Commutators in Banach ∗-algebras

by

Bertram Yood (Eugene, OR)

Abstract. The set of commutators in a Banach ∗-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.

1. Introduction. We present a study of commutators, elements of the form [x, y] = xy − yx in Banach and Banach ∗-algebras. Commutators have been examined carefully in the case of B(X), the algebra of all bounded linear operators on a Hilbert space X. We cite the book by Putnam [11], where further references can be found.

Let A be a Banach ∗-algebra with a continuous involution. Our results also apply to any Banach algebra if the conclusions involving the involution are ignored. Throughout we let E denote a closed linear subspace in A. We let C denote the set of all commutators in A, and let ʮ(E) denote the center of A modulo E, the set of all a ∈ A such that [a, x] ∈ E for all x ∈ A. In Herstein’s book [9, p. 5], this notion was studied for ring theory under the notation T(E). He showed [9, Lemma 1.4] that T(E) is both a subring and a Lie ideal if E is a Lie ideal.

Suppose that A has an identity and that E ⊄ C. We show that the complement of ʮ(E) contains a set Σ where xⁿ ∈ Σ and xⁿ ∈ Σ for all positive integers n whenever x ∈ Σ. This implies that the set D(E) of all [a, b] ∈ C such that [aᵏ, bʳ] ∉ E for all positive integers k and r, is dense in C. We apply this when ʮ = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂. As shown in [3], C is dense in ʮ. Let E ≠ ʮ. Then D(E) is dense in ʮ as well as in C. If E = ℜ(ℓ₂), the algebra of all compact linear operators on ℓ₂, and [a, b] ∈ D(E), then also every aᵏ and bʳ lies in C.

In Section 3 we study relations between the center ʮ of A, C and the centralizer Γ(C) of C, the set of a ∈ A with [a, x] = 0 for all x ∈ C. If A is

2000 Mathematics Subject Classification: 46H05, 46H10, 46K05, 47B47.
Key words and phrases: Banach ∗-algebra, commutator.
semi-prime, then $\Gamma(\mathfrak{C}) = \mathfrak{Z}$. Also, if \mathfrak{Z} is semi-simple, then $\mathfrak{Z} \cap \mathfrak{C} = (0)$ and $\Gamma(\mathfrak{C})$ is commutative.

In Section 4 we treat the case where E is a closed two-sided ideal in A. Particular attention is given to the case where E is a modular primitive ideal. These results are applied to the case $\mathfrak{A} = B(\ell_2)$. We make use of the remarkable result in [3] that here \mathfrak{C} is dense in \mathfrak{A}. We show that \mathfrak{C} contains a set Γ, dense in $B(\ell_2)$, such that $a^n \in \Gamma$ for all positive integers n whenever $a \in \Gamma$ and each $a \in \Gamma$ fails to be compact. Not only is \mathfrak{C} dense in $B(\ell_2)$, but the subalgebra of $B(\ell_2)$ generated by \mathfrak{C} is all of $B(\ell_2)$.

2. On the center modulo E. We retain the notation of the introduction. We make use of a notion of Herstein, that of the hypercenter of a ring [10]. For a ring R its hypercenter \mathfrak{H} is the set of $w \in R$ such that, for each $x \in R$, there is a positive integer $n = n(x,w)$ with $[w,x^n] = 0$. For a Banach algebra A, we study a variant of this notion, the hypercenter $\mathfrak{H}(E)$ modulo E. By $\mathfrak{H}(E)$ we mean the set of $a \in A$ such that, for each $x \in A$, there is a positive integer $n = n(x,a)$ with $[a,x^n] \in E$.

We will make frequent use of the following fact. Let $p(t) = \sum_{j=0}^n a_j t^j$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in E$ for an infinite subset of the reals, then every a_j is in E.

Lemma 2.1. $\mathfrak{H}(E)$ is the set of all $a \in A$ for which there is a positive integer $r = r(a)$ such that $[a,x^r] \in E$ for all $a \in A$.

