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Small deformations of topological algebras

by

Mati Abel (Tartu) and Krzysztof Jarosz (Edwardsville, IL)

Abstract. We investigate stability of various classes of topological algebras and in-
dividual algebras under small deformations of multiplication.

1. Introduction. By an ε-deformation (or perturbation) of a Banach
algebra (A, ·) we mean a second multiplication× defined on the same Banach
space A such that the norm of the bilinear map ×− · is not greater than ε,
that is,

‖a× b− a · b‖ ≤ ε‖a‖ ‖b‖ for all a, b ∈ A.(1.1)

We always assume that a multiplication is associative, but not necessarily
commutative.

Small deformations of Banach algebras have been investigated since
the early seventies by R. Rochberg [15–21], B. E. Johnson [13, 14], K. Jarosz
[5–12], and others. While some of the results are applicable to general Banach
algebras, the main interest has been in the deformations of uniform algebras
in connection with small deformations of holomorphic structures. There are
three basic problems in the field:

(1) To characterize stable Banach algebras. A Banach algebra is called
stable if there is an ε0 > 0 such that for any ε-deformation × with ε < ε0,
the algebras (A, ·) and (A,×) are isomorphic.

(2) To characterize stable properties. We say that a property P is stable
if there exists an ε0 > 0 such that for any algebra (A, ·) having property P
and any ε-deformation × of that algebra with ε < ε0, the algebra (A,×)
also has property P .

(3) To characterize continuous or differentiable structures on the space
of all small deformations.
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For example the Banach algebras C(X), A(D),H∞(D), and the proper-
ties “Dirichlet” or “∂A = ChA” are stable [5, 8, 13, 20], while the algebras of
analytic functions of one variable defined on nonsimply connected domains
with nonempty interiors are not stable [21].

The concept of small deformations of algebras provides a very natural
definition of a small deformation of a Riemann manifold Ω: we call Ω ′ a
small deformation of Ω if an algebra AΩ′ of analytic functions on Ω′ is
isomorphic to a small deformation (AΩ,×) of an analogous algebra AΩ . It
turns out that for one-dimensional Riemann manifolds, this approach, with
AΩ equal to the algebra of functions analytic on Ω and continuous on Ω, is
exactly equivalent to the theory of quasiconformal deformations [21]. On the
other hand, almost nothing is known about small deformations of algebras
of analytic functions of several variables [10]. The problem is of particular
importance since an answer may provide a multidimensional quantitative
version of the Riemann Mapping Theorem.

In this paper we extend the theory of small deformations to topological
algebras. There are several ways to generalize the definition of a small defor-
mation to the class of algebras equipped with a topology but without a norm.
In the sections following the Definitions and notation we discuss briefly two
very natural extensions; we show, however, that both have serious limita-
tions. In the main section (Section 4), we arrive at what we believe is the
right definition, extending the concept of stability and small deformations
to the class of topological algebras. We show that in many cases the theory
is analogous to the theory of deformations of Banach algebras, while it may
provide an even better framework for working with small deformations of
holomorphic manifolds. The paper does not provide a comprehensive theory
of deformations of topological algebras; it is rather intended as an invitation
to this mostly open area of research.

By a topological algebra we mean here a topological vector space with an
associative and jointly continuous multiplication. In general such an algebra
may be quite pathological, e.g. all elements other than multiples of the identity
may have unbounded spectrum, the multiplicative inversion a 7→ a−1 may
be discontinuous, the set of invertible elements may be nonopen, etc. In this
paper we are particularly interested in small deformations of reasonably nice
topological algebras, like topological function algebras, m-convex algebras,
and Q-algebras. We will also often assume that the algebras under consid-
eration are complete, because several examples will show that without this
assumption, small deformations even of a normed algebra can be pathological.

2. Definitions and notation. Since the terminology concerning topo-
logical algebras varies, we state for the record the definitions of some of the
classes and properties of algebras we will refer to.
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Definition 1. By a Fréchet algebra we mean a complete metrizable
topological algebra.

Definition 2. By a Gelfand–Mazur algebra we mean a topological alge-
bra A such that for each closed two-sided regular ideal M which is maximal
as a left or as a right ideal, the quotient algebra A/M is topologically iso-
morphic to the scalar field.

Definition 3. By anm-convex algebra we mean an algebra whose topol-
ogy can be given by a family {pλ : λ ∈ Λ} of m-convex seminorms, that is,
seminorms satisfying

pλ(ab) ≤ pλ(a)pλ(b) for all a, b ∈ A, λ ∈ Λ.
If A is both a Fréchet algebra and m-convex, then its topology can be

given by an increasing sequence of m-convex seminorms.

Definition 4. By a topological function algebra we mean a closed sub-
algebra A of an algebra C(X) of all continuous functions defined on a com-
pletely regular Hausdorff space X; we assume that the topology of A is that
of uniform convergence on compact subsets of X.

The algebra C(X) is metrizable if and only if X is hemicompact; it is
complete if and only if X is a kR-space ([1, pp. 63–65]). Since every locally
compact and σ-compact Hausdorff space X is hemicompact and a kR-space,
for such spaces X, the topological algebra C(X) is lmc and Fréchet.

Definition 5. By a Q-algebra we mean a topological algebra A such
that the group of its quasi-invertible elements is open.

If an algebra A has a unit e then a ∈ A is called quasi-invertible if
e − a is invertible. If an algebra does not have a unit we call an element a
quasi-invertible if e−a is invertible in the algebra A⊕{λe : λ ∈ C} obtained
from A by adding a unit element e. Equivalently, a is quasi-invertible if there
is an element a0, called a quasi-inverse of a, such that a+ a0 = aa0; in the
algebra A⊕ {λe : λ ∈ C}, the inverse of e− a is e− a0.

In spite of the fact that Q-algebras may be noncomplete they share
many of the fundamental properties of Banach algebras; in fact, several of
these properties characterize the Q-property. Q-algebras, like for example
C∞[0, 1], algebras of rapidly decreasing functions, algebras of functions with
compact support, and others, play a crucial role in the theory of distribu-
tions, pseudodifferential operators, etc. [3].

Definition 6. An element a of a topological algebra A is called bounded
if for some nonzero complex number λa the set {(a/λa)n : n ∈ N} is bounded
in A. A topological algebra in which all elements are bounded is called a
topological algebra with bounded elements.
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If the topology of an algebra is given by a family of seminorms we also
have a related uniform property.

Definition 7. Let A be a topological algebra with the topology given
by a fixed family {pj : j ∈ J} of seminorms. We say that A is an algebra
with uniformly bounded elements if for any a ∈ A there is a positive number
λa such that

sup
j∈J

sup
n
pj((a/λa)n) <∞.

