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Algebrability of the set of non-convergent Fourier series

by

Richard M. Aron (Kent, OH), David Pérez-Garćia (Madrid)
and Juan B. Seoane-Sepúlveda (Kent, OH)

Abstract. We show that, given a set E ⊂ T of measure zero, the set of continuous
functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable,
i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of C(T) every
non-zero element of which has a Fourier series expansion divergent in E.

1. Introduction and preliminaries. Many examples of functions with
some special or pathological properties have been found in analysis. Ex-
amples such as continuous nowhere differentiable functions, everywhere sur-
jective functions, or differentiable nowhere monotone functions have been
constructed in the past. Given such a special property, we say that the sub-
set M of functions which satisfy it is spaceable if M ∪ {0} contains a closed
infinite-dimensional subspace. The set M will be called (dense) lineable if
M ∪{0} contains an infinite-dimensional (dense) vector space. At times, we
will be more specific, referring to the set M as µ-lineable if it contains a
vector space of dimension µ. Also, we let λ(M) be the maximum cardinality
(if it exists) of such a vector space. We believe that the terms lineable and
spaceable were first introduced in [5] and, later, in [2] and [7] (see also [1]).

Some of these special properties are not isolated phenomena. In [2] it
was shown that the set of everywhere surjective functions is 2card(R)-lineable
and that the set of differentiable functions on R which are nowhere mono-
tone is lineable in C(R). Fonf, Gurariy and Kadets showed ([6]) that the set
of nowhere differentiable functions on [0, 1] is spaceable in C[0, 1]. Some of
these pathological behaviors occur in really interesting ways. For instance,
in [11] Rodŕıguez-Piazza proved that every separable Banach space is iso-
metric to a space of continuous nowhere differentiable functions, and in [8],
Hencl showed that any separable Banach space is isometrically isomorphic
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to a subspace of C[0, 1] whose non-zero elements are nowhere approximately
differentiable and nowhere Hölder.

This paper continues with the search for sets of functions enjoying special
properties, in particular, continuous functions whose Fourier series expan-
sion diverges on a set of Lebesgue measure zero.

The convergence of Fourier series has been deeply studied in the past.
It came as a considerable surprise when Du Bois-Reymond produced an
example of a continuous function f : T → C whose Fourier series is divergent
at one point (see [10, pp. 67–73] for a modern reference). This result can be
improved by means of an example of a continuous function whose Fourier
series expansion diverges on a set of measure zero ([9, p. 58]). This last result
is the best possible, since the Fourier expansion of every continuous function
converges almost everywhere (Carleson, see e.g. [10, p. 75]). Moreover, by
means of Baire’s theorem, the pathological behavior can be shown to be
generic: there exists a Gδ dense subset E ⊂ T such that the set of continuous
functions whose Fourier expansion diverges on this set is a Gδ dense subset
of C(T) ([12, p. 102]). While writing this paper, the authors became aware of
recent work by F. Bayart ([4]) where using different techniques it is shown
that, if FE ⊂ C(T) is the set of continuous functions whose Fourier series
expansion diverges on a set of measure zero, E, then FE is dense-lineable.
This result is a consequence of our main result, Theorem 2.1.

Let us recall the following definition, introduced in [3]:

Definition. Given a Banach algebra A and a subset B ⊂ A, we say
that:

(1) B is algebrable if there is a subalgebra C of A so that C ⊂ B ∪ {0}
and the cardinality of any system of generators of C is infinite;

(2) B is dense-algebrable if, in addition, C can be taken dense in A.

Recently ([3]) it was shown that the set of complex-valued everywhere
surjective functions is algebrable. The aim of this paper is to show that,
given any set E ⊂ T of measure zero, the set of continuous functions whose
Fourier series expansion is divergent at any point t ∈ E is dense-algebrable.

Here, and from now on, T denotes R/2πZ, f̂(n) or f̂(n) will denote the

nth Fourier coefficient of f ∈ C(T), Z(f) denotes the set {n ∈ Z : f̂(n) 6= 0},

and Sn(f, t) will denote the nth partial Fourier sum
∑n

u=−n f̂(u)eiut.

2. The main result

Theorem 2.1. Let E ⊂ T be a set of measure zero. Let FE ⊂ C(T) be

the set of continuous functions whose Fourier series expansion diverges at

every point t ∈ E. Then FE is dense-algebrable.
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In order to prove this result, we need several different tools, amongst
them some technical lemmas and the construction of a double sequence.

