
STUDIA MATHEMATICA 186 (1) (2008)

Weak type radial convolution operators on free groups

by

Tadeusz Pytlik and Ryszard Szwarc (Wrocław and Opole)

Abstract. Radial convolution operators on free groups with nonnegative kernel of
weak type (2, 2) and of restricted weak type (2, 2) are characterized. Estimates of weak
type (p, p) are obtained as well for 1 < p < 2.

1. Introduction. A discrete group G is called amenable if there exists
a linear functional m on `∞R (G) such that

(1) inf
x∈G

f(x) ≤ m(f) ≤ sup
x∈G

f(x),

(2) m(xf) = m(f), where xf(y) = f(x−1y).

m is called a left invariant mean. Then the functional M(f) = m(m(fx))
satisfies (1), (2) and is also right invariant, where fx(y) = f(yx).

Let G be a discrete group. Consider a symmetric probability measure µ
on G, i.e.

µ =
∑
x∈G

µ(x)δx, µ(x) ≥ 0,
∑
x∈G

µ(x) = 1, µ(x−1) = µ(x).

The left convolution operator λ(µ) with µ is bounded on `2(G) and

‖λ(µ)(f)‖2 = ‖µ ∗ f‖2 ≤ ‖f‖2, f ∈ `2(G).

Indeed,

‖µ ∗ f‖2 =
∥∥∥∑
x∈G

µ(x)[δx ∗ f ]
∥∥∥

2
≤
∑
x∈G

µ(x)‖δx ∗ f‖2 = ‖f‖2.

Thus ‖λ(µ)‖2→2 ≤ 1.
Kesten [5] showed that a discrete group G is amenable iff for any sym-

metric probability measure µ on G we have ‖λ(µ)‖2→2 = 1. He also showed
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that G is amenable if this condition is satisfied for one measure µ such
that suppµ generates G algebraically. In particular, let G be generated by
g1, . . . , gk and µ = (2k)−1

∑k
i=1(δgi + δg−1

i
). Then G is amenable if and only

if ‖λ(µ)‖2→2 = 1.
In [4] Følner came up with another property equivalent to amenability.

We say that a discrete group G satisfies the Følner condition if for any
number ε > 0 and any finite set K ⊂ G there exists a finite set N ⊂ G such
that

(1) |xN 4N | < ε|N |, x ∈ K,

where A4B = (A \B)∪ (B \A). In other words, N is almost K-invariant.
He showed that G is amenable if and only if the Følner condition holds.

Assume that G is amenable. Let µ be a probability measure with finite
support K. For ε = η2 > 0 choose N so as to satisfy (1). Then

‖µ ∗ χN − χN‖2 =
∥∥∥∑
x∈K

µ(x)[χxN − χN ]
∥∥∥

2
≤
∑
x∈K

µ(x)‖χxN − χN‖2

=
∑
x∈K

µ(x)‖χxN4N‖2 =
∑
x∈K

µ(x)|xN 4N |1/2 ≤ η|N |1/2 = η‖χN‖2.

Therefore
〈µ ∗ χN , χN 〉`2(G) = 〈χN , χN 〉`2(G) + 〈µ ∗ χN − χN , χN 〉`2(G)

≥ (1− η)‖χN‖22,
which implies

(2) sup
N,M finite

〈µ ∗ χN , χM 〉
‖χN‖2‖χM‖2

= 1 = ‖λ(µ)‖2→2.

The same holds (with the same proof) for any 1 < p <∞, i.e.

(3) sup
N,M finite

〈µ ∗ χN , χM 〉
‖χN‖p‖χM‖p′

= 1 = ‖λ(µ)‖p→p,

where p′ = p/(p− 1).
We will use the notion of Lorentz Lp,q spaces (see [1]). Consider a general

σ-finite measure space (Ω,ω) and 1 < p < ∞. For f ∈ Lp(Ω,ω) and t > 0
we have

tp ω{x : |f(x)| > t} ≤
�

Ω

|f(x)|p dω(x).