An example of a topological algebra with uniformly bounded elements
whose topology cannot be given by a norm is the algebra Cb(R) of all con-
tinuous bounded functions on the real line with the seminorms

pn(f) = sup
−n≤t≤n

|f(t)|, f ∈ Cb(R), n ∈ N.

3. Strong stability and weak stability. While the original definition
(1.1) of a small deformation of a Banach algebra is expressed by a formula
involving the norm of the algebra, the concept of stability of the algebra, or
stability of a particular property, can be described in topological terms.

Definition 8. We call a topological algebra (A, ·) strongly stable if there
is a neighborhood V of · ∈ L2(A) such that for each associative map × ∈ V
the algebras (A, ·) and (A,×) are topologically isomorphic.

Here, by L2(A) we denote the space of all continuous bilinear maps
T : A × A → A equipped with the bounded-open topology , that is, the
topology with a base of neighborhoods of zero defined by

{T ∈ L2(A) : T (B2) ⊂ U},
where B is a bounded subset of A and U a neighborhood of zero in A.

The above definition coincides with the classical one for Banach algebras
where the bounded-open topology is just the norm operator topology. So it
may seem to be the most natural generalization of stability from Banach
algebras to topological algebras. However, in a typical topological algebra,
bounded sets are quite small and rarely have nonempty interior. Conse-
quently, the requirement in the definition that all associative maps × from
V produce an isomorphic algebra is very strong. So strong, indeed, that even
very nice and rigid looking topological non-Banach algebras are not strongly
stable. The following theorem which we provide without a proof lists several
algebras that are not strongly stable.

Theorem 1. The following topological algebras are not strongly stable:

• the algebra C(C) of all continuous functions defined on the complex
plane C,
• the algebra Hol(C) of all holomorphic functions on C,
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• the algebra Hol(D) of all holomorphic functions defined on the open
unit disc D,
• the algebra C∞([0, 1]) of all infinitely differentiable functions on the

unit interval ,
• the algebra A∞(D) of all C∞ functions defined on the closed unit disc
D which are holomorphic on the interior of the disc.

In the first three cases we equip the algebra with the topology of uniform
convergence on compact sets and define multiplication pointwise. In the last
two cases we equip A with the topology of uniform convergence of all the
derivatives.

The algebras above are all functionally semisimple, metrizable, complete,
and m-convex. In fact, such algebras often serve as standard examples of
the simplest topological algebras outside the class of Banach algebras. One
can show that in any neighborhood of the original multiplication of such an
algebra there are multiplications with very different properties, for example
multiplications with nontrivial radical.

The definition of strong stability was too strong since it did not guarantee
that the new multiplication is uniformly close to the original one. If the
topology of an algebra A can be defined by a family {pλ : λ ∈ Λ} of m-
convex seminorms, one can define a class of deformations that are uniformly
close to the original one and define the corresponding stability property.

Definition 9. Let (A, ·) be an m-convex algebra with a unit e, and let
{pλ : λ ∈ Λ} be the family of all m-convex continuous seminorms on A. We
call (A, ·) weakly stable if there is an ε > 0 such that for any associative
multiplication × on A with

pλ(a · b− a× b) ≤ εpλ(a)pλ(b) for all a, b ∈ A, λ ∈ Λ,(3.1)

the algebras (A, ·) and (A,×) are topologically isomorphic.

Notice that the new algebra (A,×) is also m-convex: indeed, from (3.1)
we get

pλ(a× b) ≤ (1 + ε)pλ(a)pλ(b) for a, b ∈ A, λ ∈ Λ,
so

qλ := (1 + ε)pλ
are m-convex seminorms on (A,×).

Again, the definition is very natural; however, this time most complete
topological algebras are weakly stable—indeed, we have the following theo-
rem which we again present without proof.

Theorem 2. Any unital semisimple complete commutative m-convex
Hausdorff algebra is weakly stable.

At the same time, noncomplete algebras may still behave pathologically.
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Example 1. Let A be the algebra of all polynomials of a variable t with
pointwise multiplication and the sup norm on the unit interval:

‖p‖ = sup{|p(t)| : 0 ≤ t ≤ 1} for p ∈ A.
Fix ε > 0 and define a new multiplication × on A by

(p× q)(t) = (1 + εt)p(t)q(t) for p, q ∈ A.
It is easy to check that the new multiplication satisfies (3.1); however, the
algebras A and (A,×) are not isomorphic, since A has a unit while (A,×)
does not.

4. Stability. Since the last two definitions were not fully satisfactory,
providing too weak or too strong a property, let us examine again the original
definition of a small deformation of a Banach algebra. The definition involves
not only the topology but a specific norm of the algebra. If we replace the
original norm ‖ · ‖ on A by an equivalent norm p(·), then (1.1) becomes

p(a× b− a · b) ≤ εCp(a)p(b) for all a, b ∈ A,
where the constant C can be arbitrarily large or arbitrarily small. Hence
small deformations of a Banach algebra are related not only to the particular
algebraic and topological structures on A, but also to a specific norm on that
space, rather than the family of all equivalent norms. Consequently, it will
only be natural to define small perturbations not for an abstract topological
algebra, but for a concrete topological algebra equipped with a given set of
seminorms.

Definition 10. Let (A, ·) be an algebra and Ξ = {pλ : λ ∈ Λ} a family
of m-convex seminorms. Assume that the set Ξ separates the points of A,
so that (A, ·, Ξ) is an m-convex Hausdorff algebra. We call (A, ·, Ξ) stable
if there is an ε > 0 such that for any associative multiplication × on A with

p(a · b− a× b) ≤ εp(a)p(b) for a, b ∈ A and p ∈ Ξ,(4.1)

the algebras (A, ·) and (A,×) are topologically isomorphic.
We call a property P stable (or stable in a given class of topological

algebras) if for any algebra (A, ·, Ξ) with property P there is an ε > 0
such that for any ε-deformation × of that algebra defined as above, the new
algebra (A,×, Ξ) also has property P .

We notice that, as in the case of weak stability, the new algebra (A,×)
is also m-convex, with m-convex seminorms defined by

qλ := (1 + ε)pλ for λ ∈ Λ.
4.1. Basic stable properties. The next proposition shows that, for a large

class of topological algebras, a small perturbation of an algebra with a unit
is again a unital algebra.
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Proposition 1. For the sequentially complete m-convex algebras the
property of having a unit is stable.

Proof. Assume A is a unital sequentially complete m-convex algebra;
we denote by e the unit of A. Let × be another multiplication on A that
satisfies (4.1) with an ε < 1. Put

M : A→ A, M(a) = e× a,
and

T =
∞∑

n=0

(Id−M)n : A→ A,

where Id is the identity map on A.
For any m-convex seminorm p we may assume that p(e) = 1 (see [23])

and we have

p((Id−M)(a)) = p(a− e× a) ≤ εp(a),

p((Id−M)2(a)) = p((Id−M)(a)− e× (Id−M)(a))

≤ εp((Id−M)(a)) ≤ ε2p(a), . . . ,

p((Id−M)n(a)) ≤ εnp(a) for all n.