Proof. Let $a \in \mathfrak{H}(E)$. For each positive integer n, let $F_n = \{ x \in A : [a,x^n] \in E \}$. Then A is the union of the closed sets F_n so that at least one of them, say F_r, contains a non-empty open set Ω. Let $b \in \Omega$ and y be any element of A. There is some $\varepsilon > 0$ such that $[a,(b+ty)^r] \in E$ for all real t, $0 \leq t \leq \varepsilon$. Hence $[a,y^r]$ is in E. \blacksquare

Lemma 2.2. For a positive integer n, either $[a,x^n] \in E$ for all $x \in A$ or the set G_n of $x \in A$ with both $[a,x^n] \notin E$ and $[a,x^*n] \notin E$ is a dense open set in A.

Proof. Clearly G_n is open. Suppose that G_n is not dense in A. Then there is a non-empty open set Ω in A such that, for each $x \in \Omega$, either $[a,x^n] \in E$ or $[a,x^*n] \in E$. Let $b \in \Omega$ and $y \in A$. There is some $\varepsilon > 0$ so that $b + ty \in \Omega$ for all real t, $0 \leq t \leq \varepsilon$. For each such t, either $[a,(b+ty)^n] \in E$ or $[a,(b+ty)^*n] \in E$. At least one of these possibilities holds for infinitely many values of t. Thus either $[a,y^n] \in E$ or $[a,y^*n] \in E$. Then A is the union of two closed sets, $F_1 = \{ y \in A : y^n \in E \}$ and $F_2 = \{ y \in A : y^*n \in E \}$. At least one of the sets F_1,F_2 must contain a non-empty open subset Γ of A. Say, $F_1 \supset \Gamma$. Let $w \in \Gamma$ and $y \in A$. There is an interval of reals of positive
length with \([a, (w + ty)^n] \in E\) for each such real \(t\). Hence \([a, y^n] \in E\) for all \(y \in A\). Likewise, if \(F_2 \supseteq \Gamma\), then \([a, y^n] \in E\) for all \(y \in A\).

Theorem 2.3. Either \(a \in \mathfrak{H}(E)\) or the set \(S(a, E)\), of \(x \in A\) such that both \([a, x^n] \notin E\) and \([a, x^*n] \notin E\) for all positive integers \(n\), is dense in \(A\).

Proof. If \(S(a, E)\) is dense, then \(a \notin \mathfrak{H}(E)\) by Lemma 2.1. Suppose that \(a \notin \mathfrak{H}(E)\). Then, by Lemma 2.1, for each positive integer \(n\) there is some \(x \in A\) where \([a, x^n] \notin E\). By Lemma 2.2, each of the sets \(G_n\) of that lemma is dense and open. By the Baire category theorem, their intersection
\(\bigcap G_n = S(a, E)\) is dense in \(A\).

Notation. We will continue to use \(S(a, E)\) to denote the set of \(x \in A\) such that both \([a, x^n] \notin E\) and \([a, x^*n] \notin E\) for all positive integers \(n\).

We treat the case \(E = (0)\). Let \(\mathfrak{Z}\) denote the center of \(A\).

Theorem 2.4. Let \(A\) be a semi-prime Banach algebra and \(E = (0)\). Either \(a \in \mathfrak{Z}\) or \(S(a, E)\) is dense in \(A\).

Proof. Suppose \(S(a, E)\) is not dense in \(A\). Then by Theorem 2.3, \(a\) is in the hypercenter \(\mathfrak{H}\) of \(A\). Herstein [10, Theorem 2] has shown that if a ring \(R\) has no nil ideals, then \(\mathfrak{H} = \mathfrak{Z}\). For a Banach algebra \(A\), Dixon [6] showed that the condition for \(A\) to have no nil ideals is equivalent to \(A\) being semi-prime.

For the notion of a left or right approximate identity, see [7, p. 2].

Theorem 2.5. Suppose that \(A\) has a left or a right approximate identity \(\{e_\lambda\}\). Then \(\mathfrak{H}(E) = \mathfrak{Z}(E)\) so that either \(a \in \mathfrak{Z}(E)\) or \(S(a, E)\) is dense in \(A\).

