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∗-Representations, seminorms and structure
properties of normed quasi ∗-algebras

by

Camillo Trapani (Palermo)

Abstract. The class of ∗-representations of a normed quasi ∗-algebra (X, A0) is in-
vestigated, mainly for its relationship with the structure of (X, A0). The starting point of
this analysis is the construction of GNS-like ∗-representations of a quasi ∗-algebra (X, A0)
defined by invariant positive sesquilinear forms. The family of bounded invariant positive
sesquilinear forms defines some seminorms (in some cases, C∗-seminorms) that provide
useful information on the structure of (X, A0) and on the continuity properties of its
∗-representations.

1. Introduction. A quasi ∗-algebra is a couple (X,A0), where X is a
vector space with involution ∗, A0 is a ∗-algebra and a vector subspace of X,
and X is an A0-bimodule whose module operations and involution extend
those of A0. This notion was first introduced by G. Lassner in the early 80’s
of the last century ([13, 14], see also [17]).

The simplest way to construct such an object consists in taking the
completion of a locally convex ∗-algebra (A0, τ) whose multiplication is sep-
arately but not jointly continuous. This puts on the stage locally convex
quasi ∗-algebras, both for their intrinsic interest and for their potential ap-
plications [1, 20]. Even though a certain number of results on general lo-
cally convex quasi ∗-algebras can be found in the literature (see [1, 17] and
references therein), rather limited attention has been focused on the case
where the locally convex topology of X is a norm topology. In this paper we
continue the study, undertaken in [22, 23], of the structure properties of a
normed quasi ∗-algebra (X,A0). The latter means, roughly speaking, that X
is a normed space with norm ‖ · ‖ and this norm satisfies certain coupling
properties related to the partial multiplication of (X,A0). A special case of
this situation is that of the so-called CQ∗-algebras considered in a series of
papers [2, 4–6].

The main subject of this paper is the study of the class of all ∗-represen-
tations of a normed quasi ∗-algebra (X,A0). A ∗-representation of (X,A0)
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is a ∗-homomorphism π of (X,A0) into the partial ∗-algebra L†(D,H) of
closable linear operators defined on a dense domain D of Hilbert space H.
A ∗-representation of a normed or Banach quasi ∗-algebra may be unbounded
in the sense that for some x ∈ X, π(x) can be a true unbounded operator
in H. Since L†(D,H) carries a number of topologies making it a locally
convex partial ∗-algebra, it makes sense to consider the problem of continuity
of ∗-representations. It turns out that this problem is closely linked with the
structure of the normed quasi ∗-algebra under consideration: thus, just as
in the case of Banach ∗-algebras, a certain amount of information on the
structure of a Banach quasi ∗-algebra can be obtained from the knowledge
of the properties of the family of its ∗-representations.

A relevant role in our study is played by two seminorms p, q that emulate
the Gel’fand–Năımark seminorm on a Banach ∗-algebra (but q is only defined
on a domain D(q) ⊆ X: it is actually an unbounded C∗-seminorm in the
sense of [8, 3, 11, 24]). This approach, already extensively used in the study
of locally convex ∗-algebras [8, 7, 10], has given a quite deep insight into
their structure, in particular concerning the existence of well-behaved ∗-
representations (see also [18]). For this reason, extensions to possibly more
general situations (like that considered here) is highly desirable.

The seminorms p, q were introduced in [22] where the family of bounded
elements of a normed quasi ∗-algebra was studied. An element x ∈ X is
said to be bounded if both the maps Lx : a ∈ A0 7→ xa ∈ X and Rx :
a ∈ A0 7→ ax ∈ X are bounded linear maps. In some special situations,
namely when p(x) = ‖x‖ for every x ∈ X, D(q) is a C∗-algebra and coincides
with the set of bounded elements of X. Even if this is quite a particular
case, it makes it clear that p and q (and through them the class of all
∗-representations of (X,A0)) constitute a very useful tool in studying the
basic structure properties of Banach quasi ∗-algebras and they may also be
used for a first classification of Banach quasi ∗-algebras.

The paper is organized as follows.
In Section 2, after giving some preliminaries and basic results, we discuss

some properties of the family of positive sesquilinear forms on X satisfying
certain invariance properties. The possibility of obtaining a Hilbert space
∗-representation, starting either from such a form or from a positive lin-
ear functional on X, following the classical procedure of Gel’fand–Năımark–
Segal (GNS), is examined in Section 3, where no topology is a priori given
on X.

In Section 4 we consider the case where (X,A0) is a normed or Banach
quasi ∗-algebra and we study the properties of the two seminorms p, q,
which are actually defined through families of bounded invariant positive
sesquilinear forms on X, and analyze their relationship with some classes
of ∗-representations of (X,A0) (regular and completely regular). Moreover,
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some result on automatic continuity of invariant positive sesquilinear forms
is given.

Section 5 is devoted to the study of the continuity of ∗-representations
in terms of the seminorms p and q. In particular, we look for a character-
ization of the strong∗-continuity of any regular (but possibly unbounded)
∗-representation.

2. Preliminary definitions and basic facts. To begin, we give a
series of definitions and preliminary results. For general properties of locally
convex ∗-algebras and representation theory we refer to [9, 16, 17]. More
details on partial ∗-algebras and their representations can be found in [1].

Let H be a complex Hilbert space and D a dense subspace of H. We
denote by L†(D,H) the set of all (closable) linear operators X such that
D(X) = D and D(X∗) ⊇ D. The set L†(D,H) is a partial ∗-algebra with
respect to the following operations: the usual sum X1 +X2, the scalar multi-
plication λX, the involution X 7→ X† = X∗�D and the (weak) partial multi-
plication X1 �X2 = X†1

∗X2, defined whenever X2 is a weak right multiplier
of X1 (equivalently, X1 is a weak left multiplier of X2), that is, iff X2D ⊂
D(X1

†∗) and X†1D ⊂ D(X∗2 ) (we write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)).
Let

L†(D) = {X ∈ L†(D,H) : XD ⊆ D, X†D ⊆ D}.

Then L†(D) is a ∗-algebra with respect to � and X1 � X2ξ = X1(X2ξ) for
every ξ ∈ D [17].

We will consider the following locally convex topologies on L†(D,H):

• the strong topology τs, defined by the family of seminorms {pξ} with
pξ(X) = ‖Xξ‖ for X ∈ L†(D,H), ξ ∈ D;
• the strong∗ topology τs∗ , defined by the family of seminorms {p∗ξ} with
p∗ξ(X) = max{‖Xξ‖, ‖X†ξ‖} for X ∈ L†(D,H), ξ ∈ D.

Clearly, τs∗ is finer than τs in general.
A ∗-representation of a quasi ∗-algebra (X,A0) is a ∗-homomorphism of

X into L†(Dπ,Hπ) for some pair (Dπ,Hπ), where Dπ is a dense subspace of
the Hilbert space Hπ, that is, a linear map π : X → L†(Dπ,Hπ) such that:
(i) π(x∗) = π(x)† for every x ∈ X; (ii) if x ∈ X and a ∈ A0 then π(x) ∈
Lw(π(a)) and π(x) � π(a) = π(xa). If (X,A0) has a unit e, we assume that
π(e) = I.

For an arbitrary ∗-representation π the inclusion π(A0) ⊆ L†(Dπ) does
not hold in general. However, if we put

Dbπ =
{
ξ0 +

n∑
k=1

π(ak)ξk : ξ0, ξk ∈ Dπ, ak ∈ A0, k = 1, . . . , n
}
,
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the map

π̂(x)
(
ξ0 +

n∑
k=1

π(ak)ξk
)

:= π(x)ξ0 +
n∑
k=1

(π(x) � π(ak))ξk

defines a ∗-representation on Dbπ having the property π̂(A0) ⊂ L†(Dbπ). Thus,
without loss of generality, we will always assume that π(A0) ⊆ L†(Dπ) for a
∗-representation π of (X,A0).

A ∗-representation π of (X,A0) is called

• cyclic if there exists η ∈ Dπ such that π(A0)η is dense in Hπ;
• faithful if π(x) = 0 implies x = 0.

If π is a ∗-representation of (X,A0) in L†(Dπ,Hπ), then the closure π̃ of
π is defined, for every x ∈ X, as the restriction of π(x) to the domain D̃π,
which is the completion of Dπ under the graph topology [1, 17] defined by
the seminorms ξ ∈ D 7→ ‖π(x)ξ‖, x ∈ X. If π = π̃, the representation is said
to be closed .

Definition 2.1. Let (X,A0) be a quasi ∗-algebra. We denote by Q(X)
the set of all sesquilinear forms on X× X such that

(i) ϕ(x, x) ≥ 0, ∀x ∈ X;
(ii) ϕ(xa, b) = ϕ(a, x∗b), ∀x ∈ X, a, b ∈ A0.

Let ϕ ∈ Q(X). Then the positivity of ϕ implies that

ϕ(x, y) = ϕ(y, x)), ∀x, y ∈ X;

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y), ∀x, y ∈ X.

Hence

Nϕ := {x ∈ X : ϕ(x, x) = 0} = {x ∈ X : ϕ(x, y) = 0, ∀y ∈ X},
and so Nϕ is a left submodule of A. For each x ∈ X, we denote by λϕ(x)
the coset of X/Nϕ which contains x, and define an inner product 〈· | ·〉 on
λϕ(X) = X/Nϕ by

〈λϕ(x) |λϕ(y)〉 = ϕ(x, y), x, y ∈ X.

