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Isometries between groups of invertible
elements in Banach algebras

by

Osamu Hatori (Niigata)

Abstract. We show that if T is an isometry (as metric spaces) from an open subgroup
of the group of invertible elements in a unital semisimple commutative Banach algebra A
onto a open subgroup of the group of invertible elements in a unital Banach algebra B,
then T (1)−1T is an isometrical group isomorphism. In particular, T (1)−1T extends to an
isometrical real algebra isomorphism from A onto B.

1. Introduction. A long tradition of inquiry seeks sufficient sets of con-
ditions on (not only linear) isometries between Banach algebras in order
that the algebras are algebraically isomorphic. The history of the problem
probably dates back to a theorem of Banach [1, Theorem XI. 3], which is
the original form of the Banach–Stone theorem. The latter states that the
Banach spaces C(X) and C(Y ) of complex-valued continuous functions on
compact Hausdorff spaces X and Y respectively are isomorphic as Banach
spaces if and only if X and Y are homeomorphic to each other, therefore
if and only if C(X) and C(Y ) are isomorphic as Banach algebras. One can
say that the multiplication in the Banach algebra C(X) can be recovered
from the Banach space structure in the category of C(K)-spaces. Jarosz [3]
generalized the theorem in the sense that the multiplication in a uniform
algebra can be recovered from the Banach space structure in the category of
unital Banach algebras (cf. [10, 4, 5]).

In this paper we consider a problem in the same vein. Suppose that B
is a unital Banach algebra. We say that the metric group structure of the
group B−1 of all invertible elements in B can be recovered from the metric
structure in the category of unital Banach algebras if B−1 is isometrically
isomorphic as a metric group to B−1

1 whenever B1 is a unital Banach algebra
and B−1 is isometric to B−1

1 as a metric space. In this paper we show that
the metric group structure of the group of invertible elements in a unital
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semisimple commutative Banach algebra can be recovered from the metric
structure in the category of unital Banach algebras (Theorem 3.3). In this
case the multiplication in the unital semisimple commutative Banach algebra
can also be recovered. On the other hand, there exists a unital semisimple
commutative Banach algebra whose multiplication cannot be recovered from
the Banach space structure in the category of unital Banach algebras (see
Example 3.2).

Throughout the paper we denote the unit element in a Banach algebra
by 1, and for a complex number λ, λ1 is abbreviated by λ. The maximal
ideal space of a unital semisimple commutative Banach algebra A is denoted
by ΦA. We may suppose that f ∈ A is a continuous function on ΦA by
identifying f with its Gelfand transform. The spectral radius of f ∈ A is
equal to the supremum norm of f on ΦA and is denoted by ‖f‖∞.

2. Lemmata. Let B1 and B2 be real normed spaces. The theorem of
Mazur and Ulam [9, 11] states that if they are isometric as metric spaces,
then they are isometrically isomorphic as real normed spaces. Applying an
idea of Väisälä [11], we prove the following local version.

Lemma 2.1. Let B1 and B2 be real normed spaces, and U1 and U2 non-
empty open subsets of B1 and B2 respectively. Suppose that T is a surjective
isometry from U1 onto U2. If f, g ∈ U1 satisfy (1− r)f + rg ∈ U1 for every
r with 0 ≤ r ≤ 1, then

T
(
f + g

2

)
=
T (f) + T (g)

2
.

Proof. Let h, h′ ∈ U1. Suppose that ε > 0 is such that ‖h− h′‖/2 < ε,
and

{u ∈ B1 : ‖u− h‖ < ε, ‖u− h′‖ < ε} ⊂ U1,

{a ∈ B2 : ‖a− T (h)‖ < ε, ‖a− T (h′)‖ < ε} ⊂ U2.

