ be an uncon-
ditional norm in Rd, and let δ > 0. Then g(x) :=

	
Bµ(x,δ) f(u) du is block

decreasing.

Proof. Since the argument is the same for each coordinate, we focus on
the last one. It is enough to prove that if x = (x̂d, xd) ∈ [0,∞)d and h ≥ 0,
then g(x̂d, xd + h) ≤ g(x). But this follows from Fubini’s Theorem: Write

P := {ûd ∈ Rd−1 : there exists a real number ud
such that (ûd, ud) ∈ Bµ(0, δ)},

and
Sûd = {t ∈ R : u = (ûd, t) ∈ Bµ(0, δ)},

that is, Sûd is the vertical section in Bµ(0, δ) associated to ûd. The assump-
tion that µ is unconditional entails that each Sûd is an interval centered at 0.
Now

g(x) =
�

Bµ(0,δ)

f(u+ x) du =
�

P

( �

Sûd

f(u+ x) dud
)
dûd

and

g(x+ hed) =
�

Bµ(0,δ)

f(u+ x+ hed) du =
�

P

( �

Sûd

f(u+ x+ hed) dud
)
dûd.

For fixed ûd and x̂d the function f(ûd + x̂d, ·) is block decreasing, so by
Lemma 15,�

Sûd

f(ûd + x̂d, ud + xd + h) dud ≤
�

Sûd

f(ûd + x̂d, ud + xd) dud,

and now g(x̂d, xd + h) ≤ g(x) follows by putting together the last three
formulas.

Lemma 18. Let µ be an unconditional norm in Rd. If f : Rd → [0,∞] is
block decreasing , then so is its precise representative f∗.

Proof. It is enough to prove that if x = (x̂d, xd) ∈ [0,∞)d and h > 0, then
f∗(x̂d, xd+h) ≤ f∗(x). But this follows from the previous lemma, applied to
any ball Bµ(a, δ) containing (x̂d, xd + h) and with radius δ < µ((h/2)ed).
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Lemma 19. Let f : Rd → [0,∞] be block decreasing and let the norm µ
be unconditional. Then Mµf is a block decreasing function.

Proof. It is enough to prove that if x = (x̂d, xd) ∈ [0,∞)d and h ≥ 0,
then Mµf(x̂d, xd + h) ≤Mµf(x), and to deduce this it suffices to show that
given an arbitrary ball Bµ(a, δ) containing x+ hed, we have

(3.1)
1

|Bµ(a, δ)|

�

Bµ(a,δ)

f(u) du ≤Mµf(x).

Let us see why. Since x + hed ∈ Bµ(a, δ), by unconditionality (x̂d, 0) ∈
Bµ((âd, 0), δ). Now if ad ≤ xd, then xd ∈ [ad, xd + h), so x ∈ Bµ(a, δ) by
convexity of the ball. Thus, (3.1) holds in this case. And if ad > xd, then
x ∈ Bµ((âd, xd), δ), and (3.1) follows from Lemma 17, since we just lowered
the ball in the vertical direction.

4. Controlling the variation of block decreasing functions. The
purpose of this section is to find a quantity equivalent to the variation (cf.
Definition 6), and easier to compute for block decreasing functions. Denote
by fx̂i the one-dimensional function fx̂i(xi) := f(x). We use the fact that
finite variation can be characterized via the variation along the coordinate
axes (cf. [AFP, p. 196], or [EvGa, §5.10]). Suppose f is C1. Integrating
pointwise the `1-norm and the `2-norm of its gradient, and using ‖ · ‖2 ≤
‖ · ‖1 ≤

√
d ‖ · ‖2, we obtain

(4.1)
�

Rd
|∇f(u)| du ≤

d∑
i=1

�

Rd
|Dif(u)| du ≤

√
d
�

Rd
|∇f(u)| du,

where Dif denotes the partial derivative of f with respect to xi, i.e., the
derivative of fx̂i . Since for a continuously differentiable f we have V (f,Rd) =	
Rd |∇f(u)| du, and for each fixed x̂i we have V (fx̂i ,Rd) =

	
R |Difx̂i(t)| dt,

inequality (4.1) and an approximation argument show that

(4.2) V (f,Rd) ≤
d∑
i=1

�

Rd−1

V (fx̂i ,R) dx̂i ≤
√
d V (f,Rd),

and this formula also holds when V (f,Rd) =∞. From (4.2), it follows that
for a block decreasing function

V (f,Rd) ≤ 2
d∑
i=1

�

Rd−1

[fx̂i(0
+)− fx̂i(∞)] dx̂i(4.3)

= 2d
d∑
i=1

�

[0,∞)d−1

[f(x̂i, 0+)− f(x̂i,∞)] dx̂i ≤
√
d V (f,Rd),(4.4)

where f(x̂i, 0+) := limt→0+ f(x̂i, t) and f(x̂i,∞) := limt→∞ f(x̂i, t).
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Next we show that the value at infinity of a block decreasing function
of finite variation is the same in essentially all directions. Exceptions may
occur, though, if at least one coordinate remains fixed at 0.

Lemma 20. Let f : Rd → [0,∞] be a block decreasing function such that
V (f,Rd) < ∞. Then infRd f = limt→∞ f(t, . . . , t). Furthermore, for every
x = (x1, . . . , xd) ∈ (0,∞)d, and all i ∈ {1 . . . , d},
(4.5) inf

Rd
f = lim

t→∞
f(x̂i, t).