2.1. Preliminary elements. By [9, pp. 57–58], given a set E ⊂ T of

measure zero we can find a sequence (H̃k)k of trigonometric polynomials,
a sequence (nk)k of positive integers, and a sequence (Ek)k of measurable
subsets of T such that every t ∈ E belongs to infinitely many Ek’s and:

1. |H̃k(s)| ≤ 1 for all s ∈ T,

2. |Snk
(H̃k, t)| ≥ 2k2

for every t ∈ Ek.

Without loss of generality we may suppose that

H̃k(t) =

ãk∑

r=0

̂̃
Hk(r)e

irt,

that is, Z(H̃k) ⊂ [0, ãk], with (ãk) increasing, ãk > nk for every k ∈ N. Let

us define Hk(t) = 1 + ei(ãk+1)tH̃k(t) and let us call ak = 2ãk + 1 (to have
Z(Hk) ⊂ [0, ak]).

Let (Qj)j be a sequence of trigonometric polynomials that is dense
in C(T) and such that Z(Qj) ⊂ [−qj , qj ]. We may clearly suppose that
the sequence (qj)j is increasing, and we let bj = max{aj , qj}.

Next, consider the following linear order ≺ on N × N:

(j, k) ≺ (j′, k′) ⇔

{
j + k < j′ + k′ or

j + k = j′ + k′ and k < k′

This order can be represented by the following diagram, in which each arrow
connects a pair with its immediate successor:

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) · · ·

(3, 1) (3, 2) · · · · · ·

(4, 1) · · · · · · · · ·

u
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With this order we define by recursion the following double sequence (pj
k)j,k:

p1
1 = 3b1 + 1, pj

k = 3kbk + 2max{k, k′}pj′

k′ + 1,

where (j′, k′) is the immediate predecessor of (j, k).

Of course, pj
k < pj′

k′ if and only if (j, k) ≺ (j′, k′). Moreover (pj
k)j,k is

increasing in both indices and has, trivially, the following properties:

(P1) If (j, k) � (j′, k′) then bk < pj′

k′ .

(P2) pi
d > 3dbd for every i, d.

(P3) If (j, k) ≺ (i, d), then pi
d > 2dpj

k + 3dbd.

(P4) If (i, d) ≺ (j, k), then pj
k > 2dpi

d.

2.2. The main construction. We now use the above elements to state
and prove a technical lemma that will be necessary for the proof of the
main result:

Lemma 2.2. Suppose that

(1) pi1
d + · · · + pin

d + u = pj1
k1

+ · · · + pjs

ks
+ v

and :

(i) s ≤ n ≤ d;

(ii) pi1
d ≥ pi2

d ≥ · · · ≥ pin
d (that is, i1 ≥ · · · ≥ in);

(iii) pj1
k1

≥ pj2
k2

≥ · · · ≥ pjs

ks
;

(iv) |u| ≤ dbd;

(v) −dbd ≤ v ≤ bk1
+ · · · + bks

+ dbd.

Then n = s, ir = jr, kr = d for every r and u = v.

Proof. If pi1
d > pj1

k1
, then

pi1
d

(P3)
> 2dpj1

k1
+ 3dbd

(i)

≥ 2spj1
k1

+ 3dbd

(P1)+(iii)
> pj1

k1
+ · · · + pjs

ks
+ bk1

+ · · · + bks
+ 3dbd

and, by (iv) and (v), we cannot have equation (1).

If pj1
k1

> pi1
d , then

pj1
k1

(P4)
> 2dpi1

d

(P2)
> dpi1

d + 3dbd

(i)

≥ npi1
d + 3dbd

(ii)

≥ pi1
d + · · · + pin

d + 3dbd

and, by (iv) and (v), we cannot have equation (1).

So i1 = j1, k1 = d and we can convert (1) into

(2) pi2
d + · · · + pin

d + u = pj2
k2

+ · · · + pjs

ks
+ v

where −dbd ≤ v ≤ bk2
+ · · · + bks

+ (d + 1)bd.