We will show that T
(
h+h′

2

)
= T (h)+T (h′)

2 . Set r = ‖h− h′‖/2 and let

L1 = {u ∈ B1 : ‖u− h‖ = r = ‖u− h′‖},
L2 = {a ∈ B2 : ‖a− T (h)‖ = r = ‖a− T (h′)‖}.

Set also c1 = (h+ h′)/2 and c2 = (T (h) + T (h′))/2. Then T (L1) = L2,
c1 ∈ L1 ⊂ U1, and c2 ∈ L2 ⊂ U2. Let

ψ1(x) = h+ h′ − x (x ∈ B1),
ψ2(y) = T (h) + T (h′)− y (y ∈ B2).

Then we see that ψ1(c1) = c1, ψ1(L1) = L1, and ψ2(L2) = L2. Let Q =
ψ1 ◦ T −1 ◦ ψ2 ◦ T . A simple calculation shows that

2‖w − c1‖ = ‖ψ1(w)− w‖ (w ∈ L1)
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and
‖ψ1(z)− w‖ = ‖ψ1 ◦Q−1(z)−Q(w)‖ (z, w ∈ L1).

Applying these equalities we see that

‖Q2k+1
(c1)− c1‖ = ‖ψ1 ◦Q2k+1

(c1)− c1‖

= ‖ψ1 ◦Q2k
(c1)−Q2k

(c1)‖ = 2‖Q2k
(c1)− c1‖

for every non-zero integer k, where Q2n denotes the 2n-fold composition of Q.
By induction we see that for every non-negative integer n,

‖Q2n
(c1)− c1‖ = 2n+1‖c2 − T (c1)‖.

Since Q(L1) = L1 and L1 is bounded we see that c2 = T (c1), i.e., T
(
h+h′

2

)
= T (h)+T (h′)

2 .
For f and g as in the statement, let

K = {(1− r)f + rg : 0 ≤ r ≤ 1}.
Since K and T (K) are compact, there is ε > 0 with

d(K,B1 \ U1) > ε, d(T (K),B2 \ U2) > ε,

where d(·, ·) denotes the distance of two sets. Then for every h ∈ K we have

{u ∈ B1 : ‖u− h‖ < ε} ⊂ U1, {b ∈ B2 : ‖b− T (h)‖ < ε} ⊂ U2.

Choose a natural number n with ‖f − g‖/2n < ε. Let

hk =
k

2n
(g − f) + f

for each 0 ≤ k ≤ 2n. By the first part of the proof we have

(k) T (hk) + T (hk+2)− 2T (hk+1) = 0

for 0 ≤ k ≤ 2n − 2. For 0 ≤ k ≤ 2n − 4, adding the equations (k), (k + 1)
multiplied by 2, and (k + 2) we have

T (hk) + T (hk+4)− 2T (hk+2) = 0,

whence the equality

T
(
f + g

2

)
=
T (f) + T (g)

2
by induction on n.

Let B be a unital Banach algebra. The exponential spectrum for a ∈ B
is

σexpB(a) = {λ ∈ C : a− λ 6∈ expB},
where expB denotes the principal component of B−1; it is the set of exp a
for all a ∈ B when B is commutative, and the set of all finite products of
elements of the form exp a for a ∈ B in general. A complex-valued function
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ϕ on B is said to be a selection from the exponential spectrum if ϕ(a) ∈
σexpB(a) whenever a ∈ B.

To prove Theorem 3.3 below, we apply a lemma concerning complex-
linearity of real-linear selections from the exponential spectrum, which is a
version of a result due to Kowalski and Słodkowski [8, Lemma 2.1].

Lemma 2.2. Let B be a unital Banach algebra. Suppose that ϕ : B → C
is a real-linear selection from the exponential spectrum. Then ϕ is a complex
homomorphism.

Proof. A proof is similar to that for [8, Lemma 2.1]; however, in [8] the
spectral maping theorem is applied, which is not suitable for the exponential
spectrum, so we apply an alternative. For x ∈ B, let

ϕ1(x) = Reϕ(x)− iReϕ(ix), ϕ2(x) = Imϕ(ix) + i Imϕ(x).