Additionally ,

(4.6) inf
Rd
f = lim

t→∞
Mµf(x̂i, t).

Proof. Given x ∈ (0,∞)d, let t = max{x1, . . . , xd}. Since f is block
decreasing, f(x) ≥ f(t, . . . , t), so infRd f = limt→∞ f(t, . . . , t), where the
limit exists by monotonicity.

Next, we may assume, by symmetry, that i = d. Note that if (4.5) fails
for a fixed x̂d = (x1, . . . , xd−1), then it fails for all ŷd ∈ (0, x1] × · · · ×
(0, xd−1] by monotonicity in each variable. Thus, it suffices to prove (4.5)
for (x1, . . . , xd−1) in a full measure subset of (0,∞)d−1. We use induction
on the dimension d. The result is obvious for d = 1, so we assume it holds
for d− 1 and show that (4.5) also holds for d ≥ 2. Consider the function of
d− 1 variables fx1(·) := f(x1, ·). Clearly, fx1 is a block decreasing function.
By (4.3) and (4.4), for almost all x1 > 0 we have V (fx1 ,Rd−1) < ∞. Using
induction, we apply (4.5) to fx1 and conclude that for all x2, . . . , xd−1 > 0,

lim
t→∞

fx1(t, . . . , t, t) = inf
Rd−1

fx1 = lim
t→∞

fx1(x2, . . . , xd−1, t).

Now if infRd f < infRd−1 fx1 , there exists an N > 0 such that for all t′ ≥ N ,
and all w2, . . . , wd > 0,

f(x1, w2, . . . , wd)− f(t′, t′, . . . , t′) ≥ infRd−1 fx1 − infRd f

2
.

Thus, using (4.4) we derive the following contradiction:

∞ > V (f,Rd) ≥
�

[N,∞)d−1

[f(ẑ1, 0+)− f(ẑ1,∞)] dẑ1

≥
�

[N,∞)d−1

[f(ẑ1, x1)− f(N, . . . , N)] dẑ1

≥ infRd−1 fx1 − infRd f

2

�

[N,∞)d−1

dẑ1 =∞.

Therefore infRd f = infRd−1 fx1 , and (4.5) follows. To obtain (4.6), note that
the local integrability of f , together with the existence of a limit at infinity,
entails that averages will approach this limit as t→∞.
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5. Variation of the maximal function. We are now ready to prove
the first main result.

Proof of Theorem 7. It is clear that if we add a constant to a function,
its variation does not change. Recalling that f is locally integrable and non-
negative, it is easy to check that Mµf(x) = Mµ(f − infRd f)(x) + infRd f , so
for simplicity we suppose that infRd f = 0. Under the assumptions and with
the notation of Lemma 20, this entails that limt→∞Mµf(x̂i, t) = 0 (even if
f /∈ L1(Rd)). Now by (4.3) and (4.4) it is enough to check that

d∑
i=1

�

[0,∞)d−1

Mµf(x̂i, 0+) dx̂i ≤ c(µ, d)
d∑

k=1

�

[0,∞)d−1

f(x̂k, 0+) dx̂k.

Because of the equivalence of all norms on Rd, and in particular, between µ
and ‖ · ‖∞, it suffices to consider the maximal operator defined by cubes and
to prove that

(5.1)
d∑
i=1

�

[0,∞)d−1

M∞f(x̂i, 0+) dx̂i ≤ c(d)
d∑

k=1

�

[0,∞)d−1

f(x̂k, 0+) dx̂k.

Assume that i = d. We want to estimate�

[0,∞)d−1

M∞f(y, 0+) dy.

To this end, we divide [0,∞)d−1 into d! suitable subsets as follows: Denote
by Pn the set of all permutations of n elements. For each σ ∈ Pd−1 we define

Aσ = {y ∈ [0,∞)d−1 : yσ(1) ≥ · · · ≥ yσ(d−1)}.

Then
⋃
σ∈Pd−1

Aσ = [0,∞)d−1. By symmetry, it is enough to consider the
identity permutation, the other estimates being the same. So we take

(5.2) Aσ = {y ∈ [0,∞)d−1 : y1 ≥ · · · ≥ yd−1}.
Fix y ∈ Aσ. To estimateM∞f(y, 0), let B∞(a, k) be a cube (i.e., an `∞-ball)
containing (y, 0). Set pk,y := (max{0, y1 − k}, . . . ,max{0, yd−1 − k}, 0), and
note that 0 ≤ pk,yi ≤ |ai| for every i = 1, . . . , d − 1. Thus, by Lemma 17 we
have

M∞f(y, 0) = sup
k>0

1
|B∞(pk,y, k)|

�

B∞(pk,y ,k)

f(u) du.

