On solvability of the cohomology equation in function spaces

by

RYOTARO SATO (Okayama)

Abstract. Let T be an endomorphism of a probability measure space $(\Omega, \mathcal{A}, \mu)$, and f be a real-valued measurable function on Ω . We consider the cohomology equation $f = h \circ T - h$. Conditions for the existence of real-valued measurable solutions h in some function spaces are deduced. The results obtained generalize and improve a recent result of Alonso, Hong and Obaya.

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a probability measure space and $T: \Omega \to \Omega$ be an endomorphism of $(\Omega, \mathcal{A}, \mu)$. Thus, if $A \in \mathcal{A}$ then $T^{-1}A \in \mathcal{A}$ and $\mu(T^{-1}A) = \mu(A)$. T is called an *automorphism* of $(\Omega, \mathcal{A}, \mu)$ if T is one-to-one and onto, and T^{-1} is again an endomorphism of $(\Omega, \mathcal{A}, \mu)$. If there does not exist a set A in \mathcal{A} with $T^{-1}A = A$ and $0 < \mu(A) < 1$, then T is called *ergodic*. Let f be a real-valued measurable function on Ω . Then we define

$$S_0 f(\omega) = 0$$
 and $S_j f(\omega) = \sum_{k=0}^{j-1} f(T^k \omega)$ for $j \ge 1$,

so that the cocycle identity $S_{j+k}f(\omega) = S_jf(\omega) + S_kf(T^j\omega)$ holds for each $j,k \geq 0$. The function f is called a *coboundary cocycle* if there exists a real-valued measurable function h on Ω such that

$$f(\omega) = h(T\omega) - h(\omega)$$
 for μ -a.e. $\omega \in \Omega$.

In this case we have

$$S_j f(\omega) = h(T^j \omega) - h(\omega)$$
 for μ -a.e. $\omega \in \Omega$

for all $j \ge 1$.

Recently Alonso, Hong and Obaya [1] considered the case where T is an ergodic automorphism and f is a function in $L_r(\Omega, \mu)$ with $0 < r < \infty$.

²⁰⁰⁰ Mathematics Subject Classification: 37A20, 28D05, 47A35.

Key words and phrases: probability measure space, endomorphism, automorphism, ergodic, cohomology equation, real coboundary cocycle, Banach lattice of equivalence classes of real-valued measurable functions.

They proved that if

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \int_A |S_j f|^r \, d\mu < \infty$$

for some $A \in \mathcal{A}$ with $\mu(A) > 0$, then there exists a function h in $L_r(\Omega, \mu)$ such that

$$f(\omega) = h(T\omega) - h(\omega)$$
 for μ -a.e. $\omega \in \Omega$.

For related results we refer the reader to [2] and [11]. In the present paper we intend to generalize and improve the result of [1]. We prove in Section 3 that if T is an ergodic endomorphism, and $\varphi : \mathbb{R} \to [0, \infty)$ is a Borel measurable function on the real line \mathbb{R} such that $\lim_{|x|\to\infty} \varphi(x) = \infty$, then the condition

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \int_{A} \varphi(S_j f(\omega)) \, d\mu < \infty$$

for some $A \in \mathcal{A}$ with $\mu(A) > 0$ implies the existence of a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. If the function φ satisfies the additional hypotheses that $\sup\{\varphi(x) : |x| \leq N\} < \infty$ for every $N \geq 1$ and $\limsup_{|x|\to\infty} \varphi(x+a)/\varphi(x) < \infty$ for every $a \in \mathbb{R}$, then $\int_{\Omega} \varphi(h(\omega)) d\mu < \infty$. Secondly we consider a Banach lattice $(L, \|\cdot\|_L)$ of equivalence classes of real-valued measurable functions on Ω . Under suitable conditions on L, we prove that if T is an ergodic endomorphism, and there exists a set A in \mathcal{A} with $\mu(A) > 0$ such that $(S_j f)\chi_A \in L$ for $j \geq 1$ and

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \| (S_j f) \chi_A \|_L < \infty,$$

then $f \in L$ and $f = h \circ T - h$ for some h in L. This extends a recent result of [13]. We note that Orlicz spaces and Lorentz spaces are typical examples of such Banach lattices (see e.g. [8], [9]). In the next section we prove some auxiliary results.

2. Preliminaries. Let $(\Omega, \mathcal{A}, \mu)$, T and f be as in the introduction. Let ∂D be the boundary of the open unit disc D in the complex plane, i.e., $\partial D = \{e^{ix} : 0 \le x < 2\pi\}$, and $\mathcal{B}(\partial D)$ be the σ -field of all Borel subsets of ∂D . Denote by dx the Lebesgue measure on ∂D . We consider the product measure space

$$(\Omega \times \partial D, \mathcal{A} \otimes \mathcal{B}(\partial D), \mu \otimes dx).$$

For $s \in \mathbb{R}$, define an endomorphism τ_s of $(\Omega \times \partial D, \mathcal{A} \otimes \mathcal{B}(\partial D), \mu \otimes dx)$ by

$$\tau_s(\omega, e^{ix}) = (T\omega, e^{ix}e^{-isS_1f(\omega)})$$

Since the function $g(\omega, e^{ix}) = e^{ix}$ is integrable on $(\Omega \times \partial D, \mathcal{A} \otimes \mathcal{B}(\partial D), \mu \otimes dx)$ and since $\tau_s^j(\omega, e^{ix}) = (T^j \omega, e^{ix} e^{-isS_j f(\omega)})$ for each $j \ge 1$, it follows from the Birkhoff ergodic theorem that the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{ix} e^{-isS_j f(\omega)}$$

exists for $\mu \otimes dx$ -a.e. $(\omega, e^{ix}) \in \Omega \times \partial D$. Then by Fubini's theorem the limit

(1)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{-isS_j f(\omega)}$$

exists for μ -a.e. $\omega \in \Omega$. We now define

(2)
$$H(\omega, s) = \begin{cases} \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{-isS_j f(\omega)} & \text{if the limit exists,} \\ 2 & \text{otherwise.} \end{cases}$$

Then $H(\omega, s)$ is a real-valued measurable function on $\Omega \times \mathbb{R}$ with respect to the σ -field $\mathcal{A} \otimes \mathcal{B}(\mathbb{R})$, where $\mathcal{B}(\mathbb{R})$ denotes the σ -field of all Borel subsets of \mathbb{R} . Since

$$e^{-isS_1f(\omega)}e^{-isS_jf(T\omega)} = e^{-isS_{j+1}f(\omega)}$$

by the cocycle identity, it then follows that

(3)
$$H(T\omega, s) = e^{isS_1f(\omega)}H(\omega, s)$$
 whenever $H(\omega, s) \neq 2$.