As in the proof of [8, Lemma 2.1], ϕ1 and ϕ2 are complex-linear selections
from the exponential spectrum, hence they are complex homomorphisms by
the original proof of the Gleason–Kahane–Żelazko theorem [7, 12] (cf. [6]).
We will show that ϕ1 = ϕ2, which will force that ϕ is a complex homomor-
phism. Suppose not. Then there is a ∈ A with ϕ1(a) = 1 and ϕ2(a) = 0.
Let

h(a) = exp(πia/2)− 1.

Since ϕ1 and ϕ2 are continuous, we see that

ϕ(h(a)) = Reϕ1(h(a)) + i Imϕ2(h(a))

= Reh(ϕ1(a)) + i Imh(ϕ2(a)) = −1.

Since ϕ is a selection from the exponential spectrum, −1 ∈ σexpB(h(a)). On
the other hand, h(a) + 1 ∈ expB, so that −1 6∈ σexpB(h(a)), which is a
contradiction proving that ϕ1 = ϕ2.

3. Main results

Theorem 3.1. Let A be a unital semisimple commutative Banach alge-
bra, B a unital Banach algebra, and

ΩA = {f ∈ A : ‖f − r‖ < r for some positive real number r},
ΩB = {a ∈ B : ‖a− r‖ < r for some positive real number r}.

Suppose that U is an open set such that ΩA ⊂ U ⊂ A−1 and (C\{0})U ⊂ U ,
and that V is an open set such that ΩB ⊂ V ⊂ B−1, (C \ {0})V ⊂ V , and
V ΩB ⊂ V . Let g ∈ B−1. If T is a surjective isometry from U onto gV , then
T extends to a real-linear isometry from A onto B.
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Proof. Applying Lemma 2.1 we see that

T

(
f + g

2

)
=
T (f) + T (g)

2
for every pair f and g in ΩA since ΩA is convex.

We will show that limU3f→0 T (f) = 0. Since T−1 is an isometry, the limit
u = limgV 3a→0 T

−1(a) exists by a routine argument on Cauchy sequences.
Then σ(u) = {0}. [Suppose not; let 0 6= λ ∈ σ(u). Then −λ ∈ U since
|λ| ∈ ΩA and (C \ {0})U ⊂ U . Let T (−λ) = cλ ∈ gV . The inequality
(1− s)(1− r) + sr > 0 for all 0 < r < 1 and 0 ≤ s ≤ 1, hence

(1− s){(1− r)cλ}+ srcλ ∈ gV.
Applying Lemma 2.1 with f = (1− r)cλ, g = rcλ we have

T−1

(
cλ
2

)
= T−1

(
(1− r)cλ + rcλ

2

)
=
T−1((1− r)cλ) + T−1(rcλ)

2
.

Letting r → 0 we have

T−1

(
cλ
2

)
=
−λ+ u

2
,

which is a contradiction since T−1(cλ/2) ∈ U ⊂ A−1 and (−λ+ u)/2 6∈ A−1

for λ ∈ σ(u).] Since A is semisimple and commutative, we see that u = 0,
that is, limgV 3a→0 T

−1(a) = 0. It turns out that

(3.1) lim
U3f→0

T (f) = 0

since T is isometry.
Next we will show that T (−f) = −T (f) for every f ∈ U . Let f ∈ U .

Then −f ∈ U , and for every integer n, −f + (i/n)f ∈ U . Moreover,

(1− r)f + r

(
−f +

i

n
f

)
∈ U

for every 0 ≤ r ≤ 1 and every integer n. Then by Lemma 2.1,

T

(
i

2n
f

)
= T

(
f + (−f + i

nf)
2

)
=
T (f) + T (−f + i

nf)
2

.