Proof. Clearly \(\mathfrak{Z}(E) \subset \mathfrak{H}(E)\). Let \(a \in \mathfrak{H}(E)\). By Lemma 2.1, there is a fixed positive integer \(n\) such that \([a, x^n] \in E\) for all \(x \in A\). We show this holds for \(n = 1\) so that \(a \in \mathfrak{Z}(E)\).

Suppose that \(n > 1\) and \([a, x^n] \in E\) for all \(x \in A\). Then \([a, (x + te_\lambda)^n] \in E\) for each given \(x \in A\), each \(e_\lambda\) and all real values of \(t\). The coefficient of \(t\) in the polynomial \([a, (x + te_\lambda)^n]\) lies in \(E\), so that

\[
[a, \sum_{j=0}^{n-1} x^j e_\lambda x^{n-1-j}] \in E.
\]

Taking the limit on \(e_\lambda\), we see that \([a, x^{n-1}] \in E\) for all \(x \in A\). Continuing in this way, we see that \(a \in \mathfrak{Z}(E)\).

Theorem 2.5 need not hold if \(A\) has no approximate identity. For example, take any \(A\) such that, for some positive integer \(n\), \(x^n = 0\) for all \(x \in A\). However, when \(E = (0)\), we have seen in Theorem 2.4 that the conclusion holds for every semi-prime \(A\). We do not know if this is the case for all \(E\), but we show that such is the case if \(A\) has a dense socle.
Theorem 2.6. Let A be a semi-prime Banach algebra with a dense socle Σ. Then $\mathcal{H}(E) = \mathcal{J}(E)$ for all E.

Proof. Let $a \in \mathcal{H}(E)$. By Lemma 2.1, there is a positive integer n so that $[a, x^n] \in E$ for all $x \in A$. We show that the validity of this statement for some $n \geq 2$ implies its validity for $n = 1$.

Let Ap, where $p^2 = p$, be a minimal left ideal in A. Note that $[a, p] \in E$ as $p = p^n$. We have

$$t^{-1}[a, (p + ty)^n - p] \in E$$

for all real values of $t \neq 0$ and any $y \in A$. Also

$$(p + ty)^n = p + t[yp + (n - 2)py + py] + \cdots,$$

where we have omitted all terms in the expansion of $(p + ty)^n$ involving higher powers of t. Therefore, if we let $t \to 0$, we see that

$$[a, yp + (n - 2)py + py] \in E.$$

However, $py + \lambda p$ for a scalar λ so that $[a, yp + py] \in E$ for all $y \in A$. Replace y by yp to see that $[a, yp + py] \in E$ or $[a, y] \in E$ for all $y \in A$. Therefore $[a, w] \in E$ for all $w \in \Sigma$. As Σ is dense in A, we have $a \in \mathcal{J}(E)$. \hfill \blacksquare

Note that E contains the set \mathcal{L} of all commutators if and only if $[x, y] \in E$ for all $x, y \in A$ or, equivalently, $\mathcal{J}(E) = A$. Thus if $E \nsubseteq \mathcal{L}$, then $\mathcal{J}(E)$ is a proper closed linear subspace of A, so that its complement is dense in A. We denote that complement by $\mathcal{R}(E)$.

Proposition 2.7. $\mathcal{R}(E)$ is an open subset of A, any two elements of which are connected by one or two line segments in $\mathcal{R}(E)$.

Proof. We assume that $\mathcal{R}(E)$ is not empty. For $a \in A$, $a \in \mathcal{R}(E)$ if and only if $[a, b] \notin E$ for some $b \in A$. Let $a, b \in A$ with $[a, b] \notin E$ so that a and b lie in $\mathcal{R}(E)$. For any scalars λ and μ where $\lambda \neq 0$, we have $[\lambda a + \mu b, b] \notin E$. Thus the line segment from a to b lies in $\mathcal{R}(E)$.