We let Hϕ be the Hilbert space completion of the pre-Hilbert space λϕ(X).

Proposition 2.2. Let ϕ∈Q(X). The following statement are equivalent :

(i) x ∈ X and ϕ(x, a) = 0 for every a ∈ A0 implies ϕ(x, x) = 0.
(ii) λϕ(A0) is dense in Hϕ.

Proof. (i)⇒(ii): Let η ∈ Hϕ and assume that 〈η |λϕ(a)〉 = 0 for every
a ∈ A0. Without loss of generality, we may assume that η = λϕ(x) for some
x ∈ X. Then

ϕ(x, a) = 〈λϕ(x) |λϕ(a)〉 = 0, ∀a ∈ A0.

Then, by assumption, ϕ(x, x) = 0, i.e. λϕ(x) = 0.
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(ii)⇒(i): Let λϕ(A0) be dense in Hϕ and assume that there exists x ∈ X
such that ϕ(x, a) = 0 for every a ∈ A0. By assumption, there exists a
sequence {an} ⊂ A0 such that ‖λϕ(an − x)‖ → 0. Then

ϕ(x, x) = ‖λϕ(x)‖2 = lim
n→∞

〈λϕ(x) |λϕ(an)〉 = lim
n→∞

ϕ(x, an) = 0.

We denote by I(X) the subset of all forms ϕ ∈ Q(X) satisfying (i) or (ii)
of Proposition 2.2. An element of Q(X)\I(X) will be called a singular form.

Example 2.3. In general Q(X) ⊃ I(X) and singular forms really exist.
We construct an example as follows. Let A be a C∗-algebra with norm ‖ · ‖
and unit e. Let J be a proper dense ∗-ideal of A. Let w0 ∈ A with w0 = w∗0
be an element satisfying the following condition:

(1) αe+ βw0 + γw2
0 ∈ J ⇔ α = β = γ = 0.

Let
X = {λe+ µw0 + u : λ, µ ∈ C, u ∈ J }.

From (1) it follows that for every x ∈ X the decomposition x = λxe+ µxw0

+ ux with λx, µx ∈ C and ux ∈ J is unique. Put

A0 = {λe+ u : λ ∈ C, u ∈ J }.

From (1) it also follows that there is no a ∈ A0 such that w0a = w2
0, hence

(X,A0) is a true quasi∗-algebra with respect to the multiplication inherited
from A. The norm of A makes of (X,A0) a normed quasi ∗-algebra. Now we
define

ϕ(λxe+ µxw0 + ux, λye+ µyw0 + uy) = µxµyω(w∗0w0)

where ω is a positive linear functional on A such that ω(w∗0w0) > 0. Then
it is easily seen that ϕ ∈ Q(X). But ϕ 6∈ I(X), since Nϕ = A0, and so
X/Nϕ ∼ C, while λϕ(A0) = {0}.

3. Representations of quasi ∗-algebras. The Gel’fand–Năımark–
Segal (GNS) construction for positive linear functionals is one of the most
relevant tools for the study of (locally convex) ∗-algebras [9, 16, 17]. As is
customary when a partial multiplication is involved [1, 12], we consider, as
a starting point for the construction, a positive sesquilinear form enjoying
certain invariance properties (see also [6]). An analogous GNS construction
for positive linear functionals will be discussed later (Theorem 3.5). In this
section we will not suppose that X has a topology given a priori.

Proposition 3.1. Let (X,A0) be a quasi ∗-algebra with unit e and ϕ a
sesquilinear form on X× X. The following statements are equivalent :
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(i) ϕ ∈ I(X).
(ii) There exist a Hilbert space Hϕ, a dense domain Dϕ of Hϕ and a

closed cyclic ∗-representation πϕ of (X,A0) in L†(Dϕ,Hϕ) with cyclic
vector ξϕ (i.e. πϕ(A0)ξϕ dense in Hϕ) such that

(2) ϕ(x, y) = 〈πϕ(x)ξϕ |πϕ(y)ξϕ〉.
Proof. (i)⇒(ii): Let ϕ ∈ I(X). Put

(3) π◦ϕ(x)λϕ(a) = λϕ(xa), x ∈ X, a ∈ A0.

First we prove that, for every x ∈ X, the map π◦ϕ(x) is well-defined. Assume
that λϕ(a) = 0 for some a ∈ A0. If x ∈ X, we then get ϕ(a, x∗b) = 0 for
every b ∈ A0. For each y ∈ X, there exists a sequence {bn} ⊂ A0 such that
‖λϕ(y)−λϕ(bn)‖ → 0. This clearly implies that ϕ(xa, y) = 0 for every y ∈ X.
Hence xa ∈ Nϕ. Thus, for every x ∈ X, the map π◦ϕ(x) is a well-defined linear
operator from λϕ(A0) into Hϕ. The properties of ϕ listed in Definition 2.1
now easily imply that π◦ϕ is a ∗-representation and the restriction of π◦ϕ to
A0 maps λϕ(A0) into itself. If (X,A0) has a unit e then (i) and (ii) follow
from the very definitions. Denote by πϕ the closure of π◦ϕ. Then, as is easily
seen, πϕ satisfies (2). It is also clear by the definition of π that, if (X,A0)
has a unit e, then ξϕ := λϕ(e) is a cyclic vector for π.

(ii)⇒(i). From (2) it follows easily that

ϕ(x, x) ≥ 0, ∀x ∈ X;

ϕ(xa, b) = ϕ(a, x∗b), ∀x ∈ X, a, b ∈ A0.

Since πϕ(A0)ξϕ is dense in Hϕ, for every x ∈ X there exists a sequence
{an} ⊂ A0 such that ‖πϕ(x)ξϕ − πϕ(an)ξϕ‖ → 0 as n→∞. Therefore

‖λϕ(x)− λϕ(an)‖2 = ϕ(x− an, x− an) = ‖πϕ(x)ξϕ − πϕ(an)ξϕ‖2 → 0

as n→∞. This implies that λϕ(A0) is dense in Hϕ.

Definition 3.2. The triple (πϕ, λϕ,Hϕ) is called the GNS construction
for ϕ, and πϕ is called the GNS representation of X constructed from ϕ.

The proof of the following proposition is similar to the classical one and
we omit it.

Proposition 3.3. Let (X,A0) be a quasi ∗-algebra with unit e and
ϕ ∈ I(X). Then the GNS construction (πϕ, λϕ,Hϕ) is unique up to unitary
equivalence.

It is easy to prove that

Proposition 3.4. The ∗-representation πϕ is bounded if , and only if ,
ϕ is admissible, i.e., for every x ∈ X, there exists γx > 0 such that

ϕ(xa, xa) ≤ γxϕ(a, a), ∀a ∈ A0.
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Let now ω be a linear functional on X satisfying the following conditions:

(L.1) ω(a∗a) ≥ 0, ∀a ∈ A0;
(L.2) ω(b∗x∗a) = ω(a∗xb), ∀a, b ∈ A0, x ∈ X;
(L.3) for every x ∈ X, there exists γx > 0 such that

|ω(x∗a)| ≤ γxω(a∗a)1/2, ∀a ∈ A0.

We define Nω = {a ∈ A0 : ω(a∗a) = 0}. Then Nω is a left ideal of A0

and the quotient A0/Nω is a pre-Hilbert space with inner product

〈λω(a) |λω(b)〉 = ω(b∗a), a, b ∈ A0,

where λω(a), a ∈ A0, denotes the coset containing a. Let Hω be the com-
pletion of λω(A0).

If x ∈ X, we put xω(λω(a)) = ω(x∗a). Then, by (L.3), xω is a well-defined
linear functional on λω(A0) and

|xω(λω(a))| = |ω(x∗a)| ≤ γxω(a∗a)1/2 = γx‖λω(a)‖, ∀a ∈ A0.

Thus, xω is bounded and by Riesz’s lemma, there exists a unique ξω(x) ∈ Hω
such that

xω(λω(a)) = 〈λω(a) | ξω(x)〉, ∀a ∈ A0.

Now, we put
πω(x)λω(a) = ξω(xa), a ∈ A0.

Since
〈λω(b) |πω(x)λω(a)〉 = 〈λω(b) | ξω(xa)〉 = (xa)ω(λω(b))

= ω(a∗x∗b) = ω(b∗xa), ∀b ∈ A0,

it follows from (L.3) that πω(x) is well-defined and maps λω(A0) into Hω.
In a similar way one can prove the equality

〈πω(x∗)λω(b) |λω(a)〉 = ω(b∗xa), ∀a, b ∈ A0.

This implies that π(x) ∈ L†(λω(A0),Hω) and πω(x)† = πω(x∗).
With analogous computations and taking into account that

πω(a)λω(b) = λω(ab), ∀a, b ∈ A0,

we also get, for x ∈ A and a ∈ A0, the equality

〈πω(xa)λω(b) |λω(c)〉 = 〈πω(a)λω(b) |πω(x∗)λω(c)〉, ∀b, c ∈ A0.

This implies that πω(x) � πω(a) is well-defined and

πω(xa) = πω(x) � πω(a), ∀x ∈ X, a ∈ A0.