We introduce the auxiliary endpoints y0 :=∞ and yd := 0. With this nota-
tion, for every k > 0 there exists a j ∈ {0, . . . , d− 1} such that

(5.3) y0 ≥ y1 ≥ · · · ≥ yj ≥ 4k ≥ yj+1 ≥ · · · ≥ yd−1 ≥ yd.
Note that q := (y1 − k, . . . , yj − k, 0, . . . , 0) ∈ [0,∞)d satisfies q ≤ pk,y

under the partial order induced by the coordinates, i.e., for all i = 1, . . . , d,
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qi ≤ pk,yi . Since pk,yi ≤ |ai| also, by Lemma 17, the average of a block de-
creasing function over B∞(a, k) is smaller than the average over B∞(q, k).
Let u ∈ B∞(q, k) be arbitrary. By (5.3),

f(u) ≤ f(y1 − 2k, . . . , yj − 2k, uj+1, . . . , ud) ≤ f
(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
.

Thus,

(5.4)
1

|B∞(a, k)|

�

B∞(a,k)

f(u) du ≤ 1
|B∞(q, k)|

�

B∞(q,k)

f(u) du

≤ 1
(2k)d−j

�

[−k,k]d−j
f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
duj+1 · · · dud

≤ 1
kd−j

�

[0,k]d−j

f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
duj+1 · · · dud.

Observe that for averages of block decreasing functions over cubes centered at
the origin, the smaller the radius, the greater the average. Thus, if j ≤ d−2,
the right hand side of (5.4) is bounded by(

4
yj+1

)d−j �

[0,yj+1/4]d−j

f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
duj+1 · · · dud,

while if j = d− 1, then it is bounded by f(y/2, 0). Hence, for every y ∈ Aσ,

Mf(y, 0) ≤ max
{
f

(
y

2
, 0
)
, max
0≤j≤d−2

(
4

yj+1

)d−j
Gj(y1, . . . , yj , yj+1)

}
,

where for 1 ≤ j ≤ d− 2, Gj is defined via

Gj(y1, . . . , yj , yj+1) :=
�

[0,yj+1/4]d−j

f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
duj+1 · · · dud,

and if j = 0, we just use the same formula, but integrating f(u1, . . . , ud)
(i.e., no yi appears as an argument of f).

Thus,
�

Aσ

Mf(y, 0) dy ≤
�

[0,∞)d−1

f

(
y

2
, 0
)
dy(5.5)

+
d−2∑
j=0

�

Aσ

(
4

yj+1

)d−j
Gj(y1, . . . , yj , yj+1) dy.

Note that for j ∈ {0, . . . , d− 2} (see (5.2)),

(5.6) Aσ ⊂ {y ∈ [0,∞)d−1 : yj+1 ≥ yj+2 ≥ · · · ≥ yd−1},
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and

(5.7)
yj+1�

0

(
. . .
(yd−2�

0

dyd−1

)
. . .
)
dyj+2 =

yd−j−2
j+1

(d− j − 2)!
.

Using Fubini’s Theorem and the definition of Gj we have

(5.8)
�

[0,∞)j+1

Gj(y1, . . . , yj , yj+1)
y2
j+1

dy1 · · · dyj+1

=
�

[0,∞)j+1

1
y2
j+1

�

[0,yj+1/4]d−j

f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

)
duj+1 · · · dud dy1 · · · dyj+1

≤
�

[0,∞)d

(
f

(
y1

2
, . . . ,

yj
2
, uj+1, . . . , ud

) ∞�

max{uj+1,...,ud}

dyj+1

y2
j+1

)
dy1 · · · dyj duj+1 · · · dud

=
�

[0,∞)d

f(y1/2, . . . , yj/2, uj+1, . . . , ud)
max{uj+1, . . . , ud}

dy1 · · · dyj duj+1 · · · dud.

The assumption j ≤ d−2 is used in the next application of Fubini’s Theorem.
To prove the bound

(5.9)
�

[0,∞)d

f(u)
max{uj+1, . . . , ud}

du ≤
d∑

k=j+1

�

[0,∞)d−1

f(ûk, 0) dûk,

split [0,∞)d into the regions where each uk is the maximum value. Suppose,
for instance, that we are considering

Ed := [0,∞)d ∩ {max{uj+1, . . . , ud} = ud}.

Now j + 1 ≤ d− 1, so we can select a uk with k 6= d and replace uk with 0.
Since f is block decreasing,

�

Ed

f(u)
ud

du ≤
�

[0,∞)d−1

f(ûk, 0)
ud�

0

1
ud
duk dûk =

�

[0,∞)d−1

f(ûk, 0) dûk,

and (5.9) follows. Next, using (5.5–5.9), we obtain
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�

Aσ

Mf(y, 0) dy ≤ 2d−1
�

[0,∞)d−1

f(y, 0) dy

+
d−2∑
j=0

4d−j

(d− j − 2)!

�

[0,∞)d

f(y1/2, . . . , yj/2, uj+1, . . . , ud)
max{uj+1, . . . , ud}

dy1 · · · dyj duj+1 · · · dud

= 2d−1
�

[0,∞)d−1

f(y, 0) dy +
d−2∑
j=0

22d−j

(d− j − 2)!

�

[0,∞)d

f(u)
max{uj+1, . . . , ud}

du

≤ 2d−1
�

[0,∞)d−1

f(y, 0) dy +
d−2∑
j=0

22d−j

(d− j − 2)!

d∑
k=j+1

�

[0,∞)d−1

f(ûk, 0) dûk

≤ c′(d)
d∑

k=1

�

[0,∞)d−1

f(ûk, 0) dûk.