Letting n→∞ we have T (−f) = −T (f) by (3.1).
Next we will show that

(3.2) T

(
f

2

)
=
T (f)

2
for every f ∈ U . Let f ∈ U . Then for every 1 > ε > 0 and every 0 ≤ r ≤ 1,

(1− r)f + rεf ∈ U.

Hence T
(f+εf

2

)
= T (f)+T (εf)

2 by Lemma 2.1, and letting ε→ 0 yields (3.2).
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Let f ∈ U . Suppose that T (kf) = kT (f) for a positive integer k. Then

T

(
f + kf

2

)
=
T (f) + T (kf)

2
=

(k + 1)T (f)
2

,

and by (3.2),

T

(
f + kf

2

)
=
T ((k + 1)f)

2
,

hence by induction T (nf) = nT (f) for every positive integer n. Then for
any positive integers m and n,

mT

(
n

m
f

)
= T

(
m
n

m
f

)
= T (nf) = nT (f),

so T ( nmf) = n
mT (f). By continuity of T , T (rf) = rT (f) for every f ∈ U

and r > 0. Hence

(3.3) T (rf) = rT (f)

for every f ∈ U and any non-zero real number r since T (−f) = −T (f).
Applying Lemma 2.1 and (3.2) we see that

(3.4) T (f + g) = T (f) + T (g)

for every pair f and g in U whenever (1− r)f + rg ∈ U for every 0 ≤ r ≤ 1.
In particular, (3.4) holds if f, g ∈ ΩA.

Define the map TU : A→ B by TU (0) = 0 and

TU (f) = T (f + 2‖f‖)− T (2‖f‖)

for a non-zero f ∈ A. The map TU is well-defined since f+2‖f‖ and 2‖f‖ are
in ΩA for every non-zero f ∈ A and T is defined on U ⊃ ΩA. If, in particular,
f ∈ ΩA, then T (f + 2‖f‖) = T (f) + T (2‖f‖), so that TU (f) = T (f).

We will show that TU is real-linear. Let f ∈ A \ {0}. Then f + r ∈ ΩA
for every r ≥ 2‖f‖, whence by (3.4),

T (f + 2‖f‖) + T (r) = T (f + 2‖f‖+ r) = T (f + r) + T (2‖f‖),

so that

(3.5) TU (f) = T (f + r)− T (r)

for every r ≥ 2‖f‖. Let f, g ∈ A. Then TU (f + g) = TU (f) + TU (g) if f = 0
or g = 0. Suppose that f 6= 0 and g 6= 0. Then by (3.4) and (3.5) we have

TU (f + g) = T (f + g + 2‖f‖+ 2‖g‖)− T (2‖f‖+ 2‖g‖)
= T (f + 2‖f‖) + T (g + 2‖g‖)− T (2‖f‖)− T (2‖g‖)
= TU (f) + TU (g).

If f = 0 or r = 0 then TU (rf) = rTU (f). Suppose that f 6= 0 and r 6= 0. If
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r > 0, then by (3.3),

TU (rf) = T (rf + 2‖rf‖)− T (2‖rf‖)
= T (r(f + 2‖f‖))− T (r2‖f‖)
= rT (f + 2‖f‖)− rT (2‖f‖) = rTU (f).

If r < 0, then

TU (rf) = (−r)(T (−f + 2‖f‖)− T (2‖f‖)).
Since −f + 2‖f‖, f + 2‖f‖ ∈ ΩA we have

T (−f + 2‖f‖)− T (2‖f‖) = −T (f + 2‖f‖) + T (2‖f‖).
It follows that

TU (rf) = (−r)(−T (f + 2‖f‖) + T (2‖f‖)) = rTU (f).