On the other hand, Fubini's theorem shows that the set

(4)
$$\Omega_1 = \{ \omega \in \Omega : H(\omega, s) \neq 2 \text{ for } ds \text{-a.e. } s \in \mathbb{R} \}$$

is in \mathcal{A} . Furthermore,

(5)
$$\mu(\Omega_1) = 1 \text{ and } T^{-1}\Omega_1 = \Omega_1.$$

Now, fix $\omega \in \Omega_1$. As a function of $s \in \mathbb{R}$, $H(\omega, s)$ is the *ds*-a.e. limit of the continuous positive definite functions $(1/n) \sum_{j=1}^n \exp(-isS_j f(\omega))$, so there is a nonnegative finite Borel measure μ_{ω} on \mathbb{R} such that

(6)
$$H(\omega, s) = \int_{\mathbb{R}} e^{ist} d\mu_{\omega}(t) \quad \text{for } ds\text{-a.e. } s \in \mathbb{R}$$

(cf. e.g. §32 and §33 of [7]). (This argument is due to Helson [5].) By (3) and the continuity of the mapping $\mathbb{R} \ni s \mapsto \int_{\mathbb{R}} e^{ist} d\mu_{\omega}(t)$, we see that

$$\int_{\mathbb{R}} e^{is(S_1 f(\omega) + t)} d\mu_{\omega}(t) = e^{isS_1 f(\omega)} \int_{\mathbb{R}} e^{ist} d\mu_{\omega}(t) = \int_{\mathbb{R}} e^{ist} d\mu_{T\omega}(t)$$

for all $s \in \mathbb{R}$. Therefore

(7)
$$\mu_{T\omega}(E) = \mu_{\omega}(E - S_1 f(\omega))$$
 for every $\omega \in \Omega_1$ and $E \in \mathcal{B}(\mathbb{R})$.

R. Sato

Next, let $N \ge 1$. For $\omega \in \Omega$ we put

(8)
$$g_N(\omega) = \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \chi_{[-N,N]}(S_j f(\omega)),$$

(9)
$$g_{\infty}(\omega) = \lim_{N \to \infty} g_N(\omega)$$

Clearly, g_{∞} is measurable on $(\Omega, \mathcal{A}, \mu)$. Since $|S_j f(T\omega) - S_{j+1} f(\omega)| = |f(\omega)| < \infty$, we observe that $g_{\infty}(\omega) > 0$ if and only if $g_{\infty}(T\omega) > 0$. Consequently, the set

(10)
$$P = \{\omega \in \Omega : g_{\infty}(\omega) > 0\} \cap \Omega_{1}$$

belongs to \mathcal{A} , and $T^{-1}P = P$.

Suppose $\omega \in \Omega_1$. Since $\mu_{\omega} = 0$ is equivalent to

(11)
$$\int_{\mathbb{R}} \widehat{v}(t) \, d\mu_{\omega}(t) = 0 \quad \text{for every } v \in L_1(\mathbb{R}, ds),$$

and since

$$\begin{split} \int_{\mathbb{R}} \widehat{v}(t) \, d\mu_{\omega}(t) &= \int_{\mathbb{R}} \int_{\mathbb{R}} v(s) e^{-ist} \, ds \, d\mu_{\omega}(t) \\ &= \int_{\mathbb{R}} \left(v(s) \int_{\mathbb{R}} e^{-ist} \, d\mu_{\omega}(t) \right) ds \quad \text{(by Fubini's theorem)} \\ &= \int_{\mathbb{R}} v(s) H(\omega, -s) \, ds \quad \text{(by (6))} \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \widehat{v}(-S_j f(\omega)) \quad \text{(by (2))}, \end{split}$$

it follows that $\mu_{\omega} = 0$ is equivalent to

(12)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \widehat{v}(-S_j f(\omega)) = 0 \quad \text{for every } v \in L_1(\mathbb{R}, ds),$$

which is clearly equivalent to $g_{\infty}(\omega) = 0$. Thus

(13)
$$P = \{ \omega \in \Omega_1 : \mu_\omega > 0 \}.$$

The above argument shows that the function $P \ni \omega \mapsto \mu_{\omega}(\mathbb{R})$ is measurable with respect to the σ -field \mathcal{A} , and so is the function

$$h(\omega) = \sup\{t \in \mathbb{R} : \mu_{\omega}((-\infty, t]) \le \mu_{\omega}(\mathbb{R})/2\} \quad (\omega \in P).$$

The relation $h(T\omega) = f(\omega) + h(\omega)$ holds for every $\omega \in P$, by (7).

We similarly see that the set

(14)
$$P_1 = \{ \omega \in P : \mu_{\omega}(\mathbb{R}) = 1 \}$$

belongs to \mathcal{A} , and $T^{-1}P_1 = P_1$ by (7).

Lastly, let $A \in \mathcal{A}$ be such that $A \subset \Omega_1$, $T^{-1}A = A$, and there exists a real-valued measurable function h_A on A satisfying

$$f(\omega) = h_A(T\omega) - h_A(\omega)$$
 for every $\omega \in A$.

If we put

$$A_N = \{ \omega \in A : |h_A(\omega)| \le N \} \quad (N \ge 1),$$

$$\widetilde{g}_N(\omega) = \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \chi_{A_N}(T^j \omega) \quad (\omega \in A),$$

then the set

$$\widetilde{A} = \{\omega \in A : \lim_{N \to \infty} \widetilde{g}_N(\omega) = 1\}$$

satisfies $\mu(\widetilde{A}) = \mu(A)$ and $T^{-1}\widetilde{A} = \widetilde{A}$, by the Birkhoff ergodic theorem. Suppose $\omega \in \widetilde{A}$. If $N \ge |h_A(\omega)|$, then

$$|S_j f(\omega)| = |h_A(T^j \omega) - h_A(\omega)| \le |h_A(T^j \omega)| + N,$$

so that $T^{j}\omega \in A_{N}$ implies $|S_{j}f(\omega)| \leq 2N$, and hence

$$\frac{1}{n}\sum_{j=1}^{n}\chi_{A_{N}}(T^{j}\omega) \leq \frac{1}{n}\sum_{j=1}^{n}\chi_{[-2N,2N]}(S_{j}f(\omega)).$$

On the other hand,

$$\int_{\mathbb{R}} e^{ist} d\mu_{\omega}(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{-isS_j f(\omega)} \quad \text{for } ds\text{-a.e. } s \in \mathbb{R}$$

by (2) and (6), since $\omega \in \widetilde{A} \subset A \subset \Omega_1$. Therefore we find that for *ds*-a.e. $s \in \mathbb{R}$ with $s = \theta/2N$ and $0 < \theta \le \pi/4$,

$$\begin{split} \left| \int_{\mathbb{R}} e^{ist} d\mu_{\omega}(t) \right| &= \lim_{n \to \infty} \frac{1}{n} \left| \sum_{j=1}^{n} e^{-isS_{j}f(\omega)} \right| \\ &\geq \cos \theta \cdot \left(\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[-2N,2N]}(S_{j}f(\omega)) \right) - (1 - \widetilde{g}_{N}(\omega)) \\ &\geq \cos \theta \cdot \widetilde{g}_{N}(\omega) - (1 - \widetilde{g}_{N}(\omega)). \end{split}$$

Since $\widetilde{g}_N(\omega) \to 1$ as $N \to \infty$ and $\cos \theta \to 1$ as $\theta \to 0 + 0$, we must have $\mu_{\omega}(\mathbb{R}) \geq 1$. But this implies $\mu_{\omega}(\mathbb{R}) = 1$, because $\mu_{\omega}(\mathbb{R}) \leq 1$ is a direct consequence of (6) and the fact that $|H(\omega, s)| \leq 1$ for ds-a.e. $s \in \mathbb{R}$. We have proved that $\widetilde{A} \subset P_1$.