Thus, πω is a ∗-representation. It is clear that πω(A0)ηω, where ηω := λω(e),
is dense in Hϕ. Now we can take the closure π̃ω of πω to obtain

Theorem 3.5. Let (X,A0) be a quasi ∗-algebra with unit e and let ω be
a linear functional on X satisfying the conditions (L.1)–(L.3). Then there
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exists a closed cyclic ∗-representation π̃ω of (X,A0) with cyclic vector ηω
such that

ω(x) = 〈π̃ω(x)ηω | ηω〉, ∀x ∈ X.

This representation is unique up to unitary equivalence.

The uniqueness statement comes again from a slight modification of the
classical argument.

In the light of Theorem 3.5 it is natural to call a linear functional ω on
X satisfying (L1)–(L3) representable.

Remark 3.6. We notice that πω is bounded if, and only if, for every
x ∈ X, there exists γx > 0 such that

|ω(b∗xa)| ≤ γxω(a∗a)1/2ω(b∗b)1/2, ∀a, b ∈ A0.

Remark 3.7. It is not difficult to show that, for every x ∈ X, π̃ω(x)
maps λω(A0) into

⋂
a∈A0

D(πω(a)∗).

Example 3.8. Let D be a dense domain in a Hilbert space H and ‖ · ‖1
a norm on D, stronger than the Hilbert norm ‖ · ‖. Let B(D,D) denote the
vector space of all jointly continuous sesquilinear forms on D×D. The map
ϕ 7→ ϕ∗, where

ϕ∗(ξ, η) = ϕ(η, ξ),

defines an involution in B(D,D).
We denote by L†(D) the ∗-subalgebra of L†(D) consisting of all operators

A ∈ L†(D) such that both A and A† are continuous from D[‖ · ‖1] into itself.
Every A ∈ L†(D) defines a sesquilinear form ϕA ∈ B(D,D) by

ϕA(ξ, η) = 〈Aξ | η〉, ξ, η ∈ D.
Indeed, for all ξ, η ∈ D,

|ϕA(ξ, η)| = |〈Aξ | η〉| ≤ ‖Aξ‖ ‖η‖ ≤ γ‖Aξ‖1‖η‖1 ≤ γ′‖ξ‖1‖η‖1.
We put

B†(D) = {ϕA : A ∈ L†(D)}.
It is easily seen that ϕ∗A = ϕ

A† for every A ∈ L†(D).
For ϕ ∈ B(D,D), ϕA ∈ B†(D), we define

(ϕ ◦ ϕA)(ξ, η) = ϕ(Aξ, η), ξ, η ∈ D,
(ϕA ◦ ϕ)(ξ, η) = ϕ(ξ, A†η), ξ, η ∈ D.

With these operations and involution, (B(D,D),B†(D)) is a quasi ∗-algebra
(see also [1, Ch. 10] for a complete discussion).

For every ξ ∈ D, we define

ωξ(ϕ) = ϕ(ξ, ξ), ϕ ∈ B(D,D).
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Then ωξ is a linear functional on B(D,D). Moreover,

ωξ(ϕA ◦ ϕA) = (ϕA ◦ ϕA)(ξ, ξ) = 〈Aξ |Aξ〉 ≥ 0,

ωξ(ϕB† ◦ ϕ ◦ ϕA) = ϕ(Aξ,Bξ) = ωξ(ϕA† ◦ ϕ∗ ◦ ϕA).

Hence, ωξ satisfies (L1) and (L2).
The functional ωξ satisfies (L3) if, and only if, for every ϕ ∈ B(D,D),

there exists γϕ > 0 such that

|ϕ(Aξ, ξ)| ≤ γϕ‖Aξ‖, ∀A ∈ L†(D).

Indeed, ωξ satisfies (L3) if, and only if, for every ϕ ∈ B(D,D), there exists
γϕ > 0 such that

|ωξ(ϕ ◦ ϕA)| = |(ϕ ◦ ϕA)(ξ, ξ)| = |ϕ(Aξ, ξ)| ≤ γϕωξ(ϕ∗A ◦ ϕA)1/2 = γϕ‖Aξ‖.
This condition is clearly satisfied if, and only if, ϕ is bounded in the first
variable on the subspace Mξ = {Aξ : A ∈ L†(D)}. If this is the case, then
there exists ζ ∈ H such that

ωξ(ϕ ◦ ϕA) = 〈Aξ | ζ〉, ∀A ∈ L†(D).

Hence, not every ωξ is representable.

Let now ϕ ∈ I(X). Then the linear functional ωϕ with ωϕ(x) = ϕ(x, e)
for x ∈ X satisfies the conditions (L.1)–(L.3), i.e. it is representable. Thus
Theorem 3.5 can be applied to get the ∗-representation π̃ωϕ constructed as
above. On the other hand, we can also build, as in Proposition 3.1, the closed
∗-representation πϕ with cyclic vector ξϕ. Since

ωϕ(x) = ϕ(x, e) = 〈πϕ(x)ξϕ | ξϕ〉, ∀x ∈ X,

it turns out that π̃ωϕ and πϕ are unitarily equivalent.
Let ϕ ∈ Q(X). Then the linear functional ωϕ with ωϕ(x) = ϕ(x, e) for

x ∈ X is representable. Let π̃ωϕ be the corresponding ∗-representation. If we
define

Ωϕ(x, y) = 〈π̃ωϕ(x)ξωϕ | π̃ωϕ(y)ξωϕ〉, x, y ∈ X,

then, as is easily seen, Ωϕ ∈ Q(X). But, in general, Ωϕ 6= ϕ.

Proposition 3.9. The following statements hold :

(i) For every ϕ ∈ Q(X), Ωϕ ∈ I(X).
(ii) For every ϕ ∈ Q(X), there exist ϕ0 ∈ I(X) and a singular form

sϕ ∈ Q(X) \ I(X) such that

ϕ(x, y) = ϕ0(x, y) + sϕ(x, y), ∀x, y ∈ X.

(iii) Ωϕ = ϕ if , and only if , λϕ(A0) is dense in Hϕ, i.e. if , and only if ,
ϕ ∈ I(X).
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Proof. (i) Since π̃ωϕ is cyclic, for every x ∈ X there exists a sequence
{an} ⊂ A0 such that ‖π̃ωϕ(x− an)ξωϕ‖ → 0. Then

‖λϕ(x)− λϕ(an)‖2 = ϕ(x− an, x− an)
= 〈π̃ωϕ(x− an)ξωϕ | π̃ωϕ(x− an)ξωϕ〉 → 0.

(ii) Put ϕ0 = Ωϕ and sϕ = ϕ−Ωϕ.
(iii) is clear.

If π is a ∗-representation of (X,A0) then, for every ξ ∈ Dπ, the vector
form ϕξ defined by

(4) ϕξ(x, y) = 〈π(x)ξ |π(y)ξ〉, x, y ∈ X.

is an element of Q(X) but it need not belong to I(X). For this reason, we
say that π is regular if ϕξ ∈ I(X) for every ξ ∈ Dπ.

Proposition 3.10. Let π be a ∗-representation of (X,A0). The follow-
ing statements are equivalent :

(i) π is regular.
(ii) π(x)ξ ∈ π(A0)ξ for all x ∈ X and ξ ∈ Dπ.
(iii) For every ξ ∈ Dπ, π0 := π�Mξ

is a ∗-representation of (X,A0) into
L†(Mξ,Mξ), where Mξ = π(A0)ξ.

Proof. (i)⇒(ii): Let π be regular and ξ ∈ Dπ. Consider the vector
form ϕξ. For every x ∈ X, there exists a sequence {an} ⊂ A0 such that
‖λϕξ(x− an)‖ → 0. Then

‖(π(x)− π(an))ξ‖2 = ‖λϕξ(x− an)‖2 → 0.

This proves that π(x)ξ ∈ π(A0)ξ.
(ii)⇒(iii): The assumption implies that, for every x ∈ X and ξ ∈ Dπ,

π0(x) maps π(A0)ξ into π(A0)ξ. Some simple calculations, which make use
of the fact that π is a ∗-representation and that the module associativity
holds, show that π0(x∗) = (π0(x))∗�π(A0)ξ and that π0 preserves the partial
multiplication of (X,A0).

(iii)⇒(i): The assumption implies that π(x)ξ ∈ Mξ for all ξ ∈ Dπ and
x ∈ X. Therefore, for every x ∈ X, there exists a sequence {an} ⊂ A0 such
that ‖(π(x)− π(an))ξ‖ → 0. Then

ϕξ(x− an, x− an) = ‖λϕξ(x− an)‖2 = ‖(π(x)− π(an))ξ‖2 → 0.

Hence, π is regular.

If ϕ is a sesquilinear form on X × X and a ∈ A0, we denote by ϕa the
sesquilinear form on X× X defined by

(5) ϕa(x, y) = ϕ(xa, ya), x, y ∈ X,
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and by ωϕa the corresponding linear functional on X defined by

(6) ωϕa(x) = ϕ(xa, a), x ∈ X.

It is readily checked that if ϕ ∈ Q(X), then ϕa ∈ Q(X) for all a ∈ A0.

Proposition 3.11. Let (X,A0) be a quasi ∗-algebra with unit e,
ϕ ∈ I(X) and π◦ϕ the ∗-representation defined in (3). The following state-
ments are equivalent :

(i) π◦ϕ is regular.
(ii) ϕa ∈ I(X) for all a ∈ A0.