We now show that TU is surjective. Let a ∈ B. Then

(T (1))−1a+ r ∈ ΩB ⊂ V,
so

a+ T (r) = a+ rT (1) ∈ T (1)ΩB ⊂ gV ΩB ⊂ gV
whenever ‖(T (1))−1a‖ < r and ‖a‖ < r for T (1) ∈ gV . We also have

‖T−1(a+ T (r))− r‖ = ‖a+ T (r)− T (r)‖ < r,

thus T−1(a + T (r)) ∈ ΩA. Let f = T−1(a + T (r)) − r ∈ A. Then f + r =
T−1(a+ T (r)) ∈ ΩA. Hence by (3.4) we see that

T (f + r) + T (2‖f‖) = T (f + 2‖f‖+ r) = T (f + 2‖f‖) + T (r),

so we have

a = T (f + r)− T (r) = T (f + 2‖f‖)− T (2‖f‖) = TU (f).

We next show that TU is an isometry. Since TU is linear, it is sufficient
to show that ‖TU (f)‖ = ‖f‖ for every f ∈ A. If f = 0, the equatlity clearly
holds. Suppose thatf 6= 0. Then

‖TU (f)‖ = ‖T (f + 2‖f‖)− T (2‖f‖)‖ = ‖f + 2‖f‖ − 2‖f‖ ‖ = ‖f‖.
Finally, we show that TU is an extension of T , i.e., TU (f) = T (f) for every

f ∈ U . Put P = T−1
U ◦T : U → A. Let f ∈ U . Then P (f +2‖f‖) = f +2‖f‖

since f + 2‖f‖ ∈ ΩA and T = TU on ΩA. Thus we have

2‖f‖ = ‖T (f + 2‖f‖)− T (f)‖
= ‖f + 2‖f‖ − P (f)‖ ≥ ‖P (f)− f − 2‖f‖ ‖∞,

so that the range of P (f) − f on the maximal ideal space ΦA is contained
in the closed disk in the complex plane with radius 2‖f‖ and center 2‖f‖.
Applying P (−f + 2‖f‖) = −f + 2‖f‖ in the same way yields

2‖f‖ ≥ ‖P (f)− f + 2‖f‖ ‖∞,
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since T (−f) = −T (f), so that the range of P (f) − f is in the closed unit
disk with radius 2‖f‖ and center −2‖f‖. It follows that σ(P (f) − f) =
(P (f)− f)(ΦA) = {0}. Since A is semisimple and commutative, we see that
P (f) = f for every f ∈ U ; hence TU (f) = T (f) for every f ∈ U .

Two unital semisimple commutative Banach algebras which are isomet-
rically isomorphic to each other as Banach spaces need not be isometrically
isomorphic to each other as Banach algebras.

Example 3.2. Let W be the Wiener algebra,

W =
{
f ∈ C(T) : ‖f‖ =

∞∑
n=−∞

|f̂(n)| <∞
}
,

where T is the unit circle in the complex plane and f̂(n) denotes the nth
Fourier coeficient, and let

W+ = {f ∈W : f̂(n) = 0 for every n < 0}.

Then

(TW (f))(eiθ) =
∞∑
n=0

f̂(n)e2niθ +
∞∑
n=1

f̂(−n)e(2n−1)iθ

defines an isometrical Banach space isomorphism from W onto W+. On the
other hand, W is not isomorphic to W+ as a complex algebra since the
maximal ideal space of W is T and that of W+ is the closed unit disk, which
is not homeomorphic to T.

Novertheless, isometries between two groups of invertible elements in
unital semisimple commutative Banach algebras induce isometrical group
isomorphisms.

Theorem 3.3. Let A be a unital semisimple commutative Banach alge-
bra and B a unital Banach algebra. Let A and B be open subgroups of A−1

and B−1 respectively. Suppose that T is a surjective isometry (as a map
between metric spaces) from A onto B. Then B is semisimple and commu-
tative, and (T (1))−1T extends to an isometrical real algebra isomorphism
from A onto B. In particular , A−1 is isometrically isomorphic to B−1 as a
metric group.