The functions for which the left hand side is bounded form a linear space

Lp,∞(Ω,ω) = {f : sup
t>0

tpω{x : |f(x)| > t} <∞},

called the weak Lp space. This space contains Lp(Ω,ω).
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For p′ = p/(p−1) the predual of Lp′,∞(Ω,ω) with respect to the standard
inner product is denoted by Lp,1(Ω,ω). We have

Lp,1(Ω,ω) ⊂ Lp(Ω,ω) ⊂ Lp,∞(Ω,ω).
For p > 1 these spaces are normed.

Any linear operator mapping Lp into itself is called of strong type (p, p).
Linear operators T mapping Lp(Ω,ω) into Lp,∞(Ω,ω) are called of weak
type (p, p), while those which map Lp,1(Ω,ω) into Lp,∞(Ω,ω) are called of
restricted weak type (p, p).

We will use the following facts. A linear operator T is bounded from Lp,1

into a Banach space X if and only if

(4) ‖T‖L(p,1)→X = sup
E⊂Ω

‖TχE‖X
‖χE‖p

<∞.

A linear operator T is bounded from Lp,1 into Lp,∞ if and only if

(5) ‖T‖(p,1)→(p,∞) = sup
E,F⊂Ω

|〈TχE , χF 〉|
‖χE‖p‖χF ‖p′

<∞.

Using this and duality between L(p′,1) and L(p,∞) we obtain

(6) ‖T‖p→(p,∞) = ‖T ∗‖(p′,1)→p′ = sup
E⊂Ω

‖T ∗χE‖p′
‖χE‖p′

.

The equalities (2) and (3) can be interpreted as follows. If the group G is
discrete and amenable and µ is a symmetric probability measure on G, then

‖λ(µ)‖p→p = ‖λ(µ)‖(p′,1)→p′ = ‖λ(µ)‖p→(p,∞)(7)
= ‖λ(µ)‖(p,1)→(p,∞) = 1.

Hence for these groups convolution operators with nonnegative functions
of strong type (p, p), of weak type (p, p) and of restricted weak type (p, p)
coincide for any 1 < p <∞.

The situation is entirely different for nonamenable groups. Only special
examples have been studied. It has been shown [9] that for p = 2 and G = Fk,
the free group on k generators, k ≥ 2, there exist nonnegative functions f
on G such that ‖λ(f)‖2→(2,∞) is finite while ‖λ(f)‖2→2 is infinite, i.e. there
exist convolution operators with nonnegative functions of weak type (2, 2)
which are not of strong type (2, 2). The same has been shown for 1 < p < 2
[10]. These functions f can be chosen to be radial, i.e. constant on elements
of the group G of the same length. It is an open problem if these results
remain true for any discrete nonamenable group.

In this work will focus on G = Fk. We are going to determine all non-
negative radial functions f on G such that λ(f) is of weak type (2, 2), as
well those f for which λ(f) is of restricted weak type (2, 2). In particular, we
prove that these spaces are different. Next we will turn our attention to the
case 1 < p < 2. By using interpolation machinery, duality and the results
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for p = 2 we will be able to determine the nonnegative radial functions f for
which λ(f) is of weak type (p, p). In this way we obtain a simpler proof of
the upper estimate of ‖λ(f)‖p→(p,∞) obtained in [3]. Our method does not
rely on any deep theorems of representation theory.

2. Radial convolution operators of weak type (2, 2). Let Fk =
gp{g1, . . . , gk} be a free group on k ≥ 2 generators. The group consists of
reduced words in generators and their inverses. The reduced representation
of a word is unique. The number of letters in it defines a length function
on Fk. Let χn denote the indicator function of the words of length n. There
are 2k(2k − 1)n−1 such words, as we have 2k choices for the first letter and
2k − 1 choices for every consecutive one. Let q = 2k − 1. The next theorem
generalizes the estimate for ‖λ(χn)‖2→(2,∞) given in [9].

Theorem 1. Let f =
∑∞

n=0 fnχn. The operator λ(f) is of weak type
(2, 2) if

A(f) :=
∞∑

n,m=0

|fn| |fm|q−(n+m)/2{1 + min(n,m)} <∞.

Moreover , if fn ≥ 0 the condition is necessary and
1
6
A(f) ≤ ‖λ(f)‖22→(2,∞) ≤ 4A(f).

