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An analytic approach to the spectral characterization
of the radical

by

Graham R. Allan (Cambridge)

Abstract. We give a simple complex-variable proof of an old result of Zemánek and
Le Page on the radical of a Banach algebra. Incidentally, the argument also proves a recent
result of Harris and Kadison.

Throughout this paper, A is a complex unital Banach algebra, J ≡ J(A)
is the Jacobson radical of A and N ≡ N(A) is the set of quasi-nilpotent
elements of A, i.e. N = {x ∈ A : Spx = {0}}. For elements a, b of an
algebra, write [a, b] = ab− ba, the commutator of a and b.

In Zemánek’s proof of his well known characterization of the radical ([5],
[6], [7]), an important step was to prove the following theorem.

Theorem 1. Let x ∈ A have the property that [x, a] ∈ N for every a ∈ A.
Then [x, a] ∈ J for every a ∈ A.

This result had been independently proved by Le Page [3] by essentially
the same method, using the Jacobson density theorem.

In a recent paper [2], Harris and Kadison define the notion of a Schurian
algebra. As well as proving a number of properties of Schurian algebras, they
give examples, in particular they prove that every complex Banach algebra
with identity is Schurian. We do not need, here, to define “Schurian”, but
instead give the result explicitly as follows:

Theorem 2 ([2]). Let A be a complex Banach algebra with 1, let L be
a maximal left ideal of A and let x be an element of A such that Lx ⊆ L.
Then there is some λ ∈ C such that x− λ1 ∈ L.

Remark. The converse to Theorem 2 is, of course, trivial; it is also clear
that, for given L and x, the complex number λ is uniquely determined.

While the proof in [2] is quite straightforward, it seems interesting to
give a proof that uses just elementary complex-variable theory. In fact in
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[1, Theorem 2.3] we proved the special case of Theorem 2 in which x is
supposed to belong to the centre of A. Our present proof of Theorem 2 is a
simple adaptation of that earlier proof.

In this paper we shall first give the simple proof of Theorem 2 and then
use that result, with a few simple algebraic lemmas, to give a proof of The-
orem 1 without the use of representation theory.

Proof of Theorem 2. First a remark: suppose that x /∈ L but that yx ∈ L
for some y ∈ A. Then we claim that y ∈ L, for otherwise there is some z ∈ A
with zy − 1 ∈ L and then, since Lx ⊆ L, it follows that zyx − x ∈ L. But
then we would have x ∈ L, contrary to hypothesis.

To prove the main result: suppose that, for every λ ∈ C we have x− λ1
/∈ L. Then, for every λ ∈ C there is some y(λ) ∈ A with y(λ)(x−λ1)−1 ∈ L.
Since, for every λ ∈ C, L(x− λ1) ⊆ L it follows from the first paragraph of
the proof that y(λ) is uniquely determined modulo L.

More explicitly, let π : A→ A/L be the quotient map and define

f(λ) = π(y(λ)) (λ ∈ C),

where y(λ) is any element of A such that y(λ)(x− λ1)− 1 ∈ L. Then f is a
well-defined A/L-valued function on C.

Now let µ ∈ C and choose y ∈ A so that y(x − µ1) − 1 ∈ L. For
|λ−µ| < ‖y‖−1, the element 1+(µ−λ)y is invertible. A simple computation
shows that (1 + (µ − λ)y)−1y(x − λ1) − 1 ∈ L; i.e. for |λ − µ| < ‖y‖−1, we
may take y(λ) = (1 + (µ − λ)y)−1y, which is holomorphic in λ. It follows
that f is a holomorphic A/L-valued function on C. For |λ| > ‖x‖ we may
take y(λ) = (x−λ1)−1; it being well known that (x−λ1)−1 → 0 as |λ| → ∞,
it follows that also f(λ)→ 0 as |λ| → ∞.

It then follows from Liouville’s theorem that f(λ) ≡ 0, so that each y(λ)
is in L and then 1 ∈ L and L = A, which is a contradiction. This completes
the proof.

Lemma 3. Let L be a maximal left ideal of A and let x ∈ A. Suppose
that [l, x] ∈ N for every l ∈ L; then Lx ⊆ L.