So, since A is sequentially complete, the series defining T is convergent. We
have

M ◦ T = T ◦M =
∞∑

n=0

(Id−M)n ◦M =
∞∑

n=0

(Id−M)n ◦ (Id− (Id−M))

=
∞∑

n=0

(Id−M)n −
∞∑

n=1

(Id−M)n = Id,

so T = M−1, in particular M is surjective.
For e0 := M−1(e) we get e× e0 = M(e0) = e. Hence, for any b in A,

M(e0 × b− b) = e× e0 × b− e× b = e× b− e× b = 0,

and since M is injective it follows that e0 × b− b = 0 for all b ∈ A, so e0 is
a unit of (A,×).

Remark 1. Based on the last proposition we may always assume that
for a sequentially complete m-convex algebra a new multiplication has the
same unit as the original one. To justify this we need to show that there is
a third multiplication ∗ on A such that the algebras (A,×) and (A, ∗) are
topologically isomorphic, ∗ is a small deformation of (A, ·), that is, there is
an ε′ = O(ε) such that

p(a · b− a ∗ b) ≤ ε′p(a)p(b) for a, b ∈ A and p ∈ Ξ,(4.2)

and the algebras (A, ·) and (A, ∗) have the same unit.
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To this end assume that × is a new multiplication on A satisfying (4.1)
with ε < 1, denote by e the unit of the original multiplication on A, and by
e0 the unit of the ×-multiplication. Put

Φ : A→ A, Φ(a) = a · e0.

Arguing exactly as for the map M in the proof of the last proposition one
can check that Φ is an invertible map from A onto itself with

Φ−1 =
∞∑

n=0

(Id− Φ)n.

Moreover, as before,

pλ(Φ−1(a)) = pλ

( ∞∑

n=0

(Id− Φ)n(a)
)

(4.3)

≤
∞∑

n=0

εnpλ(a) =
pλ(a)
1− ε for all a ∈ A and λ ∈ Λ.

We define a third multiplication ∗ on A by

a ∗ b = Φ−1(Φ(a)× Φ(b)) for all a, b ∈ A.
Notice that:

• Φ is an algebra isomorphism from (A, ∗) onto (A,×), so the algebras
(A, ∗) and (A,×) are isomorphic.
• Since

e0 = Φ−1(e) =
∞∑

n=0

(Id− Φ)n(e),

from (4.3) we get

pλ(e0) ≤ 1
1− ε, pλ(e− e0) ≤ ε

1− ε for all λ ∈ Λ,
so, by (4.3) it follows that for all a, b ∈ A and λ ∈ Λ we have

pλ(a · b− a ∗ b) = pλ(a · b− Φ−1((a · e0)× (b · e0)))

≤ 1
1− ε pλ(Φ(a · b− (a · e0)× (b · e0)))

=
1

1− ε pλ(a · b · e0 − (a · e0)× (b · e0))

=
1

1− ε pλ(a · (b · e0)− a× (b · e0) + a× (b · e0)− (a · e0)× (b · e0))

≤ 1
1− ε [εpλ(a)pλ(b · e0) + pλ((a− a · e0)× (b · e0))]

≤ 1
1− ε [εpλ(a)(pλ(b)pλ(e0) + (1 + ε)pλ(a)pλ(e− e0)pλ(b)pλ(e0))]

≤ ε′pλ(a)pλ(b)
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with

ε′ :=
1

1− ε pλ(e0)[ε+(1+ε)pλ(e−e0)] ≤ 1
(1− ε)2

(
ε+

(1 + ε)ε
1− ε

)
=

2ε
(1− ε)3 .

Hence ∗ is an ε′-deformation of (A, ·).
• The algebras (A, ·) and (A, ∗) have the same unit e.

Proposition 2. Assume (A, ·, Ξ) is a topological algebra with the topol-
ogy given by the family Ξ = {pλ : λ ∈ Λ} of m-convex seminorms, and let
× be an ε-deformation of (A, ·, Ξ). Then ker pλ, λ ∈ Λ, are closed two-
sided ideals in both algebras (A, ·, Ξ) and (A,×, Ξ), and for any λ ∈ Λ and
a1, a2, b1, b2 ∈ A we have

pλ(a1 − a2) = 0 = pλ(b1 − b2) ⇒ pλ(a1 × b1 − a2 × b2) = 0.

Proof. Fix λ ∈ Λ and assume that a1, a2, b1, b2 ∈ A are such that

pλ(a1 − a2) = 0 = pλ(b1 − b2).

We have

pλ((a1 − a2)× b1) ≤ pλ((a1 − a2)× b1 − (a1 − a2)b1) + pλ(a1 − a2)pλ(b1)

≤ εpλ(a1 − a2)pλ(b1) = 0,

so
pλ(a1 × b1 − a2 × b1) = 0.

By symmetry we also have

pλ(a2 × b1 − a2 × b2) = 0.

Hence
pλ(a1 × b1 − a2 × b2) = 0.

Remark 2. Assume (A, ·, Ξ) is a topological algebra with the topology
given by the family Ξ = {pλ : λ ∈ Λ} of m-convex seminorms, let × be an
ε-deformation of (A, ·, Ξ), and let Aλ be the completion of the quotient
algebra A/ker pλ. Based on the above proposition we can define two mul-
tiplications on each of the Banach spaces Aλ: ·λ induced by the original
multiplication, and ×λ induced by ×. We have

‖f ·λ g − f ×λ g‖λ ≤ ε‖f‖λ‖g‖λ for all f, g ∈ Aλ,
where ‖ · ‖λ is the quotient norm. Hence (Aλ,×λ) is an ε-deformation of the
Banach algebra (Aλ, ·λ).

4.2. Stable algebras. The next theorem states that the simplest topolog-
ical function algebras, that is, the algebras of all continuous functions, are
stable.

Theorem 3. Let A = C(X) be the algebra of all continuous functions
defined on a completely regular Hausdorff k-space X with the usual pointwise
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multiplication, and let K be a cover of X consisting of compact sets. Put

‖f‖K = sup{|f(z)| : z ∈ K} for f ∈ A, K ∈ K.
Then the algebra (A, {‖ · ‖K : K ∈ K}) is stable.