We can summarize the above as follows.

FACT 1 (cf. Theorem 3 of [5]). Let T be an endomorphism and f be a real-valued measurable function on Ω . Then the following hold:

(I) The set $P_1 = \{ \omega \in \Omega_1 : \mu_{\omega}(\mathbb{R}) = 1 \}$ is a T-invariant measurable subset of Ω , and there exists a real-valued measurable function h on P_1 such that $f(\omega) = h(T\omega) - h(\omega)$ for every $\omega \in P_1$.

(II) $\mu_{\omega} = 0$ for μ -a.e. $\omega \in \Omega \setminus P_1$.

(III) If A is a T-invariant measurable subset of Ω for which there exists a real-valued measurable function h_A on A such that $f(\omega) = h_A(T\omega) - h_A(\omega)$ for every $\omega \in A$, then $A \subset P_1 \pmod{\mu}$, i.e., $\mu(A \setminus P_1) = 0$.

FACT 2. Assume that T is an ergodic endomorphism. Then there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$ if and only if $\mu(\{\omega : g_{\infty}(\omega) > 0\}) > 0$.

Next we consider the probability measure space

(15)
$$(K_{\mathbb{R}}, \mathcal{A}_{\mathbb{R}}, \mu_{\mathbb{R}}) = \left(\Omega \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}(\mathbb{R}), \mu \otimes \frac{dx}{\pi(1+x^2)}\right),$$

and the null-preserving transformation ϑ of $(K_{\mathbb{R}}, \mathcal{A}_{\mathbb{R}}, \mu_{\mathbb{R}})$ defined by

(16)
$$\vartheta(\omega, x) = (T\omega, x + S_1 f(\omega)) \text{ for } (\omega, x) \in K_{\mathbb{R}}.$$

It follows that $\vartheta^j(\omega, x) = (T^j\omega, x + S_j f(\omega))$ for $j \ge 0$.

Let $M: [0, \infty) \to [0, \infty)$ be an increasing function such that $\lim_{x\to\infty} M(x) = \infty$ and there exist constants k > 0 and $x_0 \ge 0$ satisfying

(17)
$$M(2x) \le kM(x) \quad \text{for } x \ge x_0.$$

(See [9] for the properties of functions satisfying (17).)

Suppose h is a real-valued measurable function on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. Then define a function w_h on $K_{\mathbb{R}}$ by

(18)
$$w_h(\omega, x) = \frac{1+x^2}{1+(x-h(\omega))^2} \quad \text{for } (\omega, x) \in K_{\mathbb{R}}.$$

It follows that $\int_{K_{\mathbb{R}}} w_h d\mu_{\mathbb{R}} = 1$, and thus we can define a $\mu_{\mathbb{R}}$ -equivalent probability measure λ_h on $(K_{\mathbb{R}}, \mathcal{A}_{\mathbb{R}})$ by

(19)
$$\lambda_h = w_h \, d\mu_{\mathbb{R}}.$$

We will prove that λ_h is invariant with respect to ϑ . To do this it may be assumed from the start that $f(\omega) = h(T\omega) - h(\omega)$ for every $\omega \in \Omega$. For $A \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, we introduce a set E in $\mathcal{A}_{\mathbb{R}}$ by

$$E = \{(\omega, x) : \omega \in A, \ h(\omega) + \alpha \le x < h(\omega) + \beta\}.$$

Then

$$\begin{split} \vartheta^{-1}E &= \{(\omega, x) : (T\omega, x + f(\omega)) \in E\} \\ &= \{(\omega, x) : \omega \in T^{-1}A, \ h(T\omega) + \alpha \le x + f(\omega) < h(T\omega) + \beta\} \\ &= \{(\omega, x) : \omega \in T^{-1}A, \ h(\omega) + \alpha \le x < h(\omega) + \beta\}, \end{split}$$

and thus the definition of λ_h yields

(20)
$$\lambda_h(\vartheta^{-1}E) = \lambda_h(E)$$

since T is an endomorphism of $(\Omega, \mathcal{A}, \mu)$. It follows from a standard approximation argument that λ_h is invariant with respect to ϑ .

On the other hand, an elementary calculation shows that

(21)
$$\frac{1+x^2}{1+(x-t)^2} < 2+t^2 \quad \text{for } x, t \in \mathbb{R},$$

whence

(22)
$$0 < w_h(\omega, x) < 2 + h^2(\omega) \quad \text{for all } (\omega, x) \in K_{\mathbb{R}}.$$

Therefore, if h is a function in $L_{\infty}(\Omega, \mu)$, then w_h is a function in $L_{\infty}(K_{\mathbb{R}}, \mu_{\mathbb{R}})$ such that $||w_h||_{\infty} \leq 2 + ||h||^2$.

Next, assume that $h \in L_M(\Omega, \mu)$, where $L_M(\Omega, \mu)$ denotes the space of all real-valued measurable functions u on $(\Omega, \mathcal{A}, \mu)$ such that

$$\int_{\Omega} M(|u(\omega)|) \, d\mu < \infty.$$

Then we have, using Fubini's theorem,

$$\int_{K_{\mathbb{R}}} w_h M(\sqrt{w_h}) \, d\mu_{\mathbb{R}} \leq \int_{\Omega} M(\sqrt{2 + h^2(\omega)}) \left(\int_{\mathbb{R}} w_h(\omega, x) \, \frac{dx}{\pi(1 + x^2)} \right) d\mu(\omega)$$
$$= \int_{\Omega} M(\sqrt{2 + h^2(\omega)}) \, d\mu(\omega) \leq \int_{\Omega} M(2 + |h(\omega)|) \, d\mu < \infty,$$

where the last inequality comes from (17). Consequently, $h \in L_M(\Omega, \mu)$ implies that the function $w_h M(\sqrt{w_h})$ belongs to $L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$.