Proof. Since A (resp. B) is an open subgroup of A−1 (resp. B−1), expA
⊂ A (resp. expB ⊂ B), whence ΩA ⊂ A (resp. ΩB ⊂ B). Applying Theo-
rem 3.1 with U = A, V = B, and g = 1, we obtain a surjective real-linear
isometry TU from A onto B which is an extension of T .

We now show that |T−1
U (1)| = 1 on ΦA. Since T−1

U is a linear isometry,
we have ‖T−1

U (1)‖ = 1, hence |T−1
U (1)| ≤ 1 on ΦA. Suppose that there exists
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x ∈ ΦA such that |T−1
U (1)(x)| < 1. Since TU is an isometry,

1 > |T−1
U (1)(x)| = ‖T−1

U (1)− (T−1
U (1)− (T−1

U (1))(x))‖
= ‖1− TU (T−1

U (1)− (T−1
U (1))(x))‖,

so that TU (T−1
U (1) − (T−1

U (1))(x)) ∈ expB ⊂ B. Since TU = T on B we
have

T−1
U (1)− (T−1

U (1))(x) ∈ A ⊂ A−1,

which is a contradiction since (T−1
U (1)− (T−1

U (1))(x))(x) = 0. Hence

(3.6) |T−1
U (1)| = 1 on ΦA.

Siimilarly,

(3.7) |T−1
U (i)| = 1 on ΦA.

Define S : B → A by S(a) = (T−1(1))−1T−1
U (a) for a ∈ B. Then S is a

bounded real-linear bijection from B onto A such that S(B) = A. Let a ∈ B.
Then

(3.8) ‖S(a)‖ = ‖T−1(1)‖ ‖(T−1(1))−1T−1
U (a)‖ ≥ ‖T−1

U (a)‖ = ‖a‖.

Next we show that (S(i))(ΦA) ⊂ iR. Let x ∈ ΦA. For every r > 0 we see
that

|r ± (S(i))(x)| = |r(T−1(1))(x)± (T−1
U (i))(x)|

= |(T−1
U (r ± i))(x)| ≤ ‖T−1

U (r ± i)‖ = |r ± i|

since T−1
U is real-linear and (3.6) holds, hence (S(i))(ΦA) ⊂ iR, so that

(S(i))(ΦA) ⊂ {i,−i}

by (3.6) and (3.7).
Let

ΦA+ = {x ∈ ΦA : S(i)(x) = i}, ΦA− = {x ∈ ΦA : S(i)(x) = −i}.

Then ΦA+ and ΦA− are (possibly empty) closed and open subsets of ΦA
respectively and

ΦA = ΦA+ ∪ ΦA−, ΦA+ ∩ ΦA− = ∅.

Define a function ι : C(ΦA)→ C(ΦA) by

(ι(f))(x) =
{
f(x), x ∈ ΦA+,

f(x), x ∈ ΦA−.
Then ι is a real-linear bijection. Note that ι(S(i)) = i and ι(A) is a complex
algebra. Define the norm ‖ · ‖± on ι(A) by

‖ι(f)‖± = max{‖f‖+, ‖f‖−},
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where
‖f‖+ = inf{‖g‖ : g ∈ A, g = f on ΦA+},
‖f‖− = inf{‖h‖ : h ∈ A, h = f on ΦA−}.

Applying the Shilov idempotent theorem and a routine argument we see that
ι(A) is a unital semisimple commutative Banach algebra with respect to the
norm ‖ · ‖±. Define S̃ : B → ι(A) by S̃(a) = ι(S(a)) for a ∈ B. Then S̃
is a bounded real-linear bijection from B onto A such that S̃(1) = 1 and
S̃(i) = i.