Non-convergent Fourier series 87

Reasoning in the same way we can obtain i2 = j2 and k2 = d, reducing
equation (2) to

pi3
d + · · · + pin

d + u = pj3
k3

+ · · · + pjs

ks
+ v

where −dbd ≤ v ≤ bk3
+ · · · + bks

+ (d + 2)bd.
Continuing with this procedure (recall that, by (i), s ≤ n) we arrive at

pis
d + · · · + pin

d + u = pjs

ks
+ v

where −dbd ≤ v ≤ bks
+ (d + s − 1)bd. With the same arguments one can

conclude that js = is and ks = d. So it remains to prove that n = s. If
not, then n ≥ s + 1, and from (1), we obtain v = p

is+1

d + · · · + pin
d + u with

|u| ≤ dbd and −dbd ≤ v ≤ (d + s)bd ≤ 2dbd. Now

v = p
is+1

d + · · · + pin
d + u ≥ p

is+1

d + u
(P2)
> 3dbd − dbd = 2dbd ≥ v,

and we reach a contradiction.

Next, for each j ≥ 1 and m ≥ 1, let us define the function

fm
j (t) =

m∑

k=1

2−k · eip
j

k
tHk(t).

Thanks to the Weierstrass M -test we know that, for each j ∈ N, the se-
quence (fm

j )m converges uniformly to a continuous function fj ∈ C(T) with
‖fj‖ ≤ 2. Define gj = (1/j)fj + Qj and let A be the algebra generated
by {gj}j .

Since (Qj)j is a dense sequence in C(T), it is clear that (gj)j (and
hence A) is also dense in C(T). This immediately implies that A is infinite-
dimensional.

We will see that every g ∈ A \ {0} has a Fourier series divergent at any
t ∈ E. So let us take a generic element of A:

g =
N∑

j=1

αjgi
j
1

· · · g
i
j
sj

where s1 ≥ · · · ≥ sN (sj is the number of functions that we multiply in each

summand of g) and ij1 ≥ · · · ≥ ijsj for every j.
The heart of the matter is the next technical lemma:

Lemma 2.3. If d ≥ max{s1, i
1
1, . . . , i

N
1 } then:

(a) ĝ(p
i1
1

d + · · ·+p
i1s1
d +u) = α1(i

1
1 · · · i

1
s1

)−12−s1dĤs1

d (u) for 0 ≤ u ≤ s1ad.

(b) ĝ(u) = 0 for u ≤ −(p
i1
1

d + · · · + p
i1s1
d ).

(c) If l > i11, then ĝl(p
i1
1

d + · · ·+ p
i1s1
d + u) = 0 for every 0 ≤ u ≤ s1ad and

hence gl 6= g.
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Proof. First of all, notice that if we expand the sum

g =
N∑

j=1

αj

(
Q

i
j
1

+
1

ij1
f

i
j
1

)
· · ·

(
Q

i
j
sj

+
1

ijsj

f
i
j
sj

)
,

we obtain terms of the form fh1
· · · fhr

Qhr+1
· · ·Qhs

with s ≤ s1 ≤ d and
d ≥ hj for every 1 ≤ j ≤ s (we can suppose that h1 ≥ · · · ≥ hr).

By the uniform convergence of the sequence (fm
j )m, the sequence

(fm
h1

· · · fm
hr

Qhr+1
· · ·Qhs

)̂(v) converges to (fh1
· · · fhr

Qhr+1
· · ·Qhs

)̂(v) for
every v. It is easy to see that this sequence is in fact constant from some m
on. Now, for a fixed m, the function fm

h1
· · · fm

hr
Qhr+1

· · ·Qhs
is a trigonomet-

ric polynomial whose non-zero Fourier coefficients are contained in the set

Am := {ph1

k1
+ · · · + phr

kr
+ v :

−qhr+1
− · · · − qhs

≤ v ≤ ak1
+ · · · + akr

+ qhr+1
+ · · · + qhs

,

1 ≤ k1, . . . , kr ≤ m}.

Therefore, the non-zero Fourier coefficients of fh1
· · · fhr

Qhr+1
· · ·Qhs

are
contained in A =

⋃
m Am and hence in

B := {ph1

k1
+ · · ·+ phr

kr
+ v : −dbd ≤ v ≤ bk1

+ · · ·+ bkr
+ dbd, k1, . . . , kr ≥ 1}.

Since B ⊂ [−dbd, +∞), (P2) gives (b).

Now, Lemma 2.2 tells us that, if p
i1
1

d + · · · + p
i1s1
d + u (|u| ≤ dbd) belongs

to B, then r = s1, h1 = i11, . . . , hr = i1s1
and k1 = · · · = kr = d. Thus,

ĝ(p
i1
1

d + · · · + p
i1s1
d + u) = α1

1

i11 · · · i
1
s1

(fi1
1
· · · fi1s1

)̂(p
i1
1

d + · · · + p
i1s1
d + u),

for |u| ≤ dbd.