Proof. Assume × is another multiplication on C(X) such that

‖fg − f × g‖K ≤ ε‖f‖K‖g‖K for all f, g ∈ C(X), K ∈ K.(4.4)

It follows that

‖fg − f × g‖X ≤ ε‖f‖X‖g‖X for all f, g ∈ Cb(X),

where (Cb(X), ‖ · ‖X) is the Banach algebra of all bounded continuous func-
tions on X equipped with the sup norm. Since (Cb(X), ‖·‖X) is isometrically
isomorphic with the stable Banach algebra C(βX) of all continuous func-
tions on the Čech–Stone compactification βX of X, there is a map ([5, Ex.
17.3])

Ψ : C(βX)→ C(βX)

with ‖Ψ‖ ≤ cε, where c is an absolute constant, such that

T := Id + Ψ

is an algebra isomorphism from (C(βX),×) onto C(βX), that is,

T (f × g) = T (f)T (g) for f, g ∈ Cb(X).(4.5)

Hence for any x ∈ X there is a regular Borel measure νx on βX such that
var(νx) ≤ cε and

Tf(x) = f(x) +
�
βX

f dνx for f ∈ C(βX).

LetK0 ∈ K be such that x ∈ K0.We show that the support of νx is contained
in K0. Assuming the contrary there is an f0 ∈ C(βX) with f0 = 0 on K0
such that �

βX

f0 dνx = 1 and ‖f0‖X ≤ 1 +
1

|νx|(X\K0)
.

Let g0 ∈ C(βX) be such that ‖g0‖X = 1 and

g0 = 1 on K0, g0 = 0 on {t ∈ X : |f0(t)| > ε},
so that

‖f0g0‖X ≤ ε.
By Proposition 2, since ‖f0‖K0 = 0 we have f0 × g0 = 0 on K0, and

‖f0× g0‖X ≤ ‖f0g0‖X + ε‖f0‖X‖g0‖X ≤ ε+ ε‖f0‖X ≤ ε
(

2 +
1

|νx|(X\K0)

)
.



Deformations of topological algebras 213

Hence

|T (f0 × g0)(x)| =
∣∣∣(f0 × g0)(x) +

�
βX

(f0 × g0) dνx
∣∣∣ =

∣∣∣
�

βX\K0

(f0 × g0) dνx
∣∣∣

≤ |νx|(X\K0)‖f0 × g‖X ≤ |νx|(X\K0)ε
(

2 +
1

|νx|(X\K0)

)

≤ ε(2|νx|(X\K0) + 1) ≤ ε(2cε+ 1).

On the other hand,

|T (f0 × g0)(x)| = |T (f0)(x)T (g0)(x)|
=
∣∣∣

�
βX

f0 dνx

∣∣∣
∣∣∣
(

1 +
�
βX

g0 dνx

)∣∣∣

≥ (1− var(νx)) ≥ 1− cε,
so

ε(2cε+ 1) ≥ 1− cε,
which is impossible provided ε is small enough. We proved that

supp(νx) ⊂
⋂
{K : x ∈ K ∈ K} for any x ∈ X.

Since a continuous function is bounded on any compact set, � βX f dνx is well
defined for any f ∈ C(X), and we can extend the map

Id + Ψ = T : Cb(X)→ Cb(X)

to a map defined on all of C(X). We shall use the same symbol T to denote
the extended map

T (f)(x) = f(x) +
�
βX

f dνx, f ∈ C(X).(4.6)

To end the proof we shall show that T is an algebra isomorphism from
(C(X),×) onto C(X); we need to check that T is an algebra homomorphism,
that it is injective, and that the range of T consists of all continuous functions
on X.

Let f, g ∈ C(X). To show that

T (f × g) = T (f)T (g),

fix x ∈ X and K ∈ K with x ∈ K. Denote by f1, g1, h1 arbitrary bounded
continuous functions on X that coincide on K with f , g, and f × g, re-
spectively. By Proposition 2, since ‖f − f1‖K = ‖g − g1‖K = 0, we have
‖f × g − f1 × g1‖K = 0, so since the support of νx is contained in K, by
(4.5) we get
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T (f × g)(x) = (f × g)(x) +
�
βX

(f × g) dνx = (f1 × g1)(x) +
�
βX

(f1 × g1) dνx

= T (f1 × g1)(x) = T (f1)(x)T (g1)(x)

=
(
f1(x) +

�
βX

f1 dνx

)(
g1(x) +

�
βX

g1 dνx

)

=
(
f(x) +

�
βX

f dνx

)(
g(x) +

�
βX

g dνx

)
= T (f)(x)T (g)(x).

Now, to show that T is injective, assume f is a nonzero continuous function
on X such that T (f) = 0. Select any compact set K from K such that f is
not constantly zero on K, and let y ∈ K be such that ‖f‖K = |f(y)| > 0.
Since var(νx) ≤ cε, for all ε < 1/c we get

0 = Tf(y) =
∣∣∣f(y) +

�
K

f dνx

∣∣∣ ≥ |f(y)| − cε‖f‖K = ‖f‖K(1− cε) > 0.

The contradiction shows that T is injective.
It is clear that for any f ∈ C(X) the function T (f) is continuous on

compact sets from K. Since according to our assumptions X is a k-space, it
follows that T (f) is continuous.

Define

S(f) =
∞∑

n=0

(−Ψ)n(f);

the map S is an inverse of T on the Banach algebra Cb(X) = C(βX). It
is easy to check that for any f ∈ C(X), the function S(f) is well defined,
that the value of S(f)(x) depends only on the behavior of f on K, for any
x ∈ K ∈ K, so S(f) ∈ C(X), and consequently that S = T−1, which proves
that T is surjective.

The last theorem shows that the algebras C(X) are stable with respect
to the most natural set of seminorms, maximum on compact subsets of X.
As the next example shows, the same algebra with the same topology may
not be stable with respect to some other seminorms.

Example 2. Put A = C(R) with the usual pointwise multiplication,
and

pn(f) = n sup
−n≤t≤n

|f(t)| for f ∈ C(R) and n ∈ N.

Fix ε > 0 and define a new multiplication × on A by

(f × g)(t) = (1 + εt)f(t)g(t), t ∈ R.
It is easy to check that the new multiplication is an ε-deformation of the
original one; however, the algebras A and (A,×) are not isomorphic, as the
first one has a unit while the second one does not.
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In the remainder of this section we will deal mostly with perturbations of
topological algebras of analytic functions. The next two lemmas will provide
us with technical tools; the first one gives a detailed analysis of a small
deformations of the disc algebra. We denote by A(DR) the Banach algebra
of all functions that are analytic on DR := {z ∈ C : |z| < R} and continuous
on DR; we equip it with the standard sup norm ‖f‖ = sup{|f(z)| : |z| ≤ R}
and pointwise multiplication.