Let φ ∈ Φι(A). We now show that φ ◦ S̃ is a real-linear selection from the
exponential spectrum σexpB, where

σexpB(a) = {λ ∈ C : a− λ 6∈ expB}
for a ∈ B. We only need to show that φ ◦ S̃(a) ∈ σexpB(a) for every a ∈ B.
Let a ∈ B and put λ = φ ◦ S̃(a). Then S̃(a)− λ 6∈ (ι(A))−1 since φ ∈ Φι(A).
Suppose that λ 6∈ σexpB(a). Then

S̃(a− λ) ∈ S̃(expB) ⊂ ι(A) ⊂ ι(A−1).

Note that ι(A−1) = (ι(A))−1. Since S̃(1) = 1, S̃(i) = i, and S̃ is real-linear,

S̃(a− λ) = S̃(a)− λ,
so S̃(a)− λ ∈ (ι(A))−1, which is a contradiction.

By Lemma 2.2 we see that φ ◦ S̃ is a complex homomorphism. It follows
that S̃ is a (complex) algebra isomorphism from B onto ι(A). In particular,
B is semisimple and commutative.

Thus S = (T−1(1))−1T−1
U is a real algebra isomorphism from B onto A.

Since B is semisimple and commutative, we see similarly that (T (1))−1TU is
a real algebra isomorphism from A onto B such that

(3.9) ‖(T (1))−1TU (f)‖ ≥ ‖f‖
for every f ∈ A.

We now show that

(3.10) ((T−1(1))−1T−1
U )−1 = (T (1))−1TU .

Let f ∈ A and put
a = ((T−1(1))−1T−1

U )−1(f).

Then a = TU (T−1(1)f). On the other hand, since (T−1(1))−1T−1
U is multi-

plicative, we see that

T (1)TU (T−1(1)f) = TU (T−1(1)(T−1(1))−1)TU (T−1(1)f)

= ((T−1(1))−1T−1
U )−1((T−1(1))−1)((T−1(1))−1T−1

U )−1(f)

= ((T−1(1))−1T−1
U )−1((T−1(1))−1f)

= TU (T−1(1)(T−1(1))−1f) = TU (f).
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Hence

(T (1))−1TU (f) = TU (T−1(1)f) = ((T−1(1))−1T−1
U )−1(f)

for every f ∈ A, that is, (3.10) holds. Then by (3.8) and (3.9) we see that

‖(T (1))−1TU (f)‖ = ‖f‖
for every f ∈ A. Thus (T (1))−1TU is an isometrical real algebra isomorphism
from A onto B, hence (T (1))−1TU (A−1) = B−1, and we see that A−1 is
isometrically isomorphic to B−1 as a metric group.

Theorem 3.3 shows that the metric group structure of the group of in-
vertible elements in the unital semisimple commutative Banach algebra can
be recovered from the metric structure in the category of unital Banach
algebras.

Problem. In which unital Banach algebras can the metric group struc-
ture of the group of invertible elements be recovered from the metric structure
in the category of unital Banach algebras?

The conclusion of Theorem 3.3 does not hold if A is commutative but
not semisimple as the following example shows.

Example 3.4. Let

A0 =


0 a b

0 0 c

0 0 0

 : a, b, c ∈ C

 .

Let

A =


α a b

0 α c

0 0 α

 : α, a, b, c ∈ C


be the unitization of A0, where the multiplication (in A0) is the zero multi-
plication: MN = 0 for all M,N ∈ A0. Let B = A as sets, while the multi-
plication in B is the usual matrix multiplication. Then A and B are unital
Banach algebras under the usual operator norm. Note that A is commuta-
tive, but not semisimple. Note also that A−1 =

{(
α a b
0 α c
0 0 α

)
∈ A : α 6= 0

}
and

B−1 =
{(

α a b
0 α c
0 0 α

)
∈ B : α 6= 0

}
. Put F =

(
0 0 7
0 0 0
0 0 0

)
. Define T : A−1 → B−1

by T (M) = M + F . Then T is well-defined and surjective (affine) isometry
from A onto B. On the other hand. A−1 is not (group) isomorphic to B−1.
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