Proof. By (7), instead of estimating ‖λ(f)‖2→(2,∞) we may estimate
‖λ(f)‖(2,1)→2, which (see (4)) is equivalent to

sup
E⊂Fr

‖f ∗ χE‖2
|E|1/2

.

We have

‖f ∗ χE‖22 = 〈f ∗ f ∗ χE , χE〉 =
∞∑

n,m=0

fnfm〈χn ∗ χm ∗ χE , χE〉.

Simple calculation shows that for n ≥ 1 we have

χn ∗ χm = qn−1δmn χ0 +
n+m∑

k=|n−m|
k≡n+mmod 2

q(n+m−k)/2 χk.

Clearly χ0 ∗ χ0 = χ0. Therefore

χn ∗ χm ≤ 2
n+m∑

k=|n−m|
k≡n+mmod 2

q(n+m−k)/2χk.

Hence

‖f ∗ χE‖22 ≤ 2
∞∑

n,m=0

fnfm q
(n+m)/2

n+m∑
k=|n−m|

k≡n+mmod 2

q−k/2 〈χk ∗ χE , χE〉.
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Lemma 1.
〈χk ∗ χE , χE〉 ≤ 2q[k/2]|E|.

Proof. Define an operator Pk by the rule

〈Pkδx, δy〉 =
{ 〈χk ∗ δx, δy〉 if |x| ≥ |y|,

0 if |x| < |y|.
Then

〈χk ∗ δx, δy〉 ≤ 〈Pkδx, δy〉+ 〈δx, Pkδy〉.
This implies

〈χk ∗ χE , χE〉 ≤ 2〈PkχE , χE〉 ≤ 2‖PkχE‖1 ≤ 2|E| sup
x
‖Pkδx‖1.

Next
Pkδx =

∑
|w|=k
|wx|≤|x|

δwx.

Let w = w1w2 where |w1| ≤ |w2| ≤ (k + 1)/2. The conditions |w| = k and
|wx| ≤ |x| imply that w2 is determined by the first [(k + 1)/2] letters of x.
Hence we have as many terms in the sum as choices for w1, i.e. at most q[k/2].
Thus

‖Pkδx‖1 ≤ q[k/2].

Therefore
〈χk ∗ χE , χE〉 ≤ 2q[k/2]|E|.

Lemma 1 implies that

‖f ∗ χE‖22
|E|

≤ 4
∞∑

n,m=0

|fn| |fm|q(n+m)/2
n+m∑

k=|n−m|
k≡n+mmod 2

1

= 4
∞∑

n,m=0

|fn| |fm|q(n+m)/2{1 + min(m,n)}.

We obtain the upper estimate

‖λ(f)‖22→(2,∞) ≤ 4
∞∑

n,m=0

|fn| |fm|q(n+m)/2{1 + min(m,n)}.

On the other hand, if fn ≥ 0 we have

‖λ(f)‖22→(2,∞) ≥
q

q + 1
q−2k‖f ∗ χ2k‖22 ≥

2
3
q−2k

∥∥∥ ∞∑
n=0

fn(χn ∗ χ2k)
∥∥∥2

2

≥ 2
3
q−2k

∥∥∥ ∞∑
n=0

fn

n+2k∑
l=|n−2k|
l≡nmod 2

q(n+2k−l)/2 χl

∥∥∥2

2
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=
2
3

∥∥∥ ∞∑
l=0

q−l/2χl

( 2k+l∑
n=|2k−l|
n≡lmod 2

fnq
n/2
)∥∥∥2

2
≥ 2

3

∞∑
l=0

( 2k+l∑
n=|2k−l|
n≡lmod 2

fnq
n/2
)2

≥ 2
3

2k∑
l=0

( 2k+l∑
n=2k−l
n≡lmod 2

fnq
n/2
)2
≥ 2

3

2k∑
n,m=0

fnfmq
(n+m)/2

2k∑
l=max(2k−n,2k−m)

l≡n≡mmod 2

1.

Considering even or odd values of m and n gives

‖λ(f)‖22→(2,∞) ≥
2
3

k∑
n,m=0

f2nf2mq
n+m{1 + min(n,m)},

‖λ(f)‖22→(2,∞) ≥
2
3

k−1∑
n,m=0

f2n+1f2m+1q
n+m+1{1 + min(n,m)}.