Lemma 1. There is an ε0 > 0 such that for any positive ε < ε0, any
R > 0, and any multiplication × on A(DR) with

‖f · g − f × g‖ ≤ ε‖f‖ ‖g‖, f ∈ A(DR),

there is an algebra isomorphism TR from (A(DR),×) onto A(DR) and a
homeomorphism ψR from DR onto itself such that

(4.7) ‖TR‖ ≤ 1 + ε, ‖T−1
R ‖ ≤

1
1− ε,

(4.8) |T (f)(ψR(z))− f(z)| ≤ 2ε, z ∈ DR,
(1− ε)|z| ≤ |TR(Z)(z)| ≤ (1 + ε)|z|, z ∈ DR,

where Z is the identity function Z(z) = z. Moreover , if the functional
A(DR) 3 f 7→ f(0) is ×-multiplicative, then also

(1− ε)|z| ≤ |T−1
R (Z)(z)| ≤ (1 + ε)|z|, z ∈ DR,

and if f0 ∈ A(DR) satisfies

(1− ε)|z| ≤ |f0(z)| ≤ (1 + ε)|z|, z ∈ DR,
then

(1− ε)2|z| ≤ |TR(f0)(z)| ≤ (1 + ε)2|z|, z ∈ DR.(4.9)

Proof. Since the algebra A(DR) is isometrically isomorphic to the stable
disc algebra [20], there is an algebra isomorphism T from (A(DR),×) onto
A(DR). We show that any such map has the remaining properties listed in
the lemma, or may be modified to satisfy them. The property (4.8) follows
directly from the proof of stability of the disc algebra (Lemma 3.3 of [20]).
Basing on Remark 1 we can assume that both multiplications have the same
unit 1.

For any f ∈ A(DR) we have

(1− ε)‖f‖2 ≤ ‖f × f‖ ≤ (1 + ε)‖f‖2,
so for any k ∈ N,

(1− ε)2k−1‖f‖2k ≤ ‖ f × . . .× f︸ ︷︷ ︸
2k times

‖ ≤ (1 + ε)2k−1‖f‖2k
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and consequently the spectral radius %×(f) of f in (A(DR),×) satisfies

(1− ε)‖f‖ ≤ %×(f) ≤ (1 + ε)‖f‖.
Since %×(f) = ‖T (f)‖, we get

‖T‖ ≤ 1 + ε, ‖T−1‖ ≤ 1
1− ε.

We now show that Z × A(DR) is a closed maximal ideal in A(DR). Let
S : A(DR)→ A(DR) be defined by

S(f) = T

(
f − f(0)

Z

)
T (Z) + f(0).

Notice that since the function f − f(0) vanishes at zero, (f − f(0))/Z is a
well defined element of A(DR). Furthermore since ‖f − f(0)‖ ≤ 2‖f‖, and
|Z| = R on the boundary of DR, we have∣∣∣∣

f − f(0)
Z

(z)

∣∣∣∣ ≤
2‖f‖
R

for z ∈ ∂DR,

and consequently for all z in DR, so∥∥∥∥
f − f(0)

Z

∥∥∥∥ ≤
2‖f‖
R

.

As both multiplications have the same unit we have T (1) = 1 and

‖(T−1 ◦ S)(f)− f‖ =
∥∥∥∥T−1

(
T

(
f − f(0)

Z

)
T (Z)

)
− f − f(0)

Z
Z

∥∥∥∥

=

∥∥∥∥
f − f(0)

Z
× Z − f − f(0)

Z
Z

∥∥∥∥

≤ ε 2‖f‖
R

R = 2ε‖f‖.

Hence, provided 2ε < 1, the map T−1 ◦S, and consequently S, is invertible.
Since ZA(DR) is a codimension one closed subspace of A(DR), so is its image
under S. Hence T (Z × A(DR)) = T (Z)A(DR) = S(ZA(DR)) is a maximal
ideal in A(DR). Consequently, there is a z0 ∈ DR such that T (Z)A(DR) =
{f ∈ A(DR) : f(z0) = 0}, and the point z0 cannot be in the boundary of DR,
since the corresponding ideal is principal. Put

Bz0(z) =
Rz0 − z
R− zz0

and define TR : A(DR)→ A(DR) by

TR(f) = T (f) ◦Bz0 , f ∈ A(DR).

The new map TR still has all the properties of T , that is, it satisfies (4.7)
and is an algebra isomorphism from (A(DR),×) onto A(DR); in addition,

TR(Z × A(DR)) = TR(Z)A(DR) = {f ∈ A(DR) : f(0) = 0}.
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Hence TR(Z) has only one single zero, so g0 := TR(Z)/Z is an invertible
element of A(DR). Since

‖g0‖ =
∥∥∥∥
TR(Z)
Z

∥∥∥∥ =
‖TR(Z)‖

R
≤ ‖TR‖ ‖Z‖

R
= ‖TR‖ ≤ 1 + ε

we get
|TR(Z)(z)| ≤ (1 + ε)|z|, z ∈ DR.

Since TR(Z)/Z is invertible, its absolute value attains its minimum on the
boundary of DR. Assume there is a point w0 ∈ ∂DR such that ‖TR(Z)/R‖ =
‖TR(Z)/Z‖ = |(TR(Z)/Z)(w0)| < 1 − ε and let h0 ∈ A(DR) be a norm one
function such that ‖h0TR(Z)/R‖ < 1− ε. We have

1− ε >
∥∥∥∥h0

TR(Z)
R

∥∥∥∥ ≥ (1− ε)
∥∥∥∥T−1

R

(
h0
TR(Z)
R

)∥∥∥∥

=

∥∥∥∥h0 ×
Z

R

∥∥∥∥ ≥
∥∥∥∥h0

Z

R

∥∥∥∥−
∥∥∥∥h0 ×

Z

R
− h0

Z

R

∥∥∥∥ ≥ 1− ε.

The contradiction shows that

‖g−1
0 ‖ =

∥∥∥∥
Z

TR(Z)

∥∥∥∥ ≤
1

1− ε,

so (1− ε)|z| ≤ |TR(Z)(z)| for z ∈ DR.
Assume now that the functional A(DR) 3 f 7→ f(0) is ×-multiplicative

and put h0 = T−1
R (g−1

0 ). We have

T−1
R (Z)(0) = T−1

R (g−1
0 TR(Z))(0) = h0 × Z(0) = 0

and ∥∥∥∥
T−1
R (Z)
Z

∥∥∥∥ ≤
‖T−1

R ‖ ‖Z‖
R

≤ 1 + ε,

hence
|T−1
R (Z)(z)| ≤ (1 + ε)|z|, z ∈ DR.

Using arguments very similar to those before one can now show that
T−1
R (Z)A(DR) is a closed maximal ideal in A(DR), so T−1

R (Z)/Z is invertible
with ∥∥∥∥

Z

T−1
R (Z)

∥∥∥∥ ≤
1

1− ε,

and consequently

(1− ε)|z| ≤ |T−1
R (Z)(z)|, z ∈ DR.