Conversely, assume that $\lambda = w d\mu_{\mathbb{R}}$, where $0 \leq w \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$, is a $\mu_{\mathbb{R}}$ -absolutely continuous probability measure invariant with respect to ϑ . Then we introduce a function w_{Ω} on Ω by

(23)
$$w_{\Omega}(\omega) = \int_{\mathbb{R}} w(\omega, x) \frac{dx}{\pi(1+x^2)} \quad (\omega \in \Omega).$$

Fubini's theorem implies that $w_{\Omega} \in L_1(\Omega, \mu)$, and thus $\lambda_{\Omega} = w_{\Omega} d\mu$ is a μ -absolutely continuous probability measure invariant with respect to T. Notice that if T is assumed to be ergodic, then $w_{\Omega}(\omega) = 1$ for μ -a.e. $\omega \in \Omega$. On the other hand, if λ is a $\mu_{\mathbb{R}}$ -equivalent probability measure, then $w_{\Omega}(\omega) > 0$ for μ -a.e. $\omega \in \Omega$, without assuming the ergodicity of T.

Thus, in the following, we will assume that $w_{\Omega}(\omega) > 0$ for μ -a.e. $\omega \in \Omega$. Then we can define a Borel probability measure λ_{ω} on \mathbb{R} , for μ -a.e. $\omega \in \Omega$, by

(24)
$$\lambda_{\omega}(B) = \frac{1}{w_{\Omega}(\omega)} \int_{B} w(\omega, x) \frac{dx}{\pi(1+x^2)} \quad (B \in \mathcal{B}(\mathbb{R})).$$

To prove the existence of a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$, we must assume below that T is an *automorphism*. By this assumption, both ϑ and ϑ^{-1} are null-preserving transformations of $(K_{\mathbb{R}}, \mathcal{A}_{\mathbb{R}}, \mu_{\mathbb{R}})$; and if $A \in \mathcal{A}$ and $B \in \mathcal{B}(\mathbb{R})$, then

$$\lambda(A \times B) = \int_{A} \lambda_{\omega}(B) w_{\Omega}(\omega) \, d\mu(\omega),$$

and

$$\lambda(\vartheta(A \times B)) = \int_{TA} \lambda_{\omega}(B + f(T^{-1}\omega))w_{\Omega}(\omega) \, d\mu(\omega)$$
$$= \int_{A} \lambda_{T\omega}(B + f(\omega))w_{\Omega}(\omega) \, d\mu(\omega),$$

where the last equality comes from the invariance of the measure $\lambda_{\Omega} = w_{\Omega} d\mu$ with respect to T. Since $\lambda(A \times B) = \lambda(\vartheta(A \times B))$, it follows that $\lambda_{\omega}(B) = \lambda_{T\omega}(B + f(\omega))$ for μ -a.e. $\omega \in \Omega$, and since $\mathcal{B}(\mathbb{R})$ is separable, this shows that $\lambda_{\omega}(B) = \lambda_{T\omega}(B + f(\omega))$ for all $B \in \mathcal{B}(\mathbb{R})$ and for μ -a.e. $\omega \in \Omega$. Consequently, the function

(25)
$$h(\omega) = \sup\{t \in \mathbb{R} : \lambda_{\omega}((-\infty, t]) = 1/2\} \quad (\omega \in \Omega)$$

satisfies $h(T\omega) = h(\omega) + f(\omega)$ for μ -a.e. $\omega \in \Omega$, and is measurable with respect to \mathcal{A} by an easy approximation argument.

Now, assume that $w = d\lambda/d\mu_{\mathbb{R}} \in L_{\infty}(K_{\mathbb{R}}, \mu_{\mathbb{R}})$. Since λ is invariant with respect to ϑ by hypothesis, it follows that the set

(26)
$$E_{\lambda} = \{(\omega, x) \in K_{\mathbb{R}} : w(\omega, x) > 0\}$$

satisfies $\vartheta^{-1}E_{\lambda} = E_{\lambda} \pmod{\mu_{\mathbb{R}}}$. On the other hand, the measure $\lambda_h = w_h d\mu_{\mathbb{R}}$ is also invariant with respect to ϑ (cf. (18)–(20)). Thus it follows from the Neveu–Chacon identification theorem (see e.g. Theorem 3.3.4 of [10]) for the Chacon–Ornstein ratio ergodic limit that the function w/w_h is measurable with respect to the σ -field

(27)
$$\mathcal{I}_{\mathbb{R}} = \{ A \in \mathcal{A}_{\mathbb{R}} : \vartheta^{-1}A = A \pmod{\mu_{\mathbb{R}}} \}.$$

Thus there exists a real-valued positive function G on E_{λ} , measurable with respect to $\mathcal{I}_{\mathbb{R}}$, such that

(28)
$$w_h = G \cdot w \pmod{\mu_{\mathbb{R}}} \quad \text{on } E_{\lambda}.$$

Since $G \circ \vartheta = G \pmod{\mu_{\mathbb{R}}}$ on E_{λ} , it follows that for $\mu_{\mathbb{R}}$ -a.e. $(\omega, x) \in E_{\lambda}$,

$$\sup\{w_h(\vartheta^j(\omega, x)) : j \ge 0\} = G(\omega, x) \cdot \sup\{w(\vartheta^j(\omega, x)) : j \ge 0\}$$
$$\leq G(\omega, x) \cdot ||w||_{\infty}.$$

The definition of w_h (cf. (18)) implies that for $\mu_{\mathbb{R}}$ -a.e. $(\omega, x) \in K_{\mathbb{R}}$,

$$w_h(\vartheta^j(\omega, x)) = w_h(T^j\omega, x + S_j f(\omega)) = w_h(T^j\omega, x + h(T^j\omega) - h(\omega))$$
$$= \frac{1 + (x + h(T^j\omega) - h(\omega))^2}{1 + (x - h(\omega))^2}.$$

Hence

$$\sup_{j\geq 0} \frac{1+(x+h(T^{j}\omega)-h(\omega))^{2}}{1+(x-h(\omega))^{2}} < \infty \quad \text{for } \mu_{\mathbb{R}}\text{-a.e. } (\omega, x) \in E_{\lambda}.$$

and therefore the function

$$g(\omega) = \sup_{j \ge 0} |h(T^j \omega)| \quad (\omega \in \Omega)$$

satisfies $g(\omega) < \infty$ for $\mu_{\mathbb{R}}$ -a.e. $(\omega, x) \in E_{\lambda}$. Now, if λ is a $\mu_{\mathbb{R}}$ -equivalent measure, then, since $E_{\lambda} = K_{\mathbb{R}} \pmod{\mu_{\mathbb{R}}}$, it follows that $g(\omega) < \infty$ for μ -a.e. $\omega \in \Omega$. If T is ergodic, and λ is a $\mu_{\mathbb{R}}$ -absolutely continuous probability measure, then, since $\mu_{\mathbb{R}}(E_{\lambda}) > 0$, the set $\{\omega \in \Omega : g(\omega) < \infty\}$ is of positive μ -measure, and the ergodicity of T implies that $g(\omega) < \infty$ for μ -a.e. $\omega \in \Omega$. Thus, in either case, $0 \leq g(T\omega) \leq g(\omega) < \infty$ for μ -a.e. $\omega \in \Omega$. Since μ is an invariant measure with respect to T, it then follows that $g(T\omega) = g(\omega)$ for μ -a.e. $\omega \in \Omega$, and hence the sets

$$A_n = \{ \omega \in \Omega : n - 1 \le g(\omega) < n \}, \quad n \ge 1,$$

satisfy $T^{-1}A_n = A_n \pmod{\mu}$ and $\Omega = \bigcup_{n=1}^{\infty} A_n \pmod{\mu}$. In particular, if T is ergodic, then g is a constant function in $L_{\infty}(\Omega, \mu)$.