Let $v, w \in \mathcal{R}(E)$. We show that there is $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. For suppose otherwise. Let $F_1 = \{x \in A : [v, x] \notin E\}$ and $F_2 = \{x \in A : [w, x] \in E\}$. Then A is the union of the closed sets F_1 and F_2 so that at least one of them, say F_1, contains a non-empty open subset. Arguing as in the proof of Lemma 2.2, we see that $[v, x] \in E$ for all $x \in A$, so that $v \notin \mathcal{R}(E)$.

Now let $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. The line segments joining v to y and y to w lie in $\mathcal{R}(E)$. \hfill \blacksquare

We say that a subset S of A is power-closed if $x^n \in S$ for all positive integers n whenever $x \in S$.

Theorem 2.8. Suppose that A has an identity e and that $E \nsubseteq \mathcal{L}$. Then $\mathcal{R}(E)$ contains a dense power-closed *-subset of A.

Proof. Let S_1 be the set of all $x \in A$ for which both $x^n \in \mathcal{R}(E)$ and $x^{*n} \in \mathcal{R}(E)$ for all positive integers n. We show S_1 to be dense in A. Suppose otherwise. Then there exists a non-empty open set G where, for each $x \in G$, either there is a positive integer n with $x^n \in \mathcal{Z}(E)$ or a positive integer m with $x^{*m} \in \mathcal{Z}(E)$. For positive integers p and q, let

$$W_{p,q} = \{ x \in A : x^p \notin \mathcal{Z}(E) \text{ and } x^{*q} \notin \mathcal{Z}(E) \}.$$

If every $W_{p,q}$ was dense in A, then so also would be their intersection by the Baire category theorem. But this would contradict the existence of G. Then we have the existence of a non-empty open set Ω in the complement of $W_{r,s}$, say. Let $a \in \Omega$ and $y \in A$. For some $\varepsilon > 0$ either $(a + ty)^r \in \mathcal{Z}(E)$ or $(a + ty^*)^s \in \mathcal{Z}(E)$ for each t, $0 \leq t \leq \varepsilon$. Arguing as in the proof of Lemma 2.2, we see that there is a positive integer n so that $y^n \in \mathcal{Z}(E)$ for all $y \in A$.

We employ notation used in [13, p. 204]. Let B_r denote the sum of those terms in the expansion of $(a + b)^n$ for which the sum of the exponents of the b^j factors is r. Thus $B_0 = a^n$ and $B_1 = \sum_{k=0}^{n-1} a^k ba^{n-1-k}$. For any a and b in A and any real value of t, we see that $(a + tb)^n = \sum_{r=0}^{n} B_r t^r$ lies in $\mathcal{Z}(E)$. Therefore each B_r is in $\mathcal{Z}(E)$ and hence $[B_0, B_1] \in E$. We use this for $a = e + tx$ and $b = y$ to see, as in [13, p. 208], that

$$[t^{-1}((e + tx)^n - e), \sum_{j=0}^{n-1} (e + tx)^j y (e + tx)^{n-1-j}] \in E$$

for every real $t \neq 0$. We let $t \to 0$ to see that $[x, y] \in E$ for all $x, y \in A$. This contradicts $E \not\supset \mathcal{C}$ so that S_1 is dense in A.

We let $\mathcal{D}(E)$ be the set of all $[a, b] \in \mathcal{C}$ where $[a^k, b^r] \notin E$ for all positive integers k and r.

Theorem 2.9. Suppose that A has an identity and that $E \not\supset \mathcal{C}$. Then $\mathcal{D}(E)$ is dense in \mathcal{C}.

Proof. By Theorem 2.5 the set $S(w, E)$ is dense in A for each $w \notin \mathcal{Z}(E)$. Recall that $S(w, E)$ is the intersection of countably many open dense subsets of A. We employ the set S_1 of Theorem 2.8.