Assume f0 ∈ A(DR) satisfies

(1− ε)|z| ≤ |f0(z)| ≤ (1 + ε)|z|, z ∈ DR.
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If we replace Z with f0 in the first part of our proof we get∥∥∥∥
TR(f0)
Z

∥∥∥∥ ≤ (1 + ε)2 and
∥∥∥∥

Z

TR(f0)

∥∥∥∥ ≤
1

(1− ε)2 ,

so (4.9) follows.

Lemma 2. Let F be a free ultrafilter on the set N of natural numbers,
let r < R be positive real numbers, and let fn be a sequence of holomorphic
functions on DR such that supn∈N ‖fn‖R <∞. Then limF fn(z) is holomor-
phic on DR and limF ‖fn‖r = ‖limF fn‖r.

Notice that if we only assumed that fn were continuous then the limit
limF fn(z) could be discontinuous and ‖limF fn‖r could be strictly smaller
than limF ‖fn‖r. We refer to [4] for a review of basic applications of ultra-
filters in the Banach space theory (see also [2]).

Proof of Lemma 2. Let z0 be a point in DR. We show that f(z) :=
limF fn(z) is holomorphic at z0 and limF ‖fn‖r = ‖limF fn‖r. To simplify
the notation we can assume without loss of generality that

• z0 = 0 (compose all fn with a suitable holomorphic transformation of
DR onto itself mapping 0 onto z0),
• fn(0) = 0 for n ∈ N,
• f ′n(0) = 0 for n ∈ N (subtract the bounded sequence f ′n(0)z),
• R > 1 > r and supn∈N ‖fn‖R ≤ 1.

For any z ∈ Dr we have

|f ′n(z)| ≤
∣∣∣∣

1
2π �
|ξ|=1

fn(ξ)
(ξ − z)2 dξ

∣∣∣∣ ≤
4

(1− r)2 ,

so |fn(z)| ≤ 4(1−r)−2|z|, hence |limF fn(z)| ≤ 4(1−r)−2|z| and (limF fn)′(0)
= 0.

Assume s is such that ‖limF fn‖r < s < limF ‖fn‖r and let U =
{U1, . . . , Up} be a finite cover of Dr consisting of nonempty sets with
diameter less than 1

8(1 − r)2(s − ‖limF fn‖r). For any j fix wj ∈ Uj . For
arbitrary n ∈ N and w ∈ Uj we have

|fn(wj)− fn(w)| ≤ sup
z∈Uj
|f ′n(z)| |wj − w|

≤ 4
(1− r)2 ·

(1− r)2

8
(s− ‖lim

F
fn‖r)

=
s− ‖limF fn‖r

2
.

Put Nj = {k ∈ N : supz∈Uj |fk(z)| > s}. Since
⋃p
j=1Nj contains all but

finitely many natural numbers and F is a free ultrafilter there is a j0 such
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that Nj0 ∈ F . We have

‖lim
F
fn‖r ≥ |limF fn(wj0)| = lim

F
|fn(wj0)|

≥ lim
F

( sup
w∈Uj0

|f(w)| − sup
w∈Uj0

|fn(wj0)− fn(w)|)

≥ s− s− ‖limF fn‖r
2

> ‖lim
F
fn‖r.

The contradiction shows that limF ‖fn‖r = ‖limF fn‖r.
Theorem 4. Let A = Hol(D) be the algebra of all holomorphic functions

on the open unit disc D with the usual pointwise multiplication, let rn be an
increasing sequence of positive numbers with lim rn = 1, and let

‖f‖n = sup{|f(z)| : |z| ≤ rn}.
Then the topological algebra (A, {‖ · ‖n : n = 1, 2, 3, . . .}) is stable.

Proof. Fix an ε > 0 and assume × is another multiplication on A such
that for all n ∈ N,

‖f · g − f × g‖n ≤ ε‖f‖n‖g‖n, f, g ∈ A.(4.10)

Put An := A(Drn), n ∈ N, A∞ := A(D), and let ‖ · ‖ := sup ‖ · ‖n be the
usual sup norm on D. Since A is dense in An and the multiplication × is
jointly continuous, it can be uniquely extended to a multiplication on An,
n ∈ N; the extension still satisfies (4.10). We also have

‖f · g − f × g‖ ≤ ε‖f‖ ‖g‖, f, g ∈ A∞.
Let Tn, n ∈ N ∪ {∞}, be an isomorphism from (An,×) onto (An, ·), given
by Lemma 1. We shall show that T∞ can be extended to an isomorphism
from (A,×) onto (A, ·).

Let n1 < n2 ∈ N ∪ {∞}. The composition map Tn1 ◦ T−1
n2

: An2 → An1

is a homeomorphism between two uniform Banach algebras so it must be
given by a continuous map ϕn1,n2 : Drn1

→ Drn2
between the maximal ideal

spaces of these algebras:

(Tn1 ◦ T−1
n2

)(f) = f ◦ ϕn1,n2 , f ∈ An2 .

Hence

T∞(f)(ϕn1,∞(z)) = Tn1(f)(z), f ∈ A∞, z ∈ Drn1
.(4.11)

Since An2 is dense in An1 , (Tn1 ◦ T−1
n2

)(An2) is dense in An1 and must sep-
arate points of Drn1

, the maximal ideal space of An1 , so ϕn1,n2 is injective;
moreover ϕn1,n2 = (Tn2 ◦ T−1

n1
)(Z). Notice also that

ϕn1,∞(z) = (ϕn2,∞ ◦ ϕn2,n1)(z) for z ∈ Drn1
.

We show that D =
⋃∞
n=1 ϕn,∞(Drn). Assume again that n1 < n2. Since Drn1

is a compact subset of Drn2
and ϕn2,n1 is injective it follows that ϕn2,n1(Drn1

)
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is compact and contained in Drn2
so ϕn1,∞(Drn1

) = ϕn2,∞(ϕn2,n1(Drn1
)) ⊂ D.

Hence
⋃∞
n=1 ϕn,∞(Drn) ⊂ D.

To show the other inclusion let z0 ∈ D. Put

Bz0(w) =
z0 − w
1− z0w

, z ∈ D.

Let ψ1, ψrk be as in Lemma 1. We have

‖(Tk ◦ T−1
∞ )(Bz0)− T−1

∞ (Bz0) ◦ ψ−1
rk
‖ ≤ 2ε

and

‖T−1
∞ (Bz0) ◦ ψ−1

rk
−Bz0 ◦ ψ1 ◦ ψ−1

rk
‖ ≤ 2ε

1 + ε

1− ε.