Next, assume that the function $w = d\lambda/d\mu_{\mathbb{R}}$ is such that $wM(\sqrt{w}) \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$. Let v_j denote the Radon–Nikodym derivative $d(\mu_{\mathbb{R}} \circ \vartheta^j)/d\mu_{\mathbb{R}}$, where $\mu_{\mathbb{R}} \circ \vartheta^j$ denotes the measure defined by $(\mu_{\mathbb{R}} \circ \vartheta^j)(A) = \mu_{\mathbb{R}}(\vartheta^j A)$ for $A \in \mathcal{A}_{\mathbb{R}}$. Since $\vartheta^j(\omega, x) = (T^j\omega, x + S_jf(\omega))$ for $(\omega, x) \in K_{\mathbb{R}}$, it is easy to see that v_j has the form

$$v_j(\omega, x) = \frac{1+x^2}{1+(x+S_j f(\omega))^2}$$
$$= \frac{1+x^2}{1+(x+h(T^j\omega)-h(\omega))^2} \quad \text{for } (\omega, x) \in K_{\mathbb{R}}.$$

Since $\lambda = w \, d\mu_{\mathbb{R}}$ is invariant with respect to ϑ by hypothesis, it follows that if $A \in \mathcal{A}_{\mathbb{R}}$, then

$$\int_{A} w \, d\mu_{\mathbb{R}} = \int_{\vartheta^{j}A} w \, d\mu_{\mathbb{R}} = \int (w \cdot \chi_{\vartheta^{j}A}) \circ \vartheta^{j} \, d(\mu_{\mathbb{R}} \circ \vartheta^{j}) = \int_{A} (w \circ \vartheta^{j}) v_{j} \, d\mu_{\mathbb{R}},$$

whence $w = (w \circ \vartheta^j) v_j \pmod{\mu_{\mathbb{R}}}$ on $K_{\mathbb{R}}$. Therefore,

$$w^{1/2}(\omega, x) \frac{|x + h(T^j\omega) - h(\omega)|}{\sqrt{1 + x^2}} \le w^{1/2} \circ \vartheta^j(\omega, x)$$

for $\mu_{\mathbb{R}}$ -a.e. $(\omega, x) \in K_{\mathbb{R}}$. Now, if $C \cdot w^{1/2}(\omega, x) \ge \sqrt{1 + x^2}$ for some constant C > 1, then

$$|x + h(T^{j}\omega) - h(\omega)| \le C \cdot w^{1/2} \circ \vartheta^{j}(\omega, x);$$

and by (17) there exist constants k(C) > 0 and $x_1 \ge 0$ such that

$$M(|x + h(T^{j}\omega) - h(\omega)|) \le k(C) \cdot M(w^{1/2} \circ \vartheta^{j}(\omega, x))$$

whenever $w^{1/2} \circ \vartheta^j(\omega, x) \ge x_1$; consequently,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} M(|x + h(T^{j}\omega) - h(\omega)|)$$

$$\leq M(Cx_{1}) + k(C) \cdot \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} M(w^{1/2} \circ \vartheta^{j}(\omega, x))$$

$$= M(Cx_{1}) + k(C) \cdot E\{M(w^{1/2}) \mid (K_{\mathbb{R}}, \mathcal{I}_{\mathbb{R}}, wd\mu_{\mathbb{R}})\}(\omega, x) < \infty$$

by the Birkhoff ergodic theorem, where $E\{M(w^{1/2}) | (K_{\mathbb{R}}, \mathcal{I}_{\mathbb{R}}, wd\mu_{\mathbb{R}})\}$ denotes the conditional expectation of the function $M(w^{1/2})$ with respect to the σ -field $\mathcal{I}_{\mathbb{R}}$ and the measure $wd\mu_{\mathbb{R}}$. Since the constant C > 0 can be arbitrarily large, this proves that

(29)
$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} M(|x + h(T^{j}\omega) - h(\omega)|) < \infty \quad \text{for } \mu_{\mathbb{R}}\text{-a.e. } (\omega, x) \in E_{\lambda}.$$

Hence, if we define a function \tilde{g} on Ω by

$$\widetilde{g}(\omega) = \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} M(|h(T^{j}\omega)|) \quad \text{for } \omega \in \Omega,$$

then (29) and (17) show that $\tilde{g}(\omega) < \infty$ for $\mu_{\mathbb{R}}$ -a.e. $(\omega, x) \in E_{\lambda}$. Therefore, as before, if λ is a $\mu_{\mathbb{R}}$ -equivalent measure, or if T is ergodic and λ is a $\mu_{\mathbb{R}}$ -absolutely continuous probability measure, then $0 \leq \tilde{g}(T\omega) = \tilde{g}(\omega) < \infty$ for μ -a.e. $\omega \in \Omega$; and the sets $B_n = \{\omega \in \Omega : n - 1 \leq \tilde{g}(\omega) < n\}, n \geq 1$, satisfy $T^{-1}B_n = B_n, \int_{B_n} M(|h|) d\mu = \int_{B_n} \tilde{g} d\mu < \infty$ (by the Birkhoff ergodic theorem), and $\Omega = \bigcup_{n=1}^{\infty} B_n \pmod{\mu}$. In particular, if T is ergodic, then $\tilde{g}(\omega) = \int_{\Omega} M(|h|) d\mu < \infty$ for μ -a.e. $\omega \in \Omega$.

We can summarize the above as follows.

FACT 3 (cf. Proposition 3.1 of [1]). Let $M : [0, \infty) \to [0, \infty)$ be an increasing function such that $\lim_{x\to\infty} M(x) = \infty$ and there exist constants k > 0 and $x_0 \ge 0$ satisfying (17). Then the following hold:

(I) If T is an endomorphism and h is a real-valued measurable function on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$, then the measure $\lambda_h = w_h d\mu_{\mathbb{R}}$ in (19) is a $\mu_{\mathbb{R}}$ -equivalent probability measure invariant with

respect to ϑ . If moreover $h \in L_{\infty}(\Omega, \mu)$ then $w_h \in L_{\infty}(K_{\mathbb{R}}, \mu_{\mathbb{R}})$; and if $h \in L_M(\Omega, \mu)$ then $w_h M(\sqrt{w_h}) \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$.