Proof. If η ∈ Dϕ = λϕ(A0), then η = λϕ(a) for some a ∈ A0. Hence

ϕη(x, y) = 〈π◦ϕ(x)λϕ(a) |π◦ϕ(y)λϕ(a)〉 = ϕ(xa, ya) = ϕa(x, y), ∀x, y ∈ X.

Thus ϕη = ϕa. This clearly implies the desired equivalence.

It is now useful to introduce the notation

Is(X) := {ϕ ∈ I(X) : ϕa ∈ I(X), ∀a ∈ A0}.
It is clear that for every ϕ ∈ Is(X), the corresponding ∗-representation π◦ϕ
is regular.

Remark 3.12. For the GNS representation πϕ constructed from ϕ (i.e.
for the closure of π◦ϕ) the implication (i)⇒(ii) still holds, in the obvious way;
however, (ii) does not imply (i) in general.

Example 3.13. Let π be a regular ∗-representation of (X,A0) in
L†(Dπ,Hπ). Let ξ ∈ Dπ and let ϕξ be the corresponding vector form (in
the sense of (4)). Then, by definition, ϕξ ∈ I(X). Since π(a)ξ ∈ Dπ for
every a ∈ A0, also (ϕξ)a ∈ I(X) for every a ∈ A0. Thus, in this case,
ϕξ ∈ Is(X).

We notice that a bounded ∗-representation (i.e. π(x) ∈ B(H) for every
x ∈ X) need not be regular.

Rep(X) and Repr(X) will denote, respectively, the families of all ∗-repre-
sentations and of all regular ∗-representations of (X,A0).

4. The case of normed quasi ∗-algebras. In this section, we will
consider the case where X is endowed with a norm topology making (X,A0)
a normed quasi ∗-algebra in the following sense.

Definition 4.1. A quasi ∗-algebra (X,A0) is called a normed quasi ∗-
algebra if a norm ‖ · ‖ is defined on X with the properties:

(i) ‖x∗‖ = ‖x‖ for all x ∈ X;
(ii) A0 is dense in X;
(iii) for every a ∈ A0, the map Ra : x ∈ X 7→ xa ∈ X is continuous in X.

If (X, ‖·‖) is a Banach space, we say that (X,A0) is a Banach quasi ∗-algebra.
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The continuity of the involution implies that

(iii′) for every a ∈ A0, the map La : x ∈ X 7→ ax ∈ X is continuous in X.

If (X,A0) has a unit e (i.e., e ∈ A0 and xe = ex = x for every x ∈ X),
we will assume (without loss of generality) that ‖e‖ = 1. If (X,A0) has no
unit, it can always be embedded in a normed quasi ∗-algebra with unit e in
the standard fashion.

In what follows, we will always assume that if xa = 0 for every a ∈ A0,
then x = 0 (of course, this is automatically true if (X,A0) has a unit).

In this case, if (X,A0) is a normed quasi ∗-algebra, a norm topology can
be defined on A0 in the following way. Define

‖a‖L = sup
‖x‖≤1

‖xa‖ and ‖a‖R = sup
‖x‖≤1

‖ax‖.

Finally, we put
‖a‖0 = max{‖a‖, ‖a‖L, ‖a‖R}.

Then we have

Proposition 4.2. (A0, ‖ ‖0) is a normed ∗-algebra. Moreover ,

‖ab‖ ≤ ‖a‖ ‖b‖0, ‖ba‖ ≤ ‖a‖ ‖b‖0, ∀a, b ∈ A0.

Clearly, ‖b‖ ≤ ‖b‖0 for every b ∈ A0.

Remark 4.3. If (X,A0) has a unit e, then ‖a‖0 = max{‖a‖L, ‖a‖R}.

Example 4.4. Many Banach function spaces provide examples of Ba-
nach quasi ∗-algebras since they often contain a dense ∗-algebra of func-
tions. For instance, if I = [0, 1] then (Lp(I), C(I)), where C(I) denotes the
C∗-algebra of all continuous functions on I and p ≥ 1, is a Banach quasi
∗-algebra (more precisely, a proper CQ∗-algebra in the sense of [4]). Simi-
larly (Lp(R), C0

0 (R)) is a Banach quasi ∗-algebra without unit (C0
0 (R) is the

∗-algebra of continuous functions in R with compact support). Similarly,
non-commutative Lp-spaces constructed from a von Neumann algebra M
and a normal semifinite faithful trace τ on M can be cast into the frame-
work of Banach quasi ∗-algebras [15, 19].

Example 4.5. Consider again the situation of Example 3.8. Let D×
denote the Banach conjugate dual space of D[‖ · ‖1] endowed with the dual
norm ‖ · ‖−1, i.e.,

‖f‖−1 = sup
‖ξ‖1≤1

|f(ξ)|, f ∈ D×.

The Hilbert space H is canonically identified with a subspace of D× by the
map ξ 7→ fξ, where fξ(η) = 〈ξ | η〉 for every η ∈ D. The form b(·, ·) which
puts D and D× in conjugate duality is an extension of the inner product of
D and therefore we adopt the same symbol for both. The space L(D,D×)
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of all continuous linear maps from D[‖ · ‖1] into D×[‖ · ‖−1] carries a natural
involution X 7→ X†, defined by

〈ξ |X†η〉 = 〈η |Xξ〉, ξ, η ∈ D,
and the norm

‖X‖L = sup
‖ξ‖1≤1

‖Xξ‖−1.

The involution X 7→ X† is isometric, and as D× is complete, L(D,D×)[‖·‖L]
is a Banach space.

The space B(D,D) also has a natural norm ‖ · ‖B defined by

‖ϕ‖B = sup{|ϕ(ξ, η)| : ‖ξ‖1 = ‖η‖1 = 1}.
With this norm, B(D,D) is a Banach space. Moreover, ‖ϕ∗‖B = ‖ϕ‖B for
every ϕ ∈ B(D,D).

For every ϕ ∈ B(D,D), there exists X ∈ L(D,D×) such that ϕ = ϕX ,
where

ϕX = 〈ξ |Xη〉, ξ, η ∈ D.
It is easy to prove that, in this case, ‖ϕ‖B = ‖X‖L.

If D[‖ · ‖1] is a Banach space, then the converse is also true, i.e., if
X ∈ L(D,D×), then ϕX ∈ B(D,D) and the map X 7→ ϕX is an isometric
∗-isomorphism [1, Ch. 10].

Let M be an O∗-algebra on D (i.e., M is a ∗-subalgebra of L†(D)) with
the property that each X ∈M is continuous from D[‖ · ‖1] into itself (this is
always true if D[‖ · ‖1] is a reflexive space). Then (M,M), where M denotes
the closure of M in L(D,D×)[‖ · ‖L], is a Banach quasi ∗-algebra.

For instance, let D = D(S), where S is a positive self-adjoint operator
with domain D(S) dense in H. If S ≥ I, then D is a Hilbert space with
norm ‖ · ‖S defined by ‖ξ‖S = ‖Sξ‖. In this case, L(D,D×) ' B(D,D) and
L†(D) = L†(D). If A ∈ L†(D), then

(7) ‖ϕA‖B = sup{|〈Aξ | η〉| : ‖Sξ‖ = ‖Sη‖ = 1} = ‖S−1AS−1‖.
For every O∗-algebra M on D, (M,M) is a Banach quasi ∗-algebra.

Now we check that, in general, M is not a ∗-algebra. From the above
discussion it follows that the set S−1MS−1 is a ∗-invariant vector space of
bounded operators in H. We denote by MS its norm closure in B(H). Let

M
†
S = {ϕ ∈ B†(D) : ϕ = ϕA, A ∈M}

and M
†
S its closure in B(D, D)[‖ · ‖B]. Then

M
†
S ⊆ {ϕ ∈ B(D, D) : ϕ(ξ, η) = 〈Y Sξ |Sη〉 for some Y ∈MS , ∀ξ, η ∈ D}.

Indeed, if ϕ ∈ M
†
S , then there exists a sequence {ϕn} ⊂ M

†
S converging

to ϕ. Clearly, ϕn = ϕAn for some An ∈ L†(D). The sequence {ϕn} being
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Cauchy, by (7) we have ‖S−1(An − Am)S−1‖ → 0. Hence S−1AnS
−1 → Y

for some Y ∈ B(H). Clearly, Y ∈MS . We have

sup
‖Sξ‖=‖Sη‖=1

|ϕ(ξ, η)−〈Y Sξ |Sη〉|≤ sup
‖Sξ‖=‖Sη‖=1

|ϕ(ξ, η)−〈Anξ | η〉|

+ sup
‖Sξ‖=‖Sη‖=1

|〈Anξ | η〉−〈Y Sξ |Sη〉|→0,

since
sup

‖Sξ‖=‖Sη‖=1
|〈Anξ | η〉−〈Y Sξ |Sη〉|= sup

‖ξ′‖=‖η′‖=1
|〈AnS−1ξ′ |S−1η′〉−〈Y ξ′ | η′〉|

= ‖S−1AnS
−1−Y ‖.

On the other hand, it is easily seen that M
†
S 'M. Hence, if X ∈M, then,

for some Y in MS , we have

〈Xξ | η〉 = 〈Y Sξ |Sη〉, ∀ξ, η ∈ D.

Thus, if Y S(D) is not a subset of D, then X is neither an element of M nor
an operator in a Hilbert space but a true element of L(D,D×).