Hence, assuming rk is close to 1, the function Bz0 ◦ ψ1 ◦ ψ−1
rk

is a homeo-
morphism from Drk onto a subset of the plane very close to Drk . Such a set
must contain 0, so there is a w0 ∈ Drk with (Tk ◦ T−1

∞ )(Bz0)(w0) = 0.
We have

{f ∈ A∞ : T∞(f)(z0) = 0} = T−1
∞ (Bz0A∞) = T−1

∞ (Bz0)× A∞
⊂ A∞ ∩ T−1

k (TkT−1
∞ (Bz0))× Ak

= A∞ ∩ T−1
k (TkT−1

∞ (Bz0)Ak)

⊂ {f ∈ A∞ : Tk(f)(w0) = 0}.
Since the codimension of the first and the last ideal above is the same,
they must be identical and consequently the corresponding ×-multiplicative
functionals on A∞ must coincide, that is,

T∞(f)(z0) = Tk(f)(w0) for f ∈ A∞.
By (4.11) we get ϕk,∞(w0) = z0, which shows that D ⊂⋃∞n=1 ϕn,∞(Drn).

To end the proof fix n0 and let j0, j1 be such that Drn0
⊂ ϕj0,∞(Drj0)

and ϕj0,∞(Drn0
) ⊂ Drj1 . For any f ∈ A0 we have

‖T∞(f)‖n0 = sup{|T0(f)(z)| : z ∈ Drn0
} ≤ sup{|T∞(f)(z)| : z ∈ ϕj0,∞(Drj0)}

= sup{|Tj0(f)(z)| : z ∈ Drj0} = ‖Tj0(f)‖j0 ≤ (1 + ε)‖f‖j0,
and

‖f‖n0 = sup{|f(z)| : z ∈ Drn0
} ≤ sup{|f(z)| : z ∈ ϕj0,∞(Drj1)}

= sup{|Tj1◦T−1
∞ (f)(z)| : z∈Drj1}=‖Tj0(T−1

∞ (f))‖j1≤
1

1−ε‖T
−1
∞ (f)‖j1.

The above shows that T∞ and T−1
∞ are continuous in the topology of

(A, {‖·‖n : n = 1, 2, 3, . . .}) so T∞ can be extended to a homomorphism from
the algebra (A,×, {‖·‖n : n = 1, 2, 3, . . .}) onto (A, ·, {‖·‖n : n = 1, 2, 3, . . .})
as promised.
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Theorem 5. Let A = Hol(C) be the algebra of all holomorphic functions
on C with the usual pointwise multiplication, let kn be an increasing sequence
of positive numbers with lim kn =∞, and let

‖f‖n = sup{|f(z)| : |z| ≤ kn}.
Then the topological algebra (A, {‖ · ‖n : n = 1, 2, 3, . . .}) is stable.

Notice that in contrast to Theorem 4, this time the subalgebra {f ∈ A :
supn ‖f‖n <∞} is trivial and cannot be helpful in the proof.

Proof. Without loss of generality, discarding some of the norms ‖ · ‖n if
necessary, we may assume that

kn/kn+1 ≤ (1− ε)2 for n ∈ N.
Fix an ε > 0 and assume × is another multiplication on A such that for all
n ∈ N,

‖f · g − f × g‖n ≤ ε‖f‖n‖g‖n f, g ∈ A.(4.12)

Since A is dense in An := A(Dkn), n ∈ N, the new multiplication × can
be uniquely extended to a multiplication on An; the extension still satis-
fies (4.12). Let Tn be the isomorphism from (An,×) onto (An, ·) given by
Lemma 1. By the same lemma there is a ×-multiplicative functional F on
A1 defined by F (f) := T1(f)(ψk1(0)) such that ‖F (f)− f(0)‖ ≤ 2ε‖f‖. Let
µ be a measure on Dk1 such that

var(µ) ≤ 2ε and
�
Dk1

f dµ = F (f)− f(0) for f ∈ A1.

Put
Φ : A→ A, Φ(f) = f +

�
Dk1

f dµ,

and define another multiplication ×′ on A by

f ×′ g = Φ(Φ−1(f)× Φ−1(g)).

Since Φ(f)(0) = F (f) and F is ×-multiplicative we get

(f ×′ g)(0) = F (Φ−1(f)× Φ−1(g)) = (F ◦ Φ−1)(f)F ◦ Φ−1(g)

= Φ(Φ−1(f))(0)Φ(Φ−1(g))(0) = f(0)g(0).

Hence the algebras (A,×) and (A,×′) are topologically isomorphic (Φ is an
isomorphism), the new multiplication ×′ is a small deformation of ×, so it
is also a small deformation of the original multiplication · on A, and the
evaluation at 0 is ×′-multiplicative. Consequently, it is enough to show that
the algebras A and (A,×′) are isomorphic; in order to simplify the notation
we will just assume that the evaluation at 0 is already ×-multiplicative.
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Let F be a free ultrafilter on N and define T : A→ A by

T (f)(z) = (lim
F
Tn(f))(z), f ∈ A.

We need to show that limF Tn(f) is a well defined element of A, and that T
is a bijective algebra isomorphism from (A,×) onto A.

Assume n2 > n1 > n0. The composition map Tn1 ◦T−1
n2

: An2 → An1 is a
homeomorphism between two uniform Banach algebras, so must be given by
a continuous map ϕn1,n2 : Dkn1

→ Dkn2
between the maximal ideal spaces

of these algebras:

(Tn1 ◦ T−1
n2

)(f) = f ◦ ϕn1,n2 , f ∈ An2 .

Hence

Tn2(f)(ϕn1,n2(z)) = Tn1(f)(z), f ∈ An2 , z ∈ Dkn1
.

Since An2 is dense in An1 , and Tni are isomorphisms, (Tn1 ◦ T−1
n2

)(An2) is
dense in An1 and must separate points of Dkn1

, the maximal ideal space of
An1 , so ϕn1,n2 is injective.

Since ϕn1,n2 = (Tn1 ◦ T−1
n2

)(Z), by Lemma 1 with f0 = T−1
n2

(Z) we get

(1− ε)2|z| ≤ |ϕn1,n2(z)| ≤ (1 + ε)2|z|, z ∈ Dkn1
.

Let f ∈ A and |z| ≤ kn0 ≤ (1− ε)2kn1 so that z ∈ ϕn1,n2(Dkn1
). Then

‖Tn2(f)‖n0 ≤ sup
w∈Dkn1

|Tn2(f)(ϕn1,n2(w))| = sup
w∈Dkn1

|Tn1(f)(z)|≤(1 + ε)‖f‖n1,

‖Tn2(f)‖n2 ≥ sup
w∈Dkn1

|Tn2(f)(ϕn1,n2(w))| = sup
w∈Dkn1

|Tn1(f)(z)|≥(1− ε)‖f‖n1.