Proof. Suppose that [l, x] ∈ N for every l ∈ L, but that Lx * L. There is
thus some m ∈ L with mx /∈ L and then, by maximality of L, there is some
b ∈ A such that bmx−1 ∈ L. Hence [bm, x]−1 = (bmx−1)−xbm ∈ L; but,
since bm ∈ L, the hypothesis implies that [bm, x] ∈ N , so that [bm, x]− 1 is
invertible, contrary to L being a proper left ideal.

Corollary 4. Let x ∈ A have the property that [x, a] ∈ N for every
a ∈ A and let L be a maximal left ideal of A. Then there is a unique λ ∈ C
such that x− λ1 ∈ L.
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Proof. It is clear that there is at most one λ ∈ C for which x−λ1 ∈ L. By
Lemma 3 we have Lx ⊆ L and the result is now immediate from Theorem 2.

In what follows G ≡ G(A) is the group of invertible elements of the
Banach algebra A. The next lemma is elementary algebra.

Lemma 5. Let L be a maximal left ideal of A and let x ∈ A. Suppose
that for every u ∈ G(A) there is some λ = λ(u) ∈ C with (x − λ1)u ∈ L.
Then there is a unique λ ∈ C with (x− λ1)A ⊆ L.

Proof. Note that, for each u ∈ G, the λ = λ(u) ∈ C with (x−λ1)u ∈ L is
unique, since u /∈ L. By hypothesis, there is a unique µ ∈ C with x−µ1 ∈ L;
we shall show that λ(u) = µ for every u ∈ G. Thus, let u ∈ G.

Case (i): there are α, β ∈ C, not both zero, with α1+βµ ∈ L. Necessarily
αβ 6= 0 and it follows that (x− µ1)u ∈ L, i.e. that λ(u) = µ.

Case (ii): the set {1, u} is linearly independent modulo L. Choose α ∈
C\{0} with u+α1 ∈ G (e.g. any α with |α| > ‖u‖). Then there are γ, δ ∈ C
with (x− γ1)u ∈ L, (x− δ1)(u+ α1) ∈ L and we already have x− µ1 ∈ L.
A simple calculation then shows that (γ − δ)u + α(µ − δ)1 ∈ L so that, by
the hypothesis of Case (ii), γ = δ = µ.

Thus (x− µ1)G ⊆ L and so also, since A = G+G, (x− µ1)A ⊆ L.
Lemma 6. Let x ∈ A have the property that [x, a] ∈ N for every a ∈ A

and let L be a maximal left ideal of A. Then there is a unique λ ∈ C with
(x− λ1)A ⊆ L.

Proof. By Lemma 5, it is sufficient to show that for each u ∈ G there is
some λ ∈ C with (x− λ1)u ∈ L.

But, for any u ∈ G, (x − λ1)u ∈ L if and only if u−1(x − λ1)u ∈ L, i.e.
u−1xu − λ1 ∈ L. Also, for every a ∈ A, [u−1xu, a] = u−1[x, uau−1]u ∈ N .
So the result follows from Corollary 4.

Proof of Theorem 1. Let P be a primitive ideal of A, so that there is a
maximal left ideal L with

P = L : A ≡ {a ∈ A : aA ⊆ L}.
By Lemma 6, there is λ ∈ C with x− λ1 ∈ P . Thus [x, a] = [x− λ1, a] ∈ P
for every a ∈ A. Since J(A) is the intersection of all the primitive ideals
of A, the result is proved.

Corollary 7 ([4, Lemma 1], [5, Lemma 1.22]). Let x ∈ A; then x ∈
J(A) if and only if both x ∈ N(A) and [x, a] ∈ N(A) for all a ∈ A.

Proof. For the non-trivial implication, suppose that [x, a]∈N(A) (a∈A).
Since x ∈ N(A) then x + J ∈ N(A/J); but also by Theorem 1, x + J is in
the centre of A/J . It follows that x+ J ∈ J(A/J) = {0}, i.e. x ∈ J.
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Editorial note. Further results related and analogous to Theorem 1 have been subse-
quently obtained in [A1], [A2], [BM], [B], [G], [KS] and [TSh]. It would be interesting to
see if the author’s method can be applied or modified in these related cases, and even to
find a unified approach to all of them.
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