(II) If T is an automorphism and $\lambda = w \, d\mu_{\mathbb{R}}$, where $0 < w \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$, is a $\mu_{\mathbb{R}}$ -equivalent probability measure invariant with respect to ϑ , then there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. If moreover $w \in L_{\infty}(K_{\mathbb{R}}, \mu_{\mathbb{R}})$ [resp. $wM(\sqrt{w}) \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$], then there exists a countable measurable decomposition $\{A_n : n \geq 1\}$ of Ω with $T^{-1}A_n = A_n$ for $n \geq 1$ such that $h\chi_{A_n} \in L_{\infty}(\Omega, \mu)$ [resp. $h\chi_{A_n} \in L_M(\Omega, \mu)$] for every $n \geq 1$.

(III) If T is an ergodic automorphism and $\lambda = wd\mu_{\mathbb{R}}$, where $0 \leq w \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$, is a $\mu_{\mathbb{R}}$ -absolutely continuous probability measure invariant with respect to ϑ , then there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. If moreover $w \in L_{\infty}(K_{\mathbb{R}}, \mu_{\mathbb{R}})$ [resp. $wM(\sqrt{w}) \in L_1(K_{\mathbb{R}}, \mu_{\mathbb{R}})$], then $h \in L_{\infty}(\Omega, \mu)$ [resp. $h \in L_M(\Omega, \mu)$].

3. Main results

THEOREM 1 (cf. Theorem 1 on p. 62 of [6]). Let $\varphi : \mathbb{R} \to [0, \infty)$ be a Borel measurable function on \mathbb{R} such that $\lim_{|x|\to\infty} \varphi(x) = \infty$. Assume that T is an ergodic endomorphism. If there exists a set $A \in \mathcal{A}$ with $\mu(A) > 0$ such that

(30)
$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \int_{A} \varphi(S_j f(\omega)) \, d\mu < \infty,$$

then there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. If, in addition, $\sup\{\varphi(x) : |x| \leq N\} < \infty$ for every $N \geq 1$, and $\limsup_{|x|\to\infty} \varphi(x+a)/\varphi(x) < \infty$ for every $a \in \mathbb{R}$, then $\int_{\Omega} \varphi(h(\omega)) d\mu < \infty$.

COROLLARY (cf. Theorem 3.2 of [1]). Let T be an ergodic endomorphism, and $0 < r < \infty$. If

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \int_{A} |S_j f(\omega)|^r \, d\mu < \infty$$

for some $A \in \mathcal{A}$ with $\mu(A) > 0$, then there exists a real-valued measurable function h on Ω with $\int_{\Omega} |h(\omega)|^r d\mu < \infty$ such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$.

Proof of Theorem 1. By Fatou's lemma, the function

$$\varphi(f)_*(\omega) = \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \varphi(S_j f(\omega))$$

satisfies

$$\int_{A} \varphi(f)_{*}(\omega) \, d\mu \leq \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \int_{A} \varphi(S_{j}f(\omega)) \, d\mu < \infty,$$

whence $\varphi(f)_*(\omega) < \infty$ for μ -a.e. $\omega \in A$. Since $\lim_{|x|\to\infty} \varphi(x) = \infty$, the inequality $\varphi(f)_*(\omega) < \infty$ implies the existence of an $N \ge 1$ such that

$$g_N(\omega) = \limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \chi_{[-N,N]}(S_j f(\omega)) > 0.$$

It follows that $g_{\infty}(\omega) = \lim_{N \to \infty} g_N(\omega) > 0$ for μ -a.e. $\omega \in A$, and therefore by Fact 2 there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. Assume that φ satisfies $\sup\{\varphi(x) :$ $|x| \leq N\} < \infty$ for every $N \geq 1$, and $\limsup_{|x|\to\infty} \varphi(x+a)/\varphi(x) < \infty$ for every $a \in \mathbb{R}$. Then, since $S_j f(\omega) = h(T^j \omega) - h(\omega)$ on Ω , it follows that

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \varphi(h(T^{j}\omega)) = \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \varphi(S_{j}f(\omega) + h(\omega)) < \infty$$

for μ -a.e. $\omega \in A$ with $\varphi(f)_*(\omega) < \infty$, so that the function

$$h_*(\omega) = \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \varphi(h(T^j \omega))$$

satisfies $h_*(\omega) < \infty$ for μ -a.e. $\omega \in A$. Since h_* is an invariant function with respect to T, the Birkhoff ergodic theorem and the ergodicity of T imply that $h_*(\omega) = \int_{\Omega} \varphi \circ h \, d\mu < \infty$ for μ -a.e. $\omega \in \Omega$, and hence the desired result has been established.

REMARK 1. If the ergodicity of T is not assumed in Theorem 1, then the above argument shows that inequality (30) with $A = \Omega$ implies the existence of a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$; if moreover $\sup\{\varphi(x) : |x| \leq N\} < \infty$ for every $N \geq 1$, and $\limsup_{|x|\to\infty} \varphi(x+a)/\varphi(x) < \infty$ for every $a \in \mathbb{R}$, then there exists a countable measurable decomposition $\{A_n : n \geq 1\}$ of Ω with $T^{-1}A_n = A_n$ for $n \geq 1$ such that $\int_{A_n} \varphi(h(\omega)) d\mu < \infty$ for every $n \geq 1$.

From now on we consider a Banach lattice $(L, \|\cdot\|_L)$ of equivalence classes of real-valued measurable functions on Ω . Thus, two functions u and v in L are not distinguished provided that $u(\omega) = v(\omega)$ for μ -a.e. $\omega \in \Omega$. By definition, the norm $\|\cdot\|_L$ has the property:

(A) If $u, v \in L$ and $|u(\omega)| \leq |v(\omega)|$ for μ -a.e. $\omega \in \Omega$, then $||u||_L \leq ||v||_L$. In this paper we assume the additional properties:

(B) If v is a real-valued measurable function on Ω and there exists a function $u \in L$ such that $|v(\omega)| \leq |u(\omega)|$ for μ -a.e. $\omega \in \Omega$, then $v \in L$.

(C) If (u_n) is a sequence of functions in L such that $|u_1(\omega)| \leq |u_2(\omega)| \leq \ldots$ for μ -a.e. $\omega \in \Omega$, and $\sup_{n\geq 1} ||u_n||_L < \infty$, then there exists a function $u \in L$ such that $|u_n(\omega)| \leq |u(\omega)|$ for μ -a.e. $\omega \in \Omega$ and all $n \geq 1$.

(D) If v is a real-valued measurable function on \varOmega and $u\in L$ is such that

$$\mu(\{\omega: |v(\omega)| > a\}) = \mu(\{\omega: |u(\omega)| > a\})$$

for every $0 < a \in \mathbb{R}$, then $v \in L$ and $||v||_L = ||u||_L$.