Hence by Lemma 2, limF Tn(f) is a well defined analytic function and

(1− ε)‖f‖k ≤ ‖limF Tn(f)‖k+1 ≤ (1 + ε)‖f‖k+2.

So T is a topological isomorphism from (A,×) onto a closed subalgebra of A.
To show that T is surjective it is enough to notice that Z ∈ T (A). Indeed,
T (Z)/Z is a bounded entire function by Lemma 1, so it is constant.

Theorem 6. Let 0 < r < R < ∞, let A = Hol(P ) be the algebra of
all holomorphic functions on P = {z ∈ C : r < |z| < R} with the usual
pointwise multiplication, let (kn)∞n=−∞ be an increasing sequence of positive
numbers with limn→−∞ kn = r and limn→∞ kn = R, and let

‖f‖n = sup{|f(z)| : k−n ≤ |z| ≤ kn}.
Then the topological algebra (A, {‖ · ‖n : n = 1, 2, 3, . . .}) is not stable.
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Proof (sketch). Fix an ε > 0, put Pε = {z ∈ C : r < |z| < (1 + ε)R} and
define T : A→ Hol(Pε) by

T
( ∞∑

n=−∞
anZ

n
)

=
0∑

n=−∞
anZ

n

+
∞∑

n=−∞
an

(
R

R+ ε

)
Zn for

∞∑

n=−∞
anZ

n ∈ Hol(P ).

It is obvious that T is a well defined linear bijection and that the algebras
Hol(P ) and Hol(Pε) are not isomorphic since their maximal ideal spaces are
not holomorphically homeomorphic. Hence

f × g := T−1(T (f)T (g))

defines a new multiplication on A such that A and (A,×) are not isomorphic.
Put Pn := {z : k−n ≤ |z| ≤ kn} and P ′n := {z : k−n ≤ |z| ≤ (1 + ε)kn}.

Notice that for each n, the bijection T maps {f ∈ C(Pn) : f ∈ Hol(intPn)}
onto {f ∈ C(Pn) : f ∈ Hol(intP ′n)}. One can verify that the norms of these
maps, as well as the norms of their inverses tend to one uniformly as ε→ 0,
and hence by Theorem 3.1 of [5],

‖f × g − fg‖n ≤ (1 + ε′)‖f‖n‖g‖n for all f, g ∈ A and n ∈ N,
where ε′ → 0 as ε→ 0.

Theorem 7. The property of being a Q-algebra is not stable.

Proof. Let A be the space C(C) of all continuous functions on the com-
plex plane with the topology defined by the family Ξ = {‖ · ‖n : n =
1, 2, 3, . . .}, where

‖f‖n = sup{|f(z)| : |z| ≤ n},
and let · be a zero multiplication on A, that is, a · b = 0 for all a, b ∈ A. It
is immediate to check that A is a Q-algebra.

Fix an ε > 0 and define a new multiplication × on A by

(a× b)(z) = εa(z)b(z) for a, b ∈ A, z ∈ C.
We have

‖a · b− a× b‖n = ‖a× b‖n ≤ ε‖a‖n‖b‖n,
so × is an ε-perturbation of the original multiplication of A. However (A,×)
is not a Q-algebra since it has a unit (the constant function 1/ε), and any
neighborhood

{f ∈ A : ‖f − 1/ε‖n < δ}
of that unit contains functions equal zero at some point of the plane; such
functions are not invertible in the algebra (A,×).
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Notice that all the elements of the algebra (A, ·) considered in the last
proof are bounded, but the identity function is not bounded in the algebra
(A,×); hence we get the following proposition.

Proposition 3. The property of m-convex algebras of having bounded
elements is not stable.

On the other hand the related uniform property is stable.

Proposition 4. The property of m-convex algebras of having uniformly
bounded elements is stable.

Proof. Let (A, ·, Ξ) be an m-convex algebra with uniformly bounded
elements, where Ξ = {pλ : λ ∈ Λ} is a family of m-convex seminorms
defining the topology of the algebra. Let × be an ε-deformation of A, and
let a be a fixed element of A.

Let µa and M be positive numbers such that

pλ((a/µa)n) ≤M for all n ∈ N and λ ∈ Λ.
We get

pλ

(
a

M(1+ε)µa
× . . .× a

M(1+ε)µa︸ ︷︷ ︸
n times

)
≤ (1 + ε)n−1

[
pλ

(
a

M(1 + ε)µa

)]n

=
1

Mn(1+ε)

[
pλ

(
a

µa

)]n
≤ 1

1+ε
<1.

Hence the elements of (A,×) are uniformly bounded.

5. Almost multiplicative functionals and other problems. Small
deformations of multiplication are not the only aspect of the deformation
theory of Banach algebras that one may try to extend to topological alge-
bras. We would like to mention briefly some other natural problems.

The first one concerns almost multiplicative functionals. By an ε-multi-
plicative functional on a Banach algebra A we mean a linear functional F
on A such that

|F (ab)− F (a)F (b)| ≤ ε‖a‖ ‖b‖ for a, b ∈ A.
Such functionals play a crucial role in the investigation of small deforma-
tions of multiplication but they are also interesting in their own right. To
get an example of an almost multiplicative functional, just take a multiplica-
tive functional G and any linear functional ∆ ∈ A∗ with sufficiently small
norm, and put F = G+∆. A Banach algebra is called functionally stable if
this is the only way to obtain an almost multiplicative functional; that is, if
any almost multiplicative functional is close to a multiplicative one. In 1986
B. Johnson proved [14] that the Banach algebras C(X), the disc algebra
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A(D), and some other related uniform algebras are functionally stable. He
also constructed a commutative radical Banach algebra which had no multi-
plicative functionals but had ε-multiplicative functionals for any ε > 0. The
first example of nonfunctionally stable uniform algebra was given by Sidney
[22] in 1997. More recently the problem was investigated in [12]; however, a
number of important questions remains open even for Banach algebras. For
example we do not know if the algebraH∞(D) is functionally stable—in view
of the importance of the corona theorem it would be particularly interesting
to know if the algebra H∞(D) has an almost corona consisting of almost
multiplicative functionals far from the maximal ideal space of H∞(D). The
concept of almost multiplicative functionals can be easily extended to topo-
logical algebras along the same lines as the extension of deformations of
multiplication. There is an abundance of interesting natural open problems
here, for example: Which topological algebras are functionally stable? Is
multiplicative stability of an m-convex algebra (A, ·, pα) equivalent to func-
tional stability of the completions of all quotient algebras A/ker pα? etc.

To go even further one can ask about almost multiplicative maps be-
tween two topological algebras or about continuous/analytic structures on
the family of all deformations of an algebra; partial results are again avail-
able only for very special Banach algebras ([14], [5], [21]).
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