Since k is arbitrary,

‖λ(f)‖22→(2,∞) ≥
1
3

∞∑
n,m=0

n≡mmod 2

fnfmq
(n+m)/2{1 + min(n,m)}.

This implies

‖λ(f)‖22→(2,∞) ≥
1
6

∞∑
n,m=0

fnfmq
(n+m)/2{1 + min(n,m)},

because the matrix a(n,m) = 1 + min(n,m) is positive definite.

Theorem 2. For n ≥ 0 we have

‖λ(χn)‖(2,1)→(2,∞) ≤ cqn/2.

Proof. We have

‖λ(χn)‖(2,1)→(2,∞) = sup
E,F⊂Fr

〈χn ∗ χE , χF 〉
|E|1/2|F |1/2

.

The proof will be completed if we show

(8) 〈χn ∗ χE , χF 〉 ≤ cqn/2|E|1/2|F |1/2.
We will prove (8) by modifying the argument used in the proof of Lemma 1.
Fix α ∈ R. Let Qαn denote the operator defined by the rule

〈Qαnδx, δy〉 =
{ 〈χn ∗ δx, δy〉 if |x| ≥ qα|y|,

0 if |x| < qα|y|.
Then

〈χn ∗ δx, δy〉 ≤ 〈Qαnδx, δy〉+ 〈δx, Q−αn δy〉.
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This implies

〈χn ∗ χE , χF 〉 ≤ ‖QαnχE‖1 + ‖Q−αn χF ‖1(9)
≤ |E| sup

x
‖Qαnδx‖1 + |F | sup

x
‖Q−αn δx‖1

Next
Qαnδx =

∑
|w|=n

|wx|≤q−α|x|

δwx.

Let w = w2w1 where |w1| = [n/2] + [α] and |w2| = n − [n/2] − [α]. The
conditions |w| = n and |wx| ≤ q−α|x| imply that w1 is determined by the
first [n/2] + [α] letters of x. Hence we have as many terms in the sum as
choices for w2, i.e. at most qn−[n/2]−[α]. Thus

(10) ‖Qαnδx‖1 ≤ q3/2q−αqn/2.

Similarly
‖Q−αn δx‖1 ≤ q3/2qαqn/2.

Hence by (9) we get

〈χn ∗ χE , χF 〉 ≤ q3/2qn/2{q−α |E|+ qα |F |}.
Choosing α = (log |E| − log |F |)/(2 log q) gives

〈χn ∗ χE , χF 〉 ≤ 2q3/2qn/2|E|1/2|F |1/2.
Theorem 3. Let f =

∑∞
n=0 fnχn and fn ≥ 0. The operator λ(f) is of

restricted weak type (2, 2) if and only if f ∈ L2,1.

Proof. By Theorem 2 we have

‖λ(χn)‖(2,1)→(2,∞) ≤ Cqn/2

for some constant C > 0. Let f =
∑∞

n=0 fnχn. Then the triangle inequality
yields

‖f‖(2,1)→(2,∞) ≤ C
∞∑
n=0

fnq
n/2.

By [8, Lemma 1],

(11)
∞∑
n=0

fnq
n/2 ≈ ‖f‖(2,1).

On the other hand, for fn ≥ 0 we have

‖f‖(2,1)→(2,∞) ≥ C sup
n,m

q−(n+m)/2 〈f ∗ χn, χm〉

= C sup
n,m

q−(n+m)/2 〈f, χm ∗ χn〉 ≥ C
n+m∑

k=|n−m|
k≡n+mmod 2

qk/2fk.
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Taking m = n or m = n+ 1 and letting n tend to infinity gives

‖f‖(2,1)→(2,∞) ≥ C
∞∑
k=0

q2k/2f2k,

‖f‖(2,1)→(2,∞) ≥ C
∞∑
k=0

q(2k+1)/2f2k+1.

Therefore
∑∞

k=0 q
k/2fk <∞, i.e. f ∈ L2,1 by (11).