Now we come to the main topic of this section. We will define some
seminorms (one of them is in fact an unbounded C∗-seminorm), closely
related to families of sesquilinear forms [21, 24], and examine their interplay
with the family of ∗-representations of a given quasi ∗-algebra (X,A0). In the
case where (X,A0) is a normed quasi ∗-algebra, the seminorms provide some
information on the structure of (X,A0). First let us fix some terminology.

If σ is a seminorm on X, a sesquilinear form ϕ on X × X is said to be
σ-bounded if there exists a positive constant γ such that

|ϕ(x, y)| ≤ γσ(x)σ(y), ∀x, y ∈ X.

In this case, we put

‖ϕ‖σ := sup
σ(x)=σ(y)=1

|ϕ(x, y)| = sup
σ(x)=1

ϕ(x, x).

If σ is exactly the norm of X, we say bounded instead of σ-bounded and we
write ‖ϕ‖ instead of ‖ϕ‖σ.

Let us now define

(8) qI(x) = sup{ϕ(xa, xa)1/2 : ϕ ∈ I(X), a ∈ A0, ϕ(a, a) = 1}
and

D(qI) = {x ∈ X : qI(x) <∞}.

Remark 4.6. If (X,A0) has a unit e, then one can easily check that

qI(x) = sup{ϕ(x, x)1/2 : ϕ ∈ I(X), ϕ(e, e) = 1}.
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Proposition 4.7. Let (X,A0) be a quasi ∗-algebra. For each ϕ ∈ I(X),
let πϕ denote the corresponding GNS representation. Then

D(qI) = {x ∈ X : πϕ(x) ∈ B(Hϕ), ∀ϕ ∈ I(X), and sup
ϕ∈I(X)

‖πϕ(x)‖ <∞}

= {x ∈ X : π(x) is bounded , ∀π ∈ Repr(X), and sup
π∈Repr(X)

‖π(x)‖ <∞}

and

(9) qI(x) = sup
ϕ∈I(X)

‖πϕ(x)‖ = sup
π∈Repr(X)

‖π(x)‖, ∀x ∈ D(q).

Proof. We may assume that (X,A0) has a unit e. For brevity we put

X0 = {x ∈ X : πϕ(x) ∈ B(Hϕ), ∀ϕ ∈ I(X), and sup
ϕ∈I(X)

‖πϕ(x)‖ <∞}

and

X1 = {x∈X : π(x) is bounded ,∀π ∈Repr(X), and sup
π∈Repr(X)

‖π(x)‖<∞}.

Let x ∈ D(qI). If ϕ ∈ I(X), then

ϕ(xa, xa) ≤ qI(x)2ϕ(a, a), ∀a ∈ A0.

Hence, πϕ(x) is bounded and ‖πϕ(x)‖ ≤ qI(x). Therefore, x ∈ X0 and

sup
ϕ∈I(X)

‖πϕ(x)‖ ≤ qI(x).

Let x ∈ X0. Clearly, πϕ(x) is bounded if, and only if, π◦ϕ(x) is bounded.
Since π◦ϕ is regular (Proposition 3.11), this implies that

(10) sup
ϕ∈I(X)

‖πϕ(x)‖ ≤ sup
π∈Repr(X)

‖π(x)‖.

On the other hand, if π ∈ Repr(X) then, for every ξ ∈ Dπ, we consider the
corresponding vector form ϕξ. The regularity of π implies that ϕξ ∈ I(X)
and so the ∗-representation π◦ϕξ with cyclic vector ξϕ = λϕξ(e) can be con-
structed. By assumption, the operator π◦ϕξ(x) is bounded. Then

‖π(x)ξ‖2 = ‖π◦ϕξ(x)λϕξ(e)‖
2 ≤ ‖π◦ϕξ(x)‖2‖ξ‖2,

which implies that π(x) is bounded and that the opposite inequality to (10)
holds, i.e., X0 ⊆ X1. Therefore, it is sufficient to prove D(qI) = X1 and

qI(x) = sup
π∈Repr(X)

‖π(x)‖, ∀x ∈ D(qI).

Now, let π ∈ Repr(X) and, for ξ ∈ Dπ, define ϕξ as above. From (11) it
follows that

ϕξ(xa, xa) ≤ qI(x)2ϕξ(a, a), ∀x ∈ D(qI), a ∈ A0.
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This implies that

‖π(x)ξ‖2 = ϕξ(x, x) ≤ qI(x)2ϕξ(e, e) = qI(x)2‖ξ‖2, ∀x ∈ D(qI).

Thus, for every x ∈ D(qI), π(x) is a bounded operator and

sup
π∈Repr(X)

‖π(x)‖ ≤ qI(x) <∞.

Conversely, if π(x) is bounded for every π ∈ Repr(X) and

sup
π∈Repr(X)

‖π(x)‖ <∞,

then, in particular, for any ϕ ∈ I(X),

ϕ(xa, xa) = ‖π◦ϕ(x)λϕ(a)‖2 ≤ sup
π∈Repr(X)

‖π(x)‖2 · ‖λϕ(a)‖2

= sup
π∈Repr(X)

‖π(x)‖2 · ϕ(a, a), ∀x ∈ X, a ∈ A0.

Therefore x ∈ D(qI) and

qI(x) ≤ sup
π∈Repr(X)

‖π(x)‖.

This concludes the proof.

Let now (X,A0) be a normed quasi ∗-algebra. We put

P(X) = {ϕ ∈ Q(X) : ϕ is bounded}.
Then P(X) ⊆ I(X). In fact, if ϕ ∈ P(X), then the subspace λϕ(A0) is dense
in Hϕ. Indeed, if x ∈ X, there exists a sequence {an} ⊂ A0 such that an → x
in X. Then

‖λϕ(x)− λϕ(an)‖2 = ϕ(x− an, x− an) ≤ ‖ϕ‖2‖x− an‖2 → 0.

Finally, we define

S(X) = {ϕ ∈ P(X) : ‖ϕ‖ ≤ 1}.

Remark 4.8. Of course, the possibility that S(X) = {0} is not excluded
(see Example 4.18 below).

Example 4.9. We give an example where I(X) ⊃ P(X). Consider the
CQ∗-algebra (L1(I), L∞(I)), I = [0, 1]. For x ∈ L1(I) we denote by x0 its
restriction to Ia := [0, a] with 0 < a < 1. Define

X = {x ∈ L1(I) : x0 ∈ L2(Ia)}.
Clearly (X, L∞(I)), when X is endowed with the norm induced by L1(I), is
a normed quasi ∗-algebra. It is easily shown that the positive sesquilinear
form ϕ defined by

ϕ(x, y) =
a�

0

x0(t)y0(t) dt



Normed quasi ∗-algebras 63

is an element of I(X). In this case, in fact, X/Nϕ ∼ L2(I \ Ia) and
λϕ(L∞(I)) ∼ L∞(I \ Ia), which is dense in L2(I \ Ia). As shown in [5],
P(L1(I)) = {0}; thus P(X) = {0} too. Therefore ϕ 6∈ P(X).

Example 4.10. Consider again a Banach quasi ∗-algebra of the type
(M,M) constructed in Example 4.5. We put

D0(M) = {ξ ∈ D : Xξ ∈ H, ∀X ∈M}.
For ξ ∈ D0(M), we define

ϕξ(X,Y ) = 〈Xξ |Y η〉, X, Y ∈M.

Then, as is easy to see, ϕξ ∈ Q(M).
From the definitions, it is easily seen that:

• ϕξ ∈ I(M) ⇔ ξ ∈ D0(M) and Xξ ∈ Mξ for all X ∈ M, where Mξ
denotes the closure of Mξ in H;
• ϕξ ∈ P(M)⇔ ξ ∈ D0(M) and sup‖X‖L≤1 ‖Xξ‖ <∞.

It is worth mentioning that one can construct examples where D0(M) = {0}.
For instance, let H = L2(I) where I = [0, 1] and, for p > 2, let D = Lp(I).
If η is a measurable function, denote by Mη the operator of multiplication
by η. Take for M the O∗-algebra of multiplication operators by a function
φ ∈ L∞(I), i.e.,

M = {Mφ : φ ∈ L∞(I)}.
Then it is easily seen that

M = {Mφ : φ ∈ Lp/(p−2)(I)} and ‖Mφ‖L = ‖φ‖p/(p−2).

Then we have the following situation.

• If 2 < p < 4, then D0(M) = L2p/(4−p)(I) and every ϕξ, ξ ∈ D0(M), is
bounded.
• If p = 4 then D0(M) = L∞(I) and, again, every ϕξ, ξ ∈ D0(M), is

bounded.
• If p > 4, then D0(M) = {0}.

The following lemma (whose proof is based on Kaplansky’s inequality)
will often be used in what follows. We recall that an m∗-seminorm on a
∗-algebra A0 is a seminorm σ satisfying:

(i) σ(a∗) = σ(a), ∀a ∈ A0;
(ii) σ(ab) ≤ σ(a)σ(b), ∀a, b ∈ A0.

Lemma 4.11. Let A0 be a ∗-algebra and ω a positive linear functional
on A0. Assume that there exists an m∗-seminorm σ on A0 such that

∀b ∈ A0, ∃γb > 0 : |ω(b∗ab)| ≤ γbσ(a), ∀a ∈ A0.