Let $[a, b] \in \mathcal{C}$. Fix attention on the positive integer n. There is $a_n \in S_1$ where $\|a - a_n\| < n^{-1}$. As S_1 is power-closed, we have $a_n^k \in S_1$ for each positive integer k, so that $S(a_n^k, E)$ is a dense *-subset of A. By the Baire category theorem, the set $Q_n = \bigcap_k S(a_n^k, E)$ is dense in A. By its definition, every $S(a_n^k, E)$ is power-closed. Therefore, so is Q_n. We select $b_n \in Q_n$ with $\|b - b_n\| < n^{-1}$. Then $[a_n^k, b_n^r] \notin E$ for all positive integers k and r. Also $[a_n, b_n] \to [a, b]$.

Corollary 2.10. Let \(\mathfrak{A} \) be the algebra of all bounded linear operators on \(\ell_2 \). Let \(E \) be a proper closed linear subspace of \(\mathfrak{A} \). Then \(\mathfrak{D}(E) \) is dense in \(\mathfrak{A} \).

Proof. In [3, Corollary 5.2] it is pointed out that \(\mathfrak{C} \) is dense in \(\mathfrak{A} \). Therefore \(E \not\supseteq \mathfrak{C} \). We apply Theorem 2.9 to see that \(\mathfrak{D}(E) \) is dense in \(\mathfrak{A} \) as well as in \(\mathfrak{C} \).

3. Sets related to the center \(\mathfrak{Z} \). We examine the sets \(\mathfrak{Z}, \mathfrak{Z}(\mathfrak{Z}) = \{ a \in A : [a, A] \subset \mathfrak{Z} \} \) and \(\Gamma(\mathfrak{C}) \), the centralizer of \(\mathfrak{C} \), i.e., the set of \(x \in A \) such that \([x, y] = 0 \) for all \(y \in \mathfrak{C} \).

First we show that properties of \(\mathfrak{Z} \) alone can affect the nature of \(\mathfrak{Z}(\mathfrak{Z}), \Gamma(\mathfrak{C}) \) and \(\mathfrak{C} \).

Theorem 3.1. If \(\mathfrak{Z} \) is a semi-prime algebra, then \(\mathfrak{Z}(\mathfrak{Z}) = \mathfrak{Z} \).

Proof. Let \(a \in \mathfrak{Z}(\mathfrak{Z}) \). Since \([a, [a, x]] = 0 \) for all \(x \in A \), arguments in [9, p. 4] show that \([a, x][a, y] = 0 \) for all \(x, y \in A \). Let \(z \in \mathfrak{Z} \). Then \(z[a, x] = [a, xz] = [a, x]z \) for all \(x, y \in A \). Hence \([a, A] \) is an ideal in \(\mathfrak{Z} \) with \(uv = 0 \) for all \(u, v \in [a, A] \) so that \([a, A]^2 = (0) \). As \(\mathfrak{Z} \) is semi-prime, we have \([a, A] = (0) \) or \(a \in \mathfrak{Z} \).

Let \(J \) denote the radical of \(A \) and \(r(x) \) the spectral radius of \(x \in A \).

Lemma 3.2. Let \(x, y \in A \). If \([x, y] \in \mathfrak{Z} \), then \([x, y] \in J \).

Proof. Since \(x \) permutes with \([x, y] \), by the Kleinecke–Shirokov theorem [1, p. 91], we have \(r([x, y]) = 0 \). Let \(v \in A \). As \(v \) also permutes with \([x, y] \) we have, by [12, Theorem 1.4.1],

\[
r([x, y]v) \leq r([x, y])r(v) = 0.
\]

Therefore \([x, y]v \) is quasi-regular for each \(v \in A \), so that \([x, y] \in J \).

Theorem 3.3. No non-zero idempotent lies in \(\mathfrak{C} \cap \mathfrak{Z} \). If \(\mathfrak{Z} \) is semi-simple, then \(\mathfrak{C} \cap \mathfrak{Z} = (0) \).

Proof. Let \(p \) be a non-zero idempotent. Since \(p \notin J \), we see by Lemma 3.2 that \(p \notin \mathfrak{C} \cap \mathfrak{Z} \). If \(\mathfrak{Z} \) is semi-simple, then \(\mathfrak{C} \cap \mathfrak{Z} = (0) \) by Lemma 3.2.