Finally, (5.1) follows by applying the same estimate to each of the d!
regions Aσ and adding up.

Remark 21. Recalling inequalities (4.1) and (4.2), it is natural to define
a “partial variation” for each variable xi:

Vi(f,Rd) :=
�

Rd−1

V (fx̂i ,R) dx̂i.

We have seen that the variation of f controls the variation of Mµf (The-
orem 7). Here we show that the partial variations of f do not individually
control the corresponding partial variations of Mµf , something that makes
the proof of Theorem 7 harder than it would otherwise be. To see that the
inequality

Vi(Mµf,Rd) ≤ c(µ, d)Vi(f,Rd)

may fail, consider the following counterexample in the case µ = ‖ · ‖∞. Let
g be a nonincreasing function on [0,∞) such that g(0) = 1 and g(∞) = 0.
Suppose also ‖g‖1 = 1 and

	∞
0 g(u) du/u =∞. For x1, x2 ∈ R and m ∈ N we

define the block decreasing functions fm(x1, x2) = mg(m|x1|)g(|x2|). Then
V2(fm,R2) = 4

	∞
0 fm(x1, 0) dx1 = 4g(0)

	∞
0 mg(mx1) dx1 = 4g(0)‖g‖1 = 4.

On the other hand, for x1 > 0,

M∞fm(x1, 0) ≥ 1
x2

1

x1�

0

mg(mu1) du1

x1�

0

g(u2) du2

=
1
x2

1

mx1�

0

g(u1) du1

x1�

0

g(u2) du2 =: Fm(x1).
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Now limm→∞ Fm(x1) = ‖g‖1
	x1

0 g(u2) du2/x
2
1 =

	x1

0 g(u2) du2/x
2
1, so, using

monotone convergence and the Fubini–Tonelli Theorem, we obtain

lim
m→∞

V2(M∞fm,R2) ≥ lim
m→∞

∞�

0

Fm(x1) dx1

=
∞�

0

(x1�

0

g(u2) du2

)dx1

x2
1

=
∞�

0

g(u2)
du2

u2
=∞.

It is easy to check that this example can be adapted to Mµf , where µ is
any unconditional norm.

6. Continuity of the maximal function. In this section we prove
Theorem 8, showing that if f is a block decreasing function of finite variation,
then Mµf is continuous, except perhaps on a negligible (d− 1)-dimensional
Hausdorff measurable set.

First we recall the notion of approximate continuity (see [EvGa, pp. 47
and 209]). Note that the definitions and results from [EvGa] are given in
terms of euclidean balls, so we need to use the equivalence of all norms
in Rd.

Definition 22. Let f : Rd → R. We say that l is the approximate limit
of f as y → x, and write

ap lim
y→x

f(y) = l,

if for each ε > 0,

lim
r→0

|B2(x, r) ∩ {|f − l| ≥ ε}|
|B2(x, r)|

= 0.

That is, if l is the approximate limit of f at x, then for all ε > 0 the sets
{|f − l| ≥ ε} have density zero at x.

Definition 23. Let f : Rd → R. We say that fsup(x) is the approximate
limsup of f as y → x if

fsup(x) := ap lim sup
y→x

f(y) = inf
{
t : lim

r→0

|B2(x, r) ∩ {f > t}|
rd

= 0
}
.

Likewise, finf(x) is the approximate liminf of f as y → x if

finf(x) := ap lim inf
y→x

f(y) = sup
{
t : lim

r→0

|B2(x, r) ∩ {f < t}|
rd

= 0
}
.

It is well known that for measurable functions the approximate limit
exists a.e. [EvGa, Theorem 3, p. 47]. For locally integrable functions, this
follows from the Lebesgue Differentiation Theorem. For locally integrable
functions of finite variation, the approximate limsup and liminf are finite
Hd−1-a.e. on Rd (cf. [EvGa, Theorem 2, p. 211]; actually, the results from
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[EvGa] are stated for BV functions, so f ∈ L1; but it is easy to check that
local integrability of f suffices to carry out the arguments).

Definition 24. The jump set Jf := {finf(x) < fsup(x)} of f is the set
of points where the approximate limit of f does not exist.

Definition 25. Let v be a unit vector in Rd and let x ∈ Rd. We define
the half-spaces associated to x and v by

H+
v := {y ∈ Rd : v · (y − x) ≥ 0}, H−v := {y ∈ Rd : v · (y − x) ≤ 0},

where the symbol · denotes the usual scalar product in Rd.

While the notation does not make it explicit, H+
v and H−v depend on x

and contain it as a boundary point. Set

F (x) :=
fsup(x) + finf(x)

2
.

From [EvGa, p. 213, Theorem 3] we get

Theorem 26. If f ∈ L1
loc(Rd) and V (f,Rd) <∞, then:

(i) for Hd−1-a.e. x ∈ Rd − Jf ,

lim
r→0+

1
|B2(x, r)|

�

B2(x,r)

|f(y)− F (x)|d/(d−1) dy = 0;

(ii) for Hd−1-a.e. x ∈ Jf , there exists a unit vector v ≡ v(x) such that

lim
r→0+

1
|B2(x, r)|

�

B2(x,r)∩H−v

|f(y)− fsup(x)|d/(d−1) dy = 0,

and

lim
r→0+

1
|B2(x, r)|

�

B2(x,r)∩H+
v

|f(y)− finf(x)|d/(d−1) dy = 0.