3. Weak type (p, p) for 1 < p < 2. Part of the next theorem, namely
the first inequality, is known from [3]. Actually, it has been simply observed
there that the inequality follows by applying a multilinear interpolation the-
orem to Pytlik’s estimate for ‖

∑
fnλ(χn)‖p→p given in [8]. We will reprove

the second inequality by applying the same interpolation theorem to re-
stricted weak type estimates given in the previous section. In this way we
skip the p → p estimates whose proof in [8] is tricky, and the later proof in
[3] makes use of advanced representation theory.

Theorem 4. For 1 < p < 2 and f =
∑∞

n=0 fnχn we have

‖λ(f)‖p→(p,∞) ≤ C‖f‖(p,p′).

Moreover , if f ≥ 0 then

c‖f‖(p,p′) ≤ ‖λ(f)‖p→(p,∞).

Proof. The subscript r will denote the subspace of radial functions, i.e.
functions of the form

∑∞
n=0 fnχn, where fn are complex coefficients. By

Theorem 3 we have L2,1
r ∗L2,1 ⊂ L2,∞. On the other hand, L1

r ∗L1 ⊂ L1. By
the multilinear interpolation theorem [1, 3.13.5, p. 76] we get Lp,sr ∗Lp,t ⊂ Lp,u
where 1 ≤ p < 2 and 1 + 1/u = 1/s+ 1/t. Taking u =∞, t = p and s = p′

gives Lp,p
′

r ∗ Lp ⊂ Lp,∞. This gives the first inequality.
On the other hand, for f =

∑∞
n=0 fnχn by (4) and by duality (6) we have

‖λ(f)‖p→(p,∞) = ‖λ(f)‖(p′,1)→p′ ≥ c sup
n

q−n/p
′‖f ∗ χn‖p′ .

Similarly to the proof of Theorem 1 we obtain

f ∗ χn ≥
∞∑
l=0

q(n−l)/2
[ l+n∑

m=|n−l|
m≡l+nmod 2

qm/2fm

]
χl
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Hence

q−n‖f ∗ χn‖p
′

p′ ≥
n∑
l=0

qp
′(n−l)/2ql−n

[ l+n∑
m=n−l

m≡l+nmod 2

qm/2fm

]p′

≥
n∑
l=0

q(n−l)(p′−1)fp
′

n−l =
n∑
l=0

qlp
′/pfp

′

l .

Taking the supremum with respect to n and raising to the power 1/p′ gives

‖λ(f)‖p→(p,∞) ≥ c
( ∞∑
n=0

fp
′
n q

np′/p
)1/p′

.

Since the norm of f=
∑∞

n=0fnχn in Lp,p
′

r is equivalent to (
∑∞

n=0f
p′
n qnp

′/p)1/p′

the second inequality is proved.

4. Other estimates

Theorem 5. For 1 ≤ s ≤ 2 ≤ t ≤ ∞ we have

cn1−1/s+1/tqn/2 ≤ ‖λ(χn)‖(2,s)→(2,t) ≤ Cn1−1/s+1/tqn/2.

Proof. In order to get the second inequality we use only interpolation.
First observe that the inequality is valid for s = 2, t = ∞ by Theorem 1
and for s = t = 2 by [2, 7]. Hence by complex interpolation of the Lorentz
spaces it is valid for s = 2, t ≥ 2.

Next it is valid for s = 1, t =∞ by Theorem 3 and for s = t = 2. Hence
by complex interpolation it is valid for 1 ≤ s ≤ 2, t = s′.

Now we can use again complex interpolation to get the conclusion for
1 ≤ s ≤ 2 ≤ t ≤ ∞.

The estimate from below can be obtained from

‖λ(χn)‖(2,s)→(2,t) ≥
‖χn ∗ f‖(2,t)
‖f‖(2,s)

,

where f =
∑2n

k=0 q
−k/2χk.

Theorems 1, 2 and 5 suggest the following.

Conjecture. Let f =
∑∞

n=0 fnχn ≥ 0. Then for 1 ≤ s ≤ 2 the operator
λ(f) maps L2,s into L2,∞ if and only if

∞∑
n,m=0

fnfmq
−(n+m)/2{1 + min(n1/s′ ,m1/s′)} <∞.
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