This is an extension of the classical result [11, p. 2] that the identity in a Banach algebra cannot be a commutator. We note also that if \(A \) is semi-simple, then so is \(\mathfrak{Z} \). For, let \(x_0 \) be in the radical of \(\mathfrak{Z} \) and \(y \in A \). By [12, Theorem 1.4.1], \(r(x_0y) \leq r(x_0)r(y) = 0 \). Thus \(x_0y \) is quasi-regular for each \(y \in A \), so that \(x_0 \in J \).

Corollary 3.4. If \(\mathfrak{Z} \) is semi-prime, then \(\Gamma(\mathfrak{Z}) \) is commutative.

Proof. Let \(a, b \in \Gamma(\mathfrak{C}) \). By the Jacobi identity \([a, [b, x]] + [b, [x, a]] + [x, [a, b]] = 0 \) for all \(x \in A \). Hence \([x, [a, b]] = 0 \) for all \(x \in A \), so that
Commutators in Banach *-algebras

As $\mathfrak{z} Z$ is semi-simple, $[a,b] = 0$ by Theorem 3.3. Thus $\Gamma(\mathfrak{c})$ is commutative. ■

Theorem 3.5. $\Gamma(\mathfrak{c}) \supseteq \mathfrak{z}(\mathfrak{z})$. If $J \subset \mathfrak{z}$, then $\Gamma(\mathfrak{c}) = \mathfrak{z}(\mathfrak{z})$.

Proof. Let $a \in \mathfrak{z}(\mathfrak{z})$. By the Jacobi identity $[a, [x, y]] + [x, [y, a]] + [y, [a, x]] = 0$ for all $x, y \in A$. But as $[y, a] \in \mathfrak{z} Z$ and $[a, x] \in \mathfrak{z} Z$, we see that $[a, [x, y]] = 0$ for all $x, y \in A$, or $a \in \Gamma(\mathfrak{c})$.

Next let $a \in \Gamma(\mathfrak{c})$. Then $[a, [a, x]] = 0$ for all $x \in A$. Arguments of Herstein [9, p. 4] show that $[a, x] A[a, x] = (0)$ for all $x \in A$. Then $[a, x] \in J \subset \mathfrak{z}$.

There are interesting examples of A where $J \neq (0)$ is the set of $x \in A$ where $xA = Ax = (0)$. Of course, in that case $J \subset \mathfrak{z}$. The prototype of such instances is an example of C. Feldman [12, p. 297]. That example is commutative. More elaborate examples, where $J \neq (0)$, $J \subset \mathfrak{z}$, which are not commutative, are given in [14]; the Feldman example is a special case.

Theorem 3.6. If A is a semi-prime algebra, then $\mathfrak{z}(\mathfrak{z}) = \Gamma(\mathfrak{c}) = \mathfrak{z}$.

Proof. This is valid for any algebra, not just a Banach algebra. By [9, Lemma 1.5, p. 11] we see that $\Gamma(\mathfrak{c}) = \mathfrak{z}$.

4. On the center modulo an ideal. All ideals considered here are two-sided unless otherwise specified. Henceforth K will denote a closed ideal in A, and π will denote the natural homomorphism of A onto A/K. We recall the notation $\mathfrak{z}(K)$ and its complement $\mathfrak{r}(K)$ of Section 2. We examine properties of $\mathfrak{r}(K)$, motivated by the example of $A = B(\ell_2)$, the algebra of all bounded linear operators on ℓ_2. Let K be the subset of its compact operators. It follows from [3] that $\mathfrak{r}(K)$ is the set of all elements of \mathfrak{c} which are not compact.

Theorem 4.1. Suppose that A/K is semi-simple and $a \in A$. Either $[a, A] \subset K$, or the set of $x \in A$ such that $[a, x^n] \notin K$ and $[a, x^{*n}] \notin K$ for all positive integers n is dense in A.