In this theorem, euclidean balls can be replaced by balls defined using
any other norm µ, upon noting that integrands are nonnegative, and then in-
serting a suitable constant. Of course, the corresponding limits are still zero.
So for Hd−1-almost every x ∈ Rd− Jf , F = f∗, the precise representative of
f defined using µ.

A different definition of approximate limits and related notions appears
in [AFP] (using integral averages, in the line of the preceding theorem). But
all such definitions coincide Hd−1-a.e. with the ones given above, so it is
actually immaterial which ones we use.

Since approximate limit exist for a.e. x ∈ Rd, all the functions f∗, F , finf

and fsup represent the same equivalence class [f ]. To study the continuity of
the maximal function it will be convenient for us to use fsup.

Lemma 27. If f is block decreasing on Rd, then fsup is block decreasing.
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Proof. Fix x1, . . . , xd ≥ 0, h > 0, and t > 0. We prove that fsup(x) ≥
fsup(x + hed), the argument being the same for the other coordinates. By
Definition 23, it is enough to show that for all sufficiently small r > 0,
|B2(x+hed, r)∩{f > t}| ≤ |B2(x, r)∩{f > t}|. Suppose 0 < r < h/2. Given
y ∈ B2(x+hed, r)∩{f > t}, we have y−hed ∈ B2(x, r), and by the choice of r,
yd ≥ |yd−h|, so t < f(y) ≤ f(y−hed). Thus (B2(x+hed, r)∩{f > t})−hed ⊂
B2(x, r) ∩ {f > t}, and |B2(x + hed, r) ∩ {f > t}| ≤ |B2(x, r) ∩ {f > t}|
follows by the translation invariance of Lebesgue measure.

The next lemma states that in any half-ball resulting from the intersec-
tion of a euclidean ball B2(x, r) with a half-space having x in its boundary,
there is a comparable µ-ball contained in the half-ball and containing x (as
a boundary point, of course).

Lemma 28. Let µ be an arbitrary norm on Rd, let r > 0, and let x, v ∈
Rd, where ‖v‖2 = 1. Then there exists a constant kµ > 0 such that for every
half-ball B2(x, r)∩H+

v , we can find a center c ∈ Rd and a radius % > 0 with

x ∈ Bµ(c, %) ⊂ B2(x, r) ∩H+
v and

|Bµ(c, %)|
|B2(x, r)|

≥ kµ.

Proof. By a translation we may assume that x = 0. Let Bµ(0, %) be
the largest µ-ball contained in B2(0, r/4). By the convexity of Bµ(0, %), it
can be translated, say, to Bµ(c, %), in such a way that 0 belongs to the
boundary of Bµ(c, %) and this ball is contained in H+

v . Since 0 ∈ Bµ(c, %) ⊂
B2(c, r/4) ⊂ B2(0, r), it follows that Bµ(c, %) ⊂ B2(0, r)∩H+

v . Furthermore,
if t > 0, then |Bµ(c, t%)| = td|Bµ(c, %)|, by the scaling properties of Lebesgue
measure. Using the fact that all norms in Rd are equivalent, we let t > 0 be
the smallest real number such that B2(0, r) ⊂ Bµ(0, t%), and conclude that
|B2(0, r)| ≤ td|Bµ(c, %)|. Then we take kµ = td.

Lemma 29. Let 0 ≤ f ∈ L1
loc(Rd), let V (f,Rd) < ∞, and let µ be a

norm. Then for Hd−1-almost every x ∈ Rd, we have Mµf(x) ≥ fsup(x).

Proof. For every r > 0,

Mµf(x) ≥ 1
|Bµ(x, r)|

�

Bµ(x,r)

f = fsup(x)+
1

|Bµ(x, r)|

�

Bµ(x,r)

(f(y)−fsup(x)) dy,

so it is enough to show that for Hd−1-almost every x ∈ Rd, the rightmost
term in the preceding inequality tends to 0 as r → 0+. If x ∈ Rd \ Jf , then
Theorem 26(i) yields the result: First, replace µ-balls by euclidean balls
(perhaps modifying some constant) and then use Jensen’s inequality. And if
x ∈ Jf , a similar argument, using Theorem 26(ii) and Lemma 28, yields the
same result.
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Lemma 30. Let f be a block decreasing function on Rd, and let x ∈
(0,∞)d. Then fsup is upper semicontinuous at x.

Proof. Suppose otherwise. Since fsup is block decreasing, there is an ε > 0
such that for all z in the rectangle

∏d
i=1(0, xi), fsup(z) > fsup(x) + ε. Then

the density at x of the set {f > fsup(x) + ε} is at least 1/2d, contradicting
the definition of fsup.

Remark 31. Let f be block decreasing and let x ∈ (0,∞)d be such that
f(x) = fsup(x). Arguing as in Lemma 30, we conclude that f is upper semi-
continuous at x. Thus, a block decreasing function is upper semicontinuous
at almost every point in Rd.

Remark 32. By Lemma 30, if f is block decreasing and fsup is not upper
semicontinuous at x, then at least one of x’s coordinates must be zero. We
consider these points in the next lemma.