It should be noted that, besides the usual $L_p(\Omega, \mu)$ -spaces with $1 \leq p \leq \infty$, there are many interesting Banach lattices of functions which share these additional properties (B), (C) and (D). Examples are Orlicz spaces, Lorentz spaces, etc. By Property (D), the mapping $u \mapsto u \circ T$ is a linear isometry of $(L, \|\cdot\|_L)$ for every endomorphism T.

THEOREM 2 (cf. [13]). Assume that T is an ergodic endomorphism. If there exists a set $A \in \mathcal{A}$ with $\mu(A) > 0$ such that $(S_j f)\chi_A \in L$ for $j \ge 1$ and

(31)
$$K := \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \| (S_j f) \chi_A \|_L < \infty,$$

then there exists a function h in L such that $f = h \circ T - h$ on Ω .

Proof. Define

(32)
$$f_n(\omega) = \inf_{m \ge n} \frac{1}{m} \sum_{j=1}^m |S_j f(\omega)| \quad \text{for } n \ge 1,$$

(33)
$$f_{\infty}(\omega) = \lim_{n \to \infty} f_n(\omega)$$

By Property (B) and the hypothesis $(S_j f)\chi_A \in L$ for $j \geq 1$ it follows that $f_n\chi_A \in L$ for $n \geq 1$; and by Property (A) we have $||f_n\chi_A||_L \leq (1/m)\sum_{j=1}^m ||(S_j f)\chi_A||_L$ for $m \geq n$. Thus

(34)
$$||f_n \chi_A||_L \le \liminf_{m \to \infty} \frac{1}{m} \sum_{j=1}^m ||(S_j f) \chi_A||_L = K \text{ for every } n \ge 1,$$

and hence

$$(35) f_{\infty}\chi_A \in I$$

by Properties (C) and (B). In particular, $f_{\infty}(\omega) < \infty$ for μ -a.e. $\omega \in A$, and thus we can apply the proof of Theorem 1 with $\varphi(x) = |x|$ to infer that there exists a real-valued measurable function h on Ω with $\int_{\Omega} |h(\omega)| d\mu < \infty$ such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$.

To prove that $h \in L$, we may assume below that $(\Omega, \mathcal{A}, \mu)$ is nonatomic. (Indeed, if $(\Omega, \mathcal{A}, \mu)$ is atomic, then the ergodicity of T implies that Ω is essentially a finite set, and then $h \in L$ is obvious.) Further we may assume that $(\Omega, \mathcal{A}, \mu)$ is separable, because there is a countable family $\{A_i : i \ge 1\}$ in \mathcal{A} such that

(i) the measure space $(\Omega, \mathcal{A}_1, \mu)$, where \mathcal{A}_1 denotes the σ -field generated by $\{A_i : i \geq 1\}$, is nonatomic,

- (ii) T is an ergodic endomorphism of $(\Omega, \mathcal{A}_1, \mu)$,
- (iii) f is measurable with respect to \mathcal{A}_1 , and

(iv) the space $L_1 = \{g \in L : g \text{ is } \mathcal{A}_1\text{-measurable}\}$, with norm $\|\cdot\|_{L_1} =$ the restriction of the norm $\|\cdot\|_L$ to L_1 , is a Banach lattice having Properties (B)–(D) with L_1 and $\|\cdot\|_{L_1}$ in place of L and $\|\cdot\|_L$, respectively.

Next, we use the isomorphism theorem for measure algebras (cf. e.g. Theorem 41.C of [4]) to infer that there exists an isomorphism Φ from the measure algebra ($\mathcal{A}(\mu), \mu$) onto the measure algebra ($\mathcal{B}([0,1]), dx$), where $\mathcal{B}([0,1])$ denotes the σ -field of all Borel subsets of [0,1] and dx is the Lebesgue measure. Thus we may assume that $(\Omega, \mathcal{A}, \mu) = ([0,1], \mathcal{B}([0,1]), dx)$. Then T can be regarded as an isomorphism from ($\mathcal{B}([0,1]), dx$) into itself. Since [0,1] is an uncountable complete separable metric space, it then follows (see e.g. Proposition 15.19 of [12]) that T can be considered to be an (ergodic) endomorphism of the measure space ($[0,1], \mathcal{B}([0,1]), dx$).

We then use the natural extension of the ergodic endomorphism T of $([0,1], \mathcal{B}([0,1]), dx)$ (cf. e.g. §4 of Chapter 10 of [3]). That is, it is known that there exists an ergodic automorphism \widetilde{T} of a separable nonatomic probability measure space $(\widetilde{\Omega}, \widetilde{\mathcal{A}}, \widetilde{\mu})$, and a measure preserving transformation S from $(\widetilde{\Omega}, \widetilde{\mathcal{A}}, \widetilde{\mu})$ to $(\Omega, \mathcal{A}, \mu)$ such that

(36)
$$(S \circ \widetilde{T})(\widetilde{\omega}) = (T \circ S)(\widetilde{\omega}) \text{ for every } \widetilde{\omega} \in \widetilde{\Omega}.$$

Denote by \widetilde{L} the space of all real-valued $\widetilde{\mathcal{A}}$ -measurable functions \widetilde{u} on $\widetilde{\Omega}$ to which there corresponds a function $u \in L$ such that $\widetilde{\mu}(\{\widetilde{\omega} : |\widetilde{u}(\widetilde{\omega})| > a\}) = \mu(\{\omega : |u(\omega)| > a\})$ for every $0 < a \in \mathbb{R}$, and define $\|\widetilde{u}\|_{\widetilde{L}} = \|u\|_{L}$. By using Property (D) it is easy to check that if \widetilde{u} and \widetilde{v} are in \widetilde{L} , then $\widetilde{u} + \widetilde{v} \in \widetilde{L}$ and $\|\widetilde{u} + \widetilde{v}\|_{\widetilde{L}} \leq \|\widetilde{u}\|_{\widetilde{L}} + \|\widetilde{v}\|_{\widetilde{L}}$. (In fact, by the isomorphism theorem, there exists an isomorphism Ψ from the measure algebra $(\widetilde{\mathcal{A}}(\widetilde{\mu}), \widetilde{\mu})$ onto $(\mathcal{A}(\mu), \mu)$. Then Ψ can be uniquely extended, in an obvious manner, to an invertible linear operator (denoted also by Ψ) from $L_0(\widetilde{\Omega}, \widetilde{\mu})$ onto $L_0(\Omega, \mu)$, where $L_0(\widetilde{\Omega}, \widetilde{\mu})$ is the space of all real-valued measurable functions on $(\widetilde{\Omega}, \widetilde{\mathcal{A}}, \widetilde{\mu})$ and, by definition, two functions \widetilde{u} and \widetilde{v} in $L_0(\widetilde{\Omega}, \mu)$ are not distinguished provided that $\widetilde{u}(\widetilde{\omega}) = \widetilde{v}(\widetilde{\omega})$ for $\widetilde{\mu}$ -a.e. $\widetilde{\omega} \in \widetilde{\Omega}$; $L_0(\Omega, \mu)$ is defined similarly for $(\Omega, \mathcal{A}, \mu)$. Then $\Psi\widetilde{L} = L$ and $\|\widetilde{u}\|_{\widetilde{L}} = \|\Psi\widetilde{u}\|_L$ for all $\widetilde{u} \in \widetilde{L}$.) It follows that $(\widetilde{L}, \|\cdot\|_{\widetilde{L}})$ is a Banach lattice having Properties (B)–(D) with \widetilde{L} and $\|\cdot\|_{\widetilde{L}}$ replaced by L and $\|\cdot\|_L$, respectively. In order to prove that $h \in L$, it is now sufficient to prove that $h \circ S \in \widetilde{L}$. Consequently, we have reached the conclusion that T may be assumed to be an ergodic *automorphism* of $(\Omega, \mathcal{A}, \mu)$. With this assumption we continue the proof as follows.