64 C. Trapani

Then
|ω(b∗ab)| ≤ σ(a)ω(b∗b), ∀a ∈ A0.

Let (X,A0) be a normed quasi ∗-algebra. We put

p(x) = sup
ϕ∈S(X)

ϕ(x, x)1/2.

Then p is a seminorm on X with p(x) ≤ ‖x‖ for every x ∈ X.
Let us now define a second seminorm q as follows:

(11) q(x) = sup{ϕ(xa, xa)1/2 : ϕ ∈ P(X), a ∈ A0, ϕ(a, a) = 1}
and

D(q) = {x ∈ X : q(x) <∞}.
Clearly, D(qI) ⊆ D(q) and q(x) ≤ qI(x) for every x ∈ D(qI). Just as for qI
one can easily check that if (X,A0) has a unit e, then

q(x) = sup{ϕ(x, x)1/2 : ϕ ∈ P(X), ϕ(e, e) = 1}.
In order to obtain a description of D(q) similar to that of D(qI), we give

the following

Definition 4.12. Let (X,A0) be a normed quasi ∗-algebra and π a
∗-representation of (X,A0) with domain Dπ. We say that π is completely
regular if, for every ξ ∈ Dπ, the positive sesquilinear form ϕξ is bounded.
The set of all completely regular ∗-representations of (X,A0) is denoted
by Repcr(X).

Clearly, if π is completely regular, then it is regular.

Proposition 4.13. Let (X,A0) be a normed quasi ∗-algebra. For each
ϕ ∈ P(X), let πϕ denote the corresponding GNS representation. Then

D(q) ={x ∈ X : πϕ(x) ∈ B(Hϕ), ∀ϕ ∈ P(X), and sup
ϕ∈P(X)

‖πϕ(x)‖ <∞}

={x∈X : π(x) is bounded , ∀π∈Repcr(X), and sup
π∈Repcr(X)

‖π(x)‖<∞}

and

(12) q(x) = sup
ϕ∈P(X)

‖πϕ(x)‖ = sup
π∈Repcr(X)

‖π(x)‖, ∀x ∈ D(q).

Proof. The proof is very similar to that of Proposition 4.7, so we do
not repeat the details. The only point to be taken into account is that if
ϕ ∈ P(X) then the corresponding representation π◦ϕ is completely regular.
Indeed, if ξ = λϕ(a) then

ϕξ(x, x) = 〈π◦ϕ(x)λϕ(a) |π◦ϕ(x)λϕ(a)〉 = ϕ(xa, xa) ≤ γ‖a‖20‖x‖2.
Hence ϕξ is bounded.
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We will show that q, together with p, plays a crucial role for the structure
of a normed or Banach quasi ∗-algebra.

The following preliminary proposition has been given in [22]. State-
ment (i) follows from Lemma 4.11, while (ii) can be easily deduced from
Proposition 4.13.

Proposition 4.14. The following statements hold :

(i) A0 ⊆ D(q) and q(a) ≤ ‖a‖0, ∀a ∈ A0.
(ii) q is an extended C∗-seminorm on (X,A0) [i.e. q(x∗) = q(x),
∀x ∈ D(q); q(a∗a) = q(a)2, ∀a ∈ A0, see [21]].

(iii) p(xa) ≤ q(x)p(a), ∀x ∈ D(q), a ∈ A0.
(iv) p(ax) ≤ ‖a‖0p(x), ∀x ∈ X, a ∈ A0.

Remark 4.15. If (X,A0) has a unit e, then from (iii) it follows that
p(x) ≤ q(x) for every x ∈ D(q).

Now we put
N(p) = {x ∈ X : p(x) = 0}.

By Proposition 4.14(iv), N(p) is a left submodule of X.
Set N0(p) = N(p) ∩ A0. Then the quotient A

p
0 := A0/N0(p) is a normed

space with norm ‖a+N0(p)‖p = p(a), a ∈ A0. Denote by Xp the completion
of (A0/N0(p), ‖ · ‖p).

Proposition 4.16. The quotient X/N(p) can be identified with a dense
subspace of Xp. Moreover :

(i) If p(x) = p(x∗) for every x ∈ X, then Xp is a Banach space with
isometric involution extending the natural involution of A

p
0; A

p
0 is a

∗-algebra and (Xp,A
p
0) can be made into a Banach quasi ∗-algebra.

(ii) If p(ax) ≤ p(a)p(x) for every a ∈ A0 and x ∈ X, then Xp is a
Banach algebra.

(iii) If p is an m∗-seminorm on A0, then Xp is a Banach ∗-algebra.
(iv) If p is a C∗-seminorm on A0, then Xp is a C∗-algebra.

Proof. Let x ∈ X. Then there exists a sequence {an} ⊂ A0 such that
‖x − an‖ → 0 as n → ∞. This implies that p(x − an) → 0 as n → ∞. We
define x̂ = ‖·‖p-limn→∞(an+N0(p)). By the construction of the completion,
x̂ does not depend on the choice of the sequence {an}. Moreover, the map

j : x+N(p) ∈ X/N(p) 7→ x̂ ∈ Xp

is well-defined. Indeed, if x, x′ ∈ X, x − x′ ∈ N(p) and bn → x − x′ with
respect to the norm of X, then p(bn) → 0 and so j(x − x′) = 0. Finally,
j is injective. Indeed, assume that x̂ = 0 and let {an} ⊂ A0 be such that
‖x − an‖ → 0 as n → ∞. Then ‖ · ‖p-limn→∞(an + N0(p)) = 0. Hence
p(an)→ 0 as n→∞. This, in turn, implies that p(x) = 0 and so x ∈ N(p).
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The proofs of (ii), (iii) and (iv) are simple checks. For (i), notice that
Proposition 4.14(iv) implies that N0(p) is a ∗-ideal of A0, and so A0/N0(p)
is a ∗-algebra. To define the multiplication that makes (Xp,A

p
0) a quasi ∗-

algebra, we proceed as follows: if z∈Xp, z=‖·‖p-limn→∞(an+N0(p)), an ∈A0

and a ∈ A0, Proposition 4.14(iv) shows that the sequence (aan + N0(p)) is
‖ · ‖p-Cauchy and its limit does not depend on the particular choice of (an).
Thus we can define az = ‖ · ‖p-limn→∞(aan +N0(p)).

Remark 4.17. We will show that (iii) and (iv) are indeed equivalent.

Example 4.18. Consider the Banach quasi ∗-algebra (Lp(I), C(I)) of
Example 4.4 with I = [0, 1]. In this case (see [5]),

P(Lp(I)) =
{
{ϕw : w ∈ Lp/(p−2)(I), w ≥ 0} if p ≥ 2,
{0} if 1 ≤ p < 2,

where
ϕw(x, y) =

�

I

x(t)y(t)w(t) dt, x, y ∈ Lp(I).

If 1 ≤ p < 2 both p and q are identically zero. If p ≥ 2, then one can prove
that p(x) = ‖x‖p and q(x) = sup{ϕw(x, x)1/2 : w ∈ Lp/(p−2)(I), ‖w‖1 ≤ 1},
which is finite if, and only if, x ∈ L∞(I). In fact,

q(x) = ‖x‖∞, ∀x ∈ L∞(I).

Example 4.19. A Hilbert algebra [16, Section 11.7] is a ∗-algebra A0

which is also a pre-Hilbert space with inner product 〈· | ·〉 such that:

(i) The map b 7→ ab is continuous with respect to the norm defined by
the inner product.

(ii) 〈ab | c〉 = 〈b | a∗c〉 for all a, b, c ∈ A0.
(iii) 〈a | b〉 = 〈b∗ | a∗〉 for all a, b ∈ A0.
(iv) A2

0 is total in A0.

LetH denote the Hilbert space which is the completion of A0 with respect
to the norm defined by the inner product. The involution of A0 extends to
the whole of H, since (iii) implies that ∗ is isometric. Thus (H,A0) is a
Banach quasi ∗-algebra.

Since the inner product of H is an element of P(H), one has p(x) = ‖x‖
for every x ∈ H. As for q, it is easily seen that

D(q) = {x ∈ X : Lx is bounded} = {x ∈ X : Rx is bounded}
and

q(x) = ‖Lx‖ = ‖Rx‖, ∀x ∈ D(q),

where Lx : a ∈ A0 7→ xa ∈ H and Rx : a ∈ A0 7→ ax ∈ H. Thus D(q)
coincides, as already shown in [22], with the set of bounded elements of X.
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We conclude this section by discussing, in the case where (X,A0) is a
Banach quasi ∗-algebra, some results on the automatic continuity for the
classes of positive linear functionals and positive sesquilinear forms intro-
duced so far. For this we need some lemmas (4.20 and 4.21 below) which are
already known in slightly different situations. For the sake of completeness
we give the proofs adapted to the cases under consideration.

Lemma 4.20. Let (X,A0) be a Banach quasi ∗-algebra and ϕ a positive
sesquilinear form on X×X. Assume that ϕ is lower semicontinuous, i.e., if
{xn} ⊂ X is a sequence converging to x ∈ X with respect to ‖ · ‖, one has

ϕ(x, x) ≤ lim inf
n→∞

ϕ(xn, xn).

Then ϕ is bounded.

Proof. We will show that X is also complete with respect to the norm
‖ · ‖ϕ defined by

‖x‖ϕ =
√
‖x‖2 + ϕ(x, x).