Lemma 33. Let f be a block decreasing function on Rd. Then for almost
all (x1, . . . , xd−1) ∈ Rd−1, fsup is upper semicontinuous at (x1, . . . , xd−1, 0).

Proof. Writing x̂d = (x1, . . . , xd−1), ŷd = (y1, . . . , yd−1), and g(ŷd) :=
fsup(ŷd, 0), we note, first, that by Remark 31, g is upper semicontinuous for
a.e. x̂d ∈ Rd−1. Thus, it is enough to check that if g is upper semicontinuous
at x̂d, then fsup is upper semicontinuous at (x̂d, 0). But this follows from the
block decreasing property of fsup:

lim sup
y→(x̂d,0)

fsup(y) ≤ lim sup
y→(x̂d,0)

fsup(ŷd, 0) = lim sup
ŷd→x̂d

g(ŷd)

≤ g(x̂d) = fsup(x̂d, 0).

Proof of Theorem 8. According to Lemma 3.4 of [AlPe1], if a locally
integrable function h ≥ 0 is upper semicontinuous at w and h(w) ≤Mh(w),
thenMh is continuous at w. Now Lemmas 30 and 33 entail that fsup is upper
semicontinuous at Hd−1-almost every point, while by Lemma 29, fsup(w) ≤
Mµfsup(w) for Hd−1-a.e. w. Since Mµf = Mµfsup, the result follows.

Remark 34. Note that the maximal function of a block decreasing func-
tion need not be continuous. Consider, for instance, the maximal function
M∞, defined using cubes, and let f be the characteristic function of the unit
`p-quasiball in R2, where 0 < p ≤ 1 is fixed. Then M∞f is discontinuous at
(1, 0).

7. The derivative of the maximal function. Let us recall a few
facts about the distributional derivative of a function of finite variation (cf.
[AFP, pp. 184–186]). The measure Df vanishes on Hd−1-negligible sets. Its
absolutely continuous part Daf is obtained by integrating the density of Df
with respect to the d-dimensional Lebesgue measure, and lives in the set Df
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where f is approximately differentiable (cf. [AFP, Definition 3.70, p. 165]
for the definition of approximate differentiability). The singular part of Df
can be decomposed into a Cantor part and a jump part. The Cantor part
Dcf gives full measure to the set where f is approximately continuous, and
the jump part Djf gives full measure to the jump set of f (a countably
Hd−1-rectifiable set). The measure Daf+Dcf vanishes on sets of finite (and
thus of σ-finite) Hd−1-measure.

Let f ∈ L1
loc(Rd). From now on, we assume that |f | = |f |∗, the precise

representative of |f |. In what follows, Lipschitz constants are determined by
using the `2-norm.

We define

(7.1) En,k :=
{
x ∈ Rn : there exists a ball B := Bµ(c, r) with x ∈ B,

r ≥ 1/n,
1
|B|

�

B

|f(y)| dy = Mµf(x), and Mµf(x) ≤ k
}
.

Lemma 35. Let f be a locally integrable function, and let cµ > 0 be such
that for all w ∈ Rd, ‖w‖µ ≤ cµ‖w‖2. Then the restriction of Mµf to En,k is
Lipschitz , with Lipschitz constant Lip(Mµf) ≤ cµdkn.

Proof. Let x, y ∈ En,k. By symmetry, we may assume that Mµf(x) ≥
Mµf(y). Suppose Mµf(x) = |B|−1

	
B |f |, where x ∈ B := Bµ(c, r). Now

since x ∈ Bµ(c, r), we have y ∈ Bµ(c, r + ‖x− y‖µ). Thus,

|Mµf(x)−Mµf(y)|
‖x− y‖2

=
Mµf(x)−Mµf(y)

‖x− y‖2

≤
Mµf(x)− |Bµ(c,r)|

|Bµ(c,r+‖x−y‖µ)|
1

|Bµ(c,r)|
	
Bµ(c,r) |f |

‖x− y‖2

≤ Mµf(x)
‖x− y‖2

(
1− |Bµ(c, 1)|rd

|Bµ(c, 1)|(r + ‖x− y‖µ)d

)
≤ cµk

‖x− y‖µ

(
1− 1

(1 + ‖x− y‖µ/r)d

)
≤ cµk

‖x− y‖µ

(
1− 1

(1 + n‖x− y‖µ)d

)
.

Now g(a) := a−1(1− (1+na)−d) is decreasing on {a > 0}, and lima→0+ g(a)
= dn, so from the preceding inequality we obtain

|Mµf(x)−Mµf(y)|
‖x− y‖2

≤ cµkdn.



Regularity of the maximal operator 273

Next we deal with the local maximal function MR,µ. Set

(7.2) ER,n := {x ∈ Rn : there exists a ball B := Bµ(c, r) with x ∈ B,

r ∈ [1/n,R], and
1
|B|

�

B

|f(y)| dy = MR,µf(x)
}
.

Of course, if R < 1/n, then ER,n is empty.

Lemma 36. Fix R > 0, and let cµ := 1/|Bµ(0, 1)|. If f is locally integrable
and has finite variation, then the restriction of MR,µf to ER,n is Lipschitz ,
with Lipschitz constant Lip(MR,µf) ≤ cµndV (f,Rd).