First, as is easily seen, it is enough to consider the case where $\mu(\{\omega : f(\omega) \neq 0\}) > 0$. Then, since T is ergodic, we have

$$\bigcup_{n=0}^{\infty} T^{-n} \{ \omega : f(\omega) \neq 0 \} = \Omega \pmod{\mu},$$

and thus by Property (B) there exists a set $A_1 \in \mathcal{A}$ with $A_1 \subset A$ and $\mu(A_1) > 0$ for which $h\chi_{A_1} \in L$. This shows that we may assume from the start that $h\chi_A \in L$.

Now, since $(h \circ T^j)\chi_A = (S_j f)\chi_A + h\chi_A$ for $j \ge 1$,

$$\frac{1}{n} \sum_{j=1}^{n} \| (S_j f) \chi_A \|_L + \| h \chi_A \|_L \ge \frac{1}{n} \sum_{j=1}^{n} \| (h \circ T^j) \chi_A \|_L \\
= \frac{1}{n} \sum_{j=1}^{n} \| h (\chi_A \circ T^{-j}) \|_L \quad \text{(by Property (D))} \\
\ge \left\| h \left(\frac{1}{n} \sum_{j=1}^{n} \chi_A \circ T^{-j} \right) \right\|_L.$$

If we let, for $n \ge 1$,

$$d_n(\omega) = \inf_{m \ge n} \frac{1}{m} \sum_{j=1}^m \chi_A(T^{-j}\omega),$$

then, by the Birkhoff ergodic theorem together with the ergodicity of T,

$$0 \le d_1(\omega) \le d_2(\omega) \le \ldots \to \mu(A) > 0$$
 for μ -a.e. $\omega \in \Omega$.

Hence, $\mu(A)|h|(\omega) = \lim_{n\to\infty} d_n(\omega)|h|(\omega)$ for μ -a.e. $\omega \in \Omega$. Furthermore,

$$\|d_n h\|_L \le \left\| h\left(\frac{1}{n} \sum_{j=1}^n \chi_A \circ T^{-j}\right) \right\|_L \le \frac{1}{n} \sum_{j=1}^n \|(S_j f)\chi_A\|_L + \|h\chi_A\|_L.$$

Thus, by (31), there exists a subsequence (n') of (n) such that $||d_{n'}h||_L \leq K + ||h\chi_A||_L + 1$ for all n'. By Properties (C) and (B) it follows that $\mu(A)h \in L$, and hence the proof is complete.

REMARK 2. If the ergodicity of T is not assumed in Theorem 2, then inequality (31) with $A = \Omega$ implies the same conclusion of the theorem.

To see this, we first notice that the above proof, together with Remark 1, shows that there exists a real-valued measurable function h on Ω such that $f(\omega) = h(T\omega) - h(\omega)$ for μ -a.e. $\omega \in \Omega$. Since $|S_j f| = |h \circ T^j - h| \ge |h \circ T^j| - |h|$

for $j \ge 1$, it follows that

$$\frac{1}{n}\sum_{j=1}^{n}|h|\circ T^{j} \le \frac{1}{n}\sum_{j=1}^{n}|S_{j}f| + |h|.$$

Therefore, the Birkhoff ergodic theorem implies that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} |h|(T^{j}\omega) \le \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} |S_{j}f(\omega)| + |h(\omega)| < \infty$$

for μ -a.e. $\omega \in \Omega$, and hence the limit

$$h_{\infty}(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} h(T^{j}\omega)$$

exists and is finite for μ -a.e. $\omega \in \Omega$. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} S_j f(\omega) = h_{\infty}(\omega) - h(\omega)$$

for μ -a.e. $\omega \in \Omega$. Since $h_{\infty}(\omega) = h_{\infty}(T\omega)$ for μ -a.e. $\omega \in \Omega$, it follows that the function $h_0(\omega) := h(\omega) - h_{\infty}(\omega)$ satisfies $f(\omega) = h_0(T\omega) - h_0(\omega)$ for μ -a.e. $\omega \in \Omega$. Furthermore,

$$|h_0(\omega)| \le \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^n |S_j f(\omega)| < \infty$$

for μ -a.e. $\omega \in \Omega$. Since inequality (31) with $A = \Omega$ shows that the function $f_{\infty}(\omega) = \liminf_{n \to \infty} (1/n) \sum_{j=1}^{n} |S_j f(\omega)|$ belongs to L (see (35)), we get $h_0 \in L$ by Property (B). This establishes the desired conclusion.

References

- A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real coboundary cocycles in L^p-spaces, 0
- [2] I. Assani, Note on the equation Y = (I T)X in L^1 , Illinois J. Math. 43 (1999), 540–541.
- [3] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, *Ergodic Theory*, Springer, Berlin, 1982.
- [4] P. R. Halmos, *Measure Theory*, Van Nostrand, New York, 1950.
- [5] H. Helson, Note on additive cocycles, J. London Math. Soc. (2) 31 (1985), 473–477.
- [6] —, The Spectrum Theorem, Lecture Notes in Math. 1227, Springer, Berlin, 1986.
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II, Springer, Berlin, 1970.
- [8] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249–276.
- [9] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [10] U. Krengel, *Ergodic Theorems*, de Gruyter, Berlin, 1985.

- [11] M. Lin and R. Sine, Ergodic theory and the functional equation (I T)x = y, J. Operator Theory 10 (1983), 153–166.
- [12] H. L. Royden, *Real Analysis*, 3rd ed., Macmillan, New York, 1988.
- [13] R. Sato, A remark on real coboundary cocycles in L^{∞} -space, Proc. Amer. Math. Soc., to appear.

Department of Mathematics Okayama University Okayama, 700-8530 Japan E-mail: satoryot@math.okayama-u.ac.jp

> Received April 23, 2002 Revised version October 21, 2002 (4934)