This implies that ‖ · ‖ and ‖ · ‖ϕ are equivalent, and therefore ϕ is bounded.
Let {xn} be a Cauchy sequence with respect to ‖ · ‖ϕ. Then, for every

ε > 0, there exists nε ∈ N such that

‖xn − xm‖2 + ϕ(xn − xm, xn − xm) < ε2, ∀n,m > nε.

The completeness of X[‖ · ‖] implies the existence of an element x ∈ X such
that limn→∞ ‖x− xn‖ = 0. Now, fix m > nε and let n→∞. We get

‖x−xm‖2+ϕ(x−xm, x−xm) ≤ ‖x−xm‖2+lim inf
n→∞

ϕ(xn−xm, xn−xm) ≤ ε2.

Hence ‖x−xm‖ϕ → 0. This proves that X is complete with respect to ‖·‖ϕ.

Let (X,A0) be a Banach quasi ∗-algebra. We denote by A+
0 the set of

positive elements of A0, i.e.,

A+
0 =

{ n∑
k=1

a∗kak : ak ∈ A0, k = 1, . . . , n; n ∈ N
}
.

We put X+ = A+
0 , the closure of A+

0 in the norm topology of X. Elements of
X+ will also be called positive. A linear functional ω on X is called positive
if ω(x) ≥ 0 for every x ∈ X+.

Lemma 4.21. Let (X,A0) be a Banach quasi ∗-algebra. Then every pos-
itive linear functional ω on X is bounded on positive elements, i.e., there
exists γ > 0 such that

ω(x) ≤ γ‖x‖, ∀x ∈ X+.

Proof. Were it not so, there would exist a sequence {xn} of positive
elements of X such that ‖xn‖ ≤ 2−n and ω(xn) → ∞. Let y =

∑∞
k=1 xk.
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Then

ω(y) = ω
( ∞∑
k=1

xk

)
≥ ω

( n∑
k=1

xk

)
=

n∑
k=1

ω(xk)→∞.

Theorem 4.22. Let (X,A0) be a Banach quasi ∗-algebra satisfying the
following condition:

(D) Every x = x∗ ∈ X can be uniquely decomposed as x = x+ − x− with
x+, x− ∈ X+ and ‖x‖ = ‖x+‖+ ‖x−‖.

Then every ϕ ∈ I(X) such that ωϕa is positive for every a ∈ A0 is bounded.

Proof. Let a ∈ A0. Since ωϕa , defined as in (6), is positive, Lemma 4.21
shows that ωϕa is bounded on positive elements, i.e., there exists γ > 0 such
that

ωϕa(x) ≤ γ‖x‖, ∀x ∈ X+.

Condition (D) then implies that, for every x = x∗ ∈ X,

|ωϕa(x)| = |ωϕa(x+−x−)| ≤ ωϕa(x+) +ωϕa(x−) ≤ γ(‖x+‖+ ‖x−‖) = γ‖x‖.
The general statement is easily obtained by decomposing every z ∈ X as
z = x+ iy with x = x∗, y = y∗. Using the polarization identity, one proves
easily that, for every a, b ∈ A0, the linear functional La,b(x) = ϕ(xa, b) is
bounded.

Let now {xn} ⊂ X and x ∈ X with limn→∞ ‖xn − x‖ = 0. For every
b ∈ A0, by the Cauchy–Schwarz inequality, we have

|ϕ(xn, b)| ≤ ϕ(xn, xn)1/2ϕ(b, b)1/2.

Taking the lim inf of both sides, we get

|ϕ(x, b)| ≤ lim inf
n→∞

ϕ(xn, xn)1/2ϕ(b, b)1/2.

Now, since ϕ ∈ I(X), there exists a sequence {ak} ⊂ A0 such that
ϕ(x− ak, x− ak)→ 0. This implies that

lim
k→∞

ϕ(x, ak) = ϕ(x, x) and lim
k→∞

ϕ(ak, ak) = ϕ(x, x).

Then from
|ϕ(x, ak)| ≤ lim inf

n→∞
ϕ(xn, xn)1/2ϕ(ak, ak)1/2

we obtain, for k →∞,

ϕ(x, x) ≤ (lim inf
n→∞

ϕ(xn, xn))1/2ϕ(x, x)1/2.

Hence,
ϕ(x, x) ≤ lim inf

n→∞
ϕ(xn, xn),

i.e., ϕ is lower semicontinuous. The statement then follows from Lem-
ma 4.20.
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5. Continuity of ∗-representations. The seminorms p and q, intro-
duced in the previous section, play an interesting role also in the study
of the continuity of a ∗-representation. As we will see at the end of this
section, the most favorable situation occurs when p is an m∗-seminorm. In
this case, in fact, X may be viewed (up to a quotient) as a subspace of the
C∗-algebra Xp and (as expected) any regular ∗-representation is bounded
and norm-continuous. But this is, in a sense, a rather extreme situation
rarely realized in practice, and Banach quasi ∗-algebras having unbounded
∗-representations do really exist. For this reason, we begin by looking for con-
ditions that guarantee the strong continuity of any regular ∗-representation.

Let (X,A0) be a normed quasi ∗-algebra with unit e and π a ∗-represen-
tation of (X,A0) into L†(Dπ,Hπ). We say that π is

• strongly continuous if π is continuous from X[‖ · ‖] into L†(Dπ,Hπ)[τs].
• strongly∗ continuous if π is continuous from X[‖·‖] into L†(Dπ,Hπ)[τs∗].

It is easy to prove that a ∗-representation is strongly continuous if, and
only if, it is strongly∗ continuous.

Proposition 5.1. The following statements hold :

(i) Every strongly continuous ∗-representation is regular.
(ii) Every completely regular ∗-representation is strongly continuous.

Proof. (i) Let π be strongly continuous. Then, for every ξ ∈ Dπ, there
exists γξ > 0 such that

(13) ‖π(x)ξ‖ ≤ γξ‖x‖, ∀x ∈ X.

From this inequality and from the denseness of A0 in X it follows that
π(x)ξ ∈ π(A0)ξ for every x ∈ X. The statement then follows from Proposi-
tion 3.10.

(ii) Let π be a completely regular ∗-representation of (X,A0). Then, for
every ξ ∈ Dπ, the vector form ϕξ is bounded. Therefore, for some γξ > 0,

‖π(x)ξ‖2 = ϕξ(x, x) ≤ γξ‖x‖2, ∀x ∈ X.

Hence π is strongly continuous.

However, complete regularity and regularity are not equivalent unless
Is(X) = P(X), as the next theorem shows.

Theorem 5.2. Let (X,A0) be a normed quasi ∗-algebra with unit e. The
following statements are equivalent :

(i) Every ϕ ∈ Is(X) is bounded , i.e. Is(X) = P(X).
(ii) Every regular ∗-representation is completely regular.
(iii) Every regular ∗-representation π of (X,A0) is strongly continuous.
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If (X,A0) is a Banach quasi ∗-algebra, then (i)–(iii) are equivalent to

(iv) Every ϕ ∈ Is(X) is lower semicontinuous.

Proof. (i)⇒(ii): Let π be a regular ∗-representation of (X,A0). Then
ϕξ ∈ Is(X) for every ξ ∈ Dπ. Thus, by assumption, ϕξ is bounded.

(ii)⇒(iii): This follows immediately from Proposition 5.1(ii).
(iii)⇒(i): Let ϕ ∈ Is(X). Then π◦ϕ is a regular ∗-representation. Hence

it is strongly continuous. Thus, for some γϕ > 0,

ϕ(x, x) = 〈π◦ϕ(x)λϕ(e) |π◦ϕ(x)λϕ(e)〉 = ‖π◦ϕ(x)λϕ(e)‖2 ≤ γϕ‖x‖2, ∀x ∈ X.

Finally, if X is complete under ‖ · ‖, then (iv)⇒(i) follows from Lemma 4.20.
The implication (i)⇒(iv) is obvious.

If π is strongly continuous, then, by (13), we can define a new norm on
Dπ by putting

‖ξ‖π = sup
‖x‖≤1

‖π(x)ξ‖, ξ ∈ Dπ.

Since (X,A0) has a unit, ‖ξ‖ ≤ ‖ξ‖π for every ξ ∈ Dπ. With this definition
one has, of course,

‖π(x)ξ‖ ≤ ‖x‖ ‖ξ‖π, ∀x ∈ X, ξ ∈ Dπ.
We put

|||π(x)||| = sup
‖ξ‖π≤1

‖π(x)ξ‖.

By the very definition, |||π(x)||| ≤ ‖x‖ for every x ∈ X.
We denote by Repsc(X) the set of all strongly continuous ∗-representa-

tions of (X,A0).
The next proposition shows that the seminorm p on X is determined by

Repsc(X).

Theorem 5.3. Let (X,A0) be a normed quasi ∗-algebra with unit e.
Then

p(x) = sup
π∈Repsc(X)

|||π(x)|||.

Proof. Let π ∈ Repsc(X). For any ξ ∈ Dπ we define, as before,

ϕξ(x, y) = 〈π(x)ξ |π(y)ξ〉, x, y ∈ X.

Then ϕξ ∈ P(X) since

|ϕξ(x, y)| ≤ ‖x‖ ‖y‖ ‖ξ‖π, ∀x, y ∈ X.