Proof. As noted above, we may assume that R ≥ 1/n. Otherwise ER,n
= ∅ and there is nothing to prove. So let x, y ∈ ER,n, and suppose that
Mµf(x) = |B|−1

	
B |f | ≥ Mµf(y), where x ∈ B := Bµ(c, r) and 1/n ≤

r ≤ R. It follows from [AFP, Exercise 3.3, p. 208] that for every bounded
measurable set K,

�

K

|f(x+ h)− f(x)|
‖h‖2

dx ≤ V (f,Rd).

Thus,

|MR,µf(x)−MR,µf(y)|
‖x− y‖2

≤
1

|Bµ(c,r)|
	
Bµ(c,r) |f | −

1
|Bµ(c+y−x,r)|

	
Bµ(c+y−x,r) |f |

‖x− y‖2

≤ 1
|Bµ(c, r)|

�

Bµ(c,r)

|f(u)− f(u− x+ y)|
‖x− y‖2

du ≤ cµndV (f,Rd).

Since the exact size of the Lipschitz constants is irrelevant in the argu-
ment that follows, from now on we only consider Mµ.

The following lemma appears in [EvGa, p. 75]. We mention that in
[EvGa], the same notation is used for Hausdorff measures and the outer
measures they generate; in particular, the result below applies to arbitrary
sets E.

Lemma 37. Let f : Rd → R be a Lipschitz function with Lipschitz con-
stant Lip(f) and let s > 0. Then Hs(f(E)) ≤ Lip(f)sHs(E) for all E ⊂ Rd.

Define E :=
⋃
n,k∈NEn,k, and note that Rd − E ⊂ {Mµf = f∗}. Now

it is to be expected that DMµf has no Cantor part on E, since Mµf is
Lipschitz on the sets En,k, and likewise, that DMµf has no Cantor part on
{Mµf = f∗}, since by hypothesis f∗ is of SBV, so Dcf ≡ 0. We prove that
this is indeed the case, by restricting functions to lines.

Lemma 38. If f ∈ L1
loc(Rd) has finite variation, then Mµf maps H1-

negligible subsets of E into H1-negligible sets.
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Proof. Fix k and n, and let N ⊂ Rd be an H1-null subset of Rd. By the
previous lemma, |Mµf(N ∩ En,k)| = 0; here the absolute value signs stand
for the 1-dimensional Lebesgue measure, which on the real line coincides
with H1; while the preceding lemma refers to Lipschitz functions defined on
all Rd, one can always extend a Lipschitz function from a subset to the whole
space Rd, with the same constant by Kirszbraun’s theorem, or, if one is not
concerned about the constant, as in our case, by simpler extension theorems.
Since a countable union of null sets is null, the result follows.

We shall use a variant of the Banach–Zarecki Theorem (which states
that a real-valued continuous function on a compact interval is absolutely
continuous if and only if it is of bounded variation and maps null sets to null
sets). As stated, the result fails for R even if f is bounded; for instance, the
function sinx is absolutely continuous and has infinite variation. However,
under the additional assumption that f ≥ 0 is block decreasing, the variation
is bounded by 2f(0), so the following version of the Banach–Zarecki Theorem
does hold for R.

Lemma 39. Let f : R → [0,∞) be a continuous, block decreasing func-
tion. Then f is absolutely continuous if and only if f maps measure zero sets
to measure zero sets.

We use the following notation to express the decomposition of a function
h on Rd into functions hj(x′; t) defined on lines. For any j = 1, . . . , d and x′ =
(x′1, . . . , x

′
d−1) ∈ Rd−1 we set hj(x′; t) := h(x′1, . . . , x

′
j−1, t, x

′
j , . . . , x

′
d−1).

This decomposition of h leads to the corresponding disintegration result
for Dh (cf. [AFP]). Regarding the Cantor part Dch of Dh, it follows from
[AFP, Theorem 3.108] that it can be recovered from the Cantor parts of the
derivatives of the restrictions of h to lines, and in particular, Dch = 0 if and
only if for almost every line parallel to the jth coordinate axis, Dchj = 0,
where j = 1, . . . , d. To show that on these lines the functions hj(x′; t) map
Lebesgue null sets to Lebesgue null sets, we modify them so that they become
continuous, and then apply the preceding lemma.

Recall that, in order to simplify notation, we are assuming that a function
f ≥ 0 is everywhere equal to its precise representative f∗.

Lemma 40. Let f : L1
loc(Rd) → [0,∞] be a finite variation, block de-

creasing function with |Dcf |(Rd) = 0. Then for Hd−1-a.e. x′ ∈ Rd−1, and
for every j = 1, . . . , d, the function fj(x′; ·) : R→ R maps H1-negligible sets
into H1-negligible sets.

Proof. Fix ε > 0 and j ∈ {1, . . . , d}. By (4.2), for a.e. x′ ∈ Rd−1, fj(x′; ·)
is a function with finite variation, since V (f,Rd) < ∞, and by [AFP, The-
orem 3.108], for a.e. x′ ∈ Rd−1, fj(x′; ·) has null Cantor derivative. Denote
by A the subset of all x′ ∈ Rd−1 for which both of the preceding conditions
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hold. Note in particular that fj(x′; ·) < ∞ on A. For each x′ ∈ A, fj(x′; ·)
is a nonnegative, real-valued function with at most a countable number of
jump discontinuities. Next we modify fj(x′; ·) so it becomes continuous.