Proof. An equivalent statement is that $\mathfrak{r}(K)$ is the set of all $a \in A$ with the stated properties. First, note that $\pi(\mathfrak{s}(K))$ is the hypercenter $\mathfrak{s}^\#$ of A/K. As A/K is semi-simple, $\mathfrak{s}^\#$ is the center $\mathfrak{z}^\#$ of A/K by [10, Lemma 2]. Now $\pi^{-1}(\mathfrak{z}^\#) = \{y \in A : [y, A] \subset K\} = \mathfrak{z}(K)$. Thus $\mathfrak{z}(K) \subset \mathfrak{s}(K) \subset \pi^{-1}(\mathfrak{z}^\#) = \mathfrak{z}(K)$.

Therefore $\mathfrak{z}(K) = \mathfrak{s}(K)$. We now apply Theorem 2.3 to see that if $a \notin \mathfrak{z}(K)$, then a has the required properties. ■

Theorem 4.2. Suppose that A/K is semi-simple. If $a \in \mathfrak{z}(K) \cap \mathfrak{c}$, then $a \in K$.
Proof. In other words, if \(a \in C \) is not in \(K \), then \(a \in R(K) \). Note that \(\pi(a) \) is a commutator lying in the center \(3^# \) of \(A/K \) (see the preceding proof). Since \(A/K \) is semi-simple, \(\pi(a) = 0 \) by Theorem 3.3. ■

If the ideal \(K \neq A \) of Theorem 4.2 is modular and \(j \) is an identity for \(A \) modulo \(K \), then, by Theorem 4.2, \(j \notin C \) since \(j \in 3(K) \) and \(j \notin K \).

Henceforth, let \(P \) denote a modular primitive ideal where \(j \) is an identity for \(A \) modulo \(P \).

Lemma 4.3. \(3(P) \) is the set of elements in \(A \) of the form \(\lambda j + y \) where \(\lambda \) is a scalar and \(y \in P \). Also, \(A = 3(P) \) if and only if \(P \supseteq C \).

Proof. Let \(\pi \) be the canonical homomorphism of \(A \) onto \(A/P \). \(A/P \) is a primitive algebra with \(\pi(j) \) as its identity. By [12, Corollary 2.4.5], the center \(3^# \) of \(A/P \) is the set of scalar multiples of its identity \(\pi(j) \). As in the proof of Theorem 4.1, \(3(P) = \pi^{-1}(3^#) \) so that \(3(P) \) is the set of elements \(\lambda j + y \) where \(\lambda \) is a scalar and \(y \in P \).

Suppose \(A = 3(P) \). By Theorem 4.2, we have \(P \supseteq C \). Conversely, suppose that \(P \supseteq C \), so that \([\pi(x), \pi(y)] = 0 \) for all \(x, y \in A \). Thus \(A/P \) is commutative and is the set of all \(\lambda \pi(j) \) elements. Then \(3(P) = A \) by the description above of \(3(P) \). ■

Thus, if \(P \not\supseteq C \) then \(R(P) \) is the set of elements not of the form \(\lambda j + y \), \(\lambda \neq 0 \), \(y \in P \) and where \(\lambda j + y \notin P \).

Theorem 4.4. Suppose that \(P \) is a modular maximal ideal in \(A \) and that \(P \not\supseteq C \). Then any \(a \in A \) is of the form \(x + y \) where \(x \) is in the subalgebra \(Q \) generated by \(C \), and \(y \in P \).

Proof. Let \(\Gamma_0 \) be the subalgebra of \(A/P \) generated by its commutators. Here \(A/P \) is a simple algebra which, as \(P \not\supseteq C \), is not commutative. By a corollary of Herstein [9, p. 6], we have \(\Gamma_0 = A/P \). Now \(\Gamma_0 \) is the set of all \([\pi(x), \pi(y)] \), \(x, y \in A \), where \(\pi \) is the natural homomorphism of \(A \) onto \(A/P \). Then any \(a \in A \) is of the form \(x + y \), \(x \in Q \) and \(y \in P \). ■

Henceforth, we confine attention to the algebra of all bounded linear operators on \(\ell_2 \), which we denote by \(\mathfrak{A} \). Let \(\mathfrak{R} \) denote the subset of all compact operators.

Corollary 4.5. The subalgebra of \(\mathfrak{A} \) generated by \(C \) is all of \(\mathfrak{A} \).