Clearly, if ‖ξ‖π ≤ 1, then ϕξ ∈ S(X). Therefore,

|||π(x)|||2 = sup
‖ξ‖π≤1

‖π(x)ξ‖2 = sup
‖ξ‖π≤1

ϕξ(x, x) ≤ p(x)2, ∀x ∈ X.
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On the other hand, let ϕ ∈ S(X) and πϕ be the corresponding GNS repre-
sentation. Then

‖π◦ϕ(x)λϕ(a)‖2 = ϕ(xa, xa) = ϕa(x, x) ≤ ‖ϕa‖ ‖x‖2.
Therefore, π◦ϕ is strongly continuous. Hence,

‖λϕ(a)‖πϕ = sup
‖x‖≤1

‖π◦ϕ(x)λϕ(a)‖ = ‖ϕa‖,

and so
|||π◦ϕ(x)||| = sup{‖π◦ϕ(x)λϕ(a)‖ : a ∈ A0, ‖ϕa‖ ≤ 1}.

This equality implies that

sup
ϕ∈P(X)

|||π◦ϕ(x)||| = sup{ϕa(x, x) : a ∈ A0, ‖ϕa‖ ≤ 1}

= sup
ϕ∈S(X)

ϕ(x, x) = p(x), ∀x ∈ X.

Therefore,

p(x) = sup
ϕ∈P(X)

|||π◦ϕ(x)||| ≤ sup
π∈Repsc(X)

|||π(x)|||, ∀x ∈ X.

This concludes the proof.

Example 5.4. A simple example of a Banach quasi ∗-algebra having a
strongly continuous unbounded ∗-representation is provided by (Lp(I), C(I)),
I = [0, 1], with p ≥ 2. If we put

(π(x)ξ)(t) = x(t)ξ(t), x ∈ Lp(I), ξ ∈ C(I),

then π is a ∗-representation of (Lp(I), C(I)) in the Hilbert space L2(I).
It is easily seen that π(x) is bounded if, and only if, x ∈ L∞(I). This
∗-representation is strongly continuous. Indeed,

‖π(x)ξ‖2 ≤ ‖ξ‖∞‖x‖2 ≤ ‖ξ‖∞‖x‖p, x ∈ Lp(I), ξ ∈ C(I).

A criterion for (X,A0) to have only bounded strongly continuous ∗-re-
presentations is given by the following

Proposition 5.5. Let (X,A0) be a Banach quasi ∗-algebra with unit e.
The following statements are equivalent :

(i) D(q) = X.
(ii) Every strongly continuous ∗-representation π of (X,A0) is bounded.
(iii) Every ϕ ∈ P(X) is admissible.

Proof. (i)⇒(ii): Assume that there exists a strongly continuous un-
bounded representation π of (X,A0). Then, for some x ∈ X, π(x) is an
unbounded operator. This implies that there exists a sequence {ξn} ⊂ Dπ
with

‖ξn‖ = 1, ‖π(x)ξn‖ → ∞.
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As before, put ϕξn(y, z) = 〈π(y)ξn |π(y)ξn〉 for y, z ∈ X, n ∈ N. The strong
continuity of π implies the existence of γ > 0 for which

ϕξn(y, y) = ‖π(y)ξn‖2 ≤ γ‖y‖2 ‖ξn‖2 = γ‖y‖2, ∀y ∈ X.

Thus, for every n ∈ N, ϕξn is bounded. As is easily seen, ϕξn(e, e) = 1. Then

q(x)2 ≥ sup
n∈N

ϕξn(x, x) = ‖π(x)ξn‖2 →∞.

Hence x 6∈ D(q).
(ii)⇒(iii): Let ϕ ∈ P(X). Then, for some γ > 0, ϕ(x, x) ≤ γ‖x‖2 for

every x ∈ X. Let πϕ be the corresponding GNS representation. Then

‖πϕ(x)λϕ(a)‖2 = ϕ(xa, xa) ≤ γ‖x‖2‖a‖20, ∀x ∈ X, a ∈ A0.

Hence πϕ is strongly continuous and therefore bounded. The statement then
follows from Proposition 3.4.

(iii)⇒(i): This follows from the definition of q.

Remark 5.6. If q(x) = 0 implies that x = 0, then by the previous
proposition it follows that X is contained in the C∗-algebra Xq obtained by
completing A0 with respect to the norm q(·). We do not know if the identity
map is necessarily continuous from (X, ‖·‖) into (Xq, q(·)). If this is the case,
then the next proposition shows that p(x) = q(x) for every x ∈ X.

Proposition 5.7. Let (X,A0) be a normed quasi ∗-algebra with unit e.
The following statements are equivalent :

(i) p is an m∗-seminorm on A0.
(ii) For each ϕ ∈ P(X), ‖ϕ‖ = ϕ(e, e).
(iii) D(q) = X and p(x) = q(x) for every x ∈ X.
(iv) p is a C∗-seminorm on A0.
(v) D(q) = X and q(x) ≤ ‖x‖ for every x ∈ X.

Proof. (i)⇒(ii): Let ϕ ∈ P(X). We define a linear functional ω̂ϕ on
A0 +N0(p) by

ω̂ϕ(a+N0(p)) = ϕ(a, e), a ∈ A0.

Then ω̂ϕ is ‖ · ‖p-bounded and positive, since

ω̂ϕ((a+N0(p))∗(a+N0(p))) = ω̂ϕ(a∗a+N0(p)) = ϕ(a∗a, e) = ϕ(a, a) ≥ 0.

We denote by ω̃ϕ the unique ‖ ‖p-bounded extension of ω̂ϕ to Xp. If b ∈ Xp

then there exists a sequence {an} ⊂ A0 such that b = ‖ · ‖p-lim(an +N0(p)).
Then

ω̃ϕ(b∗b) = lim
n→∞

ω̂ϕ((an +N0(p))∗(an +N0(p))) ≥ 0.
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Hence ω̃ϕ is positive on Xp. Then the norm ‖ω̃ϕ‖]p of the linear functional
ω̃ϕ satisfies ‖ω̃ϕ‖]p = ω̃ϕ(e) = ϕ(e, e). Therefore, for all a, b ∈ A0,

|ϕ(a, b)| = |ω̂ϕ(b∗a+N0(p))| ≤ ϕ(e, e)p(b∗a)
≤ ϕ(e, e)p(a)p(b) ≤ ϕ(e, e)‖a‖ ‖b‖.

This implies that ‖ϕ‖ ≤ ϕ(e, e), and since ϕ(e, e) ≤ ‖ϕ‖, we get equality.
(ii)⇒(iii): Follows immediately from the definition of q and from (ii).
(iii)⇒(iv): Follows from the equality p = q.
(iv)⇒(v): From (i)⇒(ii) it follows that ‖ϕ‖ = ϕ(e, e) for every ϕ ∈

P(X). This implies that p = q and then, from the properties of p, one finally
gets (v).

(v)⇒(i): Since

ϕ(xa, xa) ≤ q(x)2ϕ(a, a), ∀x ∈ D(q), a ∈ A0,

we have
ϕ(xa, xa) ≤ ‖x‖2ϕ(a, a), ∀x ∈ X, a ∈ A0.

For a = e this gives

ϕ(x, x) ≤ ‖x‖2ϕ(e, e), ∀x ∈ X.

Therefore ϕ(e, e) ≥ ‖ϕ‖. Since always ϕ(e, e) ≤ ‖ϕ‖, we conclude that
‖ϕ‖ = ϕ(e, e). Thus, if ϕ(e, e) = 1, then ϕ ∈ S(X). This implies that
q(x) ≤ p(x) for every x ∈ X. Hence q(x) = p(x) for every x ∈ X and p is an
m∗-seminorm on A0.

Corollary 5.8. Let (X,A0) be a normed quasi ∗-algebra with unit e.
The following statements are equivalent :

(i) p is an m∗-seminorm on A0.
(ii) Every regular ∗-representation π of (X,A0) in a Hilbert space H is

bounded and continuous from X into B(H) and ‖π(x)‖ ≤ ‖x‖ for
every x ∈ X.

Proof. This follows immediately from Propositions 4.13 and 5.7(iv).

As seen in previous examples, there exist Banach quasi ∗-algebras (X,A0)
(with unit) for which P(X) = {0}. If this is the case, there is no strongly
continuous ∗-representation of (X,A0), apart from the trivial one. This un-
pleasant feature is avoided if we require that P(X) is sufficient , by which
we mean that if x ∈ X and ϕ(x, x) = 0 for every ϕ ∈ P(X), then x = 0.
Clearly, if P(X) is sufficient, then (X,A0) has a sufficient family of strongly
continuous ∗-representations, where sufficient means in this case that for
every x ∈ X, x 6= 0, there exists a strongly continuous ∗-representation π
such that π(x) 6= 0. In particular, if p(x) = ‖x‖ for every x ∈ X, then P(X) is
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clearly sufficient, and as shown in [22, Theorem 3.26], D(q) is a C∗-algebra,
consisting of all bounded elements of X (see Example 4.19). In this case, from
Proposition 5.5 it follows that a non-trivial (in the sense that X is not an
algebra) Banach quasi ∗-algebra (X,A0) necessarily has strongly continuous
unbounded ∗-representations.

Banach quasi ∗-algebras with P(X) sufficient have been studied in more
detail in [6] and [22]. There remains the open question of characterizing, in
terms of the original norm of X, the existence of sufficiently many positive
invariant sesquilinear forms.
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