Suppose {tn}∞n=1 is a listing of the set where fj(x′; ·) has jumps. Since
both the right and left limits fj(x′; tn+) and fj(x′; tn−) exist, there is δn > 0
making the images under fj(x′; t) of the intervals [tn−δn, tn] and [tn, tn+δn]
so small that |fj(x′; [tn − δn, tn + δn])| < ε/2n. Thus, |

⋃
n fj(x

′; [tn − δn,
tn + δn])| < ε. Actually, we want to select δn satisfying some additional con-
ditions that will make it possible to obtain disjoint intervals. Using count-
ability we assume that δn is chosen so tn − δn and tn + δn do not belong
to the jump set of fj(x′; ·). We define inductively the sequence of disjoint
intervals as follows, starting with n1 = 1: Given [t1 − δ1, t1 + δ1], let tn2

be the first jump point in the list not belonging to (t1 − δ1, t1 + δ1), if
there is any (otherwise stop here). Then choose δn2 , satisfying the condi-
tions above, so that additionally [t1 − δ1, t1 + δ1] ∩ [tn2 − δn2 , tn2 + δn2 ] = ∅.
Now repeat the process, letting tn3 be the first jump point not contained
in the union of the preceding two intervals, and so on. Once the process
stops, we define h(t) := fj(x′; t) on R −

⋃
nk

[tnk − δnk , tnk + δnk ], and on
each [tnk − δnk , tnk + δnk ], we extend h(t) affinely from fj(x′; tnk − δnk) to
fj(x′; tnk + δnk). Now, let N ⊂ R be null. Then |h(N)| = 0 by Lemma 39,
so |fj(x′;N)| ≤ |h(N)| + |fj(x′;

⋃
nk

[tnk − δnk , tnk + δnk ])| < ε, and since ε
is arbitrary, we conclude that |fj(x′;N)| = 0.

Proof of Theorem 11. It is enough to show thatMµf is absolutely contin-
uous on lines (ACL), that is, given any coordinate axis, say xd without loss
of generality,Mµf is absolutely continuous on almost all lines parallel to the
the xd-axis, where “almost all” refers to Lebesgue measure on the intersec-
tion of the lines with the (d − 1)-subspace perpendicular to them. Sobolev
Theory then entails that Mµf ∈ W 1,1

loc (Rd), so the distributional gradient
∇Mµf exists as a locally integrable (vector-valued) function. Furthermore,
since by Theorem 7 we have

V (Mµf,Rd) ≤ cµ,dV (f,Rd),

from the fact that the variation of f is finite, and under the assumption that
Mµf is ACL, we obtain�

Rd
|∇Mµf | = |DMµf |(Rd) = V (Mµf,Rd) ≤ cµ,dV (f,Rd) <∞,

so ∇Mµf ∈ L1(Rd). Next we show that Mµf is ACL.
Recall that E :=

⋃
n,k En,k, where En,k is given by (7.1). Consider the set

of all lines parallel to the last coordinate xd (of course, any other coordinate
axis will do equally well). Let A be the set of all y ∈ Rd−1 such that fd(y; ·) is
a function of finite variation and Mµf(y, t) is a continuous function of t. By
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Theorem 8 and by (4.2), |Ac| = 0; here | · | stands for the (d−1)-dimensional
Lebesgue measure. Given y ∈ A, denote by Ly the vertical line {(y, t) :
t ∈ R}. Let Ny ⊂ Ly be null with respect to the 1-dimensional Lebesgue
measure, denoted in what follows by | · |. By Lemma 40, for almost all y ∈ A,
|f(Ny)| = 0. Now |Mµf(Ny ∩E)| = 0 by Lemma 38, and Ec ⊂ {Mµf = f},
so for almost all y ∈ A, |Mµf(Ny∩Ec)| ≤ |f(Ny)| = 0. Thus, |Mµf(Ny)| = 0
for almost every y ∈ Rd−1.

Proof of Theorem 12. As in the previous argument, it is enough to show
that M∞f is ACL. We remark that the “no Cantor part of the derivative”
hypothesis is not needed here, since we are using cubes and f is block de-
creasing.

Let x ∈ (0,∞)d (the argument is the same for the other octants) and
suppose, without loss of generality, that x1 = min1≤i≤d xi. Since f is block
decreasing, it is easy to see that in order to computeM∞f(x), it is enough to
consider cubes B∞(c, r) of sidelength at least x1. Thus, [x1,∞)d ⊂ En,k for
n ≥ 1/x1 and k ≥ M∞f(x1, x1, . . . , x1) (the set En,k was defined in (7.1)).
So M∞f is Lipschitz on every open set compactly contained in (0,∞)d. It
follows that if L is any line parallel to the xd-coordinate axis and N ⊂ L
is 1-null, then M∞f(N ∩ (0,∞)d) is 1-null. Since the same result holds for
the intersection of N with any other open octant, we can conclude that
|M∞f(N)| = 0, unless for some i = 1, . . . , d− 1, L ⊂ {xi = 0}×R. But this
is a null set of lines, so M∞f is ACL by Theorem 8 and Lemma 39.
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