Proof. Here \(\mathfrak{R} \) is a modular maximal ideal in \(\mathfrak{A} \). Also, \(C \supseteq \mathfrak{R} \) as shown in [2]. We apply Theorem 4.4. ■

Theorem 4.6. In \(\mathfrak{A} \), \(C = \mathfrak{R} \cup R(\mathfrak{R}) \).

Proof. Let \(I \) denote the identity of \(\mathfrak{A} \). By Lemma 4.3, \(R(\mathfrak{R}) \) is the set of elements of \(\mathfrak{A} \) not of the form \(\lambda I + T \) where \(\lambda \) is a scalar and \(T \in \mathfrak{R} \). Then
Commutators in Banach ∗-algebras

\[R(\mathcal{K}) \cup \mathcal{K} \] is the set of those elements not of the form \(\lambda I + T \) where \(\lambda \neq 0 \) and \(T \in \mathcal{K} \). This, however, is \(\mathcal{C} \), as shown in [3].

Theorem 4.7. \(R(\mathcal{K}) \) and hence \(\mathcal{C} \) contains a power-closed ∗-subset dense in \(\mathbb{A} \).

Proof. By Theorem 2.8, \(R(\mathcal{K}) \) possesses such a dense subset. By Theorem 4.6, \(R(\mathcal{K}) \subset \mathcal{C} \).

Theorem 4.8. The subset of \(\mathcal{C} \), consisting of all \([T, U] \) with \([T^k, U^r] \notin \mathcal{K} \) for all positive integers \(k \) and \(r \), is dense in \(\mathbb{A} \). Every \(T^k \) and \(U^r \) lies in \(\mathcal{C} \).

Proof. By Corollary 2.10, the subset in question is dense in \(\mathcal{C} \) and therefore dense in \(\mathbb{A} \). By Theorem 4.6, every \(T^k \) and \(U^r \) is in \(\mathcal{C} \) as \(T^k, U^r \notin \mathbb{J}(\mathcal{K}) \).

Theorem 4.9. \(\mathcal{C} \) is a connected subset of \(\mathbb{A} \), any two elements of which are connected by one or two line segments lying entirely in \(\mathcal{C} \).

Proof. By Theorem 4.6, we have \(\mathcal{C} = \mathcal{K} \cup R(\mathcal{K}) \). Any two elements of \(\mathcal{K} \) are connected by a line segment in \(\mathcal{K} \). By Proposition 2.7, any two elements of \(R(\mathcal{K}) \) are connected in \(R(\mathcal{K}) \) by one or two line segments. Now let \(T \in \mathcal{K} \) and \(U \in R(\mathcal{K}) \). We claim that \(\alpha T + \beta U \in \mathcal{C} \) for any scalars \(\alpha \) and \(\beta \). For otherwise, by [3], there exists a scalar \(\gamma \neq 0 \) and \(W \in \mathcal{K} \) so that \(\alpha T + \beta U = \gamma I + W \). Then \(\beta U = \gamma I + (W - \alpha T) \) where \(W - \alpha T \in \mathcal{K} \). This is impossible as \(U \in \mathcal{C} \).

Theorem 4.10. \(\mathcal{K} \) and \((0) \) are the only closed Lie ideals of \(\mathcal{K} \).

Proof. \(\mathcal{K} \) is a primitive Banach algebra with a dense socle \(\mathcal{G} \). The center \(\mathcal{Z} \) of \(\mathcal{K} \) is \((0) \). By [5, Theorem 6.1], any closed Lie ideal \(\mathcal{L} \) of \(\mathcal{K} \) must contain \([T, U] \) for all \(T \in \mathcal{G} \) and \(U \in \mathcal{K} \). Thus \(\mathcal{L} \) contains all commutators of \(\mathcal{K} \). Then, as shown in [2], \(\mathcal{L} = \mathcal{K} \).

Department of Mathematics
University of Oregon
Eugene, OR 97403, U.S.A.
E-mail: ross@math.uoregon.edu

Received January 20, 2004