Moreover, Lemma 2.2 also says that p
i1
1

d + · · · + p
i1s1
d + u (|u| ≤ dbd) is

different from any other p
i1
1

k1
+ · · · + p

i1s1
ks1

+ v with −dbd ≤ v ≤ bk1
+ · · · +

bkr
+ dbd.
Thus, looking at the formula

fm
i1
1

· · · fm
i1s1

(t)

=

m∑

k1,...,ks1
=1

ak1
,...,aks1∑

r1,...,rs1
=0

2−k1−···−ks1 Ĥk1
(r1) · · · Ĥks1

(rs1
)e

i(p
i1
1

k1
+···+p

i1s1
ks1

+r1+···+rs1
)t

one finds that, if 0 ≤ u ≤ s1ad, then

(fm
i1
1

· · · fm
i1s1

)̂(p
i1
1

d + · · · + p
i1s1
d + u) =

∑

r1+···+rs1
=u

0≤r1,...,rs1
≤ad

2−s1dĤd(r1) · · · Ĥd(rs1
),

which is exactly 2−s1dĤs1

d (u), and this gives (a).
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Finally, to obtain (c) we can reason in the same way. The non-zero
Fourier coefficients of gl are in the set C = {pl

k + v : 0 ≤ v ≤ bk}. Now,

thanks to Lemma 2.2, if pl
k+v = p

i1
1

d + · · · + p
i1s1
d + u for some 0 ≤ v ≤ bk,

0 ≤ u ≤ s1ad ≤ dbd, we obtain i11 = l, which is impossible since l > i11. This
completes the proof of the lemma.

Proof of Theorem 2.1. Now, set β1 = α1(i
1
1 · · · i

1
s1

)−1 and take any d ≥

max{s1, i
1
1, . . . , i

N
1 }. It follows that

(3) |S
p

i1
1

d
+···+p

i1s1
d

+ãd+1+nd

(g, t) − S
p

i1
1

d
+···+p

i1s1
d

+ãd

(g, t)|

=
∣∣∣

−(p
i1
1

d
+···+p

i1s1
d

+ãd+1)∑

−(p
i1
1

d
+···+p

i1s1
d

+ãd+1+nd)

ĝ(u)eiut +

p
i1
1

d
+···+p

i1s1
d

+ãd+1+nd∑

p
i1
1

d
+···+p

i1s1
d

+ãd+1

ĝ(u)eiut
∣∣∣.

By Lemma 2.3(b), the first term of (3) is zero. Thus, by Lemma 2.3(a),
(3) is equal to

β12
−s1d

∣∣∣
ãd+1+nd∑

u=ãd+1

Ĥs1

d (u)eiut
∣∣∣.

But, by the definition of Hd, we have

Hs1

d (t) =

s1∑

k=0

(
s1

k

)
eik(ãd+1)tH̃k

d (t)

and, since Z(H̃k
d ) ⊂ [0,∞) for any k, we see that for u ∈ [ãd +1, ãd +1+nd],

Ĥs1

d (u) = s1
̂̃
Hd(u − (ãd + 1)) (recall that nd ≤ ãd).

Therefore (3) equals

β1s12
−s1d

∣∣∣
nd∑

u=0

̂̃
Hd(u)eiut

∣∣∣ = β1s12
−s1d|Snd

(H̃d, t)| ≥ β1s12
d2−s1d

for every t ∈ Ed. Since any t ∈ E belongs to infinitely many Ed’s, we have

lim
n

sup |Sn(g, t)| = ∞ for every t ∈ E.

To finish the proof of Theorem 2.1 it only remains to prove that A is
infinitely generated. Now, if A were finitely generated, there would exist an
l ∈ N such that every gh, h ∈ N, can be expressed as

(4) gh =
N∑

j=1

αjgi
j
1

· · · g
i
j
sj

with s1 ≥ · · · ≥ sN and l > ij1 ≥ · · · ≥ ijsj for every j. Taking h = l in (4)
this contradicts Lemma 2.3(c), which finishes the proof of Theorem 2.1.
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[11] L. Rodŕıguez-Piazza, Every separable Banach space is isometric to a space of con-

tinuous nowhere differentiable functions, Proc. Amer. Math. Soc. 123 (1995), 3649–
3654.

[12] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

Department of Mathematics
Kent State University
Kent, OH 44242, U.S.A.
E-mail: aron@math.kent.edu

jseoane@math.kent.edu

Departamento de Matemática Aplicada
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